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Abstract 

We propose a new discrete symmetry in the generation space of the funda­

mental fermions, consistent with the observed fermion mass spectrum. In the 

case of the quarks, the symmetry leads to the unique prediction of a flat CKM 

matrix at high energy. We explore the possibility that evolution due to quantum 

corrections leads to the observed hierarchical form of the CKM matrix at low 

energies. 
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The problem of the origin of the masses and the mixing angles of the fundamental 

fermions must surely be amongst the most urgent in particle physics today. Even 

accepting the standard mechanism for fermion mass generation through Yukawa cou­

plings to one or more non-zero Higgs fields, the reason for the existence of three fermion 

generations together with the explanation for the observed pattern of the individual 

masses and mixing angles remains mysterious . One possible way forward is to gain 

experience by constructing and analysing a wide variety of plausibly motivated candi­

date mass matrices (or ansatze) in the hope that something convincing will eventually 

emerge. Amongst the best known and perhaps the most thoroughly analysed such 

ansatz is that due to Fritzsch [1]. The present proposal has more in common with the 

approach pioneered by Harari et al. [2]. 

In this paper we motivate and analyse a new ansatz for the fermion mass matrices, 

which we believe has unique a priori appeal by virtue of the principles underlying its 

construction. Our proposal owes something to the straightforward and oft-repeated 

observation that the fermion generations are in some (yet to be defined) sense dupli­

cate copies one of the other. That is to say that, in spite of the large mass differences 

observed from generation to generation, it is natural to assume that the three genera­

tions exist fundamentally on an equal footing. In constructing our ansatz, we take this 

notion seriously and insist that, at the most fundamental level, there be no physical 

basis for prefering one generation over another, ie. in the Lagrangian the assignment 

of the generation labels ( i = 1-3) must be entirely arbitrary. Such a demanding re­

quirement has much of the character of established invariance principles in physics, 

and naturally puts very severe constraints on the form that the mass matrices can 

take. Indeed these constraints are so severe that they can often appear at first sight to 

be in conflict with the experimental facts. We show in this paper, however, that this 

is not neccessarily the case. The indisputable a priori appeal of the above idea, taken 

together with the uniqueness and economy of its implementation, have provided much 

of the motivation to pursue this analysis. 

We begin by noting that a principle of the sort outlined above is trivially satisfied 

by the charged-current weak interaction in any weak basis, as a consequence of the 

universality of the weak interaction. On the other hand, the evident large mass dif­

ferences observed, from generation to generation,. tell us that the Yukawa couplings in 

the physical basis, are quite definitely not universal. At this point, the only solution 

that we can see, consistent with the principle we have expounded above, requires that 

we postulate that in some weak basis the Yukawa couplings for a given fermion species 

exhibit an invariance under permutations of the generation indices. A candidate mass 
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matrix fulfilling our requirement, which is also hermitian is: 

m = (~ 
b 
a 

b* 
(1) 

where a is real and b is complex. Note that the diagonal mass terms are all identical 

(they are all equal to a) and ihat the off-diagonal (weak-generation-changing) ampli­

tudes for the 'clockwise' transisitions (1----+ 2, 2 ----+ 3 and 3----+ 1) are also all identical 

(they are all equal to b) and the amplitudes for the 'anticlockwise' transistions (1----+3, 

3----+ 2, and 2----+ 1) are all equal to b*, so that no generation is preferred. A matrix of this 

form is sometimes referred to as a circulant [3]. It might be argued that the mass ma­

trices are unlikely to be hermitian and that a general circulant matrix with a complex 

and with unrelated complex numbers b and c representing different. amplitudes for the 

clockwise and anticlockwise transisitions, would also satisfy our requirement. Nothing 

is to be gained, however, by postulating this general form since, on taking the her­

mitian square (mmt), we immediately recover the form eq.(1), and, as is well known, 

only the hermitian square of the mass matrix can influence the measured masses and 

mixing angles. 

Suppose that we postulate a matrix of the above form for the hermitian square 

of the mass matrix for the charged leptons. The observed mass spectrum can be 

reproduced by setting: 

a (r/3) + (p,f3) + (e/3) 

b ( r /3) w1 + (p,/3) w2 + ( e/3) wa (2) 

where r, JL and e represent the masses-squared of the r-leptonr muQtll and elec1i:ron 

respectively, and the Wi, i = 1-3 are the usual complex cube-roots of unity. In this 

form, in the rank-1 limit (p,, e ----+ 0) the above matrix reproduces the matrix proposed 

by Harari et al. [2]. The form of eq.(2) follows from the general result that the spectrum 

of the eigenvalues of a circulant matrix is given by the (discrete) Fourier transform of its 

trailing diagonal. The eigenvectors of a matrix of the form eq. ( 1) are: ( 1,1, 1), ( 1 ,w2 ,w3 ), 

(1,w3 ,w2). These are of course just the momentum eigenstates for a three-point one­

dimensional lattice satisfying periodic boundary conditions. An operator of the form 

eq.(1) (with b real and negative) was employed by Feynman [4] to describe the low 

lying energy states of the tri-phenyl-cyclo-propanyl ion. We consider it very significant 

that the matrix operator defined by eq.(1) and eq.(2) has so much in common with the 

simple derivative operators representing the ordinary kinetic terms in the Lagrangian, 

which as a consequence oftranslational invariance may also be represented by (infinite) 

circulant matrices. It might also be worth noting that the form eq.(1) may equivalently 

be regarded as the 3 x 3 generalisation of the phenomenologically successful 2 X 2 
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effective-theory [5] used to describe the properti~s of the neutral kaon system, prior to 

the discovery of CP violation. 

Turning now to the quark mass matrices one might be tempted to postulate mass 

matrices of the form eq.(1), but with different parameters a and b, chosen in analogy 

with the case of the leptons above, so as to reproduce the observed mass spectrum 

for the up-type and down-type quarks respectively. But matrices of the form eq.(1) 

commute with each other for all values of a and b, so that the mass matrices for the 

up-type and down-type quarks would be simultaneously diagonalisable and the quark 

mixing (CKM [6]) matrix would then be the identity (or a trivial permutation matrix), 

in clear disagreement with experiment. 

With these considerations in mind, we have investigated mass matrices of the 

somewhat more general form: 

(3) 

with a and b still given by eq.(2) and with </>1 + </>2 + </>3 = 0, so that the mass eigenval­

ues are unchanged. In eq.(3) the off-diagonal amplitudes are equal in magnitude but 

differ in phase, so that the matrix eq.(3) does not commute with the matrix eq.(1), nor 

does it commute with matrices of the form eq.(3) with different values for the phases. 

The eigenvectors of a matrix of the form eq.(3) are: (1, e-it/>3 , eit/>2 ), (1, w2 e-i4>3 , w3 eit1>2 ), 

(1, w3 e-it/>3 , w2 eit1>2 ). If we postulate matrices of the form eq.(3) for (the hermitian 

squares of) the mass matrices for the up-type and down-type quarks, and construct 

unitary matrices U and D comprising the respective mass-ordered normalised eigen­

vectors, we find that the CKM matrix (V = ut D) may then itself be written as a 

circulant: 

V=(~ ; ~) . 
q r p 

(4) 

Observables depend only on the phase differences (ti</>i) between the corresponding 

amplitudes in the up-type and down-type mass matrices: 

(3 + 2ReS)/9 

(3- ReS+ -J3ImS)/9 

(3- ReS- v'3ImS)/9 

(5) 

with S = eit:..t/>1 + eit:..t/>2 + eit:..t/>3 • The convention independent CP violation parameter 

Jap [7] is given by: 

Jap = 217Jm(ei(t:..t/>2-t:..t/>1} + ei(t:..t/>3-t:..t/>2) + ei(t:..t/>1-t:..t/>3)) {6) 
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For example, if fi</>1 == 0° and fi</>2 = 60° (and hence li</>3 = -60°) then S = 2 and 

IPI = v'7 /3 ~ 0.882, lql = lrl = 1/3 ~ 0.333 and Jcp = 1/(18vta) ~ 0.032. We see no 
way to justify such a choice of phases however. 

At this point, we return again to the similarity we noted above, between the oper­

ator eq.(1) and the simple derivative operators representing the ordinary kinetic terms 

in the Lagrangian. Building on this observation, we now note that a close analogy ex­

ists between the operator eq.(3) and (the hermitian square of) a full gauge-covariant 

kinetic operator. The phases </>i (i = 1-3) play a role here analogous to that of the 

gauge potential. The freedom to change the absolute phases using any (common) 

arbitrary diagonal matrix of phase factors, is analogous to local gauge invariance. A 

gauge-field configuration corresponding to a constant field-strength (ie. a uniform field) 

is of particular interest to us here, because a uniform field is manifestly translationally 

invariant. We note that even in the case of a uniform field, the inherent translational 

invariance cannot be explicit in all of the components of the gauge potential at once, 

after a choice of gauge has been made. In the same way if we set: 

(7) 

corresponding to a uniform field (in the discrete generation space), then it must be 

that no generation is preferred, even though the up-type and the down-type mass 

matrices clearly cannot both be circulant. As far as observables are concerned, this 

last requirement eq.(7) (together with the requirement fi</>1 + fi</>2 + A</>3 = 0, above) 

completely specifies our ansatz (eg. 84>1 == 0°; fi</>2 = ±120°, fi</>a = =f120°), up to the 

sign of Jcp. The CKM matrix is flat in this case, ie. all elements have equal modulus 

IPI == lql == lrl == 1/vta ~ 0.577, and Jcp is extremal, ie. IJcpl = 1/(6J3) ~ 0.096 [7]. 
If the above matrices are relevant at all, they are relevant only at very high energy, 

eg. unification (GUT) energies, and have to be evolved down to the electro-weak 

(EW) scale in order to be compared with experiment. The leading-order evolution 

equations [8] for the quark Yukawa matrices in the Standard Model (SM) can be 

written (neglecting the influence of the charged leptons): 

3 2 3 9 17 
2au- 4(auad + adau) + 3Tr(au + ad)au- Baaau- 4a2au-

20
a1au 

3 2 3 9 5 
2ad- 4(auad + adau) + 3Tr(au + ad)ad- Baaad- 4a2ad-

20
a1ad (8) 

. 19 2 • 41 2 
a2 = -6a2 a1 = 10al 

where Tr denotes the matrix trace, the dot denotes differentiation with respect to 

T = (1/27r)ln(E/E0 ) and E/Eo is the running energy scale, expressed as a fraction of 

the starting energy. The hermitian squares of the up-type and the down-type Yukawa 

matrices are represented by au and ad respectively, where a factor of 1/47r has been 
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incorporated in the definition of au and ad to simplify the form of the evolution equa­

tions, in analogy with. the case of the gauge couplings. The corresponding equations 

for the gauge couplings (ai, i = 1-3) are included for completeness. 

There has been much progress in understanding the effects of evolution analyti­

cally [9], but for simplicity the results presented here are based on a straightforward 

numerical integration of eq.(8), employing an appropriate (variable) stepsize. Suitable 

starting values for the gauge couplings are taken from the fits of Amaldi et al. [10]. For 

a given set of starting values for the Yukawa couplings, we calculate the quark mass 

spectrum and the CKM matrix at the lower energy scale. There is considerable free­

dom in choosing starting values for the Yukawa couplings consistent with the observed 

mass spectrum at low energies due {in large part) to the well known quasi-fixed-point 

[11], implicit in the evolution equations, which tends to focus the top Yukawa coupling 

towards its fixed-point value at low energies, independent of its starting value. In spite 

of this, we find that assuming perturbative starting values for the individual Yukawa 

couplings (ie. au, ad;S1), chosen to reproduce the observed quark mass spectrum, the 

predicted evolution is always too slow to yield a realistic CKM matrix at low energies. 

Evolving down over a reasonable range in T (the GUT scale and the EW scale are 

about five units apart in T) the CKM matrix remains approximately flat; that is to 

say, all elements remain close to their starting value, IViil ~ 1/..;3 ~ 0.577, to within 

deviations at the level of 20% or less. 

However, with recent experimental results from LEP and from the Tevatron tend­

ing to favour large values for the top mass [12], it is becoming increasingly clear that 

the Yukawa couplings may very well be non-perturbative at high energy. Whilst we 

do not expect perturbative evolution equations to be quantitatively valid in a non­

perturbative regime, we have done what we can to investigate this possibility, by 

applying eq.(8) also in the case that the Yukawa couplings assume non-perturbative 

values (ie. au, ad;2:1). As one might expect, with larger starting values for the Yukawa 

couplings, the evolution proceeds more rapidly. The observed quark mass spectrum at 

low energy, can still be correctly reproduced, thanks to the quasi-fixed-point. We now 

find, however, that the CKM matrix, although starting out absolutely :flat, rapidly de­

velops a significant hierarchy which, for suffiently large starting values for the Yukawa 

couplings, is not-at-all unlike the familiar hierarchy .[13] of CKM amplitudes observed 

experimentally. That said, we have not succeeded in finding any one complete set of 

starting values which reproduces the quark mass spectrum and the CKM matrix simul­

taneously in every detail, and in view of the strict inapplicabilty of eq.(8) in the non­

perturbative domain, neither should we expect to, even in the case that our ansatz was 

perfectly correct. Instead we give here a sample set of starting values that can be seen 

to reproduce most of the quark masses correctly, together with the main features of the 
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CKM matrix. The input values for the ( diagonalised) Yukawa couplings at high energy 

are: au = (6.0 X 10-2 ,2.0 X 109 , 7.0 X 1011 ), ad = (1.5 X 10-1 , 5.0 X 10°,4.5 X 101) leading 

to au = ( 4.4 X 10-11
1 8.3 X 10-2

1 8.8 X 10-2), ad= (2.8 X 10-10
1 6.0 X 10-s 1 6.8 X 10-6) 

at the EW scale (.dT = -5). The evolved CKM matrix is as follows (only the moduli 

of the elements are given here; phases are of course convention dependent): 

( 

0.975 0.222 0.011) 
V= 0.222 0.974 0.047 

0.012 0.046 0.999 
(9) 

with llcpl = 1.06 X 10-4 . The result eq.(9) bears a striking resemblance to the 

experimentally observed CKM matrix and suggests to us that it is evolution (albeit 

non-perturbative and presently incalculable) which is responsible for the observed 

hierarchy in the CKM matrix at low energy. Whilst results obtained by applying 

perturbative equations in a non-perturbative domain are unsatisfactory, in that they 

clearly cannot be used to falsify any hypothesis at all, we maintain that they do 

serve a useful purpose here as an illustration of existing possibilities. The problem 

of non-perturbative evolution may not be forever intractable: exact non-perturbative 

evolution equations for coupling constants in pure gauge theories have already been 

discussed in the literature [14]. Certainly it cannot be said that this ansatz is ruled 

out by experiment. On the contrary, if the trends we see applying leading-order 

perturbative evolution equations are at all representative of the effects of complete 

non-perturbative evolution, then all the indications are that we are on the right track. 

In conclusion, in spite of the difficulties we have emphasised, we find the appar­

ently natural emergence of a CKM-like hierarchy entirely within the SM framework 

very impressive. The matrix operators we have proposed come as close as one might 

hope to generalising (to the discrete generation space) the continuum gauge-covariant 

operators already present in the SM Lagrangian. One might even speculate that it is 

some analogue of the pure-gauge kinetic term, constructed from the relevant invari­

ants (7], which (classically extremised) accounts for the hierarchy of quark masses. At 

the very least, we believe that we have demonstrated that this simple and appealing 

ansatz merits further investigation. 
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