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Results are provided for the spin-spin response function of a three dimensional, 

antiferromagnetically coupled Heisenberg magnet, covering a range of temperatures 

from the critical temperature to deep in the paramagnetic phase. The wave vectors 

considered span the Brillouin zone. Damping rates are given at the zone centre and the 

antiferromagnetic ordering wa,ve vector, w, together with copious numerical results for 

the full response function. The calculations are based on the nonlinear, integral

differential equations obtained from so-called coupled-mode theory. In a confrontation 

between experimental and theoretical findings for RbMnF3 nearly all aspects have a 

positive outcome. The main exception is found at Tc for wave vectors close to w. 

Here, the measured response comprises three distinct components, reasonably ascribed 

to diffusive and oscillatory collective processes. In the corresponding predictions, the 

diffusive component is conspicuously missing. A less pronounced discrepancy is found 

at the antiferromagnetic zone boundary where, once again, there is more structure in 

the observed spectrum than in the calculated one. 



1. Introduction 

Over the past few decades, studies of the time-dependent properties of spin 

systems have played a significant role in the development of the current sophisticated 

theory of dynamical processes in condensed matter. Up to the end of the 60's, 

theoretical methods for spin systems tended to focus on the use of frequency moments, 

following very early ideas from Van Vleck and De Gennes, among others (for a review 

of this work see, for example, Marshall and Lowde 1968). These methods are not 

reliable at the critical temperature, where an infinite number of degrees of freedom are 

responsible for non-trivial features in the dynamics. Seminal work on this aspect of 

spin dynamics was reported by Wegner (1969), Resibois and Del...eener (1969) and 

Kawasaki (1968). It is now recongized, largely through the work of Hubbard (1971), 

that these developments all lead to the same system of closed non-linear equations for 

the time-dependent and wave vector-dependent spin-spin response function. Today, 

the equations are often referred to as the coupled-mode theory of the dynamical 

properties of spin systems. 

Appropriate variants of coupled-mode theory have been successfully used to 

investigate properties of other highly correlated systems. Notable examples are models 

of the glass transition, and localization in the Anderson model. It is interesting to note 

in studies of fluids a strong similarity between the coupled-mode theory for 

fluctuations close to equilibrium and the direct-interaction theory of turbulence when 

the need for separate equations for the response and propagator are relaxed, i.e. the 

theory is reduced to the description of small fluctuation close to thermal equilibrium. 

Applied to critical spin dynamics, coupled-mode theory is in accord with two 

other powerful approaches. One, scaling-theory, is a set of postulates that lead to 

predictions in the critical region from a knowledge of various properties in the 

hydrodynamical region. The renormalization group method provides asymptotic 

properties of the spin correlation function and explicit results for some critical 

exponents. Even though this method does not provide closed equations for the spin 

response function, it is particularly valuable since it alone is a systematic, perturbative 



approach to critical phenomena in spin systems, and other models which display a 

continuous phase transition. Results derived for spin systems using dynamic scaling 

arguments and the renormalization group method are gathered, together with copious 

references, by Privman et al. (1990). 

Although the pioneers of the coupled-mode approach focused attention on the 

critical properties of spin systems, there is a body of evidence to the effect that it 

provides an unrivalled account of paramagnetic fluctuations of short and long 

wavelengths (Hubbard 1971, Cuccoli et al. 1989, Cuccoli et al. 1990, and W~sthead et 

al. 1991). Perhaps the most recent example of the reliability of coupled-mode theory 

outside the critical region is in its application to a spin chain at infinite temperature 

(Lovesey and Balcar, 1994). In this case, the theory provides insight to non

hydrodynamic behaviour observed in data from extensive computer simulations 

(Srivastava et al., 1994). 

In this paper we continue the investigation of coupled-mode theory applied to 

spin systems by providing the first comprehensive study of an antiferromagnetically 

coupled Heisenberg magnet. Previous work on this system has focused on the critical 

and hydrodynamic limits (Wegner 1969, Huber and Krueger 1970, Bagnuls and 

Joukoff-Piette 1975). Here, we survey the spin-spin response function at the critical 

temperature, Tc, for all wave vectors in the Brillouin zone. In particular, at Tc we 

predict the behaviour of the van Hove response function, S(k,ro), for the three special 

wave vectors, k, near the chemical zone centre, the antiferromagnetic zone boundary, 

at which in the condensed phase the linear spin wave dispersion achieves its maximum 

value, and the antiferromagnetic ordering wave vector, w. Above Tc , we show, 

starting deep in the paramagnetic phase and approaching Tc , how developing 

antiferromagnetic correlations manifest themselves in the time-dependent spin 

fluctuations. A combination of numerical and analytic methods of analysis are 

employed; the latter is used to demonstrate that, for the antiferromagnetically coupled 

system, coupled-mode theory is consistent with results derived with dynamic scaling 

arguments and the renormalization group method. 



Where possible, theoretical results are compared with experimental data for 

S(k,ro) obtain on RbMnF3, using inelastic neutron scattering, by Tucciarone et at. 

(1971a,b). By and large, agreement between experimental and theoretical results is 

strikingly good. However, at Tc and for k in the vicinity of the antiferromangetic 

ordering wave there is an obvious disagreement; the experimental data for S(k,ro) 

shows a three-peaked structure, namely, a central (ro = 0) diffusive mode and two side 

peaks attributed to collective spin oscillations, albeit heavily damped oscillations, while 

theoretical results for the appropriate wave vectors show only two collective mode 

peaks. The latter feature is consistent with results reported by Wegner (1969), 

independently confirmed by Hubbard (private communication). Here, we provide a 

more extensive picture of the disagreement between experimental and theoretical data. 

Since, to the best of our knowledge, it is the only example of its kind there is a case for 

new experiments; progress over the past two decades with neutron sources, 

instrumentation, and data analysis methods most likely mean that data for S(k,ro) 

obtained by Tucciarone et al. (1971a,b) can be improved on (exceptional quality data 

can be obtained at k-w because there is next to no nuclear Bragg scattering 

contaminating the magnetic signal). 

The next two sections describe the Heisenberg spin model and the corresponding 

coupled-mode theory (a detailed derivation of the theory and some of its properties is 

provided by Lovesey 1986, and Cuccoli et al. 1989). Decay rates near Tc , for the 

critical and hydrodynamical regions, are derived in §4. The findings demonstrate that 

coupled-mode theory is consistent with dynamic scaling arguments, and provide useful 

insight to the numerical results given in the subsequent two sections. 

2. Model 

Spin operators S41 are placed on a lattice with N sites labelled by the index a. The 

spins interact through a Heisenberg interaction of strength J, so the model Hamiltonian 

is, 

(2.1) 



where the sum is over all nearest-neighbour pairs on the lattice. 

We will study the time development of spatial Fourier components S(k) defined 

through, 

S, = (l IN) L exp (-ik· R,) S(k). (2.2) 
k 

The isothermal susceptibility is, 

X(k) = t (S(k), · S( -k)) . (2.3) 

Here, (,) denotes a Kubo relaxation function; for classical variables (A,B) = ( <AB>IT) 

where the angular brackets denote a thermal average, and T is the temperature 

(kB = 1i = 1). The dynamic properties of (2.1) are studied in terms of the normalized 

relaxation function, 

F(k, t) = t (S(k, t), · S(k)) I X(k), (2.4) 

where S(k,t) is the standard Heisenberg time-dependent operator. The spectrum of 

neutrons inelastically scattered by spin fluctuations is proportional to, 

.. 
S(k, co) = (1 I 27t) J dt exp( -icot)F(k, t). (2.5) 

In the context of neutron scattering, co is the energy transferred from the primary beam 

to the spin fluctuations. The concomitant change in the wave vector of the neutrons is 

k = w + q, where w is an antiferromagnetic ordering wave vector. 



3. Coupled-Mode Theory 

In view of the fact that coupled-mode theory for spin systems has recently been 

reviewed, we will provide in this section no more material beyond that required to 

define notation. 

Coupled-mode theory is a closed set of equations for F(k,t). The latter is 

determined by, 
, 

a,F(k.t) =-J dt' F(k.t-t')K(k.t'), (3.1) 
0 

and the so-called memory function, K(k,t), is approximated by, 

K(k, t) = (2T I X(k)) L {'Y p-k - 'Y p}F(p, t)F(p- k, t) I (Jl0 + 'Y p) • (3.2) 
p 

Here, 'Yk is a geometric factor that depends on the point group symmetry of the lattice; 

for a simple cubic lattice with a cell length ao, 

The quantity llo varies with temperature. In fact, the temperature scale is determined 

by the spherical model of spin correlations, namely, 

(2r!S(S + 1) I 3T) = (1 IN) L (llo - 'Y p rl =I (llo)' (3.3) 
p 

in which r is the number of nearest neighbours (r = 6, s.c.), and the integral on the 

right-hand side is the standard extended Watson integral. 

For a simple cubic lattice, the critical temperature, Tc, satisfies, 



(41 S(S+1) I Tc) = 1.5164. (3.4) 

The spherical model susceptibility is, 

(3.5) 

In the key equations (3.1), (3.2) and (3.5) the wave vector variables p and k are 

general wave vectors in the Brillouin zone for the reciprocal lattice of the chemical 

structure. 

As the critical temperature is approached from above J.lo ~ 1, and the 

susceptibility has a maximum at the antiferromagnetic ordering wave vector, w, for 

which y., = - 1. Hence, for (J.lo - 1) << 1 we expand the geometric factor "(kin the 

susceptibility about w using the small argument expansion, and find an 

Omstein-Zemike form, 

(3.6) 

in which the inverse correlation length, 1C, satisfies, 

(3.7) 

and q is measured relative tow. For the spherical model, (3.7) leads to 1C- (T- Tcr 

where the critical exponent v = 1. 

4. Decay Rates 

For temperatures very close to Tc., such that plC << 1, and very small wave 

vectors, the spin relaxation function F(k, t) is expected to approach an exponential 

function of time for sufficiently long times. The associated decay rates can be 

estimated from equation (3.2) for the memory function. 



To this end, in (3.2) shift the wave vector p in the summation by an amount w, 

and use the identity )'p+w = - )'p· One finds, 

K(k,t) = (2Tc I X(k)) L {'Yp - )' k-p} F(p + W, t)F(k- W- p,t) I (jl 0 - )' p) • (4.1) 
p 

In the limit (llo- 1) << 1, the denominator in the kernel emphasizes the region where 

pp << 1, so it is appropriate to expand all functions in p. If the decay rates near k = 0 

and k =ware denoted by ro and r, respectively, we obtain from ( 4.1) evaluated in the 

limitk ~ 0, 

ro(k) =(A I 2) k2 j p 2dp I {r(p)(x: 2 + p 2
)} • (4.2) 

q 

Here, the (non-universal) material constant, 

(4.3) 

where V0 is the volume of the chemical unit cell. It is prudent to express the decay 

rates in terms of a dimensionless parameter e = (klx:); let, 

and, neat the ordering vector where e = (qlx:), 

(4.4) 

From ( 4.2) we obtain the following integral equation for the dimensionless functions 

h(6) and ho(6), 



h0 (8) = t J ~2d~ I {(1 + ~2 ) 2 h(~)}, (4.5) 
e 

If we apply (4.1) to the case where k is in the vicinity ofw, i.e. q ~ 0, 

h(8) = J ~2d~ I {(1 + ~ 2 )[(1 + ~2 )h(~) + ~2 h0 (~)]}. (4.6) 
8 

The pair of equations (4.5) and (4.6) determine the functions ho(8) and h(8). 

In the critical limit, 8 ~ oo, 

(4.7) 

From this result it follows that the dynamic critical exponent z = 3/2. In the opposite, 

hydrodynamical limit, 8 ~ 0,. and it can be shown that ho(8) and h(8) tend to constant 

values determined by ( 4.5) and ( 4.6) evaluated with 8 = 0; 

(4.8) 

and, 

Hence, r(O) decreases as the critical temperature is approached with a power law 

behaviour (T- Te)zv On the other hand, fo(k) increases with decreasing temperature 

with a power law (T- Ter "'12
• The decrease of f(O) as T approaches Tc is expected 

since w is a Bragg position for the magnetic condensate. 



5~ Numerical Results 

The numerical method for the solution of the coupled equations (3.1) and (3.2) is 

described by Cuccoli et al. (1989). Here, we provide results for the response function 

(2.5) for several different temperatures. All the results are for a nearest-neighbour 

exchange model, defined by (2.1), in which the spins are arranged on a simple cubic 

lattice with a cell length 0 0 • 

At high temperatures, physical intuition leads one to expect that spin correlations 

will be strongest at quite short distances, probed by large wave vectors. This 

expectation is borne out by the results for T = 3.55Tc shown in fig. 1. In order to 

assess the influence of the correlations on S(k,c.o) fork= ('h,'h,'h) and k = (1,1,1) = w, 

measured in units of (1t/a0 ), we have included in fig. 1 the function, 

(5.1) 

in which c.o~ is the second frequency moment evaluated with the spherical model of 

static spin correlations, namely, 

and /(~o) is defined in (3.3). The departures of S(k,c.o) from the gaussian function are, 

indeed, most significant at the largest k. 

Antiferromagnetic correlations are not apparent in the results for T = 3.55Tc in as 

much that departures from a gaussian are more pronounced at w than at the 

antiferromagnetic zone boundary ('h,'h,'h). At the lower temperature T = 1.25 Tc this 

is no longer the case. Fig. 2 shows that at this temperature there is structure in S(k,c.o) 

for k = ('h,'h,'h) which is not present at k = w. To illustrate the antiferromagnetic 

character of the structure obtained at k = ('h,'h,'h), we have included the 

corresponding results for a ferromagnetically coupled system (J ~ - J in equ. 2.1). 

For this case the ferromagnetic spin correlations probed at the ferromagnet zone 

boundary, k = (1,1,1), support a collective oscillation with a relatively long lifetime. 

The changes in energy scales for S(k,c.o) seen in fig. 2 for different k's and different 



exchange couplings can be understood from the behaviour of the second frequency 

moment (5.2); for a ferromagnetic exchange (1 + 'Yk/J..lo) ~ (1 - 'Yk/J..lo), while all other 

factors remain the same, and J..lo - 1 near Tc. It is interesting to note that on setting 

J..lo = 1 one finds eo~ a.£~, where Ek is the linear spin wave spectrum. For 

ferromagnetic (antiferromagnetic) coupling Ek is a maximum at the zone boundary 

k = w (k = (~.~.~)). Hence, the relatively narrow spectrum at k = w for an 

antiferromagnetic exchange coupling can be viewed as a signature of incipient 

antiferromagnetic ordering. 

Lastly, we turn to results for T = Tc. Fig. 3 shows S(k,co) with k close to the 

zone centre and near w. The antiferromagnetic correlations near w produce a peak at 

a non-zero frequency, which gradually becomes less of a feature with increasing 

q = k - w. The significant differences in S(k,co) at k - 0 and k - w have been 

predicted by Wegner (1969). The widths of the spectra shown in Fig. 3 are consistent 

with a c/12 scaling demonstrated in §4. Fig. 4 illustrates that at Tc there are no special 

features in the response function at the antiferromagnetic zone boundary, and the 

width of the spectrum is consistent with the estimate derived from (5.2). 

6. Comparison with Experimental Data 

Experimental studies of time-dependent spin fluctuations in magnetic systems 

which focus on critical phenomena are reviewed by Cowley (1987) and Collins (1989). 

Of the many materials included in these reviews, our attention is directed to the 

perovskite crystal RbMnF3, which is an excellent example of a simple, isotropic 

antiferromagnetic salt. Indeed, the Hamiltonian for RbMnF3 is probably closer to that 

of an ideal model than is that of any other magnetic system (Collins, 1989). 

Various properties of RbMnF3 are gathered in Table 1. The manganese ions are 

arranged on a simple cubic lattice, and the spin magnetic moments order 

antiferromagnetically below Tc with the moments directed along the sides of the 

magnetic unit cells. The experimental studies performed by Windsor and Stevenson 

(1966) show that the dominant exchange interactions are between nearest-neighbour 

ions, and there is next to no magnetic an isotropy. In consequence, the magnetic 



properties of RbMnF3 are believed to be described by the Heisenberg Hamiltonian 

(2.1 ), to a very good approximation. 

In the development of magnetic neutron scattering, an early detailed study of 

dynamic spin fluctuations in critical and paramagnetic regions was performed by 

Tucciarone et al. (1971 a,b) on RbMnF3. We will review and contrast their findings at 

Tc and in the paramagnetic phase in the context of our findings for coupled-mode 

theory applied to the Heisenberg model (2.1). In our formulation of the coupled-mode 

theory one has set 11 = 0. Additionally, we have chosen to use the experimentally 

determined value of J, rather than opt for a value such that the spherical model Tc 

agrees with the observed value, cf. Table 1. 

At T = Tc, the width of the response function near the antiferromagnetic Bragg 

peak is found experimentally to vary with the wave vector as q z at small q, and 

z = 1.4 ± 0.1. Above the critical temperature, antiferromagnetic Bragg reflections 

cease to exist as the lattice symmetry changes so as to make all sites equivalent. This 

means that there is no reason for the decay rate to go to zero as the wave vector q, 

measured relative tow, goes to zero. The experiments show a dynamic response that is 

approximately of Lorentzian form at q = 0. The observed width varies with 

temperature according to a critical exponent of (1.46 ± 0.13) v, whereas the coupled

mode theory, reported in §4, predicts an exponent of zv so that, z = 1.46 ± 0.13, as 

shown in Table 2. This value is in satisfactory agreement with the prediction z = 3/2, 

and the experimental result obtained at T = Tc. 

Turning to the results of our coupled-mode theory, fig. 5 shows the half-areas of 

S(k,ro) for three values of k and five values of (T/Tc)· Theoretical and experimental 

results (Tucciarone et al. 1971 b) are in good agreement on an absolute basis. Note 

that the half-area at k = w decreases as T approaches Tc, while at the antiferromagnetic 

zone boundary k = (~.~.~) it increases with decreasing T. This behaviour is in 

accord with the predicted decay rates (for a Lorentzian response function the decay 

rate and half-area are the same). At Tc, we predict r(q) = lrzA l!Z for pq << 1, and the 

material parameters for RbMnF3 give the value A112 = 19.0 meV A312, whereas the 

observed half-area of the response function for pq << 1 scales as ,rz, as already noted, 



and the constant of proportionality is 16.0 meV A312
• This tolerable agreement 

between experimental and theoretical quantities at Tc belies a significant difference in 

the observed and predicted frequency dependence of the response function. 

At the critical temperature, the response function observed in the vicinity of w is 

a three-peaked function of frequency . For moderate values of q the observed function 

exhibits a central ( ro = 0) peak and two, equally displaced, side peaks ascribed to 

collective (spin wave) excitations. A finding of the data analysis is that a three-peaked 

structure persists at the smallest wave vectors, q - o.osA-I, although it is obscured in 

the data by the resolution of the neutron spectrometer. Turning now to our 

predictions for the response function at Tc , fig. 3b shows that near w there is no 

central peak, which one might associate with a spin diffusion process. A similar 

finding is reported by Wegner (1969). There is a similar, but less pronounced, 

discrepancy at the antiferromagnetic zone boundary. Looking at fig. 4, the 

corresponding data reported by Tucciarone et, al. (1971b) shows a well defined peak 

at about 4 meV (we refer to their corrected and symmeterized data with the non 

magnetic background subtracted). 

7. Conclusions and Discussion 

Dynamic spin correlations in an antiferromagnetically coupled Heisenberg 

magnet have been studied from the critical temperature well into the paramagnetic 

phase. Attention is given to the spin-spin response function, or van Hove function, 

S(k,ro). It is calculated for all vectors in the Brillouin zone. The outcome of the work 

is the first comprehensive study of critical and paramagnetic spin dynamics in an 

antiferromagnetically coupled Heisenberg magnet. 

The calculations reported use the coupled-mode theory of spin dynamics. 

Applied to ferromagnetically coupled Heisenberg magnets, this theory is unmatched ~ 

its reliability, and range of application. Among its successes we mention correct 

predictions of decay rates (exponents and proportionality factors) at Tc and in the 

paramagnetic phase, and the influence of dipolar interactions (Frey et al. 1989, 

Lovesey 1993). In consequence, we have good reasons to be confident of the value of 

our reported findings for an antiferromagnetically coupled magnet. 



By and large, there is very good agreement, on an absolute basis, between 

experimental and theoretical findings for RbMnF3. Quantities which have been directly 

compared include the dynamic critical exponent, z, the temperature dependence of the 

decay rate at the antiferromagnetic ordering wave vector, r, and the half-areas at 

various wave vectors as a function of temperature in a range from just above Tc to 

deep in the paramagnet phase. However, the positive outcome of these comparisons 

to some extent paints a false impression. For, at Tc the observed and predicted spectral 

lines shapes in the vicinity of the antiferromagnetic ordering wave vector are distinctly 

different. The observed three-peaked structure is physically appealing, since it lends 

itself to an intuitive and sensible interpretation in terms of diffusive and collective 

oscillatory processes. The absence in the predicted line shape of a central, diffusive 

peak, perhaps, is a shortcoming of coupled-mode theory. If so, it is the only known 

significant shortcoming of coupled-mode theory applied to Heisenberg spin systems, 

and merits further experimental investigation. Bear in mind that RbMnF3, by all 

accounts, is a near perfect example of a Heisenberg magnet. Even the ubiquitous 

dipolar interactions are irrelevant variables at Tc, according to a renormalization group 

analysis (Aharony, 1973). 

Acknowledgements 

We benefited from a discussion about RbMnF3 with Dr. C. G. Windsor. Two of 

us (A.C. and V.T.) acknowledge, with thanks, the hospitality of DRAL during the 

course of carrying out the reported work. 
' 



Table 1: Properties of RbMnFJ 

Quantity Symbol Value 

Chemical unit cell dimension ao 4.24A 

Critical temperature (l) Tc 83K 

Nearest neighbour exchange interaction J 0.29meV 

Non-universal material constant in the 
damping rate A · 361.1 meV2 A3 

Superlattice wave vector w (7t/ao)(1,1,1) 

Geometrical factor (a = x,y,z) 'Yk ti cos(aoka) 
a 

Number of nearest neighbours r 6 

Spin magnitude s 5/2 

(1) The quoted value ofJ and the spherical model relation (3.4) produce a critical 

temperature = 78K. Windsor and Stevenson (1966) report the value 

J = 0.29 ± 0.03 me V obtained from an analysis of the spin wave dispersion. All 

our results are provided as a function of the reduced temperature (T!Tc), and A is 

calculated with Tc = 78K. 



Table2 

Comparison of Critical Exponents of RbMnF3 as measured by Tucciarone et al. 

(1971a) with Predictions for the isotropic Heisenberg model (after Collins, 1989). 

Exponent Experiment Calculation 

1.366 ± 0.024 1.388 ± 0.003 

V 0. 701 ± 0.011 0. 707 ± 0.003 

, 0.055 ± 0.010 0.037 ± 0.009 

:J.l) 1.46 ± 0.13 1.5 

(1) The value for the dynamic critical exponent, z = 3/2, is obtained from the 

coupled-mode equation, §4, and also dynamic scaling arguments and 

renormalization group calculations. 



Figure Captions 

1. S(k,c.o) is displayed for two values of k as a function of c.o. The wave vectors, 

measured in units of (1t/a0), correspond to the antiferromangetic zone 

boundary, k = (~.~.~). and the antiferromagnetic ordering wave vector, 

k = w = (1,1,1). The temperature T = 3.55Tc . Included in the figures is a 

gaussian function whose mean-square width is calculated from the second

frequency moment evaluated for the spherical model; see (5.1) and (5.2). The 

exchange parameter J = 0.29 me V, and the spinS = 5/2. 

2. S(k,c.o) is shown for T = 1.25Tc and ferro-(F) and antiferromagnetic (AF) 

coupling. Note that k = w is the ferromagnetic zone boundary. Parameters 

used, apart from the sign of J, are the same as in fig. 1. 

3. S(k, c.o) is displayed for T = Tc, and k close to the Brillouin zone centre and 

the antiferromagn~tic ordering wave vector w = (1,1,1). The wave vectors in 

units of (1t/12a0 ) are; (1) = (0,0,1), (2) = (0,1,1), (3) = (1,1,1), 

(4) = (11,12,12), (5) = (11,11,12) and (6) = (11,11,11). Other parameters are 

the same as those used in fig. 1. 

4. The van Hove response function S(k,c.o) is shown for T = Tc , and 

k = (~.~.~) which is the antiferromagnetic zone boundary where the 

corresponding second-frequency moment, used to calculate the gaussian 

approximation to S(k,c.o), achieves its maximum value in the Brillouin zone. 

5. Widths at half-area of S(k,c.o), examples of which are shown in figs. 1, 2 and 4, 

are given at three wave vectors and five reduced temperatures. The three wave 

vectors are k = w, k = (*•*•*) and(~.~.~). Wave vectors are measured in 

units of (1t/a0 ) where ao is the length of a side of the (cubic) chemical unit celt. 

When comparing these results with the corresponding experimental data for 

RbMnF3 reported by Tucciarone et al. (1971b) bear in mind that these authors 

quote wave vectors in units of (21t/ao)· 
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