
~ Science and Engineering Research Council
0

~ - ~ Rutherford Appleton Laboratory
~ ~ Chilton DIDCOT Ox on OXll OQX RAL -93-088
p' a:
()

j
<[

0J

GKS-9x: An Experimental Application

Lj B Damnjanovic and D A Duce

November 1993

Science and Eng~neering Research Council
'The Science and Engineering Research Council does not
accept any responsibility for loss or damage arising from
the use of information contained in any of its reports or
in any communication about its tests or investigations"

GKS-9x: An Experimental Application

1 Introduction

Lj.B. Damnjanovic , D.A. Duce
Rutherford Appleton Laboratory

Chilton, Didcot, Oxon OXll OQX, UK

October 28, 1993

GKS-9x refers to the current state (Draft International Standard) of the revision of GKS
which was published as an ISO standard for computer graphics programming in August 1985
(1]. In the revision process, GKS:1985 has been extended with new concepts and functionality
[2]. Among them are the well-defined concept of an NDC picture, consisting of a sequence
of output primitives which the application creates and workstations view, and the selection
mechanism, used to select a subsequence of primitives in the NDC picture which are to be
edited or displayed.

A part of the GKS-9x standard was implemented at Rutherford Appleton Laboratory
to explore the feasibility of the new concepts as well as the behaviour of GKS-9x. The
implementation was described and it was shown that the performance can be improved if
the selection structure and the nameset representation optimizations are included [3, 4].

This paper explores the effects of the number of primitives manipulated in an application
on the experimental GKS-9x implementation performance. It also identifies the major factors
which increase the GKS-9x function execution times. Finally, the improvement in speed
obtained when optimization was included in the traversal process is analyzed and discussed.

The original GKS-9x implementation [4] was extended with the SET VIEW function to
investigate viewing mechanism introduced in GKS-9x, as it is a generalization of the GKS-3D
and PRIGS mechanisms [3].

2 The Experimental Application

2.1 Overview

The main aim of the work reported in this paper was to explore how the number of primitives
handled in an application affects the GKS-9x performance. Accordingly, an application
was developed which could be instantiated to manipulate different number of primitives.
Moreover, the application had two versions: interactive and non-interactive. The interactive
version allows the user to exercise GKS-9x functions on-line with user defined selection

1

criteria, namesets and views in order to get better insight in the system behaviour. The
non-interactive version is used to carry out performance measurements.

The application was made based on the theatre application described in [3, 4] which
displays the seating plan of a theatre consisting of 1154 seats. This application can be in­
stantiated to manipulate different numbers of theatre patterns, all with different coordinates.
The implementation work was carried out using the ANSI C programming language.

The application exercises the following functions:

SET WORKSTATION SELECTION CRITERION
SET VIEW SELECTION CRITERION
SET VIEW
SET NDC PICTURE PRIMITIVE ATTRIBUTE
ADD SET OF NAMES TO NDC PICTURE
REMOVE SET OF NAMES FROM NDC PICTURE
DELETE PRIMITIVES
REORDER NDC PICTURE- old version
REORDER NDC PICTURE

The REORDER NDC PICTURE function moves the subsequence of primitives in the NDC
picture which satisfy the source selection criterion to either the start or the end of the NDC
picture subsequence which satisfy the reference selection criterion. However, the REORDER
NDC PICTURE function had a different definition in the previous version of the GKS-9x
revision. The REORDER NDC PICTURE- old version function moves the subsequence of
primitives in the NDC picture which satisfy the selection criterion to either the start or the
end of the NDC picture.

Functions SET VIEW and SET VIEW SELECTION CRITERION allow observation of
visual effects of the viewing mechanism introduced in GKS-9x. In GKS-3D and PHIGS a
single primitive can only be subjected to a single viewing operation. In GKS-9x, multiple
view transformations can be defined, and a primitive can be displayed in any of the defined
views. Selection criteria associated with the views determine which primitives appear in
which views of the NDC picture.

This section describes the common parts of the two versions (interactive and non­
interactive) of the application.

2.2 Theatre Model

As described in [4], the theatre application displays the seating plan of a theatre and allows
seat reservations to be made and queried by manipulating namesets and selection criteria.
This is considered a reasonable illustration of the power of the nameset and selection criterion
mechanism. The seating plan comprises 1154 output primitives with different namesets, as
shown below.

2

Nameset

{AMPHITHEATRE, ROW(i), SEATU), X(m), Y(n)}
{BALCONY, ROW(i), SEAT(j), X(m), Y(n)}
{TIER, LEFT, ROW(i), SEAT(j), X(m), Y(n)}
{TIER, GRAND, ROW(i), SEAT(j), .X(m), Y(n)}
{TIER, RIGHT, ROW(i), SEAT(j), X(m), Y(n)}
{BOX, SEAT(j), X(m), Y(n)}
{ORCHESTRA,STALLS,LEFT,ROW(i),SEAT(j),X(m),Y(ri)}
{ORCHESTRA,STALLS,MIDDLE,LEFT,ROW(i),SEAT(i),X(m),Y(n)}
{ORCHESTRA,STALLS,MIDDLE,RIGHT,ROW(i),SEAT(j),X(m),Y(n)}
{ORCHESTRA,STALLS,RIGHT,ROW(i),SEATU),X(m),Y(n)}

Number of
primitives

243
94
16
17
16
12

168
210
210
168

The indices i and j are instantiated for each row and seat number. ROW(i) is a Roman
numeral in the range I - XXI. SEAT(j) is an Arabic numeral in the range 1 - 26. This
theatre seating plan is the basic set of output primitives used to create a model to be
manipulated in the application. The basic theatre pattern is shown in Figure 1. It is possible
to define a model with a different number of theatre patterns along x-axis and y-axis and to
make the corresponding instance of the application. Two parameters stored in an include
file num_ theatre. h control this. They have to be set to the appropriate values. According
to the number of theatre patterns defined, the application generates the required number of
primitives, each with a different nameset, and GKS-9x stores them in an NDC picture. Two
names, X(m), Y(n), are added to each primitive depending on the position of the particular
theatre layout. One name reflects the position along the x-axis and the other the position
along they-axis. The range of these names is Xl - X20 and Y1 - Y20. For example, for the
position in the lower left corner of the workstation display surface, names Xl and Y1 are
added:

{ORCHESTRA, STALLS, RIGHT, IV, 3, X1, Y1}

There are 12 fill area primitives tagged by {BOX, SEAT(j), X(m), Y(n)}. All other 1142
primitives are polylines.

Boxes are placed on the sides: on the left tagged from 1-yellow to 6-cyan; on the right:
from 7-yellow to 12-cyan. The function SET NDC PRIMITIVE ATTRIBUTE has only
been implemented for polyline attributes and so cannot be applied to the fill area primitives
tagged by {BOX, SEAT(j), X(m), Y(n)}.

2.3 Theatre Application

To build a model which is initially stored in the NDC picture, the following modules are
used:

3

11::: 11

I
I

Figure 1: The seating plan of a theatre

4

theatre.c
nsi.c
theatre_I.c
copy_theatre.c
num_theatre.h
orcstalls_demo.h
points_mat_ext.h

A model can consist of several theatre layouts. For example, a model consisting of four
theatre patterns is shown in Figure 2. The function theatre (theatre. c module) calls the
function nsi (nsi. c module) to initialize namesets used to tag output primitives and then
the function seatplan (theatre_!. c module) to generate all primitives necessary to create
the required model.

The function seatplan calls two functions: cp_scale_pnts and cp_shift_pnts, stored
in copy_ theatre. c module, in order to initialize the arrays of type Ppoint to contain point
values for all output primitives which are to be generated. Then the function seatplan
generates all output primitives.

For simplicity, an example of a theatre layout consisting of three seats is used here to
illustrate how a model is created in the application. The same applies for all 1154 output
primitives.

Include file orcstalls_demo. h stores several two dimensional arrays of type Ppoint
which contain point values for drawing a theatre layout pattern of maximum possible size
on a workstation. Each array contains data for several seats. One dimension is the number
of seats (3 in the following example), and the other is 5, defining the number of points per
seat. The example shows an array containing points for 3 seats:

static Ppoint stallsmln14[3][5] = {

{{ 0 .47, 0.09}, { 0.49, 0.09} , { 0.49, 0.07}, { 0.47, 0.07}, { 0.47, 0.09}},
{{ 0.48, 0.11}, { 0.50, 0 . 11} ' { 0 . 50 • 0.09}, { 0.48, 0.09}, { 0.48, 0.11}},
{{ 0.49, 0.13}, { 0.51, 0 . 13}, { 0.51, 0.11}, { 0.49, 0.11}, { 0.49, 0.13}}
};

Include file num_ theatre. h contains the number of theatre patterns which are to be gener­
ated along x-axis and y-axis to build the model. For example, when 20 theatre patterns are
required:

I* Number of theatres in a thm application •I

ldefine NUM_X 4
ldefine NUM_Y 5

The function cp_scale_pnts copies all arrays from orcstalls_demo. h into four dimensional
arrays stored in points_mat_ext. h. Two indices correspond to the number of theatre layouts
along x-axis and y-axis. The other two correspond to indices of arrays in orcstalls_demo .h.

5

··::::!!!! !i!iii!i!iii!i!i!ii i!ii i!ii i!iiiii!i!i!i!i!i!!i!!::·· ··::::i!iiiiiii!iiiiiiiiiiiiiiliiiiilii!iiliiiiiiiiiiii!li!::··

,.;::., ,.::::::::::::::::::: :::::::::::::::::::::::::::;.,

'•:::: i!iiiiiiiiiiiiiiiiiiiiiiiilii ili lilililii ili li j!j!i! :: :•'

11

::: i!i! iliiili!iiiliii i iliiii iliii iiliiiliiiliiililili :::: :•'

,.;:;:::;., ,.;:::::::::::::::::::::::::: ::: :::::::::: ::: ::::.,

Figure 2: Theatre layout: a model consisting of
four theatre patterns

6

The function ep_seale_pnts copies all points scaled with appropriate scale factor, which
depends on the number of theatre patterns required, and is calculated as follows:

seal=1.;
fl = NUM_X;
f11=NUM_Y;
if(NUM_X >= NUM_Y)

seal = seal/fl;
else

seal = seal/fll;

The function ep_seale_pnts copies, for example, the array stallsmln14 [3] [5] as follows:

for(i=O; i<3; ++i) {
for(j=O; j<S; ++j) {

stallsmln14_I[O][O][i][j] .x=seal * stallsmln14[i][j] .x;
stallsmln14_I[O][O][i] [j].y=seal * stallsmln14[i][j] .y;

}

}

Therefore, the function ep_scale_pnts stores a scaled theatre layout (for displaying in the
lower left corner of the picture) into four dimensional arrays.
The function ep_shift_pnts initializes all other four dimensional arrays. It copies points
created by ep_seale_pnts NUM_)(* NUM_Y -1 times to corresponding arrays' elements
modifying coordinates by appropriate shift_x and shift_y values. For the previous exam­
ple it is:

void ep_shift_pnts()
{

int i, j, m, n;
float shift_x, shift_y, x, y, xl, yl;
X = 1.;
xl = NUM_X;
y = 1.;
yl = NUM_Y;
x = x/xl;
y = y/yl;
for(m = 0; m<NUM_Y; ++m) {

shift_y = y * m;
for(n = 0; n<NUM_X; ++n) {

shift_x = x * n;
if(m == 0 tt n == 0)
else {

for(i=O; i<3; ++i) {
for(j=O; j<S; ++j) {

stallsmln14_I [m] [n] [i] [j]. x =
stallsmln14_I[O] [0] [i] [j] . x + shift_x;

stallsmln14_I [m] [n] [i] [j]. y =
stallsmln14_I[O][O][i][j].y + shift_y;

7

}

}

}
}

}

}

Function seatplan generates all output primitives after all four dimensional arrays have
been initialized:

void seatplanO
{

#define NUM_POINTSS 5
Pint i, m. n, num_x, num_y;
Gpattr_value at;
cp_scale_pnts();
cp_shift_pnts();
num_x = NUM_X;
num_y = NUM_Y;

gadd_nameset(tostalls_list);
gadd_nameset(tosmleft_list);

for(m = 0; m< NUM_Y; m++) {
gadd_nameset(ty_list[m]);
for(n = 0; n< NUM_X; n++) {

gadd_nameset(tx_list[n]);
gadd_nameset(tseatnum[13]);

}

}

for(i = 0; i< (NUM_ORAWS-17); i++) {
gadd_nameset(trawnum[i+l]);
plistm15[m] [n][i].num_points = NUM_POINTS5;
plistm15 [m] [n] [i] . points = tstallsmln14_I [m] [n] [i] [0] ;
gcreate_out_prim(SETOFPOLYLINES, tplistm15[m][n][i]);
gsubtr_nameset(&rawnum[i+l]);

}

gsubtr_nameset(tx_list[n]);
}

gsubtr_nameset(ty_list[m]);

All output primitives are tagged with different namesets in the way described earlier in this
section.

8

2.4 GKS-9x

The implementation of a part of GKS-9x (described in [3, 4]) extended with the SET VIEW
function is used here. This version of the implementation uses Sun PRIGS 2.0 to allow use
of PRIGS and X Windows or X toolkits together.

SET VIEW is implemented without view scissor and with the following parameters:

void gset_view(Pint ws_id, I• workstatio~ identifier •I
Pint vwn, I• view index •I
Ppoint •view_ref_point, I• view reference point . •I
Pvec •view_up_vec, I• view up vector •I
GNDC_win •win, I• NDC window •I
GLDC_vp •vp I• LDC viewport •I

)

The GKS-9x data types have been extended by the type Gview:

typedef struct {
Gselect
Gview_rep

} Gview;

•view_sel;
•view_rep;

I* VIEW */
I* viewing selection •I
I• view representation *I

The GKS-9x data.type Gwssel_list has been revised so that member wsview[NUMVWT] is
of type Gview instead of type Gselect as described in [4].

typedef struct wsel •Gwssel_list_ptr;

typedef struct wsel {
Pint
Gselect
Gselect
Gselect
Gview
Gpntwsf_list

owsid;
•wsvis;
•wshigh;
•wsdetc;
•wsview[NUMVWT];
•flagshead;

Gwssel_list_ptr nextwssel;
} Gwssel_list;

..

I• workstation identifier •/
I* visibility selection •/
I* highlighting selection •I
I* detectability selection •I
I• view representations •I
I• pointer to llwsf •I
/•pointer to the next node *I

To implement the SET VIEW function, the following PRIGS functions are used:

peval_view_ori_matrix
peval_view_map_matrix
pset_view_rep
pset_view_ind

9

To implement the 16 views allowed in GKS-9x, 16 entries in the PHIGS view representation
table are used - one per view.

Two Motif drawing area widgets are used for two GKS-9x workstations. Workstations
are of type phigs_vs_type_dravable.

As described in [4], the GKS-9x implementation can be compiled with or without PHIGS.
The version with PHIGS is used for interactive applications, while the version without PHIGS
(which also excludes SET VIEW function) is used for non-interactive applications.

The implementation of a part of GKS-9x (described in [3, 4]) includes reorder_ndcp
and reorder _prims. The first corresponds to the former definition of REORDER NDC
PICTURE. The second corresponds to the current definition of REORDER NDC PICTURE.
However, this has been changed so that reorder_ndcp follows the current definition of
REORDER NDC PICTURE.

3 Interactive Application

The interactive application, thm, displays the theatre layout on two GKS-9x workstations
and allows sessions in which GKS-9x functions, selected interactively, are performed. A user
can edit the NDC picture and change its visibility and appearance on workstations, in order
to explore the behaviour of a GKS-9x system prototype.

To provide this, the application uses Motif and PHIGS together- Motif to create graphical
user interface and Sun PHIGS 2.0 to produce GKS-9x graphics output. Two Motif drawing
area widgets are used for two GKS-9x workstations.

The user interface provides easy selection of a function from a subset of GKS-9x functions.
A function is selected from a menu. A selection criterion has to be defined for all functions

except SET VIEW. One more parameter has to be defined for some functions. The selected
function is executed when correctly supplied with parameters. All available functions are
executed with consequent redisplay of NDC picture. However, in some cases redisplay is
not performed, for example, if SET PRIMITIVE ATTRIBUTE function is executed when
the visibility selection criterion has value REJECTALL. When the execution of a function
is completed, it is possible to select another one.

The thm main module contains the user interface implementation which is described in
the following subsection. This section also describes how to use the thm application.

3.1 User Interface

The thm user interface is stored in the theatre_motif_many. c module. It contains the
main function and a couple of other functions necessary to create a Motif interface. The
main function calls create_ toplevel function which creates all the Motif components. It
opens GKS-9x, opens two workstations and calls XtAppHainLoop to wait for input and
window events. Input events from the menus and text fields are handled by the widgets
callback functions. Expose events are handled by the redrav function. It calls PHIGS
function redrav_all_structs. This cause PHIGS to clear the workstation and· redisplay all
the posted structures. The GKS-9x implementation considered here creates and posts one

10

PHIGS structure for each open workstation. The structure contains all views of the visible
output primitives.

The function create_ toplevel creates a hierarchy of Motif widgets - the enclosing form,
the menu bar, the menus, the text fields, two drawing areas with menu bars and menus
and a large number of push-buttons. The hierarchy consists of over 100 widgets. The
responses to input events from the menus or other widgets are carried out by 20 widget
callback functions. They issue GKS-9x function calls, manage/unmanage other widgets, set
appropriate variables or send error messages. This· enables the application to change the
image (display of NDC picture) in response to user selections from menus or other widgets.

3.2 Interaction

The thm application is an interactive program. It inputs user supplied character arrays
representing selection criteria, namesets and points from Selection, Selection!, Nameset,
Orientation and Mapping text fields. The application outputs character arrays representing
error messages in Error text field.

A few functions stored in getsel. c and crsel. c modules parse an array of Pchar type
representing a selection criterion and convert it to a selection criterion of type Gselect which
is acceptable for G KS-9x functions.

Two functions stored in the crnameset. c module parse an array of Pchar type repre­
senting a nameset and convert it to a nameset of type Gint_list.

A few functions stored in the view_ transf. c and a_ to_point. c modules parse an array
representing two points which are input from Orientation field, or an array representing four
points input from Mapping field. In the first case they convert an array into two points of
type Ppoint. In the second case they convert an array into a window of type GNDC_win and
a viewport of type GLDC_ vp, .

In the GKS-9x implementation which is considered here, names are of Pint type. How­
ever, thm is an interactive application and selection criteria and namesets are entered as
arrays of Pchar type. To obtain, for a character array representing a name, an integer, a
hash function[5] is used. The function nsi which is used in the interactive application creates
namesets in the following way:

static Pchar amphitheatre[] = 11 AMPHITHEATRE" ;
new_ar ~ (Pint*)malloc(SIZE_OF_INT);
hash_tab(FIND_ENTER, amphitheatre, tn);
•new_ar • n;
amphitheatre_list.num_ints = 1;
amphitheatre_list.ints = new_ar;

3.3 Starting the Interactive Application

When thm is started an X window is opened. It displays the main menu bar, Selection text
field, Error text field and two Motif drawing area widgets used as two GKS-9x workstation

11

display surfaces. The NDC picture is displayed on both workstations (Figure 3) as the state
of the GKS-9x system is:

NDC picture stores the predefined number of primitives.
Workstation 1 is open with initial values for all selection criteria.
Workstation 2 is open with initial values for all selection criteria.
View 0 is set to initial value.
Views 1 - 15 are set to different values.

The main menu bar is on the top of the window. It contains three buttons: Functions, Quit
and Help.

Help - provides an explanation of how to use the application.
Quit- is used to exit the application.
Functions - provides a pull-down menu to choose a function to be performed.

3.4 Functions

To begin a session of exercising GKS-9x functions, press the Functions button. Then press a
button, labelled by a function name, from the displayed menu which includes the following
functions:

set workstation selection - workstation1
set workstation selection - workstation2
set view selection- workstation1 (view O,. .. ,view 15, view ALL)
set view selection- workstation2 (view O, ... ,view 15, view ALL)
set view- workstation1 (view 1, ... ,view 15, view ALL)
set view- workstation2 (view 1, ... ,view 15, view ALL)
set ndc primitive attribute- colour (red, green, blue, cyan, yellow, magenta)
set ndc primitive attribute- type (solid, dashed, dotted, dotdash)
set ndc primitive attribute- width (thin, normal, thick)
add nameset to ndc picture
remove nameset from ndc picture
delete primitives
reorder ndc picture (old version) - front
reorder ndc picture (old version) - back
reorder ndc picture - front
reorder ndc picture - back

The next step, for all functions except set view, is to define a selection criterion in Selection
text field . Therefore, when any available function, except set view is chosen, enter a selection
criterion in the field labelled Selection. The chosen function will be executed or another field
will appear. The latter case occurs when one of the following functions is chosen:

12

add nameset to ndc picture
remove nameset from ndc picture
reorder ndc picture

In the cases add/remove nameset to/from ndc picture, a field labelled Nameset appears
between the fields Selection and Error. Enter a nameset in this field. The chosen function
will be executed.

In the case of reorder ndc picture, a field labelled Selection I appears between the fields
Selection and Errors as shown in Figure 4. Enter a selection criterion in this field. The
chosen function will be executed.

Fill area primitives (tagged by BOX) were constracted to partially overlap each other
in the theatre layout in order to be suitable to exercise the REORDER NDC PICTURE
function. The fill area primitive tagged by {BOX, 1} completely overlaps all other fill area
primitives on the left side of the theatre, and is partially overlapped by them. The fill area
primitive tagged by {BOX, 2} completely overlaps four fill area primitives tagged by: {BOX,
3}, {BOX, 4}, {BOX, 5} and {BOX, 6} and is partially overlapped by them, and so on. The
fill area primitive tagged by {BOX, 6} (the last one in the sequence of the fill area primitives
on the left) partially overlaps five fill area primitives and is completely overlapped by them.
The similar is on the right side. When overlapped primitives are displayed they may obscure
each other, or some parts of each other, depending on their positions in the sequence of
primitives in the NDC picture. The order of fill area primitives follows the increase of value
of the numeral by which they are tagged when the NDC picture is created. Therefore, the
fill area primitive tagged by {BOX, 2} obscures the fill area primitive tagged by {BOX, 1 }.
The fill area primitive tagged by {BOX, 3} obscures the fill area primitives tagged by {BOX,
1} and {BOX, 2} and so on until the fill area primitive tagged by {BOX, 6} which obscures
all others and itself is completely displayed.

In the theatre layout in Figure 4, a primitive labelled {BOX, 2} obscures completely
primitives labelled by {BOX, 3}, {BOX, 4}, and {BOX, 5} and the partially primitive
labelled {BOX, 1 }, while itself is partially obscured by the primitive labelled {BOX, 6}. To
achieve this, the reorder ndc picture - front function was chosen from the menu. Section
3.6 defines the syntax of specifying selection criteria. The source selection criterion, c{BOX,
2}, has been defined in the field Selection. The reference selection criterion, o(c{BOX, 5},
o(c{BOX, 3}, c{BOX, 4}), has been defined in the field Selection!. The primitive tagged
{BOX, 2} has been moved to the position after the primitive tagged by {BOX, 5}.

When the set view function is chosen, a field labelled Orientation appears instead of the
field labelled Selection as shown in Figure 5. Enter two points in this field which define a
view reference point and a view up vector direction. Then a field labelled Mapping appears
between the fields Orientation and Errors. Enter four points in this field. The first two
define an NDC window and the last two an LDC viewport.

The procedure can be repeated from the beginning or from entering function parameters
when previously selected function is assumed.
The message:

CHOOSE Function PLEASE !
is displayed in the Error field, when a function parameter has been defined but a function
has not been chosen.

13

Figure 3:

14

3.5 Nameset

A nameset is defined either as a part of a selection criterion or as an argument of add/remove
nameset to/from ndc picture functions. In the later case, a nameset should be entered in
the field labelled Nameset. Names contained in a nameset are enclosed in a pair of curved
brackets and separated by commas. The following characters are allowed in names:

Uppercase letters
Lowercase letters
Numbers
Underscore character

Examples:
{12, Blue, Balls}
{12..Blue_Balls}

A-Z
a-z
0-9

3.6 Selection and Selection!

A selection criterion can be entered either in the Selection field or in the Selection 1 field. A
selection criterion is defined in terms of comparison and logical operations as follows:

s SELECT ALL
r REJECT ALL
c{} CONTAINS
i{} ISIN
e{} EQUALS
n() NOT
a() AND
o() OR

Curly brackets enclose a nameset. A nameset is an argument of the comparison operations:
c, i and e. Brackets enclose arguments of the logical operations: n, o, and a. An argument
of n is one selection criterion, while arguments of a and o are two selection criteria.

Examples:
c{12, Blue, Balls}
i{12, Blue, Balls}
e{12, Blue, Balls}
n({12, Blue, Balls})
o(e{12}, i{Blue, Balls})
a(c{12}, c{Blue, Balls})

15

Figure 4:

16

3. 7 Orientation

When the SET VIEW function with a workstation identifier and view index has been chosen
from the Functions menu, view orientation and view mapping matrices have to be defined.

The specified view transformation on the workstation is defined by the orientation matrix
and mapping matrix. For each view defined (except view 0) by view index, the application
may redefine the origin and orientation of the NDC coordinate system. It should be defined
such that it is the most appropriate for the view mapping. The view reference point defines
the new origin to be used and a vector from this point called the view up vector specifies the
new Y-direction of the axes. The view up vector is defined by one point, as the other one is
always the origin. Effectively the view up vector defines the angle of rotation about the view
reference point for objects contained in the NDC picture. Two points which define the view
reference point and the view up vector are sufficient to calculate the orientation matrix.

Therefore, two points have to be supplied in the field labelled Orientation: the first of
which defines the view reference point, and the second the view up vector. Both points are in
the range [-7, + 7]. Each point has to be defined in a pair of curly brackets, and their X and
Y coordinates must be separated by a comma. For example in Figure 5, in field Orientation
(for Workstation 2) the following points are defined:

{0.5, 0.5} {1, -1}

3.8 Mapping

The View Mapping transformation is a window to viewport mapping from NDC to LDC
space. A window defines a rectangular area to be mapped onto a viewport which is another
rectangular area. Each is defined by two points representing the lower left corner and the
opposite one.

Therefore, four points have to be supplied in the field Mapping. The first two define the
window in NDC space in the range [-7, +7], which is to be mapped onto the viewport in
LDC space defined by the last two points (in the range [0, 1]). Each point has to be defined
in a pair of curved brackets, and their X and Y coordinates must be separated by a comma.
For example in Figure 5, in field Mapping (for Workstation 2) the following points are defined:

{-0.7, -0.7} {0.7, 0.7} {0, 0} {1, 1}

3.9 Errors

All error messages are reported in the field labelled Error. Here are some examples:

Number of left and right brackets must be equal !

Left bracket (is expected after logical operation !

A name contains a character which is not allowed !

17

Workstation viewport should be in range [0, 1] !

3.10 Workstation 1 and Workstation 2

Both Workstation 1 and Workstation 2 are open initially and display NDC picture. You
can close each workstation, open it again, recreate the initial NDC picture and inspect a
workstation's selection criteria and views by selecting one of the available buttons:

Open- opens the workstation.
Close- closes the workstation.
Recreate - recreate initial NDC Picture and display it on open workstations.
WsSelection- shows the current workstation DISPLAY selection criterion.
ViewSelection - shows the current view selection criteria.
View- shows the current view when a button (view identifier) from a displayed menu is

selected.

An error message is reported (in the field labelled Error) when an attempt is made to
open/close a workstation which has already been opened/closed.

4 Non-Interactive Application

To explore how GKS-9x function execution times vary for NDC pictures containing different
numbers of primitives, an application thm_time was constructed. It differs from the thm
application described earlier in the theatre_motif _many. c module. It was replaced in
thm_time by the theatre_ time. c module. This module contains the main function in which
each GKS-9x function considered is executed 1000 times. It is given in Appendix 1. The
GKS-9x functions considered are:

SET NDC PRIMITIVE ATTRIBUTE
REMOVE SET OF NAMES FROM NDC PICTURE
ADD SET OF NAMES TO NDC PICTURE
REORDER NDC PICTURE
SET WORKSTATION SELECTION CRITERION
SET VIEW SELECTION CRITERION
DELETE PRIMITIVES
CREATE OUTPUT PRIMITIVE

5 Performance

gset_ndc_prim_attr
gremove_nameset_ndc_picture
gadd_nameset_ndc_picture
greorder_ndcp
gset_ws_sel_crit
gset_view_sel_crit
gdel_prims
gcreate_out_prim

The execution times for a group of GKS-9x functions were measured for four selection cri­
teria. Times were measured for six different NDC pictures (containing different number of
primitives) for each selection criterion.

18

Figure 5:

19

Times were measured using the Unix (TM) C library function /time. The application
was run on an overwise empty Sun 4/75 FGX-32 SPARCstation 2, with 32Mbyte memory
(28 MIPS). Graphical output was not produced by the version of the implementation on
which timing trials were made. One workstation was open.

The results are presented in several tables. There is one table per selection with six
columns, each of which contains the execution times for different NDC pictures.

The execution times for reorder _ndcp functions were measured for both values of the
position parameter (FRONT, BACK).

Times in tables 1 - 4 include NDC picture traversing time in all examples.
For the pair of functions: gdel_prims and gcreate_out_prim, a combined time is given

in table 1 (includes two NDC picture traversing times). Tables 2-4 do not contain times for
the gdel_prims function because the selection criteria used select more than one primitive
and measuring these times would be inconvenient.

The execution times for all functions except set_ws_sel_crit and set_view_sal_crit
were measured with initial values for all selection criteria.

The selection criterion SELECTION! is :

CONTAINS{ORCHESTRA, STALLS, MIDDLE, LEFT, I , 1, Xl, Y1}

SELECTION! selects one primitive in the theatre layout placed in the lower left corner, as
shown in Figure 6.

Table 1

Times (ms) for SELECTION! for 6 different NDC pictures
number of primi tives in NDC picture

G KS function 1154 2308 6924 10386 16156 23080

gset_ndc_prim_attr 24.6 48.1 143.2 214.0 332.4 474.5
gadd_nameset
_ndc_picture 24.7 48.4 143.4 213.9 332.3 473.6
gremove_nameset
_ndc_picture 24.7 48.4 143.4 213.9 332.3 473.6
greorder_ndcp , FRONT 30.8 56.3 167.3 250.1 388.3 554.4
greorder_ndcp , BACK 42.0 71.0 186.9 273.1 418.4 591.7
gseL ws_seLcri t 13.2 26.1 78.2 117.2 205.0 260.6
gset_ view _seLcrit 28.5 56.8 170.5 255.2 397.4 567.3
gdeLprims
gcreate_ou Lprim 47.6 94.7 282.2 422.1 656.7 937.6

SELECTION2 is :

OR(
CONTAINS{AMPHITHEATRE, I, 1, X2, Yl},
CONTAINS{ORCHESTRA, STALLS, MIDDLE, LEFT, I, 1, Xl, Yl})

SELECTION2 selects two primitives in the theatre layout. One primitive is the same selected
by SELECTION!, and the other belongs to the theatre layout placed next to the one in the
lower left corner along x-axes, as in Figure 7.

20

Table 2
Times (ms) for SELECTION2 for 6 different NDC pictures

number of primitives in NDC picture
G KS function U54 2308

gset_ndc_prim_attr 34.5 71.5
gadd_nameset
Jldc_picture 34.8 75.9
gremoveJlameset
Jldc_picture 34.8 75.9
greorder_ndcp, FRONT 36.0 74.2
greorder_ndcp, BACK 49.1 88.7
gset_ ws..seLcri t 20.6 44.1
gset_ view ..seLcrit 36.1 75.2

SELECTION3 is:
OR(

CONTAINS{AMPHITHEATRE, Xl, Yl},
CONTAINS{STALLS, Xl, Yl})

6924 10386 16156 23080

219.5 344.9 514.5 749.2

219.9 330.7 514.9 753.6

219.9 330.7 514.9 753.6
226.4 339.4 529.8 757.9
246.0 374.9 560.2 795.8
138.6 209.9 326.9 468.7
231.0 348.1 542.1 775.9

SELECTION3 selects 999 primitives in the theatre layout placed in the lower left corner, as

in Figure 8.

Table 3
Times (ms) for SELECTION3 for 6 different NDC pictures

G KS function

gset_ndc_prim_attr
gadd_nameset
Jldc_picture
gremoveJlameset
Jldc_picture
greorder_ndcp, FRONT
greorder_ndcp, BACK
gset_ ws..seLcri t
gset_ view _seLcri t

SELECTION4 is :

OR(
OR(

OR(

number of prlmHives in NDC picture
1154 2308 6924 10386 16156 23080

46.0 87.3 252.0 375.0 581.0 831.0

217.3 274.7 439.8 589.5 753.4 1020.3

217.3 274.7 439.8 589.5 753.4 1020.3
57.5 100.5 270.8 395.5 606.6 859.4
59.9 103.7 277.4 407.7 627.0 886.1
41.3 69.2 180.6 263.8 403.4 571.3
43.8 86.8 259.3 389.0 628.2 863.6

AND(CONTAINS{ORCHESTRA, STALLS, I, Xl, Yl}, NOT(CONTAINS{MIDDLE}),
CONTAINS{ORCHESTRA, STALLS, MIDDLE, I, X2, Y1}),

OR(
CONTAINS{AMPHITHEATRE, I, 1, X2, Y1},
CONTAINS{ORCHESTRA,STALLS,MIDDLE,LEFT, I, 1, X1, Yl})),

CONTAINS{TIER, GRAND, I, 1, Xl, Y1})}

21

11::: 11

I
l I I I I I I I I I I I I I I I I I I I l I l I I I I I

Figure 6: Theatre Layout- SELECTION!

22

',::::i!!i!!i::::'' ',:: ::!i!i!i!i!i!i! i!i !i!i!i!i!i!i!i!i!ili!i!i!i!i!i!i!i!::::''

,,:::,, ,,:::,,
111111111111111111111111111 ,,,, ~ 111111111111111111111111111

1111111111 1111 111111111111 1 1 t i-'. 111111111111111111 1 111111111

,~ -. , A. --~'t~

Figure 7: Theatre Layout- SELECTION2

23

SELECTION4 selects 19 primitives in the theatre layout. 18 primitives are selected in the
theatre layout placed in the lower left corner, and one belongs to the theatre layout placed
next to the one in the lower left corner along x-axes, as shown in Figure 9.

Table 4
Times (ms) for SELECTION4 for 6 different NDC pictures

number of primitives in NDC picture
G KS function 11 1154 2308 6924 10386 16156 23080

gset_ndc_prim_at tr 55.5 112.6 340.7 511.1 796.0 1137.3
gadd_nameset
Jidc_picture 58.6 116.5 343.7 514.5 799.1 1141.0
gremoveJiameset
Jidc_picture 58.6 116.5 343.7 514.5 799.1 1141.0
greorder_ndcp, FRONT 57.2 115.2 347.1 522.1 810.5 1158.1
greorder_ndcp, BACK 70.1 129.9 367.1 546.0 841.3 1196.0
gset_ ws..seLcri t 41.8 85.5 260.6 391.9 633.7 873.7
gset_ view _seLcri t 57.0 116.2 352.7 529.1 825.7 1179.6

The time measurements described were repeated without NDC picture traversing. Results
are presented in tables 5-8. Tables 5-8 contain two times per function in each column. The
first is the function execution time without NDC picture traversing. The second is the NDC
picture traversing time derived when the first time is subtracted from the corresponding time
given in tables 1-4.

Table 5
Times (ms) for SELECTION! for 6 different NDC pictures

number of primitives in NDC picture
G KS function 11 1154 2308 6924 10386 16156 23080

gset_ndc_prim_attr 3.7 7.0 20.5 30.2 46.6 65.9
20.9 41.1 122.7 183.8 285.8 408.6

gadd_nameset
Jidc_picture 3.9 7.3 20.7 30.3 46.6 65.9

20.8 41.1 122.7 183.6 285.7 407.7
gremoveJiameset
Jidc_picture 3.9 7.3 20.7 30.3 46.6 65.9

20.8 41.1 122.7 183.6 285.7 407.7
greorder_ndcp, FRONT 8.0 15.6 44.5 66.4 102.4 145.5

22.8 40.7 122.8 183.7 285.9 408.9
greorder_ndcp, BACK 21.2 30.1 64.1 89.5 132.5 182.5

20.8 40.9 122.8 183.6 285.9 409.2
gset_ ws..seLcri t 8.8 16.8 47.7 71.3 135.4 156.5

4.4 9.3 30.5 45.9 69.4 104.1
gset_ view _seLcrit 9.0 17.0 48.7 72.3 137.5 159.7

19.5 39.8 121.8 182.9 259.9 407.6
gdeLprims
gcreate_ouLprim 6.9 13.2 37.2 55.2 85.1 120.9

40.7 81.5 245.0 366.9 517.6 816.7

24

. 11::: 11

I
I

Figure 8: Theatre Layout- SELECTION3

25

Table 6

Times (ms) for SELECT10N2 for 6 different NDC pict11res
number of primitives in NDC picture

GKS function 1154 2308 6924 10386 16156 23080

gset_ndc_prim_attr 13.9 30.9 97.0 151.3 228.7 327.5
20.6 40.4 122.5 183.6 285.8 414.1

gadd_nameset
Jidc_picture 14.4 35.0 97.8 147.2 229.1 328.4

20.2 40.8 122.1 183.5 285.8 425.2
gremoveJiameset
Jidc_picture 14.4 35.0 97.8 147.2 229.1 328.4

20.2 40.8 122.1 183.5 285.8 425.2
greorder_ndcp, FRONT 15.3 33.3 103.5 155.5 243.3 348.9

20.7 40.9 122.9 183.9 286.5 409.0
greorder_ndcp, BACK 28.5 47.6 123.3 191.1 273.9 386.5

20.6 41.1 122.7 183.8 286.3 427.3
gset_ ws_seLcrit 16.2 34.7 108.0 163.7 254.5 370.0

4.4 9.4 30.6 46.2 72.5 98.7
gset_ view _seLcri t 16.5 35.2 109.2 165.2 257.1 368.4

19.6 40.0 121.8 182.9 285.0 407.5

Table 7

Times (ms) for SELECTION3 for 6 different NDC pictures
number of primitives in NDC picture

GKS function 1154 2308 6924 10386 16156 23080

gset_ndc_prim_attr 26.0 46.9 130.1 191.6 295.9 420.6
20.0 40.4 121.9 183.4 281.1 410.4

gadd_nameset
Jidc_picture 195.4 233.5 312.2 398.0 466.4 605.3

21.9 41.2 127.6 191.5 287.0 415.0
gremoveJiameset
Jidc_picture 195.4 233.5 312.2 398.0 466.4 60.5.3

21.9 41.2 127.6 191..5 287.0 415.0
greorder_ndcp, FRONT 36.7 59.0 147.6 211.6 319.7 449.4

20.8 41.5 123.2 183.9 286.9 410.0
greorder_ndcp, BACK 39.2 62.8 155.0 224.3 340.8 476.9

20.7 40.9 122.4 183.4 286.2 409.2
gset_ ws_seLcri t 23.5 46.5 136.8 204.3 317.6 453.7

17.8 22.7 43.8 59.5 85.8 117.6
gset_ view _seLcrit 23.8 46.6 137.6 206.2 319.3 455.9

20.0 40.2 121.7 182.8 308.9 407.7

26

,,:::,,
111111111n'llllllllllllllll

. 111111111 J 11111111111111111 :

,,:::,,
~ I I I I 11 I ~~
,.~ IIIWIIIIWIIIIIIIIII I I~~

Figure 9: Theatre Layout - SELECTION4

27

Table 8
Times (ms) for SELECTION4 for 6 different NDC pictures

number of primitives in NDC picture
GKS function 1154 2308 6924 10386 16156 23080

gset_ndc_prim_attr 35.2 71.9 217.8 327.8 510.2 730.2
20.3 40.7 122.9 183.3 285.8 407.1

gadd_nameset
Jtdc_picture 38.4 75.4 221.4 331.4 514.0 740.6

20.2 41.1 122.3 183.1 285.1 400.8
gremoveJlameset
Jldc_picture 38.4 75.4 221.4 331.4 514.0 740.6

20.2 41.1 122.3 183.1 285.1 400.8
greorder_ndcp, FRONT 36.6 73.8 224.6 338.3 525.2 750.2

20.6 41.4 122.5 183.8 285.3 407.9
greorder_ndcp, BACK 49.5 89.0 244.6 362.2 556.3 787.7

20.6 40.9 122.5 183.8 285.0 408.3
gset_ ws..seLcri t 37.8 76.0 230.4 346.1 561.0 782.2

4.0 9.5 30.2 45.8 72.7 91.5
gset_ view _seLcri t 37.8 76.2 231.4 346.7 540.9 805.0

19.2 40.0 121.3 182.4 284.8 374.6

6 Discussion of Results

The dependency of execution times on the number of primitives for gset_ndc_prim_attr
for each selection criterion given in tables 1-4 is graphically presented in Figure 10. The
time measurements given in tables 5-8 are graphically presented in Figure 11.

Three components can be distinguished in the overall function execution time: selection
time, data structures update time and traversing time.

It can be seen from tables 5-8 that traversing times are nearly the same for the corre­
sponding NDC pictures for all functions except gset_ws_sel_cri t. As an example travers­
ing times for gset_ndc_prim_attr for SELECTION! are presented by t1 in Figure 12.
The corresponding traversing times after optimization are presented by to and explained in
section 7.

Table 5 showes that the traversing times for gset_ws_sel_cri t are considerably less,
because only one primitive is visible. These traversing times for SELECTION! are presented
by t2 in Figure 12.

As the corresponding traversing times in the four cases considered in Figure 10 are
nearly the same, it can be concluded that the differences in the slopes of the lines depend
on the complexity of the corresponding selection criteria. The complexity of SELECTION!,
SELECTION2 and SELECTION4 is significantly different with consequent different slopes
of the corresponding lines. The complexity of SELECTION3 and SELECTION4 is the same.
However, the corresponding line slopes are different because the selections select different
numbers of primitives: SELECTION3 selects 2 primitives, while SELECTION4 selects 999

28

primitives. Therefore, the differences in slopes of the lines depend also on the data structures
update time. The data structures update times vary with the type of the of the function as
the type of the function determines how data structures have to be updated.

GKS-9x was designed to perform checking of whether a primitive satisfies a selection
criterion or not, on a per nameset basis rather than on a per primitive basis. It was assumed
that, on average, several primitives share a given nameset. Only one copy of a nameset is
maintained in a system which is pointed to by all primitives that have it as the value of
their nameset attribute. This avoids multiple computations of satisfaction of the selection
criterion by the nameset as described in [4]. Furthermore, some namesets can be easily
rejected based on the number of names they contain.

In the examples considered here very strong linearity (Figure 10 and 11) is the con­
sequence of the structure of namesets associated with primitives (2.2). All primitives have
different namesets in the NDC picture. Therefore, the number of namesets which potentially
have to be checked against a selection criterion corresponds to the number of primitives in
the NDC picture. In the case of SELECTION!, for example, when the NDC picture con­
tains 1154 primitives 398 primitives will be rejected because their namesets contain less
names than the nameset of SELECTION! and 756 will be checked. In the case when the
NDC picture contains 2308 (2*1154) primitives, 2*398 primitives will be rejected and 2*756
checked and so on. Therefore the number of namesets which have to be checked against the
selection criterion grows proportionally with the number of primitives in the NDC picture
which explains the strong linearity of the obtaioned results. Based on the results in tables
1-8 and this analysis, it can be concluded that the selection times grow linearly with the
number of namesets which have to be compared to the selection criterion.

Results given in tables 5-8 show that traversing time does not depend on the GKS-9x
function being executed, but depends only on the number of primitives stored in the NDC
picture and on the number of visible primitives. The results presented in Figure 12 show
that the traversing time grows linearly with the number of primitives in the NDC picture
and that the slope of the line depends on the number of visible primitives. It depends on the
number of primitives stored in the NDC picture because all primitives have to be traversed
to select those that are visible. It depends on the number of visible primitives because they
have to be traversed 16 times to determine the views of the NDC picture.

A simple selection criterion containing one comparison operation (like SELECTION!)
can always be used for selecting a single primitive. It can be seen from table 5 that in such
a case traversing time is considerably longer than selection time and update data structures
time for some functions. Tables 5-8 show how this proportion changes for different selection
criteria. Table 8 shows that even for a very complex selection criterion (consisting of 6
logical and 6 comparison operations) the traversing time is a considerable part of the overall
execution time.

According to the GKS-9x DIS, the view table always contains 16 views regardless of
whether an application uses them all or not. The view selection criterion for view 0 is set to
SELECTALL and others to REJECTALL when a workstation is open and the correspond­
ing workstation state list created. When this is implemented straightforwardly (as was done
in the implemention considered here), visible primitives have to be traversed 16 times per
single NDC picture traversing. However, as results showed that traversing time is a consid­
erable part of the overall function execution time, it would be worth optimizing the average
traversing time by considering only those views which an application uses.

29

1200 Time
(in ms)

SET NDC PICTIJRE PRIMITIVE A ITRffiUlE

600

400

200

4000 8000 12000 16000 20000

Number of Primitives in NDC Picture

Figure 10:

30

1200 Time
(in ms)

1000 SET NDC PICTURE PRIMITIVE ATIRIBUTE

800

600

400

200

4000 8000 12000 16000 20000

Number of Primitives in NDC Picture

Figure 11:

31

1200 Time
(in ms)

600

400

200

4000 8000 12000 16000 20000

Number of Primitives in NDC Picture

Figure 12:

32

7 Optimization

One way to reduce the average traversing time is to determine dynamically for how many
views the visible primitives have to be traversed for a single NDC picture traversing. To
realize this, the data type Gvssel_list (2.4) has been extended by numvievs member:

typedef struct vsel •Gvssel_list_ptr;

typedef struct vsel {

Pint ovsid; I• vorkstation identifier •I
Gselect •vsvis; I• visibility selection •I
Gselect •vshigh; I• highlighting selection •I
Gselect •vsdetc; I• detectability selection •I
Gviev •vsview[NUMVWT]; I• view representations •I
Pint numviews; I• number of used views •I
Gpntvsf_list •flagshead; I• pointer to llvsf •I
Gvssel_list_ptr nextwssel; /•pointer to the next node •I

} Gvssel_list;

When a workstation is open, the corresponding variable of type Gvssel_list is created and
the member numviews is set to 1 to denote that only one view selection criterion is not
REJECTALL. Whenever a view selection criterion is changed, its view index is compared
to the corresponding numvievs, which is accordingly set to the greater value. Therefore,
numvievs for a workstation has always the value of the greatest view index for which the
selection criterion has been changed. With this optimization, visible primitives have to be
traversed numvievs rather than 16 times per a single NDC picture traversing.

Times were measured for SELECTION! and SELECTION2 when this optimization was
included in the GKS-9x implementation and the results are presented in Table 9 and Table
10. Tables 9 - 10 contain two times per function in each column. The first is the function
execution time with NDC picture traversing time. The second is the NDC picture traversing
time derived when the time without traversing (from Tables 5-6) is subtracted from the first
time.

It can be seen that traversing time has been considerably reduced for all functions except
for the gset_vs_sel_crit. The traversing time for gset_ws_sel_crit function with and
without traversing is nearly the same because only one primitive is visible. Traversing times
with optimization for gset_ndc_prim_attr for SELECTION! is presented by to in Figure
12.

The optimization presented is very simple and does not give always good results. How­
ever, it was sufficient to show that the average traversing time can be substantially improved
if each NDC picture traversing is performed for precomputed number of views (which can
be less or equal 16), instead for the maximum number of views.

33

Table 9

Times (ms) for SELECTION! for 6 different NDC pictures
number of primitives in NDC picture

G KS function 11 1154 2308 6924 10386 16156 23080
gset_ndc_prim_attr 11.2 22.5 62.2 92.9 143.9 204.0

7.2 17.5 41.7 62.7 97.3 138.1
gaddJlameset
Jldc_picture 11.3 21.8 62.5 92.2 143.9 204.8

7.4 14.5 41.8 62.6 97.3 138.9
gremoyeJlames~t

Jldc_picture 11.3 21.8 62.5 92.2 143.9 204.8
7.4 14.5 41.8 62.6 97.3 138.9

greorder_ndcp, FRONT 15.1 29.7 86.3 129.3 199.7 285.2
7.1 14.1 41.8 62.9 97.3 139.7

greorder_ndcp, BACK 28.4 44.0 105.7 153.3 230.1 322.3
7.2 13.9 41.6 63.8 97.6 139.8

gset_ \YS...SeLcrit 13.2 26.4 78.8 118.0 183.3 262.1
·. 4.4 9.6 31.1 46.7 47.9 105.6

gset_ view ...seLcrit 15.1 30.2 90.1 134.6 209.1 299.0
6.1 13.2 41.4 62.3 71.6 139.3

gdeLprims
gcreate

7
out_prim 20.7 40.9 120.8 195.3 279.5 398.8

13.8 27.7 83.6 140.1 194.4 277.9

Table 10

T imes (ms) for SELECTION2 for 6 different NDC pictu.res
number of primitives in NDC picture

GKS function 1154 2308 6924 10386 16156 23080
gset_ndc_prim_attr 21.0 44.5 138.7 224.8 326.6 467.4

7.1 13.6 41.7 63.5 97.9 139.9
gadd_nameset
Jldc_picture 21.5 48.6 139.3 209.4 326.6 467.4

7.1 13.6 41.5 62.2 97.5 139
gremoveJlameset
Jldc_picture 21.5 48.6 139.3 209.4 326.6 467.4

7.1 13.6 41.5 62.2 97.5 139
greorder_ndcp, FRONT 22.5 47.1 145.1 218.6 342.0 520.2

7.2 13.8 41.6 63.1 98.7 171.3
greorder_ndcp; BACK 35.6 61.9 164.9 242.7 372.7 526.3

7.1 14.3 41.6 51.6 98.8 139.8
gset_ ws...seLcri t 20.5 44.5 138.7 210.2 327.7 469.7

4.3 9.8 30.7 46.5 73.2 99.7
gset_ view ...seLcri t 22.5 48.1 150.5 227.0 354.0 507.4

6.0 12.9 41.3 61.8 96.9 139

34

8 General Discussion

Studies have been carried out at Rutherford Appleton Laboratory on the specification and
implementation of the major new functionality in GKS-9x, as well as on the effects of an
application complexity on the implementation performance. This was presented in [3, 4, 7J
and here. Reservations had been expressed in the GKS Rapporteur Group about whether
it was possible to implement the proposed GKS-9x functionality efficiently and whether the
functionality would achieve the desired aims. The motivation for the work presented in the
papers was to investigate these issues.

Prior to exploring approaches to implementing some of the new functionality, the authors
prepared a formal description [7J of the key parts of the framework of GKS-9x which were
relevant to the implementation issues which were later studied.

The experience gained in the implementation of a part of the GKS-9x and in exercising
a prototype has been presented in [3, 4] and here. The implementation includes some of the
major new concepts introduced in GKS-9x: NDC picture, namesets, selection criteria and
multiple views, as the main aim of the work was to explore how the GKS-9x NDC picture,
namesets and selection criteria could be implemented efficiently and to investigate the visual
effects of multiple views.

A central aspect of the GKS-9x implementation was the provision of compact data struc­
tures which are dynamically created and destroyed to suit the current application require­
ments, and efficient execution time of the GKS-9x functions considered.

It has been shown that a comprehensive data type, selection criterion, can be imple­
mented using standard C language type constructors.

Two frequently performed processes: selection of primitives and traversal were identified.
An approach in the design and implementation of the GKS-9x data structures was presented
which provides high efficiency for these processes.

In GKS-9x the NDC picture is defined as a sequence of output primitives. The order
of appereance of output primitives in the NDC picture is important in that if two output
primitives overlap, the second primitive in the sequence may obscure some part of the first.

The NDC picture is represented as a doubly linked list of primitives in the GKS-9x imple­
mentation considered here. It had to be a doubly linked list to provide the implementation
of REORDER NDC PICTURE function, as described in [4].

GKS-9x provides a set of functions for editing the NDC picture. Selected primitives
can be reordered or deleted or can have their attributes changed using this function. Each
workstation is responsible for selecting the subset of the NDC picture to be viewed and
rendering it. As the selection of primitives is a part of many GKS-9x functions, it is important
to implement it efficiently.

A primitive is selected for some purpose if its nameset attribute satisfies the corresponding
selection criterion. It was assumed that, on average, several primitives share a given nameset.
Under this assumption, the GKS-9x implementation was designed to perform checking of
whether a primitive satisfies a selection criterion or not, on a per nameset basis rather than
on a per primitive basis. Only one copy of a nameset attribute is maintained in a system
which is pointed to by all primitives that have it as the value of their nameset attribute.
A list of the different namesets in use is maintained, together with lists of pointers to the
primitives that have that nameset as the value of their nameset attribute. This avoids
multiple computations of satisfaction of the selection criterion by the nameset as described
in [3].

35

When a GKS-9x function for editing the NDC picture is performed it accesses a list
of namesets to check which of them satisfy the selection criterion (which is the function's
parameter) in order to edit the NDC picture. To provide a rapid way of accessing to the
namesets which potentially satisfy the selection criterion, namesets containing the same
number of names are chained together in linked lists of namesets. A linked list of keys
contains pointers to linked lists of namesets. A nameset 's key is the number ~f names it
contains. Comparing a key to the number of names in a nameset of the selection criterion,
the whole group of namesets in the corresponding list can be eliminated avoiding their
complete checking as described in [4].

To further reduce the selection time selection criterion optimization and nameset repre:­
sentation optimization were introduced.

To explore the effects of optimizations on execution times, an application, theatre, was
considered which comprises 1154 polylines, with different namesets. The execution times for
selecting subsequences of output primitives were measured for groups of GKS-9x functions,
for three versions of the implementation: without optimization, with selection optimization
and with both selection optimization and nameset representation optimization. Times were
measured for 13 selection criteria and the results were presented in several tables. It was
shown that the avarage function execution time has been reduced substantially with opti­
mizations. The two proposed ways of optimization are complimentary and can be generally
applied to implementations of GKS-9x. The selection structure optimization reduces the
number of cases when two namesets have to be compared, and therefore reduces the overall
execution time, while the nameset representation optimization reduces the execution time
of nameset comparison.

The NDC picture traversal is another frequently performed process, as it is assumed that
the NDC picture has to be always displyed up-to-date.

Each workstation has associated a VISIBILITY selection criterion which is used for
selecting the subset of the NDC picture to be viewed. The subset is further checked, by a set
consisting of 16 view selection criteria, to determine which primitives appear in which views
of the NDC picture. It was asssumed that the NDC picture will be traversed for display more
frequently than the selection criteria are changed. Under this assumption, a flag was allocated
for each namesetfselection criterion to indicate whether the nameset is accepted or rejected
by that selection criterion. This allows traversal process to check only the corresponding
flag to determine whether a primitive is visible or not, and a set of flags to decide how many
views of each primitive selected are displayed on the workstation. The allocation of flags
provided the minimum number of recomputations of whether a nameset satisfies a selection
criterion or not. Only the modification of a selection criterion or a nameset leads to the
recomputations for the nameset/selection criterion affected. Furthermore, the allocation of
flags provided complete separation of two most frequently performed processes in GKS-9x
which allows parallel execution of these two proceses.

The main aim of the further studies on GKS-9x implementation reported in this paper
was to explore how the number of primitives handled in an application affects the GKS-
9x performance" Accordingly, an application was developed which could be instantiated to
manipulate different number of primitives. Moreover, the application had two versions: in­
teractive and non-interactive. The non-interactive version was used to carry out performance
measurements.

The execution times for a group of GKS-9x functions were measured for four selection
criteria. Times were measured for six different NDC pictures (containing different number
of primitives in the range of 1154 - 23080 primitives) for each selection criterion. Then

36

the time measurements were repeated without NDC picture traversing. The results showed
that traversing times are nearly the same for corresponding NDC pictures for all functions,
except SET WORKSTATION SELECTION CRITERION, because the number of visible
primitives was the same. In the case of SET WORKSTATION SELECTION CRITERION
the number of visible primitives was reduced with the consequent substantial reduction of
traversing time. The results showed that the traversing time is a considerable part of the
overall function execution time and that heavily depends on how many views of the NDC
picture are displayed. According to the GKS-9x DIS, the view table always contains 16
views regardless of whether an application uses them all or not. The optimization of the
traversing time was introduced. It was assumed that, on average, not all 16 views of the NDC
picture are displayed. Therefore, the subset of visible primitives is checked by dynamically
determined number of view selection criteria, instead by a set consisting of 16 view selection
criteria, when optimisation was included. The execution times were measured again with
optimisation included and showed considerable improvment.

The GKS-9x functions execution times were analyzed here to investigate their dependen­
cies on various parameters. Three components of an execution time can be distinguished:
selection time, data structures update time and traversing time.

It was concluded that GKS-9x function selection time, for a given selection criterion,
depends on the complexity of the selection criterion and the number of namesets that have
to be checked and does not depend on the type of function. The results showed that the
selection time grows linearly with the number of namesets in system which have to be checked
against the selection criteria and that the slope of the line depends on the complexity of the
selection criterion.

However, the data structures update times vary with the type of the function as the
type of a function determines how data structures have to be updated. For example, for the
SET NDC PRIMITIVE ATTRIBUTE function, the results showed that the data structures
update time grows linearly with the number of primitives for which data structures have to
be updated. This does not hold for ADD NAMESET TO NDC PICTURE and REMOVE
NAMESET FROM NDC PICTURE, which depend on the number of namesets which have
to be revised.

The results showed that the traversing time grows linearly with the number of primitives
in the NDC picture and that the slope of the line depends on the number of visible primitives.
It depends on the number of primitives stored in the NDC picture because all primitives have
to be traversed to select those that are visible. It depends on the number of visible primitives
because they have to be traversed several times to determine the views of the NDC picture.

The results obtained validate the GKS-9x data structure design and data types imple­
mentation presented. Several benefits were demonstrated such as: complete separation of
two frequently performed processes, minimization of the number of recomputations of satis­
faction of the selection criterion by the nameset and the reduction of the execution time of
nameset comparison.

The interactive version of the application, described here, allows the user to exercise
GKS-9x functions on-line with user defined selection criteria, namesets and views in order to
get better insight into the new functionality and system behaviour. It displays the theatre
layout on two GKS-9x workstations and allows sessions in which GKS-9x functions, selected
interactively, are performed. A user can edit the NDC picture, change its visibility and
views on both workstations, in order to explore the effects of various GKS-9x functions. A
function is selected from a menu. The number of primitives manipulated in an application
(and therefore stored in the NDC picture) can be easily changed allowing simulation of very

37

comprehensive applications in order to explore the behaviour of the system when heavily
loaded. The largest number of primitives tried was 23080.

9 Conclusions

In the first part of this paper an interactive application thm which allows exercising of the
experimental implementation of GKS-9x with arbitrary user supplied selection criteria and
views, was presented. The number of primitives manipulated in an application (and therefore
stored in the NDC picture) can be easily changed allowing simulation of very comprehensive
applications in order to explore the behaviour of the system when heavily loaded. The largest
number of primitives tried was 23080.

In the second part of the paper an analoguous non-interactive application thm_time,
suitable for measuring function execution times, was presented.

To explore the effects of the number of primitives on execution times, 6 instances of the
thm_time application with different number of primitives manipulated were considered for a
selection criterion. This was repeated for 4 different selection criteria.

Three components of an function execution time were identified and their dependences
on the number of primitives, number of namesets and the complexity of the selection criteria
were analyzed.

It has been shown that the performance can be improved if the traversing optimization
is included.

Finally, measurements of GKS-9x implementation performance reported, validate as­
sumptions made when GKS-9x was designed.

References

[1] Information processing systems- Computer graphics- Graphical Kernel System (GKS)
functional description ISO 7942 ISO Central Secretariat (August 1985).

[2] K.W. Brodlie, D.A. Duce and F.R.A. Hopgood, The New Graphical Kernel System,
Computer-Aided Design 23{4), pp. 312-318 {1991).

[3] L.B.Damnjanovic, D.A.Duce and S.K.Robinson: GKS-9x: Some Implementation Con­
siderations, Computer Graphics Forum, 12(3), Conference Issue, Barcelona, Spain
Septembre 6-9, 1993, Ed. R.J. Hubbold and R. Juan. pp. 295-313.

[4) L.B.Damnjanovic, D.A.Duce and S.K.Robinson: GKS-9x: Implementation of Selection,
ERCIM Research Reports, ERCIM-93-R017 RAL.

[5) Information processing systems- Computer graphics- Programmer's Hierarchical In­
teractive Graphics System functional description ISO/IEC 9592: 1 (1989).

[6] J. Loubersac: VDM through Pictures, Bull Report RAD/DMA/92001, January 1992.

[7) L.B.Damnjanovic, D.A.Duce: GKS-9x: A Specification of the Framework, RAL Report
RAL-93-061.

38

Appendix 1

For illustration the thm_time main module is given for SELECTION!.

I• cs1Ltime.c
•I

I• Definitions of include files and some global variables are omitted •I

Gint_list svanlake_list;
Gint_list csll_list;
Gselect rall, selall;
Gselect csll_sel;
Ppoint point11[] =
{

{ 0.20, 0.05}, { 0.22, 0.05}, { 0.22, 0.07}, { 0.20, 0.07}, { 0.20, 0.05}
};

static Gpoint_list p11_list;

main()
{

Gpattr_value at;
static Pint i,j, n,num,iter, iterl;
static Pchar •k;

I• create hash table •I
hash_tab(CREATE_H, k, tn);

I• number of primitives: NUM_X and NUM_Y are the number of theatre patterns
along X and Y axes respectively

I• number of iterations •I
iter • 1000;
iterl = iterl2;

I• nameset initialization •I
nsini();

I• initalization of selection criteria •I
selnsiniO;

I• open GKS •I
gopen_gks();

39

I• open WS1 •I
gopen_vs(WS1);

I• draw seating plan •/

gset_vs_sel_crit(WS1, VISIBILITY, trall);
seatplan();
gset_vs_sel_crit(WS1, VISIBILITY, tselall);

I******** MEASURING TIME for SELECTION! **************/

I• CONTAINS{ORCHESTRA,STALLS,MIDDLE,LEFT,I,1,X1,Y1} •/

I* SET NDC PICTURE PRIMITIVE ATTRIBUTE - type •/
at.type_f = THIN;
start_rtimer();
for(i=O; i<iter; ++i) {

gset_ndc_prim_attr(tcsll_sel, LINEWIDTH, tat);
}

stop_rtimer();

I* SET NDC PICTURE PRIMITIVE ATTRIBUTE - colour *I
at.type_i = GREEN;
start_rtimer();
for(i=O; i<iter; ++i) {

gset_ndc_prim_attr(tcsll_sel, PCOLINDEX, tat);
}

stop_rtimer();

I* ADD/REMOVE SET OF NAMES TO/FROM NDC PICTURE •/
start_rtimer();
for(i=O; i<iterl; ++i) {

gadd_nameset_ndc_scene(tsvanlake_list, tcsll_sel);
gremove_nameset_ndc_scene(tsvanlake_list, tcsll_sel);

}

stop_rtimer();

I* SET WORKSTATION SELECTION CRITERION •/
start_rtimer();
for(i=O; i<iter; ++i) {

gset_vs_sel_crit(WS1, VISIBILITY, tcsll_sel);
}

stop_rtimer();
gset_vs_sel_crit(WS1, VISIBILITY, tselall);

I* SET VIEW SELECTION CRITERION •/
start_rtimer();
for(i=O; i<iter; ++i) {

40

gset_viev_sel_crit(WS1, 0, ics11_sel);
}

stop_rtimerO:
gset_view_sel_crit(WS1, 0, iselall);

I• REORDER NDC PICTURE - front •I
start_rtimerO;
for(i•O; i<iter; ++i) {

greorder_ndcp(tcs11_sel,iboxsel,FRONT);
}

stop_rtimerO;

I• REORDER NDC PICTURE - back •I
start_rtimer();
for(i=O; i<iter; ++i) {

greorder_ndcp(tcs11_sel,iboxsel,BACK);
}

stop_rtimerO;

I• DELETE PRIMITIVES •I
p11_list.num_points = 5;
p11_list.points • point11;
ap11_list.num_points = 5;
ap11_list.points = apoint11;
gadd_nameset(ics11_list);
start_rtimer() ;
for(i=O; i<iter; ++i) {

gdel_prims(tcs11_sel);
gcreate_out_prim(SETOFPOLYLINES, tp11_1ist);

}

stop_rtimer();

I******** END OF MEASURING TIME **************I
}

41

