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Abstract 

We present a classification of (2,2) free field compactifications with one twist in 
which only 95 distinct models (generations and antigenerations) are found. Models 
with three generations and no antigenerations are given. 
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Classification of spectra of different string compactifications always serves a twofold aim. 
On the one hand one is searching for realistic models with three generations and as few antigen
erations as possible. On the other hand one would like to get an overview of "what a certain 
compactification scheme contains", especially in comparison to other schemes. Classification 
has initiated enormous progress in understanding of the underlying relations between different 
schemes. In particular, analysis .of the (2, 2) spectra yielded by minimal N = 2 models [1] led to 
the observation that they realize Calabi-Yau manifolds at specific points in their moduli spaces. 
Of the known string compactification schemes there are two of which hardly anything is known 
concerning their content in terms of vacuum zero modes: Lattice compactifications [2] and com
pactifications by free fermions, also called fermionic strings [3,4]. Here we will be concerned 
with the second case. 
Classification in this case has been hampered by the huge number of possibilities for bound
ary conditions for the fermions [5]. In most cases fermions with only periodic and antiperiodic 
boundary conditions were used, which implied the need to introduce several sets of boundary 
conditions to create viable models. This strategy was adopted in most of the subsequent litera
ture. 
Instead, in a previous paper [6] we proposed the opposite approach, which is to classify models 
with very general boundary conditions and a minimum number of different sets. Since it is 
believed that the J}lain features of the vacua are already evident in the possible ( 2, 2) models, 
we choose to concentrate on them. Furthermore we impose left-right symmetry in anticipation 
of a possible geometric interpretation. Only with these restrictions is the classification possible. 

In this spirit, we gave a prescription for generating all possible left-right symmetric (2, 2) 
models in the fermionic formulation. Our aim in that work was to make some general observa
tions regarding the nature of fermionic string, and its relation to other compactifications. We 
stressed that the (2, 2) structure is realized on the spectrum (e.g. implying space-time super
symmetry, exceptional gauge groups, the existence of moduli), but that the explicit formulation 
of the algebra in terms of general complex fermions is still unknown. This situation is remi
niscent of the one for Calabi-Yau compactifications. Confining ourselves to D = 6 and D = 8 
dimensions, we discovered that there is a considerable overlap with orbifolds and torus compact
ifications, but that there exist many models in the fermionic formulation which do not belong to 
any orbifold or known smooth manifold. Specifically, in D = 8 there exist only the known tori 
and no orbifolds. In D = 6 dimensions, we found 37 models of which 6 belong to the two-torus 
T 2 and only 4 had a generation number which could possibly correspond to orbifolds or the 
Calabi-Yau manifold K3. (In D = 6, the generation number is related to the Hodge numbers by 
n+ - n_ = h11 (7]. All orbifold models and the K3 manifold have 10 generations.) Only one of 
these models could directly be bosonized, namely into the Z2 orbifold. The other models show 
very similar spectra, therefore suggesting highly nontrivial identities similar to those proposed 
in ref.(8] between the partition functions. 

In this work, we extend the analysis to the case of D = 4. Here we already have the 
examples of equivalence between the fermionic models and the Z2 , Z4 and Z8 orbifolds by the 
already mentioned types of partition function identities [8,9]. The exact overlap between the two 
schemes remains contentious however, and it is important to note that the fermionic versions 
of these orbifolds were established using theta-function identities and not direct bosonisation 
which indeed does not appear to be possible for the Z4 and Zs cases. 

An additional aim here is to refute an assertion which often is made, namely that there 
exists a unique way of generating three generation models which involves a large set of boundary 
conditions. In fact, extrapolating from the D = 6 case, one would naturally expect there to be 
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many more than 37left-right symmetric models in four dimensions. This makes the existence of a 
unique theory unlikely (being in accordance with the Calabi-Yau and Landau-Ginzburg schemes, 
in which there are also several three generation models [10,1]). Our method for generating left
right symmetric models was given in ref.[6], but for completeness we shall briefly summarise our 
choice of vectors of boundary conditions. 

In our classification we will make use of the fact that N = 1 space-time supersymmetry is 
equivalent to N = 2 world-sheet supersymmetry [11) (and the same is valid after the bosonic 
string map, turning N = 1 space-time supersymmetry into an E4+D/Z ® E8 gauge group). 
Furthermore a model with local N = 1 space-time supersymmetry at the massless level implies 
the existence of gravity supermultiplets. Since gravity couples universally to all massless and 
massive states, it forces them all to appear in supermultiplets. This implies N = 1 space
time supersymmetry even at the massive level, which by the above theorem implies N = 2 
supersymmetry on the world-sheet (as does E4+D ; 2 ® Ea after the heterotic string map). 
We therefore shall restrict ourselves to left-right symmetric ( 1, 1) models which are promoted 
into (2, 2) models in this manner. Further breaking of the gauge group by embeddings of twists 
(e.g. Wilson-lines) should then work in the usual way, and will not spoil the relevance of the 
classification. We use the formulation of ref.(3), and we stress that we are restricting the analysis 
to only complex fermions. The internal degrees of freedom then have phases associated with them 
ar, br, Cr; r = 1, · · · , 3 which come in triplets for left and right movers fulfilling the constraint 

1 
ar + br + Cr E 0, 2 mod(1) 

and therefore constituting a product of three ( 1, 1) models to start with. 
Without loss of generality (see ref.[6]) we choose the first four vectors to be of the form, 

Wo [ (~)(~~~)3 2 222 
(~~~)3(~)5(~)8 
2 2 2 2 2 ] 

W1 [ (~)(a~ b~ c~) {000)3(0)5(0)8 ] 

Wz = [ (0)(000)3 (a~ b~ c~)( ~ )5(0)8 ] 
W3 [ (0)(000)3 I (000)3(0)5( ~ )8 J . 

(1) 

(2) 

The Wo vector is needed to have a non-trivial modular invariant theory, and to give the gravity 
multiplet. It implies the existence of Ramond and Neveu-Schwarz sectors as in any string 
compactification. The W 1 and W 2 vectors respectively implement supersymmetry on the right 
movers and exceptional gauge groups on the left movers. Finally, in order to give a second 
seperate E~ factor we have the W 3 vector. Thus we are able to get copies of N = 2 algebras on 
each side, establishing a (2, 2) model [6]. 

The numerical survey of the spectra generated by the above vectors reveals that, for any 
choice of (a}, b}, cl), the theory generated has the maximal N = 4 supersymmetry (and so 
E8 ® E~ gauge group), and therefore corresponds to a torus compactification in the usual sense. 
Typically one finds tori with enhanced symmetry. For example, consider the choice a} = b} = 0 
and c} = ! for all r. Direct bosonisation (of the first two fermions in each triplet) shows that 
we do not simply obtain a product of three independent tori of radius R = 1/2, since the 
vector Wo = W 0 - W 1 - W 2 - W 3 relates them in a non-trivial way. To go beyond torus 

3 



compactification, we will need to add more vectors to break down supersymmetry and gauge 
symmetry. Such additional compactification vectors may be either left-right symmetric, 

W [ (0)( '"b'" '") J (a'"4 b'"4 c4'")(0)5(0)8 
] , 4 = a4 4c4 

or may occur in left-right symmetric pairs, 

(O)(a~b~c~) (a~b~c~)(0) 5 (0) 8 ] 

(O)(a~b~c~) (a~b~c~)(0) 5 (0)8 ] , 

(3) 

(4) 

and so on. Usually it is assumed that only the first possibility may allow the interpretation of 
the model as a compactified variety (e.g. in ref.[8]). However we emphasise that one should also 
consider the second possibility. This is similar to the case of the comparison between Calabi-Yau 
manifolds and compactifications by products of N = 2 models, where the vacua of the latter are 
not always left-right symmetric. 

For N = 1, resp. N = 2 the theories generated have the gauge group 

G = g ® E6 ® E~, 

G = g ® E1 ® E~, 

(5) 

(6) 

where the first group, g (which is of rank 8, resp. 7), is some product of low rank subgroups 
coming from the compactified degrees offreedom. In ref.[6] we found that with such a choice of 
vectors one should obtain all possible left-right symmetric models, provided that one considers 
ki; structure constants consistent with the preservation of modular invariance. However this 
selection of vectors above is not sufficient to guarantee a (2,2) compactification since we still 
have to choose the structure constants. A poor choice of kij can spoil an (N = 2) algebra by 
projecting out some of the supersymmetry generators via the modular invariance conditions. 
This implies the breaking of N = 1 space-time supersymmetry and/or the exceptional group. 
For any (2, 2) model there are always several choices of such kij· E.g. they are fixing represen
tations and antirepresentations. 
In order to guarantee a (2,2) model we need to impose a condition on the structure constants. 
We usually do this by insisting that, given a gauge group G, the structure constants are such 
that there are the required number of gravitino degrees of freedom. A sufficient condition for 
this is [6], 

ki; + ki; = 0 mod(1), (7) 

where the tilde implies the left-right reflected indices (for example k10 = k20 , s1 = s2 etc.). This 
always works because of the chirality degrees of freedom of the gravitino and gaugino1 . Using 
this restriction, one only has to ensure that the gauge group has the structure G above by the 
choice of kij. 

We have examined rv 107 possible models with one symmetric twist vectors upto order 20 
and with the W 1> W 2 vectors containing fractions of ~ or 0 only, in most of the cases. Not 
taking the simplest W 1 , W 2 gives only a few additional models with low numbers of generations 
and antigenerations. We shall discuss this point in more detail below. The "uncompactness" 
of the fermionic string construction prohibits a more complete classification than this, although 
we find that the number of new models drops off very quickly as the number of twist vectors is 

1We confess that this is the correct version of Eq.(7) of re£.[6]. 
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increased as a result of the more and more restrictive constraints for a modular invariant theory. 
Concerning the increase of the order of the model, we checked a further 105 models upto order 
40 and no new ones were found. Therefore we believe that almost all possible spectra have 
been found. We find approximately 104 models of which 103 have distinct spectra, but most of 
them differ only in the number of singlets. Many of them are related as in the N = 2 minimal 
models, where for instance in D = 6 there exist only two distinct models, namely T 2 and K3 
[1]. Another example is the case of D = 6 compactification by free fermions, where it was found 
that there are two models corresponding to the Z2 orbifold with such enhanced symmetries [6]. 
Beyond that one expects mirror symmetry to be at work. 

In this letter we shall only give the models with lowest order and maximal gauge group for 
each generation number. There are 95 distinct cases. In table 1 we have displayed the internal 
part of the compactification vectors which can achieve them in conjunction with the choice of 
vectors specified above. 

Let us now discuss the relation to orbifolds. As was pointed out in ref.[8], only ZN, ZN X ZM 
orbifolds, where N, M are powers of 2, have any chance to be equivalent to fermionic strings 
given our current knowledge about partition function identities. 
By directly bosonising the Z2 orbifold, one might expect it to have a compactification vector 

But here one should be careful, since as discussed above, our starting point was a torus with 
enhanced symmetries due to the vector W 0 discussed above. Indeed the calculation shows that 
we have a model with six generations of 56 representations of E 7 , 96 singlets and 37 additional 
gauge bosons. Requiring a sectorwise equivalence of the partition functions (as in ref.[8]) one 
has to introduce the additional vector 

As expected, with this set of vectors we obtain the complete spectrum of the Z2 orbifold (10 
generations and 80 singlets). This is also apparent from the fact that such a vector is needed to 
completely decouple one torus from the internal part of the corresponding D = 6 model. More 
specifically, we need to break an initial, enhanced S0(8) symmetry, down to S0(4) X S0(4). 
Using this vector we recover, in addition to the N = 2 models in the table, all the models of 
ref.[6] with the obvious changes. 
The non-singlet spectrum of the 27-3 version of the Z4 orbifold (the singlet numbers are not 
available in the literature, here we find 270 singlets and 20 additional gauge bosons) is generated 
by the first four vectors plus the vector 

Adding the W 5 vector to the above gives the 31-7 version of the Z4 orbifold (with 254 singlets 
and 12 additional gauge bosons) [12]. This is in accordance with ref.[8], where the authors chose 
a slightly different form of the superpartner of the stress-energy tensor and slightly different 
boundary conditions. They found a 29-5 model (similar to a Z6 or Z12 orbifold), which was 
turned into the 31-7 version of the Z4 orbifold by adding the vector W 5 . 

The great majority of work on fermionic strings has been based on the 27-3left-right symmetric 
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model above. Traditionally this model is achieved (with exactly the same spectrum)using a 
pair of symmetric compactification vectors [13] 

w4 = [ (O) (o~~) (o~~) (ooo) I (o~~) (o~~) (ooo)(o)5
(0)

8 
] 

w 5 = [ (o) (~o~) (ooo) ( o~~) I (~o~) (ooo) ( o~~) (o)5(0)8 J . 

With this choice of vectors, a direct bosonisation exists along the lines of ref.[9]. First we label 
the nine right moving internal fermions by 

or in real fermions 

and similarly the left movers. Then we split the triplets into the fermions which have an odd 
phase under the supersymmetry vector W 1 ( 'lj;1, 'I/J2, 'lj;3) and the rest . The latter we wish 
correspond to complex bosons (z1 , z2 , z3 ). One defines the bosons as 

~(Pil + io-[1) =: eiRez : ; ~(Pi2 + io-[2) =: eilmz: , 

thus getting Z2 twists on the bosonic coordinates. Obviously, for a left-right symmetric model 
we need to do the same for the left movers . Thus we may write down the action on the new 
coordinates ( '1/Ji, zi) of various combinations of compactification vectors, 

(,P1, z1), (,P2, z2)---+ ( -'1/Jl, -z1), ( -,P2, -z2) 

(,P1, z1), ('lj;3, z3)---+ ( -,P1, -z1 + 1r + i1r), ( -'lj;3, -z3) 

(,Pb z1), (,P2, z2) ('lj;3, z3)---+ (,P1, z1 + 1r + i1r), ( -,P2, -z2), ( -'lj;3, -z3). (8) 

It is easy to show that this may always be done if we only have phases of ~ or 0. On the other 
hand one could decide to take both real components of a complex field into a real boson. Then the 
situation is completely different, since we never get twists - only shifts of the bosonic coordinates 
are created. This therefore gives us a hint that twists in an orbifold may be reformulated via the 
fermionic formulation as shifts. So we conclude that in the case of the Z4 orbifold we are only 
able to make the action of the Z2 subroup visible as twists, while the remainder is still hidden 
as shifts. 

From table 1 we see that there are further similarities between spectra. But now the discrete 
symmetries are sometimes completely different thus making any conclusion difficult. We find 
models with the same spectra as the (Z4), Zs, Z3 X Z3, or Z6 X Z6 orbifolds; Z4, Z6, Z12 orbifolds; 
Z1, Z8 orbifolds; Z2 x Z6 orbifolds. For a comparison see ref.[14,12]. 

Also from refs.[14,15] one finds no overlap with Gepner models except the model no.83 in the 
table with five generations and one antigeneration. This is similar to a Gepner model, namely 
the well studied 35 model [1,16] 2 • However the discrete symmetries are completely different for 
most of the cases and also there is not the usual relation that models are the same up to pairs 

2In the Z5 phase and Z5 permutationally modded 35 model one finds 5 generations, 1 antigeneration, 
one additional gauge boson and 42 singlets. 
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of additional gauge bosons and singlets [1]. 
Comparing the spectra to that of ref.[17], one gets the impression that the models studied here 
must be related to some varieties with torsion. 

Since there is a great deal of interest in three generation models and the question of why we 
have just three generations, we should discuss a certain peculiarity of our survey in detail. Hone 
chooses the simplest set of Wi vectors (here having in mind a possible bosonisation as discussed 
above), three generations occur quite naturally as the lowest possible number of generations. 
Consider the Wo sector in such a model where 10 representations of S0(10) always arise from 

(9) 

excitations, where i = (3, 6, 9). It is simple to show that these states always satisfy the modular 
invariance conditions since they are symmetric in left and right excitations. We still need to 
show that the 27 representations have the same chirality, which we can do by examining the 
corresponding space-time fermionic 16 states, which occur in the W 0 + W 1 + W 2 sector. The 
modular invariance conditions constrain their chirality; 

Wo rn3/6/9 l\'YJi6i'9( -1)2(kol+ko2+~) 

w1 rn3/6/9 ( -1)2(ku+kl2+~) 
(10) 

W2 1 fsi3i'6i'9( -1)2(k21 +k22 ) 

w4 2W3 2W6 2W9 
- 2Wi- 2W:- 2Wi ( -1 )2(k41 +k42) 

l3 
4
16 

4
1'9 

4 
l3 l6 l9 

where we have labelled the internal degrees of freedom 1, · · ·, 9. The first condition is given by 
the W 1 and W 2 conditions via the structure constant relations. Without loss of generality we 
can choose the structure constants to be zero. Generically, the only solution to the W 4 constraint 
(which corresponds to the 10) is /i = i'i = ±1, which gives the three fermionic 16 with spin 
structure ( /3/6/9) = ( + + -), ( + - +), (- + +) and their antiparticles with (131619) = (- -
+ ), (- +- ), ( +--) and in addition two chiralities of gaugino with ( 131619) = (--- ), ( + + + ). 
All three matter multiplets have r 5 = -f5 and thus the chirality of the 16 is the same in each 
27. (Alternatively we could have established this by examining their charges.) 
Thus proving that at least three generations appear for the simplest choice of W 1 and W 2 
vectors. 

Whilst the three generation models are of immediate interest for possible phenomenological 
considerations3 , the other ones seem to be not so attractive at first glance. However studying 
specific examples gives the impression that it might also be possible to promote those into models 
with three net generations (now with antigenerations4 ) by adding additional boundary vectors, 
naturally leading to (2, 0) models. 
We shall demonstrate this by showing two examples. The first model is initially a left-right 
symmetric 7-1 model with the compactification vector 

w4 = (o) o-- --- o--[ ( 11) (1311) ( 57) 
2 2 3 412 1212 I ( 11) (1311) ( 5 7) 5 8 ] 0-- --- 0-- (0) (0) 

2 2 3 4 12 12 12 ' 
(11) 

and will lead to a4-1 model. Initiallyfermionic 16 representations come from the W 0 + W 1 + W 2 

and Wo + W 1 + W 2 + 6W 4 sectors. For the first sector the modular invariance projections are 

3 Not discussing here the question of Wilson line breakings, which are still to be done to implement 
reasonable gauge groups. 

4 A pattern which is prefered by certain potentially viable schemes for a realistic phenomenology [18). 
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as above, and give 3-1 generations, with the following chiralities 

16 

16 

( + + +-- + +-), ( + +- +- + -+ ), ( +- + +-- ++) 
(+-++++--) {12) 

and their antiparticles, defined -for the product of gamma matrices (rn3;a;gfsi'3i'ai'g). The 
second sector gives 4-0 generations with the chiralities 

16 : ( + +---- - + ), ( + + +-- + +-), 
( + +- +- + -+ ), ( + + + +- + ++) (13) 

defined for the product of gamma matrices (rs/3/5"Ysf5i'3i'si's). In order to give such a 4-1 
model, we wish to construct an additional W 5 which overlaps in such a way that some of the 
old generations are projected out, and no new generations are created. One way to do this is for 
W 6 to give constraints that impose /3/6 = -1 in the first sector and /3/8 = -1 in the second. 
A suitable vector is 

with the new stru~ture constants chosen to be all zero except k25 = ~· This vector projects out 
the first generation of Eq.(12) and the last two generations of Eq.(13). In addition, the overlap 
with the E~ degrees of freedom ensures that there are no new sectors which could contain more 
generations. The gauge symmetry of the visible sector is broken down to S0(10), and with 
further vectors we could clearly arrange to end up with smaller groups still. 
The second model is initially a left-right symmetric 9-2 model and gives a 5-2 model. The 
compactification vector is 

[ ( ) ( 14) (1 3 9) ( 3 4 9) 1 (o~~) (~~~) (2.~~) (o)s(o)s ] . 
W 4 = 

0 0
55 2510 10510 55 2510 10510 

(15) 

Fermionic 16 representations come from the W 0 + W1 + W 2 and W 0 + W1 + W2 + 5W4 sec
tors. The first sector has 5-0 generations, with the chiralities 

16 : ( +-- +-- -+ ), ( +-- +-- +-), ( +- +--- -+) 
( +- +--- +-), ( + + + +- + ++) {16) 

defined for the product of gamma matrices (r5;a;a;9i'5i'ai'ai'g) and the second sector has 4-2 
generations with the chiralities 

16 ( +----- --), ( +-- +-- -+ ), 
( +- +--- +-), ( +- + +-- ++) 
( +-- +- + +-), ( +- + +-- ++) (17) 

defined for the product of gamma matrices (rs/3/4{7fs.:Y3i'4i'7)· A 5-2 model is obtained by 
adding the vector W 5 
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which projects out all the states in Eq.(16) which have iei9 = -1, and does not affect any of the 
states in Eq.(17). Here we have to set all the new structure constants to zero except ks4 = 1

9
0 

and ks2 = ~· 
We should add that this second model may still allow the hope for a bosonisation into a manifold 
(like discussed above), since W 5 has nonzero entries in at most one position of the left triplets. 

Finally we address another aspect of the underlying (2, 2) models. Since we have constructed 
N = 1 supersymmetric space-time compactifications with maximal exceptional gauge groups, 
implying N = 2 algebras on the world-sheet, there must be the moduli fields associated to this 
structure. 
The first set is obtained by acting with c+ (z) on the left-handed ( chiral) 27 superfields, while 
the second set is obtained by acting with c-(z) on the right-handed (antichiral) 27 superfields. 
The explicit form of the algebra is only known for Z2 boundary conditions5 , but nevertheless 
one is able to construct the moduli by using the superpartner of the stress energy-tensor in the 
N = 1 subalgebra of the N = 2 algebra, that is known explicitly. 

3 

TF(z) = ~( c+(z) + c-(z)) = i L pio-i;p + h .c. 
V 2 i=l 

(22) 

Using the fact that c-(.z) vanishes on the left-handed superfields and c+(z) vanishes on the 
rigth-handed ones, we may simply use TF( z) to construct the moduli. 

To demonstrate this explicitly let us give an example . Suppose that a generation exists with 
a 10 of the form, 

(23) 

in a sector 

aW = [ (~) (vlv2v3) (v4vsv6) (v7vsv9) I (vlv2v3) (v4v5v6) (v7iisv9) (~)s(~)s J, 

and consider the singlet state which is generated from it by acting with the TF(z), together with 
the removal of the S0(10) excitation, 

(24) 

where the indices k and l are in the same triplet as but not equal to j . Clearly the W 1 modular 
invariance condition is unchanged (see ref.[6]), but what about the conditions from the vectors 
overlapping? Taking the constraint associated with W n 

mod(1) 

5In this case the supercurrents are simply the linear combination 

3 

a+ = -.J2L_ ,p3az3, 
j=l 

3 

a-= -..fiL_ '1fJ8zj, 
j=l 

The bosonisation procedure we described above may be used to give 

..fiazi = i(: PjPi : -ia:iai :) 

which is precisely the prescription given in re£.[6] for an N = 2 algebra on the world-sheet . 
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(19) 

(20) 

(21) 



where Pn depends only on the sector and is the same for each state, we see that for both the 10 
and singlet to exist, we require 

mod(l) (26) 

But this is simply the triplet constraint and is therefore trivially satisfied. Finally we have to 
show that the singlet is massless which also follows from the triplet constraint since the vacuum 
energies for both states are the same. In this way one can construct the moduli for all the 
models considered here by acting with TF(z). 

To conclude, we have given a classification of (2, 2) free field compactifications that is ex
pected to be exhaustive at the one twist level. The fermionic and orbifold compactifications 
overlap at least in the way predicted by ref.[8]. Further conclusions about the models in which 
the numbers of generations and antigenerations coincide with other orbifolds have to be post
poned at the current state of knowledge. In particular, a conjecture such as fermionic strings 
overlap with ZN orbifolds and Gepner models overlap with ZN X ZM orbifolds, cannot be made 
unless the appearance of, for example, the model with five generations and one antigenerations 
is explained. 
Three generation models with no antigenerations have been found. For the case of (2, 0) models, 
additional three generation models with antigenerations have been given. 

Acknowledgement We would also like to thank the RAL computer division, espe
cially Dick Roberts. For discussions we would like to thank Michel Rausch de Traubenberg and 
in particular Luis Ibaiiez. 

Table Captions 

Table 1 Supersymmetric (2,2) models in D = 4. ngen 1 nagen are the numbers of fundamental 
representations of E6+X. n9 is the number of bosons in g, and n. is the number of singlets. 
The gauge group is g ® E6+x ® E~ where 2x = N. The models marked with a star may 
only be generated with more complicated W 1 , W 2 vectors. Here they have an internal 

structure, ( 01 ~) ( 01 ~) ( 01 ~) · 
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