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Abstract. In a particular model of the pomeron, its gluon and quark distribu­
tions are subject to anti-shadowing, as described by a modified GLR equation 
recently derived. Inclusion of antishadowing cures the problem of momentum 
non-conservation previously existing in the GLR equation. A possible out­
come of a measurement of the pomeron structure function at HERA is shown 
in case of DGLAP, GLR and modified GLR parton dynamics. 

1 Introduction 

The application of perturbative QCD to structure functions constitutes one of the most 
quantitative tests of QCD. Whereas most of the interest has centered around the nucleon, 
which is easiest to investigate, structure functions of other particles could equally well 
serve as interesting tests of QCD. Indeed, although the electron-proton colliding machine 
HERA is in full operation, planned measurements of nucleon structure functions might 
very well not explore new physics but instead just improve the accuracy of parton distri­
butions and the strong coupling which is of course highly valuable. On the other hand, 
measurements of non-nucleon structure functions might reveal new phenomena since the 
investigations done so far are sparse and not so accurate. Thus, at HERA it has been 
proposed to study the structure function of the pion (1] as well as that of the pomeron [2]. 
An accurate QCD application of these structure functions would be very interesting since 
the parton content of the pion is so different compared to the nucleon and the pomeron 
is likely to be a pure gluon state, i.e. a glueball. In addition, it has been argued that 
the pomeron has a very small size (3] and therefore one expects gluon recombination as 
described by the GLR equation (4] to occur frequently. This argument could also apply 
to the pion, whose strong interaction size might be small. 
This kind of measurement is proposed to be realized through a tagging of the leading out­
going nucleon of the final hadronic state, a proton (neutron) in case ofthe pomeron (pion). 
A virtual beam of pomerons (pions) is then created which interact with the electrons. At 
HERA, detectors to tag both the leading proton and the neutron are in operation. 
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As a word of caution, the exchanged particles are not on-shell so the decomposition of 
the cross section in terms of the usual structure functions might not apply. In this paper 
we shall assume the normal F 2 structure function to dominate the cross section and we 
shall only deal with the pomeron structure function and return to the pion case in future 
works. 
As is obvious from above, we consider the pomeron as a particle. Although this concept is 
controversial, we find it otherwise hard to introduce a structure function, understand the 
factorization property used below and to apply the parton model on the pomeron. Thus, 
in the approach presented in this paper, the particle concept of the pomeron is hard to 
avoid but one should bear in mind different approaches where this concept is not needed 
[5]. 
The main aim of this paper is to investigate if a new interesting phenomena, anti­
shadowing [6], is detectable through the measurement of the pomeron structure function 
at HERA. We therefore repeat and update the formalism worked out in [7] for the pomeron 
phenomenology appropriate for extracting its structure function. There are many uncer­
tain parameters needed to do quantitative predictions and the result obtained here should 
only be taken as indicative. However, we emphasize below the many possibilities that ex­
ist through the HERA experiments to learn more about the pomeron and to test the 
correctness of the assumptions made here. 

2 Gluon Recombination and Anti-Shadowing 

The present data on the Q2 evolution of structure functions is well described by pertur­
bative QCD as predicted by the DGLAP [8] equations. However, at lower x an additional 
process is expected to contribute significantly to the QCD evolution, namely gluon re­
combination. The GLR equation [4] takes this into account by correcting the DGLAP 
equation by a negative term quadratic in the gluon density g, i.e. 

a,(k2) 11 dy ( k2)P (~) 
2 

z 2 yg y, gg 
7r z y y 

81a;(P) rzo dy 2 2 

16R2k2 O(zo- z) lz y [yg(y, k )] (1) 

where zg _ G is the gluon distribution, z the fractional momentum carried by the gluon, 
k2 the virtuality of the probed gluon, P99 the DGLAP pure gluon kernel and R the size 
of the studied object. z0 was introduced in order to prevent contributions at too a large 
value of y [9]. This equation was also derived in ref. [10]. 
Due to the negative sign of the correction term the gluon density is reduced, compared 
to a solely DGLAP evolution, as expected since this would be an effect of gluon recombi­
nation. Therefore, this kind of correction is sometimes called 'screening' or 'shadowing'. 
However, as a consequence, eq. (1) doesn't conserve momentum, which has been explicitly 
demonstrated in case of the pomeron structure function [7] where large effects from gluon 
recombination are expected. 
A way out of this problem was presented in [6]. The idea is that gluon recombination 
should not only give rise to a reduction of the gluon density but also to an enhancement 
effect (also called anti-screening or anti-shadowing) at some larger momentum. Taking 
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this into account the new equation is [6] 

+ 

if z.:::; z0 

if zo.:::; z.:::; 2zo (2) 

which we denote as the 'modified GLR equation'. 
In the nucleon, both the effect of shadowing and anti-shadowing have been shown to be 
small [6) within the kinematical region of HERA and constitute a great experimental 
challenge to be observed. 

3 Pomeron Phenomenology 

3.1 The diffractive cross-section and the pomeron structure func­
tion. 

In this paper we investigate the effect of eqn. (2) w.r.t. the DGLAP and the original GLR 
equations for the case of parton dynamics inside the pomeron. We thereby continue the 
studies presented in [7) and [3) where it was shown, within some reasonable assumptions 
concerning the nature of electromagnetic diffraction and the structure of the pomeron, 
that gluon recombination is expected to be an important source for the evolution of the 
pomeron structure function. The main reason for this is the small size of the pomeron as 
argued there. 
Being an exchange object in diffractive scattering, the pomeron has the quantum numbers 
of the vacuum. In phenomenological applications of diffraction with pomeron exchange 
some simplifying assumptions are usually made whose validity should finally be settled 
by experiments: 

• The cross-section factorizes. 

• The pomeron can be treated as an on-shell particle. 

• The pomeron valence partons are gluons only. 
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We consider here diffractive subprocesses in ep collisions, as they are intended to be 
studied at the HERA experiments. From the first two assumptions above the deep inelastic 
lepton-pomeron process can be defined and hence the pomeron structure function as 
discussed in [7]. Although the assumptions above are used frequently they are certainly 
not free from objections. Indeed, the factorization property has been questioned by e.g. 
Frankfurt and Strikman [11], the particle treatment by e.g. Levin and Wiisthoff [5] and 
the pure gluon content of the pomeron by e.g. Donnachie and Landshoff [12]. Although 
these objections have to be taken seriously, we assume that in a first approximation the 
above simplifications can be made. 
The cross-section is then given by [7]: 

(3) 

where XJP is the fractional longitudinal momentum carried away by the pomeron so that 
z = x/xJP, -t is the squared momentum of the pomeron and Q2 is the virtuality of the 
exchanged photon. x is here the usual fraction of the proton momentum carried by the 
struck parton. 
As a consequence of the assumed factorization property, the diffractive structure function 
is given as a product of the pomeron F2 and the pomeron 'flux', fiP/p· Other auth?rs 
utilize the factorization property in a similar way [2, 12, 13, 14, 15] but propose differing 
forms for the pomeron flux (see ·next section). 
An additional source of uncertainty comes from the initial parton distributions needed 
to predict the Q2 evolution of structure functions. We assume here that the pomeron 
is purely gluonic, i.e. quarks can only exist through the QCD dynamics of the gluons. 
Although some momentum of the pomeron must therefore be taken up by quarks we 
neglect this small contribution and make use of initial gluon distributions saturating the 
momentum sum rule. There are some indications that this distribution is rather hard 
[17, 18, 19] but it depends of course on the momentum scale. Starting the evolution 
from a low scale we follow these indications and use two fairly hard ones proposed in the 
literature [2] (15) 

GJP(z,k~) = 6z(1- z) 

GJP(z,k~) = (0.18 + 5.5z)(1- z) 

(4) 

(5) 

Within the framework presented above it should be noted that the gluon distribution of 
the pomeron can experimentally be constrained from the Q2 evolution of the pomeron F2. 
For instance, the approximate relation (20) 

(6) 

can be used at low-z. Even better is to make a full QCD analysis of the pomeron F2 in 
analogy with the QCD application of the nucleon structure function. 
We try here to predict, from a given initial gluon density, the measurable F2 of the 
pomeron for the different cases of gluon dynamics. Having defined the pomeron flux 
(see below), the cross section is then determined and the statistical precision expected at 
HERA can be obtained. In this way, we aim for concluding whether anti-shadowing need 
to be taken into account at the HERA experiments. The uncertainty of the actual gluon 
distribution is considered by trying the two different distributions (4) and (5). 
The parameter R, the size of the studied object, was set to 0.5 Ge v-1

. This value was 
proposed in [7] obtained from an analysis of various cross section measurements of double 
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pomeron exchange in hadron-hadron scattering. This means that the pomeron is nearly 
10 times smaller than the proton, magnifying the gluon recombination effect by a factor 
100. z0 was set to 0.2 corresponding to x = 0.01 (for XJP = 0.05). 
We proceed as follows: The gluon density is evolved with the DGLAP, GLR and the 
modified GLR equations to a particular value of k 2

• Then the gluons have to be converted 
into quarks since leptons don't interact with gluons. In the language of ladder diagrams 
this is equivalent to having a chain of gluon loops in the bottom of the ladder and the 
last loop is the gluon to quark conversion. Neglecting quark loops in preceding steps is 
motivated at low-z since in leading order the singular property of the pure gluon splitting 
kernel P99 (zjy) makes the gluon splitting into gluons to dominate that into quarks. The 
last loop (gluon to quark conversion) is calculated in the DGLAP scheme, i.e. integrating 
the DGLAP equation w.r.t. Q2 one has 

(7) 

where qJP(z, Q2
) is the quark distribution inside the pomeron. Gluon recombination in 

this step is neglected but is expected to be small, although not fully known [10]. Using 
(7) for this loop is consistent with the approximation scheme used in the preceding steps 
of the ladder. Fr is finally obtained by summing the charge- and z-weighted quark dis­
tributions over four flavours. 
We note the infrared cut-off used in (7) necessary in order not to enter the non-perturbative 
region. Also, since the calculation was done in leading order, k6 was set to 4 Ge V 2

• Exper­
imentally, this cut-off need never enter since dF2 / dlogQ 2 can be extracted directly from 
the data and compared with the prediction, which is free from any cut-off. However, here 
we need the absolute F2 in order to estimate the cross section and the statistical accuracy 
that can be achieved at HERA. Since the neglected tail below k6 certainly contributes 
positively to Fr the obtained statistical accuracy is under-estimated. 

3.2 Pomeron Flux 

For the purpose of estimating the diffractive cross section at HERA and the possible 
statistical precision that can be achieved, the pomeron flux, fiP;p(xJP, t), needs to be 
defined (see eq. (3)). We consider here four models of the pomeron flux, plotted in fig. 1. 
Whereas the XJP dependence for all models is inferred from Regge theory, the t dependence 
is fitted to UA4 data [21] for the model of Berger et al [15] as well as that used by Bruni 
and Ingelman [16]. On the other hand, the models of Badelek and K wiecinski [13] and 
Donnachie and Landshoff [12] utilize the nucleon form factor containing most of the t 
dependence. As seen in fig. 1 the models differ markedly both in normalization and t 
dependence. 
Assuming there is no t dependence of Fr, we compare the predictions for the b-slopes, 
i.e the t dependence is parameterized in the following form 

(8) 

At -t = 0.25 Ge V2
, the b-slopes are given in table 1 for the different models at various 

values of XJP. 
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XJP: 0.01 0.04 0.09 

BI [16] 7.1 7.1 7.1 

BK [13] 4.2 4.2 4.2 

BCSS [15] 6.5 6.5 6.5 

DL [12] 5.7 5.0 4.6 

Table 1: b-slopes [GeV-2
] at -t = 0.25 GeV2 obtained from different models of the 

pomeron flux. 

Note that the Donnachie-Landshoff model is the only one exhibiting b-slopes depending 
on XJP. Comparing the b-slopes with the measurement by NMC [22], it seems that only 
the Donnachie-Landshoff and Badelek-Kwiecinski models reproduce this result, i.e. b = 
4.3±0.6±0. 7 Ge v- 2 at -t = 0.25 Ge V 2 • As we are considering electromagnetic diffractive 
scattering at high Q2

, like the NMC data, models reproducing the NMC measurement are 
most attractive. However, the normalization difference between these models is significant. 
We choose to use the flux proposed by Badelek-Kwiecinski, since their approach is more in 
line with our use of the factorization property. This means that the discrepancy between 
these models might be due to a different definition of the pomeron structure function. 
Thus, 

{9) 

where cr!, is the part of the proton-proton cross section corresponding to pomeron ex­
change, set to 100 GeV-2

, and SN = 1/{1 + !t!fto) 2 is the nucleon form factor where 
t 0 = 0.7 GeV2 [13]. The exact form of this flux can further be studied at HERA through 
the XJP and t dependence of the diffractive cross section. 

4 Results 

To get an impression of the size of the different terms in eq. (2) we first study the pure 
gluon evolution. Fig. 2 shows the result using the two different initial distributions given 
above. We see the enhancement effect in both cases in the region 0.1 < z < 0.4 {solid 
line) as compared to the DGLAP case (dashed line). Momentum is conserved for both 
the DGLAP and the modified GLR case but not for the original GLR equation {dashed­
dotted line). The initial distributions (dotted lines) look quite similar but at low-z the 
difference is notable. The results of the evolution are quite similar, though. 
Since the gluon distribution enters quadratically for the gluon recombination terms in 
eqs. (1) and (2), the magnitude of these terms is crucially dependent on the actual 
distribution. Indeed, a soft initial distribution of the type G(z, k~) = 2(1- z) results in 
a gluon recombination effect which is larger in magnitude than the DGLAP term at low 
z and k2 • This is undesirable since the GLR equation was derived under the assumption 
that the contribution from gluon recombination is small. Therefore, at the moment, we 
conclude that if it turns out that the gluon distribution of the pomeron is much softer 
than those used here at k2 = 4 Ge V2 , so that gluon recombination dominates over the 
DGLAP effects, then the GLR and modified GLR equations are not applicable to the 
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pomeron parton dynamics at this momentum scale. One should then try to look at the 
evolution at higher values of z and P but then the experimental statistical precision will 
get worse. Fortunately, as mentioned above, there is experimental evidence of a rather 
hard gluon distribution in the pomeron [17, 19]. 
Finally, fig. 3 shows the result for the directly measurable pomeron F2 using (7) to obtain 
F2 from the gluon distribution. The statistical error bars correspond to a luminosity of 
100 pb- 1

. We see a small effect of enhancement (unfilled triangles) but it is just slightly 
statistically significant compared to the original GLR equation (filled triangles). Both 
eqs. (1) and (2) give, however, a clear significant different result at low-x as compared to 
the D G LAP evolution (circles). The result is almost identical for the two different input 
gluon distributions so we choose to show only the result from one. 
In ref. [7] a different scheme was chosen for the gluon to quark conversion, giving a 
different result for Ff. In this scheme the full dependence on the transverse momentum 
is taken into account. However, aiming for consistency between the gluon evolution and 
the gluon to quark conversion, eqn. (7) is a better choice. The failure of the 'eo-linear' 
approximation is expected when reaching very low-x. However, in the process dealt with 
here, z is the relevant variable since the evolution equations are applied directly to the 
pomeron and don't involve the mother proton. But z > 0.01 so using the eo-linear scheme 
is appropriate. 

5 Summary 

We have investigated effects on the pomeron gluon and quark distributions from '(anti)­
shadowing'. At HERA, it will be hard to observe such a small effect of anti-shadowing as 
obtained here, although the effect is not negligible. The modified GLR equation, taking 
into account both shadowing and antishadowing doesn't change the original conclusion 
[7] that gluon recombination is an important source for the evolution of the pomeron 
structure function. We encourage, therefore, a search for gluon recombination in general 
by measuring the pomeron structure function as defined here and in given references. 
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Figure 1: The pomeron flux obtained from different models: Dotted: Donnachie-Landshoff 
{12}. Dashed-dotted: Berger et al. {15}. Dashed: Badelek-Kwiecinski [13}. Solid: Bruni­
Ingelman {16}. The unit is GeV-2. 
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Figure 2: The z dependence of the pomeron gluon distribution. z is the fraction of the 
pomeron momentum taken up by the gluon. The initial distribution (dotted line}, given at 
k2 = 4 Ge V 2

, is evolved to k2 = 50 GeV2 with the GLR equation (dashed-dotted line}, the 
DGLAP equation (dashed line) and the modified GLR equation (solid line). The initial 
distributions were G(z, k5) = 6z(1- z) (left-hand plot) and G(z, k5) = (0.18 + 5.5z){1- z) 
(right-hand plot). 



~ 0 .12 
0 t__J 

0.1 

0.08 

0 .06 

0 .04 

0.02 

~ 0.12 
Q. r-

"' lL.. r-

0 
r-
,... 

- 0 0.1 ,..._ 

0 .... 9 
'- 9 

f- 0 r- Q 
0 6 0 ~ 

4 
1- 0.08 - • 0 6 • 0 ~ • 6. A 0 6 A 

0 6. &. 1:::, 4 
b. A 0 b. 4 

- 0 b. A 0 .06 - b. A 0 

6. 
lA A 

b. 
0 A 0 A 

~ it - 0 .04 
-o ~ 1 
~ 

1-

10 

Xej = 0.0005 0 .02 ,...- x8i = 0.0015 

I I I I I I 
20 30 40 10 20 30 40 

Figure 3: The Q2 dependence of the directly measurable pomeron F2 • The initial gluon 
distribution G(z, k5) = (0.18+5.5z)(1-z). The values of x, noted on the plots, correspond 
to z = --=- where XJP = 0.05, a typical diffractive value. x is therefore equivalent to x-

zp . 

Bjorken which is measured by the experiment. The symbols correspond to the following 
evolution equations: 
Circles: DGLAP. Filled triangles: GLR. Unfilled triangles: Modified GLR. 
The bin widths of X and Q 2 were 0.001 and 4 Ge V 2 respectively. t < 0.2 Ge V 2 and 
0.01 ~ XJP < 0.09. The integrated luminosity was 100 pb-1
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