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ABSTRACT 

A thermodynamic processes can be represented as either a local constitutive relationship or as a 

directed graph network. It is demonstrated that only the local constitutive equations yield, for 

all cases considered, the correct values for the physical properties of the materials under test, 

whereas the directed graph network representations are unreliable. This is because the directed 

graph network representations can be ill posed and likely to lead to erroneous values for the 

transport coefficients. The local constitutive equations allow the measurement of the linear and 

nonlinear transport properties under dynamical conditions. The response function values are 

estimated directly from the time series data of the physical observables and the area under the 

response function is equal to the equilibrium transport coefficient value. The nonlinear temporal 

form of the multidimensional convolution representation is also given and used to estimate the 

linear and nonlinear thermal transport coefficients of materials with low thermal conductivities. 

The nonlinear analysis shows that the one dimensional thermal conductive transport is linear 

within the experimental uncertainties for a range of material types whose conductivity spans 

three orders of magnitude. 



Introduction 

A local thermodynamic system which is embedded in an open environment experiences a set of 

thermodynamic potentials, whose gradients cause the exchange of carriers between the local 

system and the environment. These are called the thermodynamic forces and fluxes 

respectively. In the majority of thermodynamic systems found in nature, the relationships 

between the physical observables are multivariate complex and often nonlinear. 

In this work thermodynamic systems are initially considered to be linear transport processes. 

Two alternative hypotheses exist for the representation of thermodynamic transport, local 

constitutive and directed graph network. These two hypotheses were tested for the most simple 

thermodynamic case of one dimensional thermal conductive transport in a homogeneous 

sourceless solid. Both representations were able to accurately characterise the observed 

behaviour. However, only the local constitutive representation was consistently able to 

determine accurate values for the thermal conductivity of a wide range of solid materials. 

An engineering test facility was used to measure the one dimensional thermal conductivity of a 

range of solid homogeneous materials. The experiments were performed under dynamical 

meteorological boundary conditions. The time series data for both sets of boundary conditions 

was analysed by two representations and compared to the ratio of mean's method and published 

data. This enabled the direct comparisons to be made between the two representations. Time 

series representations for linear and nonlinear local constitutive relations are given together with 

the moment hierarchy method of solution [1]. This allows the linearity of one dimensional 

thermal conduction to be quantitatively examined. 
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Representations of the thermodynamic process 

The two representations used are: 

1. the local constitutive, or dynamic Onsager, representation, where the local one 

dimensional heat flux in the solid material is assumed to be related to the historical 

temperature gradients. 

2. the graph network, or Peusner, representation, where the heat flux and temperature 

gradient in one region is related to the historical heat flux and temperature gradient values 

in another region of the solid. 

The moment hierarchy method [1] is used to calculated the coefficients for each of these 

representations. 

The local constitutive representation 

An observed thermodynamic flux can be characterised in terms of the observed thermodynamic 

forces and observed properties of the medium. The equilibrium constants of proportionality are 

called the transport coefficients and represent the gains of the independent variable to the 

dependent variables. It is usually assumed that the thermodynamic fluxes, { J k ( t)}, depend on 

the set of thermodynamic forces, { Fi ( t)}, and that each of the thermodynamic flux can be 

written as a multidimensional function of the forces, with 

J k ( t) = J k ( Fl ' ... ' FA ) (1) 

The linear equilibrium transport properties can be described by the irreversible thermodynamic 

equations of Onsager [2,3]. The linear constitutive equations relate the independent 

thermodynamic fluxes, { J k ( t)}, in terms of their conjugate thermodynamic forces, { Fi ( t)}, and 

a set of linear equilibrium Onsager coefficients, Lik, with 

(2) 
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The Onsager formalism can be extended to the equilibrium nonlinear case [ 4,5] by suitably 

truncating an ascending order of a multidimensional Taylor's series expansion with 

(3) 

where the transport coefficients are given by 

L. =(~) 1k aF 
1 0 

( 
a 12 ) and L .. k = k 

•J aP.aF. 
1 J 0 

In both the linear and the nonlinear cases the transport coefficients are difficult to determine 

experimentally. In addition, they do not provide any information about the dynamics of the 

process and, as expected, their values cannot be derived from purely theoretical grounds. 

Indeed, although Onsager's theory [2,3] is based on Einstein's analysis of the statistical 

fluctuations of Brownian motion [6,7] there are examples of Onsager's reciprocities which hold 

far from equilibrium and there are many examples where the reciprocities do not hold, even in 

equilibrium [8]. 

The most simple case to study is the one dimensional heat conduction experiment. The Fourier 

law relates the heat flux at a given point in a one dimensional solid to the local temperature 

gradient at the same point. In the linear approximation the heat flux is proportional to the local 

temperature gradient, with the constant of proportionality being called the thermal conductivity. 

The thermal conductivity has a minus sign as the heat flux will flow against the temperature 

gradient, with 

J k (x, t) = -lC VTk (x, t) (4) 
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A heat flux flowing in one part of a solid will change the local temperature and temperature 

gradient. In the Fourier law approximation, this change of temperature will be felt 

instantaneously at every field point in the solid, no mater how remote. This property of infinite 

propagation is unphysical and the above form of the Fourier law provides only an 

approximation to the actual laws which govern the thermal transport in solids. Cattaneo [9] was 

the first to explicitly modify the Fourier equation in order to correct for this problem, writing 

a J (x t) 2 
't k ' =-KJk(x,t)-K VT(x,t) at (5) 

where 't is the relaxation time of the process and where K is the conductivity of the solid. 

Gurtin and Pipkin [ 1 0] developed a realistic field theory for heat conduction using constitutive 

assumptions that lead to finite propagation speeds. Their field theory is based on a Volterra 

functional expansion with the discrete linearised constitutive equation for the heat flux in terms 

of the local temperature gradient being 

t 

J k (x, t) = :L L 1 VT (t- cr)VT(x, cr)dcr 
0"=0 k 

where L 1 VT ( cr) is the first order Volterra kernel function. 
k 

(6) 

Chen and Nunziato [11] used the second law of thermodynamics to show that the thermal 

conductivity must be positive defmite with 

(7) 

where K is the thermal conductivity of the solid. 
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The nonlinear nonequilibrium behaviour of a macroscopic thermodynamic process can be 

described as a functional expansion of physically observable causal time series quantities. The 

kernel functions of the convolution expansion represent the dynamic nonlinear transport 

coefficients [12]. The integral of the kernel function values yields the equilibrium gain between 

the observables [1] and are equivalent to the ascending kinetic of Burnett coefficients of 

nonlinear equilibrium thermodynamics. 

For example, if there is only a single thermodynamic force, { F1 ( t)}, acting and the properties of 

the medium are constant and if the process posses a finite memory of duration IJ., then a single 

component of a thermodynamic flux, { J k ( t)} I can be written as a discrete Volterra functional 

expansion with 

(8) 

where N is the order of the system, where t denote time and where the cri 1S denotes time delay 

with respect to the time t and where the kernel function values, L 
1 

F n ( cr 1 , ••• , cr n) I characterise 
k 1 

the behaviour of the process. 

The kernel function values, L 
1 

F n ( cr 1, ••• , 0' n ) I represent the temporal response of the flux, 
k 1 

{ J k ( t)}, to the thermodynamic force, { F1 ( t)}, are can be defined as the dynamic kinetic 

coefficients. Integrating these response functions yields the linear and nonlinear gain between 

the dependent and independent variables [1] , with 

(9) 

which are equivalent to the higher order kinetic or Burdett transport coefficients. 
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Equation (8) provides a local multidimensional convolution representation of the constitutive 

relationship between the thermodynamic flux, { J k ( t)}, and the local thermodynamic force, 

{ F1 ( t)}. The dynamic and equilibrium values of the transport coefficients can be estimated from 

the data in order to characterise the properties of the experimental data. Alternatively the 

formalism can be used for theoretical investigations, where the form of the kernel functions is 

chosen and the thermodynamic behaviour determined for specific cases. The single input 

temporal formalism given above can be generalised to the multivariate case. 

The directed graph network representation 

An alternative description is to characterise the relationship between subsystems within the 

thermodynamic environment by directed graph networks. The most simple thermostatic 

network case to examine is the relationship between the heat flux and the temperature field 

measured on each side of a plane parallel homogeneous slab. 

Recently Peusner [13,14,15,16], has developed the thermostatic directed graph network 

formalism for the multiple thermal subsystem case. In that work the elements of the transfer 

matrices are assumed to be equal to the partial derivatives of the thermodynamic equations of 

state when equilibrium conditions prevail, with several thermodynamic variables being assumed 

to be held at constant values. 

Peusner used elements of linear topology and graph theory to develop a directed graph network 

representation of thermostatic systems. That approach is in direct analogy to the network and 

graph theoretical methods developed for linear electrical circuits. Kirchhoffs law's are used to 

obtain a suitable, but not unique [15], set of equations to describe the thermal flows. 
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Peusner considers a variety of network forms, in particular vector of thermodynamic fluxes in 

terms of the vector of thermodynamic forces with 

(12) 

and hybrid forms relating the thermodynamic force and flux at each port, with 

(13) 

Linear temporal response function estimation 

The dynamic form of the local constitutive representation is considered to be a linear 

convolution equation which describes the one dimensional heat conduction in an isotropic solid 

which contains no sources of heat. It is assumed that the heat flux observed can be expressed as 

a convolution between the observed heat flux, { J k ( t)}, the local temperature gradient, 

{ VT ( t)}, and the linear temporal response function, L J vr ( cr 1 ) • In this example it is assumed 
k 

that the process in linear and time invariant, and that the local heat flux and temperature 

gradient provide a complete description of the heat transport process. For a discrete process 

which possesses a finite memory of duration ~. the convolution can be expressed as 

(14) 

where cr1 denotes lag and where~ is the finite memory of the conductive process in the system. 

This is a scalar equation and assumes that the heat flux has only one variable, the temperature 

gradient, which is the force which drives the heat flux. The response function, L J vr ( cr 1 ), is 
k 

related to the equilibrium thermal conductivity, K1, with 

(15) 
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As it stands, equation (14) is ill posed, in the sense that there are too many unknown 

coefficients. In addition, equation it is ill conditioned because it has dependent and independent 

variables that are stochastic functions of time. By operating on equation (14) with the averaging 

operator (VT( t- 't 1 ) *) a tractable set of (IJ.+ 1) equations with well behaved coefficients is 

obtained which can be solved for the response function values. Explicitly the moment hierarchy 

is 

(16) 

where 0 ~ 't1 ~ 11, where the cross and auto moments between the observed heat flux, { J k ( t)}, 

N 
and the temperature gradient, { VT ( t)} are defined as M VTJ ( 't 1 ) = I VT ( t - 't) J k ( t) and 

1: t=O 

N 
M VTVT ( 't 1, cr 1 ) = I VT ( t - 't )VT ( t- cr) respectively, and where N is the length of the data 

t=O 

sample. Equation (16) can be seen to be a linear algebra expression.£= ~h. where~ is the auto 

moment matrix, .£. is the cross moment vector and h. is the vector of response function values 

[1]. 

In the Peusner thermostatic network representation of a conducting slab of material both 

surfaces can simultaneously experience unsteady heat flux and temperature gradient conditions. 

If this case, then the network thermostatic equation for the heat flux at one surface, { J 1 ( t)}, 

can be related, by a superposition of convolution equations, to the temperature gradient, 

{ VT 2 ( t)}, and the local heat flux, { J 2 ( t)}, at the opposite boundary. 
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The network equation connecting the two external surface regions is given by the convolution 

equation 

JI(t) HJIJ2(crl) HJ,v-rz( cr l) Iz(t-crl) 

VTI(t) = HVTIJ2 (cri) HvT,VTz (cr i) V'Tz(t-crl) 
(17) 

The equation for the heat flux is explicitly given by the superposition of two linear convolution 

terms with 

(18) 

and the equilibrium thermal conductivity, K 2 , and the heat flux gain, \jl 2 , for the network 

representation will be given by 

(19) 

The moment hierarchy in this case are given by the simultaneous equations 

and 

For both representations, the response function values obtained using the time series techniques 

can then be used to provide a prediction of the local heat flux , {JP ( t)}, field which may be 

compared with the measured heat flux, { J 1 ( t)} . This provides a sensitive measure of the 

quality of the response function characterisation of the thermal transport process, both for the 

region of data which were used to estimate the response function values and for regions of data 

that were not used in the estimation process. 10 



Experimental facility for low thermal conductivity solid materials 

The experimental arrangement shown in figure 1 was designed to measure the thermal 

conductivity of a range of material types. Different sized samples were required to measure the 

thermal conductivity, the dimensions for each material type were determined using a two 

dimensional finite element model was used. This allowed an optimisation of sample size and 

establishing the best positions of the sensors. 

Essentially the rig consists of a copper heat pipe to a cold temperature bath which is controlled 

and another copper heat pipe to atmospheric conditions which gives a damped stochastic heat 

flux at the surface of the sample under test The cold bath is an enclosed copper heat exchanger 

that has cold water pumped through it. The absolute temperatures are measured with Platinum 

resistance thermometers and the heat fluxes are measured with thermopiles. The cold bath is an 

enclosed copper heat exchanger that has cold water pumped through it. The cooling of the 

water is achieved by using a commercial water chiller. The water is re-circulated through the 

chiller. The water temperature is fixed at 10.0+/- 0.02 OK. The temperature and heat flux are 

measured at positions above and below the as shown in figure 1. The test section is surrounded 

by loose vermiculite insulation. The insulation is contained within a 500 mm square enclosure. 

The readings are taken every ten seconds over an eleven hour period, the time interval for data 

collection being determined by the response time of the sensors used. The experiments take 

place at the same time of night to minimise external interference. During the test period 4,000 

sets of measurements are taken. Of these 4000 points, some 2000 are used to estimate the 

response function values of the process and the remaining 2000 points are used to compare with 

the values of the heat flux predicted using the estimated response function values 
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Linear analysis of the thermal conductivity data 

The thermal conductivity of each sample was determined using the two representations. These 

conductivity values estimated using the field theoretical and the thermostatic network 

representations were compared with the values obtained from the literature. 

These estimated values were used to predict the future behaviour of the heat flux at the surface 

of the sample. These predicted heat flux values are then compared with the actual observed 

values. The response function values obtained using the time series techniques can then be used 

to provide a prediction of the local heat flux , {JP ( t)}, field which may be compared with the 

measured heat flux, { J 1 ( t)}, which were not used to estimate the transport coefficients. This 

provides a sensitive measure of the quality of the response function characterisation of the 

thermal transport process, both for the region of data which were used to estimate the response 

function values and for other data sets which were not used in the estimation process. The 

accuracy of the modelling ability was determined by dividing the mean difference between 

actual, { J 1 ( t)}, and predicted, {JP ( t)}, time series sequences by the variance between them, 

that is, the students t-test is used for the test statistic. 

In all cases the values of the test statistics for the differences between the measured, { J k ( t)}, 

and predicted, {JP ( t)}, output heat flux for both modelled and predicted data lay well within 

the acceptance region of the univariate Students t-test statistic. Thus each of the representations 

accurately quantifies the observed behaviour of the heat flux. 
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The important thing is to determine which of the two representations yielded physically 

meaningful and consistent values for the transport coefficients. 

The values of the estimated one dimensional thermal conductivity from sample material 

spanning three orders of magnitude are presented in table 1. Each column contains the values 

from the analysis of a single sample of time series data from a single sample of the material. The 

experimental uncertainties given are dominated by the calibration accuracy of the heat flux mats. 

T bl 1 E f t d th d r ·r r f t 'al a e . s •ma e erma con uc •v• 1es o a ran~e o ma er1 s . 
local directed graph network Literature value 
constitutive 

1(1 Kz 'l'z 
W/m°K W/m°K flux gain W/m°K 

stainless 12.2 12.2 0.0013 14.0 

steel ± 0.11 ±0.17 ±0.0011 ±0.07 

glass 0.827 0.078 1.007 1.00 

±0.0 ±0.02 ±0.023 ±0.05 

glass 0.191 0.056 0.356 0.23 
reinforced 
polyester ±0.020 ±0.009 ±0.05 ±0.03 

cork 0.050 0.047 0.95 0.050 

±0.005 ±0.005 ±0.10 ±0.006 

The values of the estimated one dimensional thermal conductivity from four different samples of 

stainless steel are presented in tables 2 and 3. Each column contains the values from the analysis 

of a single sample of 400 points of time series data from a single sample of the material. 
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T bl 2 E f t d th a e : s ama e d f 't ffi d'ffi t I of glass erma con uc tVl lY o our I eren sarnJ!I es 
local directed graph network Literature 
constitutive value 

Glass 1(1 1(2 '1'2 

W/m°K W/m°K flux gain W/m°K 
sample No. 

1 0.827 0.064 0.949 1.0 

±0.04 ±0.010 ±0.05 ± 0.05 

2 0.611 0.783 -0.324 1.0 

±0.04 ±0.08 ±0.05 ± 0.05 

3 0.653 0.668 0.002 1.00 

±0.05 ±0.08 ±0.001 ±0.05 

4 0.720 0.122 0.706 1.00 

±0.04 ±0.04 ±0.04 ±0.05 
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The values of the estimated one dimensional thermal conductivity from four different samples of 

cork are presented in table 3. 

T bl 3 E f t d th d . 't f ti d'ffi t I of cork a e . s 1ma e erma con uctav1 ty o our I eren samples . 
local directed graph network Literature 
constitutive value 

cork 1(1 Kz 'l'z 
W/m°K W/m°K flux gain W/m°K 

sample No. 

1 0.050 0.047 0.95 0.050 

±0.005 ±0.005 ±0.10 ±0.006 

2 0.050 0.039 0.382 0.050 

±0.005 ±0.006 ±0.05 ±0.006 

3 0.050 0.0437 0.135 0.050 

±0.005 ±0.006 ±0.20 ±0.006 

4 0.050 0.007 1.218 0.050 

±0.005 ±0.002 ±0.10 ±0.006 
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It is clear that the local constitutive representation gives correct, accurate and consistent values 

for the conductivities over the whole range of materials considered. In contrast, whilst the 

directed graph network representation does give some correct and accurate conductivities for 

some materials, it is neither consistent nor accurate for the one dimensional thermal 

conductivity problem. The reason that the directed graph network representations are not 

consistent in this case and fail to give the correct answers for the thermal transport coefficients 

can be seen from the basic formulation of the problem, in that it is assumed the functional 

relationship is of the form 

J 2 ( t) = f ( J 1 , V'T1 , t) 

As the heat flow is approximately one dimensional through the slab of material then 

J 2 ( t) = J 1 ( t) and the equation is ill posed, as it can be written as 

J 2 ( t) = J 2 ( t) + B ( J 1 , V'T1 , t) . 

With hindsight this might seem self evident; however, there are a number of widely used 

calculation procedures' that use the directed graph network representation for the one 

dimensional flow problem. Obviously for higher dimensional flows each case will need to be 

examined in detail before a given representation is used. 
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Nonlinear local constitutive relationships 

Consider representing a thermodynamic observable, for example a flux, { J k ( t)}, in terms of 

the local temperature gradient, { Fk ( t)}. The flux, { J k ( t)}, can be represented as a 

multidimensional convolution expansion in terms of the thermodynamic force, { Fk ( t)}, which in 

discrete form is given by 

(31) 

where cri denotes time delay, and where the quadratic approximation used in the present work 

is given by 

The estimated response values L1 F" ( cr,, ... , an) characterise the heat flux in terms of the 
k 

thermodynamic force acting. In order to solve the propagation problem there is a need to 

generate a sufficient set of simultaneous equations whose number is equal to the total number of 

unknown response values. In this case the moment hierarchy is given by [1,12] 

where <*>denotes the averaging operation and this multivariate moment hierarchy is solved by 

standard matrix methods. 

The above formulation is general and can be applied to a wide range of situations. Equation 

(31) is used below to analyse the thermal conduction process in a solid to indicate if conduction 

is a linear or a nonlinear process. 
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Nonlinear analysis of the thermal conductivity data 

The thermal conductivity of each sample was determined using linear and nonlinear forms of 

the local constitutive representation. These estimated values of the response functions are then 

used to predict the future behaviour of the heat flux at the surface of the sample. These 

predicted heat flux values are then compared with the actual observed values. 

The values of the estimated thermal transport coefficients under equilibrium conditions are 

presented in table 4. 

T bl 4 L' d r t t ffi' ts d Tb' ditions a e . mearan non mear ranspor coe ICien un er eqm 1 num con . 
Linear analysis Nonlinear analysis Nonlinear analysis 

linear coeff quadratic coeff 
Kl W/m°K Kl W/m°K Kz W/oK2 

stainless 12.20 13.05 -0.004 

steel 1 ± 0.5 ±0.7 ±0.002 

stainless 12.20 12.17 -0.031 

steel 2 ± 0.5 ±0.67 ±0.010 

glass 1 0.827 1.06 0.03 

±0.04 ±0.10 ±0.010 

glass 2 0.827 1.06 0.03 

±0.04 ±0.10 ±0.010 

glass 0.191 0.0952 0.00015 
reinforced 
polyester ±0.02 ±0.012 ±0.00002 

glass 0.190 0.0954 0.00014 
reinforced 
polyester ±0.02 ±0.012 ±0.00002 

cork 0.050 0.100 -0.004 

±0.005 ±0.09 ±0.001 

cork 0.050 0.101 -0.003 

±0.005 ±0.09 ±0.0008 
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It is clear from table 4 that the one dimensional thermal conduction is linear in solid materials 

over a range of three orders of magnitude of thermal conductivity. The magnitude of the 

nonlinear component seems to increase as the value of thermal conductivity decreases, but at 

present no clear inferences can be made about this nor to the existence of any nonlinear 

mathematical relationship. 

Conclusions 

In this work the thermal transport conductivity for a range of different materials has been 

determined using the local constitutive and directed graph network representations. Thus two 

alternative hypotheses exist for the representation of thermodynamic transport, local 

constitutive and directed graph network. These hypotheses were tested for the most simple 

thermodynamic case of one dimensional thermal conductive transport in a homogeneous 

sourceless solid. Both representations were able to accurately characterise the observed 

behaviour. However, only the local constitutive representation gave consistent and accurate 

values for the materials examined. Although the directed graph network and the representation 

could produce accurate thermal transport coefficient values for some cases, it was shown not to 

be consistent because the representation is ill posed. For this reason, designs based on the 

directed graph network representation are not likely to accurately represent the actual 

thermodynamic performance for one dimensional flow situations. 

The nature of one dimensional thermal conduction was then considered. Linear and mixed linear 

and nonlinear local constitutive representations were used to characterise the conduction 

process in a range of sample materials. The results of the nonlinear analysis of the one 

dimensional thermal conduction data show that the process is linear, within the experimental 

uncertainties, for materials which span three orders of magnitude of thermal conductivity. 
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Figure 1. A schematic diagram of the experimental arrangement. 
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