
cL 
~rt" 

(J 

-o 
"-0-

o- C!. r-1 ~ Science and Engineering Research Council 
_0 o 

cr- :r- -· $ Rutherford Appleton Laboratory 
<i o.8 8 ~ Chilton DIDCOT Oxon OXll OQX RAL-93-099 

cd: O: 

A Model-Oriented Analysis of a 
Communications Protocol ea~~ 
J C Bicarregui 

1:.~\=' I 

December 199 3 



Science and Eng~neering Research Council 
"The Science and Engineering Research Council does not 
accept any responsibility for loss or damage arising from 
the use of information contained in any of its reports or 
in any communication about its tests or investigations" 

/} 



A Model-Oriented Analysis of 
a Communications Protocol 

Juan Bicarregui 

Abstract 

In [BA92], Bruns and Anderson describe a communications protocol in CCS with 
value-passing. A data model of the state is given in terms of the type constructors usually 
found in model-oriented specification. For the agents described, a series of semaphores 
ensure exclusive access to the state, thus the behaviour can be described as a purely 
sequential system. 

This paper considers some alternative data-models for this system: two abstractions 
and two reifications of the original specification are given. In particular, strong invariants 
are used to exclude unreachable values from the state space. The example raises some 
stylistic questions concerning how much detail, that can be inferred from the invariant, 
should be left implicit in postconditions. 

VDM is used for the development, and the role of the explicit frames of reference in 
the operation definitions is examined in some detail. The interaction between read and 
write frames and invariant is studied, as is the manner by which the information in the 
frames is propagated during refinement. Also examined, is how the use of these frames can 
be extended and how their use can be combined with operation structuring mechanisms 
available in other model-oriented methods. 

The paper concludes with a discussion of some general questions of methodology 
raised by the example. 

1 Introduction 

In [BA92], Bruns and Anderson describe a communications protocol in CCS with value-passing. 
A data model for the values is given that is, in effect, a model of the state of the device. This 
model is defined in terms of the type constructors usually found in model-oriented specification 
but without the use of invariants. 

The part of the protocol that is described is a mechanism for manipulating a series of flags 
indicating the status of some shared-memory buffers. These flags are used to ensure that there 
is no "data-tearing" as multiple processors simultaneously read and write to the buffers. For 
the operations that update these flags, semaphores are used to ensure that each operation has 
uninterrupted access to the flags. Thus this part of the behaviour can be described as a purely 
sequential system. 

This paper considers some alternative data-models for the specification (and reification) of these 
status flags. In particular, attention is paid to the use of invariants in the data model and frames 

1 



of reference in the operations definitions, neither of which are available in the data modelling 
language of [BA92]. It is argued that these features can play a key role in describing the system 
in a "natural" fashion and can thus help to deepen our understanding of the model. 

VDM [Jones90] is used for the analysis, though some comment is made on the advantages that 
would arise from some of the structuring mechanisms available in Z [Spivey88] orB [ Abrial93]. 
Familiarity with the basic concepts and notation of VDM is assumed. 

The remainder of this first section is an informal description of the application and desired 
protocol. The second section presents a formal specification of the system at a level of 
abstraction similar to the "abstract" description of [BA92]. Motivated by an analysis of the 
invariant of that specification, section three describes two further abstractions that can be made. 
Section four provides an alternative model of the system that makes it possible to write more 
useful framing information about the operations. The fifth section extends the model to the 
"improved" protocol of [BA92] and the next considers the possibilities arising from structured 
definitions of operations. The last section is a discussion of some of the points arising from the 
example and raises some general questions of methodology1• 

1.1 The Multiprocessor Shared-Memory Information Exchange (MSMIE) 

MSMIE, Multiprocessor Shared-Memory Information Exchange, is a protocol that addresses 
intra-subsystem communications with 

"several features which make it ideally suited to inter-processor communications 
in distributed, microprocessor-based nuclear safety systems" [MSMIE]. 

It has been used in the embedded software of Westinghouse nuclear systems designs. 

The protocol uses multiple buffering to ensure that no "data-tearing" occurs as seperate pro­
cessors communicate via some shared memory. That is, that data is never overwritten by one 
process whilst it is being read by another. One important requirement is that neither writing nor 
reading processes should have to wait for a buffer to become available, another is that recent 
information should be passed, via the buffers, from writers to readers. In the simplification 
considered in [BA92] it is assumed that information is being passed from a single "slave" pro­
cessor, to several "master" processors. Thus, there are several reading processors, "masters", 
but only one writing, "slave", process. 

The information exchange is realised by a system with three buffers. Very roughly, at any time, 
one buffer is available for writing, one for reading and the third is either between a write and a 
read and hence contains the most recently written information, or between a read and a write 
and so is idle. 

The status of each buffer is recorded by a flag which can take one of four values: 

s - "assigned to slave." This buffer is reserved for writing, it may actually be being written at 
the moment or just marked as available for writing. 

n - "newest." This buffer has just been written and contains the latest information. It is not 
being read at the moment. 

1This example development is used as the basis of a comparison of the VDM and B notations in [BicRit93]. 

2 



m- "assigned to master." This buffer is being read by one or more processors. 

i- "idle." This buffer is idle, not being read or written and not containing the latest data. 

The names of the master processors that are currently reading are also stored in the state. 

As mentioned earlier, neither the buffers themselves nor the slave and master processors that 
actually access the buffers in parallel are modelled here. This analysis concerns only the 
operations that modify the buffer status flags. In the system as a whole, these operations are 
protected by a system of semaphores which allow each operation uninterupted access to the 
state and thus their behaviour is purely sequential. 

There are three of these operations: 

slave This operation is executed when a write finishes. slave sets the status of the buffer that 
was being written to "newest" thus replacing any other buffer with this status. 

acquire This is executed when a read begins. The new reader name (passed as a parameter) is 
added to the set of readers and status flags are updated as appropriate. 

release Executed when a read ends, this removes a reader from the set and updates flags as 
appropriate. 

The details of the behaviour of these operations are quite intricate and their precise description 
is left to the formal specification in the following section. 

It should be noted however that, as it stands, the protocol could have the undesirable property that 
information flow from slave to master is be held up indefinitely. This possibility is ruled out in 
the original system [MSMIE] via timing constraints whereas [BA92] suggests an improvement 
to the protocol (using a fourth buffer) that eliminates the possibility without recourse to timing 
arguments. This improved protocol is examined in later sections of this paper. 

2 A VDM specification of MSMIE 

The state in [BA92] is defined as 

"a set of three pairs (a, 1) where a is the buffer status, drawn from {i, s, n, m}, 
and 1 is the buffer identification, drawn from { 1, 2, 3}. The buffers are given as 
a set rather than a tuple to enable pattern matching rules in the description of the 
protocol". 

The pattern matching rules do indeed give a concise description of the transitions of the system, 
in particular, the associative, commutative properties of sets are used to good effect in order to 
avoid much repetitive case analysis. However, the present author found that considerable effort 
was required to check that the patterns given were exhaustive and that the effects of overlaps 
between patterns were sensible. This difficulty is exacerbated by the fact that many of the states 
in the model are actually unreachable but no invariant on the state type is given to exclude 
them. 

3 



The specification given here makes an alternative choice of a sequence of three buffers for the 
state description. In addition, an invariant is used to exclude unwanted values from the state 
type. 

2.1 The state 

Possible values of the status flags are given via an enumerated type; the type of the names of 
master (reading) processors is deferred. 

types 

Status = { s, m, n, i} 

MName =token 

The state is composed of three buffer status flags and a set of the names of the currently reading 
masters. The invariant captures the fact that only certain states are reachable by the operations. 
It gives restrictions to the possible combinations of status flags, namely that there is always 
exactly one buffer assigned to the writing slave; there is at most one currently being read and at 
most one with newest data that is not being read; and the set of reader names is empty precisely 
when there is no buffer being read. The initial state assigns one buffer to the slave and records 
that the other two buffers are idle. 

state E of 
b : Status* 

ms : MName-set 

inv mk-E( b, ms) b. len b = 3 1\ 

count(s, b)= 11\ 
count(m, b) E {0, 1} 1\ 
count(n, b) E {0, 1} 1\ 

(count(m, b)= 0 {::> ms = { }) 

init mk-E(b, ms) 
end 

where1 

b:. b = (s,i,i] 1\ ms = {} 

count : Status x Status* -+ N 

count(s, ss) b:. len (ss£> s) 

A validation condition on the state 

We observe that only four combinations of buffers are allowed by the invariant: 

\:lmk-E(b, ms): E · {b(1), b(2), b(3)}m E { {s,i,i}m, {s,i,n}m, {s,i,m}m, {s,n,m}m} 

1 Here, range restriction is used on sequences, viewing them as maps from natural numbers to elements. 

4 



where we have used { ... }m as a notation for bags (multisets), for example { s,i,i}m is the bag 
containing one's' and two 'i's. 

Thus the invariant has captured, and brought to the fore, properties that would otherwise have 
to be deduced by looking in detail at the definitions of the operations. It makes it possible to 
build quickly our intuition of the workings of the specified machine. We know immediately 
that there is always one buffer reserved for writing, at most one being read, and at most one 
with newest data not being read. 

2.2 The Operations 

Slave 

The first operation, slave, is executed when a write completes. It reassigns the status of the buffer 
just written, previously s, ton, thus replacing any other n buffer. It also non-deterministically 
chooses another available buffer which is to be the new buffer reserved for writing and assigns 
to it status s. 

slave() 

ext wr b : Status* 

pre true 

post Vi E { 1 , 2, 3} · 
...._ 

(b(i)=s => b(i)=n)/\ 
...._ 

(b(i)=m => b(i)=m) 

The postcondition may, at first sight, seem to be to liberal: what should happen to any buffer 
that had status nor i?. However, in conjunction with the invariant and the frame, it ensures that 
no other n buffer remains, that exactly one new s buffer is chosen, and that no new m buffers 
are added. Thus for example we can write the following validation property for slave which 
can be proved in order to increase confidence in the correctness of the postcondition: 

L.-

b (i) E {n,i} => b(i) E {i,s} 

Note also that all three implications could have been equivalences without changing the opera­
tion. 

Acquire 

The second operation, acquire, is executed when a read is about to start. It adds the new 
reader's name, passed as a parameter, to the record of active readers and reassigns status flags 
as necessary. 

If there is a buffer currently being read then the new read also begins to read that same buffer 
and no status change is required. Otherwise the new read starts on the buffer with newest data, 
status n, and reassigns the status of that buffer to m. 

5 



The operation can only be executed in these two situations and this information is recorded in 
the precondition which requires that there is either a status m or status n buffer. The precondition 
also records the fact that the operation is only required to function when the new reader is not 
already in the set of readers. 

Note that, in selecting which buffer is to be read, it is not always possible to choose the buffer 
with newest data. This situation occurs when there are currently buffers with both status m 
and n, which arises when the data in the n buffer has become available since the start of an 
ongoing read, that is, when there has been a slave since an acquire for which there has not 
yet been a corresponding release. In this situation, were the new master to begin reading the 
n buffer, there would then be two buffers reserved for reading. Consequently, should another 
slave now occur, attempting to preserve this new data would leave no buffer being available for 
another write to start, thus contradicting one of the fundamental requirements of the protocol: 
that processors should never have to wait to gain access to buffers. The invariant is designed 
to prevent this possibility, by insisting that there is always one (and precisely one) buffer with 
status s. 

acq (l: MName) 

ext wr b : Status* 
wr ms : MName-set 

pre l ~ ms 1\ 
:3i E {1,2,3} · b(i) = n V b(i) =m 

post ms = ms u {l} 1\ 

Vi E {1, 2, 3} · 
if b ( i) = n 1\ ms = {} then b( i) =m else b( i) = b ( i) 

It is worth observing that the last line of the postcondition could have been written as 

"-- "--

if b(i)=n thenb(i)E{n,m} elseb(i)= b(i) 

or simply as 

"-- "--

b ( i) # n 1\ ms # {} => b( i) = b ( i). 

The apparent non-determinism in the alternatives is illusory because the invariant will ensure 
that there is no real choice as to the status to assign to any buffer that previously had status n. 
However, the longer and apparently stronger postcondition is preferred as the shorter versions 
seem to be more cryptic. 

Release 

The release operation is executed when a reading, master processor finishes its read. The name 
of the processor is removed from the set of readers and again, status flags reassigned as required. 

If this master is not the last one currently reading, then no change is required to the status flags. 
However, if this is the last master currently reading the m buffer, then this buffer must have its 

6 



flag reassigned. There are two possibilities. On the one hand, should there be another buffer 
with status n available at this time, that is if a write has been completed since the current "chain 
of reads" began on this buffer, then the m buffer no longer contains the most recent data and so 
should now be set to i. On the other hand, if there has been no write since the chain of reads 
began, and hence there is no n buffer available, the m buffer contains the most recent data and 
its status should be reset to n. 

rel ( 1: M Name) 

ext wr b Status* 
wr ms : MName-set 

pre 1 Ems 

post ms = ·ms- {1} 1\ 

ViE {1,2, 3} · 
.._ 

if ms = {} 1\ b ( i) = m 
then b(i) E {n,i} 1\ count(n, b)= 1 

"--

else b( i) = b ( i) 

Again there is some choice as to how much of the information that is deducible from the 
invariant should be made explicit in the postcondition. For example the first conjunct of the 
'then' clause, b( i) E { n, i}, could have been omitted as no other possibilities are permitted by 
the invariant, or alternatively, the whole 'then' clause could be replaced by a more explicit form 

"--

if 3j E {1,2,3} · b (j) = n then b(i) = i else b(i) = n 

It is debatable which gives the clearer specification. 

2.3 Discussion 

Invariants and postconditions 

In this presentation, the invariant has been used to convey quickly an understanding of the 
reachable values of the state. In VDM, the state invariant is effectively part of the state typing 
information and as such is assumed to be maintained by the operations. 

This implicit maintenance of the invariant leads to the choices discussed above of how much 
of the information deducible from the invariant should be repeated in a postcondition. There is 
often some tension between the most concise form that relies on properties of the invariant for 
its correctness, and a longer, but more explicit form, that includes some redundant information. 
This choice can be seen as an opportunity to prove the stronger forms from the weaker. Which 
form is chosen may make a significant difference to the complexity of the proofs: the form that 
most clearly conveys the information may not be the form that will be most usable in proofs. 
Indeed, the stronger form is more likely to be helpful when the specification is being proved 
to be a reification of another, and the weaker form when it is itself being reified. By proving 
one form from the other, one can move some of the burden of proof that otherwise might have 
arisen when justifying a data reification into the validation of the single specification. This may 

7 



well be to some advantage for reasoning in the context of a single specification is likely to be 
less complex than reasoning about a pair of specifications. 

By contrast, in the B notation, one always has to write operations that imply the preservation 
of the invariant. This may encourage a tendancy to describe how the invariant is maintained, 
and thus to less abstract specifications. The present example is also considered in [BicRit93] 
where it is used as the vehicle for a comparison of the VDM and B notations. 

Methodology 

This specification has given a fairly algorithmic description of which buffers are assigned to 
what status by each operation. This is a good level of abstraction at which to reason about 
whole system safety properties such as the freshness of the data transferred from slave to masters 
which is the focus of [BA92]. Much of the detail of this specification is, however, undesirable 
clutter for other purposes and it is interesting to give more "external" views of the system, as is 
done in the next section. 

3 Two more-abstract specifications 

In this section we give two formal abstractions in the above specification. The new specifications 
maintain the same external behaviour, however the abstract states are progressively simpler than 
the one just given. The abstractions arise by ignoring detail in the state model that is unecessary 
to capture the external behaviour. Retrieve functions from concrete to abstract states are 
also given which are many-to-one, thus demonstrating "implementation-bias" in the concrete 
specification. 

3.1 A first abstraction: ignoring the identity of buffers 

Taking inspiration from the validation condition on the state of the above specification, we can 
give a more abstract specification where the identity of buffers is ignored and only the four 
possible combinations of buffers are distinguished. 

A new enumerated type is given that comprises four tokens, each representing one of the 
possible combinations of buffers 

types 

Status1 = { sii, sin, sim, snm} 

The state simply records which combination is current and the invariant and initialisation are 
the "images under retreival" of the concrete ones 

state Et of 
bs : Status1 

ms : MName-set 

inv mk-Et(bs, ms) 6. 

init mk-Et(bs, ms) D. 
end 

ms = { } {:} bs E { sii, sin} 

mk-Et (sii, {}) 

8 



The operations are similar to those given in the previous specifications, in particular, the 
postconditions rely on the same case distinctions. 

slave() 

ext wr bs 
rd ms 

pre true 
"--

Status1 
MName-set 

post ( bs E { sii, sin} => bs = sin) 1\ 
"'--

(bs E {sim,snm} => bs = snm) 

acq (1: MName) 

ext wr bs : Status1 
wr ms : MName-set 

pre 1 fl_ ms 1\ bs =/:. sii 

post ms = ms u { l} 1\ 

if ms = { } then bs = sim else bs = bs 

rel (l: MName) 

ext wr bs : Status1 
wr ms : MName-set 

pre lE ms 

post ms = ms- {l} 1\ 

if ms = { } then bs = sin else bs = bs 

The retrieve function from the first more concrete specification to this one is simple to define 
by cases. As it is usual to give more concrete specifications successively higher numbers we 
will from now on call the state of specification given earlier L2. 

retT'l-1 : L2 ~ L't 

retf'2_1(mk-L2(b, ms)) b. cases (count(n, b), count(m, b)) of 
(0,0) ~ mk-L't(Sii, ms) 
(1,0) ~ mk-L't(sin, ms) 
(0, 1) ~ mk-L't(sim, ms) 
(1, 1) ~ mk-L'1(snm, ms) 

end 

This specification abstracts away from the behaviour of the individual buffers and exhibits a 
useful partitioning of the original state space. We can understand much of the behaviour of 
MSMIE without concern for the finer detail of the more concrete specification. The specifica­
tions also makes it clear that after the initial slave operation the system never returns to the sii 
state. This motivates the next abstraction. 

9 



3.2 A yet more abstract specification 

A further abstraction can be obtained by noticing that the distinction between the initial sii state 
and the rest of the state space is all that is required to model the external behaviour. Apart 
from the precondition of acquire which effectively requires that a slave should occur before 
any acquire, the buffer part of the state is entirely redundant. Thus, the place of the buffers can 
be taken by a single boolean flag that records whether a slave has ever occurred. 

state~ of 
b:B 

ms : MName-set 

inv mk-~( b, ms) t::,. b ==false =} ms = {} 

init mk-~(b, ms) t::, b ==false /\ ms = {} 
end 

The retrieve function is straightforward. 

retr1-0 : L'1 -+ ~ 

retT)_o( mk-L't ( bs, ms)) t::, mk-~( bs =f. sii, ms) 

The operations specifications are also simple: 

slave() 

ext wr b : B 

pre true 

post b =true 

acq (1: MName) 

ext rd b : B 
wr ms : MName-set 

pre b = true /\ l ~ ms 

post ms = ms u {l} 

rel (1: MName) 

ext wr ms : M Name-set 

prelEms 

post ms = ms- {l} 

An alternative state model, equivalent to this, would have comprised of a single component of 
the optional type [MName-set]. In this model, nil represents the state before any write occurred, 
corresponding to the case where b =false and ms = {},and otherwise the state is simply ms. 

state~ .. of 
ms : [MName-set] 

init mk-~ .. ( ms) t::, ms = nil 
end 

10 



slave () 

ext wr ms : [MName-set] 

pre true 

post if ms = nil then ms = {} else skip 

acq (1: MName) 

ext wr ms : [MName-set] 

pre ms =F nil I\ l f/:. ms 

post ms = ms u {l} 

rel {l: M Name) 

ext wr ms : [MName-set] 

pre ms =F nil I\ l E ms 

post ms = ms- {l} 

3.3 Discussion 

Read frames and union types 

Describing the state as an optional type is a special case of using a union type for a state 
component. In this case, it is tempting to write the externals clause of acq and rel as of the type 
without nil, and thus highlight the fact that the system can never return to the initial state. This 
introduces the more general possibility of partitioning the state space by the use of union types 
for state components in order to bring into the externals information that would otherwise be 
part of the postcondition. 

In the acquire for ..[:0 we saw that read access to b was required even though b was only 
mentioned in the precondition. Clearly an implementation of acquire would not require any 
access to this state component. This is our first minor encounter with the dual nature of role of 
the read frames in operation definitions which will be discussed at length later. Here the reader 
is simply asked to note that, as mentioned above, in the alternative state, .r:Q,., omitting the nil 
value from the type when it is mentioned in the externals could side-step the matter. 

Methodology 

This specification captures the 'external' behaviour of the protocol. For example it shows 
that it is always possible to perform a write and, so long as a write has ever occured, it is 
always possible to start a new reader and release any existing readers. Such properties are 
then preserved by the refinement and so give us the validation of the corresponding property 
of the more concrete specifications. This particular validation condition can easily be given 
using the closure of the disjunction of the three postconditions: However, a general formalism 
to prove such "global" properties concerning system behaviour, perhaps with modal operators 
and quantification over "all operations", is not available for VDM. 

11 



4 An alternative view of MSMIE 

The above specifications are based on the state recording the status of each buffer; effectively 
the state is a map from buffer names to their status. Returning to the original specification, we 
recall that there is always exactly one buffer with status s and at most one with status m or n. 
This makes it possible to invert the map and think of the state as mapping from each status to a 
buffer. 

This leads to a specification that is equivalent to the first one, but which could yield a more 
efficient basis for an implementation. This change also makes it possible to specify the read 
and write access constraints more precisely. 

4.1 The state 

types 

BName = {1,2,3} 

MName =not-yet-defined 

state L3 of 
s: BName 

m : [BName} 
n : [BName ] 

ms : MName-set 
inv mk-L3(s, n, m, ms) D. (m= nil <=> ms = { }) 1\ 

nil-or-different([s, m, n]) 
init mk-L3(s, n, m, ms) D. mk-E(l, nil, nil, {}) 
end 

where 

nil-or-different :[A]* -+ B 

nil-or-different( 1) D. Vi E inds l · l( i) = nil V l( i) ~ elems ( i ~ l) 

The retrieve function 

The retrieve function is again quite simple: 

12 



ret'f'3.2 : ~ --+ L1 

ret'f'3.2(mk-~(s, n, m, ms)) b. 
let b1, ~' b:3: BName be s.t. 

'ViE {1,2,3}·s = i => bi = s 1\ 

n = i => bi = n 1\ 
m = i => bi = m 1\ 
i~{s,n,m} => bi=i 

In 

mk-L1([bt, ~' b:3], ms) 

4.2 The Operations 

slave 

slave() 

ext rd m [BName] 
wr n [BName] 
wr s BName 

pre true 
"--

post n = s 

Two simple validation properties for slave are worth mentioning as they highlight the use of 
the frames: m is unchanged as it is read-only, and s is non-deterministically assigned to any 
value permitted by the invariant. 

...._ 
m= m 
sE BName- {n, m} 

The interaction between invariant and externals is interesting. Here, read access to m is 
required although m is not referred to in the specification. This is because m is linked to s via 
the invariant and the value of s cannot be fully determined by the post-condition. Thus any 
implementation will need to read m in order to ascertain what value it is valid to assign to s. 

On the other hand, in this example, read access is not required to ms although ms is linked to 
m, and hence also to s, by the invariant. In general however, in order to ascertain the validity 
of possible implementations, it may be neccessary to draw information from the variables in 
the transitive closure of the "linked by invariant" relation. Of course, this set of variables may 
be quite different from those that appear in the operation specification or those that will be 
accessed by the implementation. 

acquire 

13 



acq (l: MName) 

ext wr ms : MName-set 
wr n, m : [BName] 

pre I f1. ms 1\ --. ( n = nil 1\ m = nil) 

post ms = ms U {I} 1\ 

(ms # { } => m = m 1\ n = n) 1\ 

(ms = { } => m = n 1\ n = nil) 

Interestingly, the last conjunct of this postcondition may be considered redundant. When 
ms = {},then ms = {I} and so m must be assigned a non nil value. Now, as read access to s 
is prohibited, the only buffer that we can be sure is not already in use is that previously assigned 
to n. So any correct implementation that respected the frames of reference must assign this 
buffer to m. Then the only remaining possible value for n is nil. However, to hide so much 
information in the externals clauses seems to be counter-productive. 

release 

rei ( 1: MName) 

ext wr ms MName-set 
wr n, m : [BName] 

prelEms 

post ms = ms- {1} 1\ 

( ms # { } => m = m 1\ n = n) 1\ 

( ms = {} 1\ n #nil => n = n 1\ m= nil) 1\ 

( ms = { } 1\ n = nil => n = m 1\ m = nil) 

In this case the variables of the specification and those of the implementation are the same. 
Even though s is not an independent part of the state, read access to s is not needed. It is 
possible to prove satisfiability and validity of implementations without knowledge of the value 
of s. 

4.3 Discussion 

Read frames and scoping 

In this specification we have seen some complex interdependencies between the invariant, 
externals and postcondition. In slave, read access to one component was required although that 
component was not itself referred to in the specification. In acquire, information in the externals 
could be used to define a highly implicit specification. In release however, we saw taht some 
components were not relevant to the operation defintion even though they were related those 
mentioned in the predicates. 

To clarify some of these issues it is helpful to think of the externals clauses not as giving 
information about the variables mentioned in the specification, but rather to see them as giving 

14 



"advanced information" of what access to state variables an implementation of that operation 
can be allowed to make. This distinction separates their semantic role giving information about 
access to state variables from the syntactic role they play in binding the free variables of the 
precondition and post-condition. 

The "linked by invariant" condition partitions the state components into independent subsets 
and these parts are the level of granularity at which sense can be made of the operation definition. 
Thus, in general, they are also the finest partition for which satisfiability and refinement can be 
sensibly defined. 

More examples are given in [Bic93] where the roles of frames and invariants in algorithm 
refinement is considered more closely, independence is defined, and a framework for algorithm 
refinement with frames is proposed. 

5 The improved MSMIE 

As mentioned earlier, Bruns and Anderson observe that, as it stands, the three buffer MSMIE 
can exhibit an undesirable behaviour. That is, it is possible for a series of overlapping reads, 
each beginning before the last ends, to lock-out indefinitely the lastest data. They suggest an 
"improved" protocol that uses a fourth buffer to eliminate this possibility. 

Surprisingly, although this new protocol exhibits the same external behaviour as the earlier one, 
there is no formal refinement relationship between them. To understand why this should be 
recall that the part of the system modelled does not concern itself with the actual assignment of 
processors to buffers and does not model the actual transfer of information from slave to masters. 
Thus, no information about the flags is exported from the system, and all the machinations of 
the state can be seen as purely an implementation bias in the model contributing nothing to the 
external behavior of the part of the system modelled. 

The four buffer version is, however, a refinement of the most abstract specification given earlier, 
which gave an unbiased model of the external behaviour. This gives another important reason 
for considering the abstractions. In particular, validations of the abstract model will carry over 
to both the three and four buffer versions. 

Of course, in this case, it is the internal properties of the model itself that are of interest, as it 
is these properties that influence the freshness of the data read by the masters. In this respect, 
the four buffer protocol is indeed better behaved as it would lead to a system where the delay 
in information transfer is at worst equal to that of the three buffer version. 

In the four buffer version of MSMIE, there is also an extra status possible for buffers. o is used 
to denote a buffer that is still being read but no longer contains most up-to-date information. 

Thus 

s as before, is a buffer that is reserved for writing 

n as before, is a buffer that has latest info but is not being read (waiting for read) 

m is a buffer being read, (and the newest such) 

o is a buffer being read (but there is also a newer one being read) 

15 



ms is the set of masters reading m 

os is the set of masters reading o. 

New masters are always assigned to the n or the m buffer. m buffers are "demoted" to o status 
in a way that ensures that the o buffer will periodically become idle. In this way the protocol 
avoids the "refresh" problems of the three-buffer version. Again detailled descriptions of the 
mechanisms used achieve is postponed until the formal treatment. 

It might help to think of i --+ s --+ n as the write phase of a buffer and n --+ m --+ o 
--+ i as the read phase. Then MSMIE always has two buffers in write phase and two buffers in 
read phase. 

5.1 The state 

types 

BName = {1,2,3,4} 

state .L'4 of 
s BName 
n [BName] 

m [BName] 
o [BName] 

ms MName-set 
os MName-set 

inv mk-E4( s, n, m, o, ms, os) !::. (m = nil {::} ms = {}) 1\ 

( o = nil {::} os = { } ) 1\ 
( ms n os = { } ) 1\ 
( nil-or-different([s, n, m, o])) 1\ 
(m = nil 1\ n = nil ::::;. o = nil) 

init mk-E4(s, n, m, o, ms, os)!::. mk-E(l, nil, nil, nil, { }, {}) 
end 

The form of the last conjunct in the invariant, which rules out { s,o,i,i}m, is· the result of the 
way that readers of m are released which, as in the earlier specifications, ensures that there is 
always an m or an n buffer remaining. 

A validation property for the state 

The invariant only allows the following 7 combinations of buffer status: 

{ s,i,i,i}m, { s,i,i,n }m, { s,i,i,m }m, { s,i,m,n }m, { s,i,m,o }m, { s,i,n,o }m, { s,m,n,o }m 

Retrieve function 

As stated, this version is a data refinement of the most abstract model. The retrieve function is 
straightforward: 

16 



retr4-0 : L'4 --+ 14:> 

retr4-o(mk-E4(s, n, m, o, ms, os)) 6. mk-14:>(n =nil/\ m= nil/\ o =nil, ms U os) 

5.2 The Operations 

slave 

slave() 

ext rd m, o [BName] 
wr n [BName] 
wr s BName 

pre true 

post n = 8 

This time more variables will need to be accessed by the implementation than are mentioned 
in the predicates. The implementation will require access to m and o in order to be able to set 
a valid s. This is expressed in the validation condition 

sE BName- {n, m, o} 

This access requirement is recorded in the externals even though the pre and postconditions do 
not mention m and o. 

The descriptions of acquire and release that follow are rather unwieldy. They given by case 
analyses and as different variables change in the different cases, the operations have to have a 
wide write access and hence require a lot of clauses saying which variables do not change in 
that case. 

For the time being we introduce an informal shorthand for this, but in the next section give 
structured definitions of operations in a style after Dijkstra's guarded commands and common 
to other model oriented methods such as Z's schema conjunction and B 's parallel generalised 
substitutions. 

Id: A* --+ Expr 

Id(l) b. ViE inds l· "l(i) = /(0" 

Note that this function must be considered as an informal meta-notational shorthand rather 
than a formal function defintion. It is not in fact formally correct to mix such metalinguistic 
constructs in the object level specification. 

acquire 

Acquire behaves in a manner very similar to before: beginning the read on either the n or the 
m buffer as appropriate. The only extra consideration is in the case where there is an n buffer 

17 



waiting, an m buffer already being read, but there is no o buffer. In this case, where previously 
the new read would have been assigned to the m buffer, it is now possible to begin the read on 
the n buffer, hence the improvment to the freshness of the data exchanged. This is achieved 
by reassigning the buffer that was already being read to o, and correspondingly, the record of 
processors reading that buffer, ms, gets moved to os; the new read is started on the buffer that 
was n, thus making it into a new m, and the new reader is recorded in ms. No more masters 
will now be assigned to the o buffer thus it will eventually become idle and available to go 
through the write cycle again. 

acq ( 1: MName) 

ext wr ms, os : MName-set 
wr n, m, o : (BNameJ 

pre 1 f/:. ms U os 1\ • ( n = nil 1\ m = nil) 

post ( ms u os = ms u Os u { /}) 1\ 

(m= nil => m= n 1\ n =nil/\ Id([o, os])) 1\ 

(m =1= nil/\ (o =!=nil V n =nil) => Id([ m, n, o, os])) 1\ 

(m =!= nil 1\ o = nil 1\ n =!= nil 
=> 0 = m 1\ m = n 1\ n = nil 1\ os = ms 1\ ms = { l}) 

release 

Release behaves exactly as before but with an extra case to deal with the case where we release 
a buffer that is reading the o buffer. When the last o reader releases, o becomes idle. 

rel ( l: M Name) 

ext wr ms, os : MName-set 
wr n, m, o : [BName] 

pre 1 Ems U os 

post ms u os = ms u Os - { l} 1\ 

({/}ems=> Id([m,n,o,os]))l\ 
( {1} = ms 1\ n =nil => ld([o, os]) 1\ n =m 1\ m= nil) 1\ 

({1} = ms 1\ n =/=nil => Id([n, o, os]) 1\ m= nil) 1\ 

({l} Cos=> ld([m,n,o,ms]))l\ 
( { /} = os => Id([m, n, ms]) 1\ o =nil) 

Note that, in several places, clauses of acq and rel give more detail than required. For example, 

in last conjunct o =nil is redundant because we know os = { }. Similarly, the clause o = o 
in the penultimate line is also unnecessary. Again, the redundant clauses are left in for the sake 
of clarity. 

Clearly, with this type of operation where the postcondition consits of many cases, the operation 
definitions become rather difficult to read. A more structured approach to the definition of 
operations can be taken in Z through the use of the schema calculus, in particular schema 
conjunction would be particularly useful here[Spivey88]. The B notation also provides a 
similar structuring mechanism through parallel combination of gernalised substitutions. These 
however are subject to some syntactic constraints to ensure non-interference which are in general 

18 



unnecessarily restrictive. The next section considers how this kind of structuring mechanism 
could be added to the VDM notation. 

6 Structuring the improved MSMIE 

With the same state as given above, it is useful to consider how Z style operation conjuction 
can be used to give a clearer specification of the acquire and release operations. 

This section is more exploratory and introduces some new notation to VDM. Only an informal 
description of the new constructs is given here, a formal treatment of this style of operation 
defintion is the subject of ongoing research by the author. In particular the interaction between 
such structuring mechanisms and the frames of externals is being considered. 

Acquire 

Acquire is broken into three cases: 

acq ( 1: M Name) = acq-to-m( 1) V acq-n-to-m(l) V acq-m-to-o( l) 

ext wr ms, os : MName-set 
wr n, m, o : [BName] 

pre l rt ms U os 1\ -. ( n = nil 1\ m = nil) 
post to-be-calculated 

This disjunction of operations is a guarded non-deterministic choice: preconditions are dis­
joined; postconditions are expanded by difference in frames, guarded by hooked preconditions 
and then conjoined; externals are unioned but also need to be sufficient to test the guards. 

Externals, precondition and postconditions are optional. They can be calculated from the 
definition and invariant, but it may be useful to give them in cases where a less strict condition 
than would be calculated is what is required. (That is for wider externals, stronger pre or weaker 
post.) Giving them explicitly also breaks up the proofs by, in effect, giving a lemma about the 
specification. 

The first sub-operation is called when new reader will be absorbed into an existing set of readers. 
For this to occur, there must be a buffer m status and also it must be impossible to demote this 
buffer to o status. This last requirement means that, either there must be no n buffer, or if there 
is, then there must also be an o buffer. These conditions are captured in the precondition. 

acq-to-m (1: MName) 

ext wr ms : MName-set 

pre m =f nil 1\ (n =f nil =? o =f nil) 

post ms = ms u {l} 

Although m, n, and o are mentioned in the precondition, the implementation will not require 
access to any of these so they are not included in the read frame. This shows how the free 

19 



variables of the operation pre and postcondition might not be the same as those variables that 
we are specifying could be be accessed by the implementation. 

Note that, as stated here, we have weakened the precondition slightly by not requiring that 
1 ~ ms. In fact we know, however, that the operation will only be called in situation where this 
is indeed that case. 

The second sub-operation is called when acquire will cause ann to become an m: 

acq-n-to-m (1: MName) 

ext wr ms : MName-set 
wr n, m : [BName] 

pre n =f. nil 1\ m = nil 

post ms = ms u {1} 1\ 

m= n 1\ n =nil 

The third sub-operation is called when the ms will be demoted to os: 

acq-m-to-o ( 1: MN a me) 
ext wr ms, os : MName-set 

wr n, m, o : [BName] 

pre n f. nil 1\ m f. nil 1\ o = nil 

post os= ms 1\ ms = {1} 1\ 

0 = m 1\ m = n 1\ n = nil 

Release 

Release is broken into four cases: 

re1 (l: MName) = rel-from-os(l) V rel-m-to-m(l) V rel-m-to-i( l) V rel-m-to-n(l) 

ext wr ms, os : MName-set 
wr n, m, o : [BName] 

pre lE ms U os 

post to-be-calculated 

The first sub-operation is called when new reader will be released from os. It handles both the 
case when os becomes empty and when it does not. 

rei-from-os ( 1: M Name) 

ext wr os : MName-set 
wr o : [BName] 

pre 1 E os 

post os= 08- {l} 1\ o E {o,nil} 

20 



Again the last clause could be thought of as redundant: if os becomes empty then the invariant 
will ensure that o is assigned to nil; however, if os remains nonempty, the only choice that we 
know will not break the invariant is to leave the o buffer as is. 

The second sub-op is called when l will be dropped from ms, but ms remains non-empty: 

rel-m-to-m ( l: MName) 

ext wr ms : MName-set 

pre {l} C ms 

post ms = ms- {1} 

The third sub-op is called when I will be dropped from ms causing ms to becomes empty in 
the presence of an n: 

rei-m-to-nil ( l: MN a me) 
ext wr ms : MName-set 

wr m : [BName) 

pre { 1} = ms 1\ n =I= nil 

post ms = {} 

The invariant ensures that m = nil. 

Again we have a variable, n, appearing in the precondition that is not in the frame. 

Fourth sub-op is called when dropping 1 from ms will cause ms to becomes empty when no n 
is present: 

rel-m-to-n ( l: M Name) 

ext wr ms : M Name-set 
wr m, n : [BName] 

pre { l} = ms 1\ n = nil 

post ms = {} 1\ m= nil 1\ n =m 

This structuring of the operation has enabled a more progressive defintion of the oerations. It has 
also afforded the chance to give narrow frames to the sub-operations and has thus precipitated 
more concise predicates. 

These specifications have shown that far from being a minor concern, there are clearly many 
interesting questions of design choice and methodology that arise from careful consideration 
of the read and write frames in model-oriented operation specifications. 

In VDM operations, the semantic role of the read frame is often underplayed. Typically, it is 
interpreted as merely providing syntactic scoping for variables appearing in the precondition 
or postcondition. Alternatively, it could be interpreted as a constraint on implementations -
restricting which state components can be read. Thus rather than think of the externals clauses 
as giving information about the variables mentioned in the specification, we see them as giving 
"advanced information" of what access to state variables the eventual implementation of that 
operation can be allowed to make. 

21 



These issues are taken up in more detail in [Bic93] but for the present paper we end with a general 
discussion of methodological questions that arise from the comparison of this model-oriented 
treatment of the example given here with the previous analysis using CCS. 

7 General Discussion: Methodological Issues 

This paper has provided model oriented development of an application that was previous 
analysed through formalisation in a process algebraic notation (CCS) [BA91, BA92]. As a 
comparative study it highlights the different benefits of each approach and raises some questions 
concerning the choice methodogy to be used in the development process. This section gives a 
brief discussion of some of these concerns. 

One of the first questions the system designer must ask him/herself when deciding to undertake 
the formal development of a software system is which of the broad churches of formalism 
to adopt. Obviously the answer to this question will depend on many things. In practice, 
one consideration will be the existing skills of the personnel that will undertake the work, but 
clearly, the choice should also depend on the type of system that is going to be defined and, in 
particular, what features of that system are to be the subject of analysis. 

Two possible approaches to system description are the so called 'Model-Oriented' and 'Process 
Algebra' based formalisms. One criterion that may be considered important in choosing 
between these is the degree of concurrency envisaged for the system, or perhaps more accurately, 
the degree to which it is the concurrency in the system that will be the subject of the formal 
analysis to be undertaken. Model-oriented (MO) methods are typically advocated for sequential 
systems and process-based methods for the study of concurrency. 

In process algebra (PA) we know, from the unfolding lemma, that it is always possible to 
abstract away from parallelism, that is to view the system behaviour from the outside. We 
may then study whole system behaviours such as equivalences between different combinations 
of operations. MO methods are not so atuned to studying these behaviours, rather they are 
typically used to study the system at the operation and data level. That is they are used study 
the effects of individual operations on the state or alternative possible models for the data. 

There is, of course, a direct correspondance between the two views: both define an abstract 
machine: a state space and the possible transitions between states. The difference is merely one 
of presentation: MO defines, for each operation, what changes of state are possible; whereas, PA 
gives, for each state, what operations are possible. Notions of refinement are correspondingly 
similar. 

The different formalisms are best suited to the different concerns that arise at different stages of 
the development process. Some validation of a formal description is likely to be in terms of the 
behaviour of the whole system: for example we may wish to assert that we cannot reach certain 
states, or that we cannot reach a state when no operation can apply. Other validation statements 
are about individual operations, for example, if some condition holds before an operation then 
it will also hold afterwards. In PA we have specific calculi, such as Hennessey-Milner logic 
and its modal extensions for validating whole system properties. The equivalent methodology 
does not seem to have been worked out for MO methods. 

On the other hand, issues surounding data refinement have been largely ignored in PA as the 

22 



reduction of the value passing calculus to the pure calculus side-steps such issues. It would 
seem to be an obvious step forward to develop a formalism that combines the benefits of the 
two camps. 

It is quite simple to imagine a formalism that is a hybrid of the two. One could consider this to be 
PA with value passing or MO with interleaving. It would describe the overall system behaviour 
in a style like PA but without parallelism and enable "holistic" validation on this model. Then 
it would be possible to proceed with MO style data and algorithm refinement. During design 
process, possible parallelism may re-emerge. Data refinement can lead to the identification of 
independant parts of the machine that may be implemented separately, algorithm development 
may make code where temporal ordering of statements is unimportant. Such parallelism could 
be reintroduced as it arose. In order to do allow such underspecification in algorithm refinement, 
"framing" the area of influence of each operation is vital in order to control the parallelism and 
avoid unnecessary bias at each stage. Making best use of the read and write frames may go 
some way towards this. 

References 

[Abrial93] The B Method. J.R.Abrial. To be published, 1993. 

[Bic93] Bicarregui, J.C. , Algorithm Refinement with Read and Write Frames. Formal Methods 
Europe '93. LNCS 670, Springer-Verlag. 

[BicRit93] Bicarregui, J.C. and Ritchie, B., Invariants, Frames and Postconditions: a compar­
ison of the VDM and B notations. Formal Methods Europe '93. LNCS 670, Springer­
Verlag. 

[BA91] Bruns, G. and Anderson, S., The Formalization of a Communications Protocol. LFCS 
TR 91-137 (April1991). 

[BA92] Bruns, G. and Anderson, S., The Formalization of a Communications Protocol. 
LFCS/Adelard TR. Safety-Critical Computer Systems, April6, 1992. 

[Spivey88] Understanding Z. J.M. Spivey, Cambridge University Press, 1988. 

[Jones90] Systematic Software Devlopment using VDM (second edition), C.B. Jones. Prentice 
Hall, 1990. 

[Mor91] Programming from Specifications, C. Morgan, Prentice Hall. 

[MSMIE] L.L. Santoline et al. Multiprocessor Shared-Memory Information Exchange. IEEE 
Transactions on Nuclear Science. Vol.36. No.1, Feb 1989. pp. 626-633. 

23 








