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Abstract 

It is shown that the assumption of a Bose-Einstein condensation of a macroscopic number 
of particles into a single momentum state necessarily implies that the many particle 
wavefunction describing the system contains a component with phase coherence over the 
sample volume. This component has all the properties usually associated with the 
'condensate wavefunction' which is postulated to account for coherent phase effects in 
superconductors and superfluid 4He. The derivation is completely general, independent of 
assumptions about the form of the particle interaction, isotropy or anisotropy, translational 
invariance or temperature. It is shown that the condensate part of the wave function 

makes no contribution to the static pair correlation function g(F), thus explaining the 

reduction in amplitude of the oscillations in g(F) which are observed in neutron scattering 

measurements on 4He, as the temperature is reduced below the the /...point. 

PACS Numbers; 05.30.Jp, 61.12-q, 67.40-w, 



London [ 1] first suggested over 50 years ago that the presence of superfluidity in liquid 
4J-Ie at low temperatures is linked with the phenomemon of Bose-Einstein condensation. 
In an ideal Bose gas there is a macroscopic occupation of a single momentum state at 
temperatures below the condensation temperature 

(1) 

where M is the particle mass, p = NI V where N is the number of particles, V is the 

sample volume, n is Planck's constant and k8 is the Boltzmann constant. The value of T8 

predicted from the known density and mass of 4J-Ie atoms is 3.1K, very close to the 
temperature of the observed A transition temperature in 4J-Ie (2.17K). The arguments of 
Bogoliobov [2] and Feynman [3] have lead to the general acceptance that the A transition 
involves a Bose condensation of the 4He atoms, and that superfluidity (and 
superconductivity) is linked to the macroscopic occupation of a single momentum state. 
However no direct demonstration of the linkage has ever been made. There is 
overwhelming experimental evidence that coherence effects in superconductors and 
superfluids (e.g. flux quantisation and Josephson effects) can be well described by the 
concept of the 'condensate wavefunction'. However at present the existence of a 
condensate wavefunction with the requisite properties in 4He has no microscopic 
justification and is regarded as a postulate [ 4]. 

Another as yet unresolved question is whether the presence of a condensate has any effect 
on the spatial correlations of particles in a Bose fluid. Intuitively one might expect that 
Bose condensation implies a loss of spatial ordering, as the localisation in momentum 
space implies that in some way the wavefunction for each particle has a component which 
is spread uniformly over the sample volume. If this is the case, the condensate component 

will not contribute to the pair correlation function g(F). Hyland et al [5] have suggested 

that the pair correlation function gn (F) of 4He above the A transition and the 

corresponding function g,.Cr) in the superfluid are related by 

(2) 

Although their derivation is not generally accepted [6,7], this formula describes 
experimental data very well. Experimental determinations of the condensate fraction from 

neutron scattering measurements of g(r) obtained from equation 2 [8] are in good 
agreement with theoretical predictions and measurements of the condensate fraction by 
other methods. 

In this paper it is shown that if there is a Bose condensation of a macroscopic number of 

particles into a single momentum state, of momentum PT, then the Bose symmetry of the 
wavefunction necessarily implies that a particle with index n contributes a component 



exp(ipr. r") to the total wavefunction and that the components from each particle add 
coherently to produce a macroscopic wavefunction with coherent phase throughout the 
volume of the sample. It is also shown that the postulate that the condensate component 

makes no contribution to g(r) is correct. Although we specifically consider 4He we note 
that the argument applies equally well to Cooper pairs in superconductors, although it 
does not address the origin of the binding of electrons into Cooper pairs. 

In an ideal Bose gas all particles have zero momentum at zero temperature T. However in 

real systems the fraction f of particles occupying the condensate is less than 100% even 

at T=O. Theory [9,10] and experiment [11] both suggest that at T=O, f -10% in 4He 

and that as the temperature is raised, f decreases, becoming zero at the A point . We first 
consider a Bose condensed fluid with no centre of mass motion. The momentum 

distribution n(p) is then, 

n(p) = Jc5(p) + (1- f)nnc (p) (3) 

where fis the condensate fraction, nnc(p) is the momentum distribution ofuncondensed 

atoms and o(p) is the Dirac o function. We examine the consequences of a momentum 
distribution of the form given in equation (3) for the wavefunctions of a Bose system. 

The momentum distribution of atoms in a many particle system is [12] 

(4) 

where the one particle density matrix p1 (~, ~ 
1

) is defined in terms of the wavefunction by 

P1 c~, ~I) = f '¥* ([; .rN-l) '~' c~ I .rN-l )drN-l 

and the wavefunction is normalised, 

f \{'* ([; ,FN-l )\{'(~ ,FN-l )d~drN-l = 1 

(5) 

(6) 

The N-1 coordinates ~.~ .... rN_l'rN and volume elements d~d~ .... drN_1drN are denoted 

by rN-I and drN-I respectively. Combining equations 4 and 5 we obtain, 

(7) 

'¥(~, rN-I) can be thought of as the amplitude for particle 1 to be at~, with all other 

particles fixed at the positions rN-I. The modulus squared of the Fourier transform of each 

such amplitude makes a real, positive contribution to n(p) with a weighting determined by 

the probability of the different configurations in the 3(N-1) dimensional rN-I space. 



It follows from equations 3 and 7 that for some configurations rN-l the function 

'¥(~, rN-I) must contain a component which contributes to the o function and which is 

therefore independent of ~ . 

\f(~' rN-1) =<I> I(~' rN-1) + c(rN-1) (8) 

where <1> 1 (~, rN-I) contains all parts of the wavefunction which have an ~ dependence and 

c(rN_1) includes all those parts of the wavefunction which have no dependence on ~ . 

Substituting in equation 7 gives, 

(9) 

where 

(10) 

and we assume that the sample is contained in a box of (in the limit infinite) volume V so 
that 

and 

o(p) = --4 J exp(ip.~ )d~ 
81t 

(11) 

(12) 

The crucial observation required for calculating the pair correlation function is that, if the 
condensate fraction is finite, the cross terms between the condensate and non condensate 

termS in equation 9 are negligible, Since <i>, (p, rN-l) iS negligible COmpared With O(p) at 

p = 0. It is known from neutron Compton scattering measurements of the momentum 
distribution in 4He (recently extended to momentum transfers of 150 A-1 [13]) that the 
width of the momentum distribution of the uncondensed component is -1i I a where a is 
the interparticle separation. This is what one would expect from the uncertainty principle 
if each atom is enclosed in a 'cage' composed of surrounding atoms. Thus it follows that 
for configurations of the particles which have significant probability amplitude (i.e. where 

each atom is surrounded by a 'cage' of width -a) <i>, (OJN-I) -Fafh, whereas 

o(O)- .J L I 1i, where L is a length of the order of the sample dimensions. Thus 

<i>, (OJN-I) I 8(0)- 1/ JN, where N is the number of particles and for N -7 oo the product 

<i>, (p, rN_1 )o(p) is negligible compared to [o(p)f. 

Thus for a macroscopically large system, 



l<i>1 (p, rN-i) + 87r3 c(rN-i )O(p)l
2 

= l<i>, (p, rN-i )1
2 
+ 18n3 

c(rN-i )O(p )1
2 

and from equations 9 and 12, 

n(p) = 8~3 fl<i>JpJN-l )1
2 

drN-1 + Vo(p) flc(rN-i )1
2 

drN-l 

Comparing with equation 3 we obtain, 

v f lc(rN_1 )( drN_1 = f lc(rN-I )1
2 

drN = f 

where drN = d~drN-l. The absence of cross terms in equation 13 also implies that, 

(13) 

(14) 

(15) 

(16) 

The analagous argument in r space is that c(rN-l) /ci> 1 (rN)""' 1 I ..JN for values of~ 

Which give Significant amplitude for cJ> I ( fN). 

The static structure factor S ({j) is defined in terms of the wave function as [ 14] 

(17) 

where the double summation is over all particles and the pair correlation function g(F) is 

defined by, 

g(F) = p+~ J[ S((j)-1]exp(-rq.F)dq 
87t 

(18) 

We consider the contribution to S(q) coming from particles with indices 1 and 2. This is 

s12Cq)= ~fl\f(rNfexp[iq.(~ -~]drN (19) 

From equations 16 and 18 we obtain 

S12 (q) = ~ J[lci> 1 (rN )1 2 
+ lc<rN-I )nexp[i-q.c~ -~]drN 

= ~ Jlci>, (rN )1 2 exp[iq.(~ -~]drN + 8rr
3
8(q) Jic<rN-l )1 2 

exp[ -iq.~]drN_ 1 (20) 

Thus the part containing c(rN-l) appears only at q = 0 and makes no contribution to S((j) . 

The same argument can be applied to all terms in the sum, e.g. for Snm (q) we divide the 

wavefunction into two parts, one of which has no dependence upon r;,. We could equally 

well choose P.n. 

If we assume that the scattering from the uncondensed component of the wavefunction is 

identical to that from the normal fluid, but reduced by a factor (1- /) 2
, i.e. that 



(21) 

where Sn (q) is the structure factor of the normal fluid, then the Hyland et al [5] result 

follows directly from equations 16,17 and 18. The justification of the factor (1- f) 2 is as 

follows. For given values of all particle coordinates except for ~ and r2 , the function 

I<I>1 (rN )1 2 
in equation 20 can be regarded as the probability distribution of the uncondensed 

component of particles 1 and 2 with the other N-2 particles fixed in position. Each atom 

contributes only a fraction (1- f) of the scattering density of a normal fluid as there is a 

probability f of the atom being in the condensate. As each term in equation 21 is the 
product of amplitudes from two atoms the total scattering intensity is reduced by the 

factor (1- f) 2
. In fact the assumption that g(r) of the uncondensed component is 

identical to that of atoms in the normal fluid seems to have no sound theoretical basis and 
is not really necessary. The argument presented here predicts only that 

(1- j)2 (g,. (f)- p)= [gnc (f) -1] where gnc (r) is the pair correlation function of atoms 

not in the condensate. The question of whether gnc (f) and gn (r) are identical can be 

decided experimentally by high precision neutron scattering measurements. 

We next consider the case where the fluid is in uniform motion with momentum PT per 
atom . In this case equation 3 is modified to 

n(p) = f8(p- PT)+(1- f)nnc(p- PT) 

and equation 8 to 

\{'(~ ,rN-1) = <J>fT (~ ,rN-1 )+ C(fN-1 )exp(ipT.tj) 
The same division of the wavefunction can be made for any other label n, i.e., 

\{l(rN) = <I>~T (~, fN-n) + C(rN-n) exp(ipT. fn) 

and we can express \{' (rN) in the form, 

(22) 

(23) 

(24) 

This is the sum of two terms, both of which satisfy Bose symmetry. The first term is the 
non-condensate part of the wave function and the second term is the condensate part. 
From equation 6 and taking account of the fact that there is no overlap in configuration 

space rN between the condensate and non condensate, or between terms from different 
atoms in the condensate, we obtain 



Referring to equation 15 we find that the wavefunction in 24 gives the probability f for a 
particle to be in the condensate. 

Thus we obtain a remarkably simple picture. The total wavefunction is a superposition of 
states in which each atom makes a contribution to the 'condensate wavefunction' with an 
amplitude which depends upon the configuration of all other particles. At zero 
temperature all contributions must add in phase, as the wavefunction of a Bose system at 

T=O must be real and therefore c(rN-n) contains no phase factors. Thus the phase of he 

macroscopic wavefunction varies through the sample volume as exp(ij\. P). This is not 
necessarily true at higher temperatures where the phase coherence will be reduced, 
perhaps contributing to the reduction of the condensate fraction in 4He with temperature. 
The converse of the derivation of equation 24 is that if the condensate wavefunction has 

an r dependence Of the form exp( ipT. r), thiS implieS that all atOmS and not jUSt the 

condensate component have a momentum PT. This is the origin of the previously 
somewhat mysterious linkage of the condensate wavefunction with the motion of all atoms 
in the liquid. 
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