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Abstract 

This paper is concerned with the development of a quantitative analysis method that can 

extract the mixed linear and nonlinear dynamical response of a thermoviscoelastic process 

in complex materials. A tractable set of simultaneous equations with well behaved 

coefficients can be generated by taking time series moments of a suitably truncated Volterra 

series expansion. This moment hierarchy is a set of inhomogeneous nonlinear integral 

equations, based on a vector multidimensional convolution form of the Volterra functional 

series expansion. The hierarchy developed is used to analyse the time dependent 

thermoviscoelastic properties of resin matrix composite materials . Estimates of the 

temporal response of the measured deformation gradient to the measured mechanical and 

thermal forces were then used to predict the out of sample stress field values. These 

predictions demonstrated that the response functions provided a good, locally time 

invariant, representation of the thermoviscoelastic process. The range of applied loads span 

a significant region of the phase space for the specimen and the estimated response function 

values and steady state transport coefficients remained constant over this range. Generally 

speaking, the response functions estimated from the data are used to determine the dynamic 

and steady state transport coefficients, which can, be used to develop either an empirical 

field theory of the phenomena or alternatively be used in the design process. 



Introduction 

Many materials have viscoelastic properties that are both nonlinear and time dependent. 

Any complete theory of thermoviscoelasticity should be able to describe the local 

deformation gradient in terms of the properties of the material and the forces acting on the 

material. The thermomechanical properties in a local region should be characterised as a 

multidimensional function of the physical observables that effect that region. 

The main difficulty in characterising thermoviscoelastic behaviour, from an experimental 

point of view, is the accurate simultaneous measurement of all the variables needed to 

describe the process. A guide to the choice of observables in an experiment, is that the 

governing equation used should be in a closed form, for example, the conservation laws in 

a control volume should contain terms for all of the physical processes which significantly 

contribute to the process. The characterisation obtained from the data can then be related to 

the theory underpinning the process. Generally speaking, the ability of current data analysis 

methods to accurately and consistently quantify all of these interactions under general 

dynamic boundary conditions is severely limited. Thus, there is a need to develop and 

refine data analysis techniques that can separate and quantify the thermoviscoelastic 

processes and their interactions and relate them to an appropriate theoretical description of 

the process. 

The notion of inverse equations and their approximate solution by discretisation is 

commonly employed for linear ordinary differential equations. A coupled differential 

representation being developed, which is suitable for the analysis of the thermoviscoelastic 

process, will be discussed elsewhere. In this work a vector multidimensional convolution 

form of the Volterra series expansion, suitably truncated, is operated on to obtain a tractable 

moment hierarchy with well behaved coefficients, from which the dynamical response of 

the thermoviscoelastic process can be determined. The solution of the moment hierarchy 

yields, directly, the Volterra kernel values. These kernel functions are usually known as the 

linear and nonlinear response functions and are fundamental properties of the physical 

system being studied. The convolution form of representation is an extension of the 

Taylor's expansion to processes which posses a finite memory. The vector 

multidimensional convolution form of the Volterra series is used in the present paper to 

analyse experimental data for the mixed linear and nonlinear properties of complex 

thermoviscoelastic behaviour. The response function values can be extracted at different 

times of the sample's life cycle and they represent elements of the life history of the 

thermoviscoelastic material. 
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There have been previous attempts to develop multiple integral theories of viscoelasticity. 

Several viscoelastic theories have used the Volterra functionals to represent the relationship 

between the components of the stress field { cr ij ( t)} and the strain field { E ij ( t)}; where the 

component of stress, cr ii ( t), is considered to be the i th component of the force per unit 

area on the surface acting in a direction e i which is a unit normal and where E;i ( t) are the 

components of the local deformation gradient , {V X ( t)} , the components being a X I ( t) 
C1X/t) 

The most comprehensive of these theories is by Green and Rivilin [1], who used a tensor 

form of the Volterra functional series to develop a three dimensional nonlinear viscoelastic 

theory. Their theory is based in the assumption that the observed stress field { cr ii ( t)}, is a 

nonlinear function of the history of observed deformation gradient {V x ( t)}. The values of 

the stress components { cr ii ( t)} can be expressed to any desired degree of approximation as 

an ascending series of convolution functions with [1] 

(1) 

where 't k denotes delay with respect to the present time t, and where 

( ) ~ axm('tk)axm('tk). h' d fhd+' . gP q t- 'tk = L... IS t e mner pro uct o t e e1ormat1on vector 
kk m=l axpk('tk)axqk('tk) 

with itself, at the time ( t- 't k ) . 

The kernels of the convolution expansion represent the dynamic response functions 

between the stress and strain fields, and they are called the dynamic relaxation modulus 

functions. The area under these response functions is the steady state gain between the 

components [2], and are called the relaxation modulus for each pair of components. 

The Volterra series representation is well conditioned for a wide range of loading functions. 

However, Gradowczyk [3] indicated that the Volterra series is ill conditioned under the step 

loading case. This result is not surprising, as it has long been recognised that the classical 

test loadings of the step, the single impulse and the single harmonic driving force are not 

appropriate for nonlinear processes [4] and render, for example, the Volterra series and its 

transformations ill conditioned. Indeed, it was this fact that prompted Weiner [ 4] to propose 

that Gaussian white noise could be an appropriate loading function for nonlinear systems. 
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Unfortunately, it can be trivially shown that a Gaussian white noise loading function 

produces an ill conditioned Volterra series when the system is of a mixed order higher than 

quadratic. This is perhaps why the Weiner school developed the homogeneous 

approximation method which uses Gaussian white noise [5], as that method only used the 

diagonal terms in Gradowczyk's matrix expression. The objective of the homogeneous 

approximation is to obtain a local single order radial basis transformation type of 

description which adequately describes the observed behaviour. 

Pipkin and Rogers [6] studied a three dimensional Stieltjes form of the Volterra series 

expansion and represented the components of the stress field, { cr ij ( t)}, as a functional 

expansion with 

(2) 

where the differentials 

have the properties of a characteristic function [7]. 

Pipkin and Rogers undertook a detailed examination of the one dimensional case of 

equation (2) under an incremental step loading scheme. Although reasonable results were 

obtained, it was later noticed that equation (2) is ill conditioned under the loading regime 

used, in the same way that the Green and Rivilin expansion is when a step loading is used. 

If local solutions are required then the Volterra series can be truncated to just the first 

(linear) term. The first term approximation has been used by a series of workers, notably 

Schapery [8], to develop an approximate constitutive theory for composite materials and 

then to apply their method to a range of material types with generally reasonable agreement 

between theory and experiment being observed. 
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In the Schapery approach, the components of the stress field are related to the temporal 

differentials of the time series history of deformation gradients. Experimental observations 

are, by nature, uncertain and their time series are stochastic processes. Most stochastic 

processes do not posses differentials in the ordinary sense [9], however, a few stochastic 

processes have differential properties in the mean square, or higher order moment, sense. 

This indicates that the fundamental relationships between any observed physical quantities 

should be developed in terms of their time series averaged or convoluted values, and not in 

terms of the derivatives of the time series values. 

More recent work in nonlinear elastic dynamics has concentrated on functional analysis and 

the solution of nonlinear differential equations [10,11]. The bifurcation and chaotic theories 

used to describe the nonlinear elastic behaviour do not take into account the fading 

memory properties [12] of viscoelastic processes and consequently will not be considered 

further in the present work. 

The multidimensional convolution representation developed in the present work relates the 

components of the observed deformation gradient, { £ ij ( t)}, to the applied mechanical and 

local thermal forces and is readily extendible to more complex situations. The formalism 

assumes that a causal relation exists between the deformation gradients, the forces acting on 

the body and the fluxes flowing through the body; whether they be mechanical, electrical, 

thermal or chemical in origin. This indicates that each experimental case should be 

examined, and a characterisation chosen that represents the causal nature of the interactions 

between the physical processes. 

That is, in the present case the deformation induced by the mechanical forcing and the 

thermal gradients are characterised by the estimated response function values. The 

formalism is presented in general terms without specific properties being attributed to the 

functionals and their coefficients, the response function values. The formalism is then used 

to analyse specific data and for that case meaning is attributed to the functionals and their 

coefficients. 

The formalism is developed simultaneously characterises the dynamical properties of the 

thermal and mechanical process and their mutual interactions. The linear and non linear 

response functions of the formalism are estimated directly from the experimental data 

[13,2,12]. The formalism is then applied to experimental data to analyse the 

thermoviscoelastic process in resin matrix composites under stochastic loading conditions. 

The analysis formalism is developed in terms of physical observables so that experimental 

data can be analysed and interpreted in terms of derived quantities such as creep 

compliance, relaxation modulus, elasticity, conductivity and other transport coefficients. 
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Linear elastic materials 

Before details of the multidimensional convolution formalism are given it is of value to 

outline the underlying methodology with a simple example. The theory of linear perfeclly 

elasticity materials is the cornerstone of the macroscopic treatment of solid mechanics. 

Such ideal materials deform instantaneously in response to an applied load and have the 

ability to store energy without dissipation, so that all of its stored energy can be recovered. 

For these materials Hook's law applies, so that the observed stress field if directly 

proportional to the applied strain and the behaviour is linear. On the other hand, a perfectly 

viscous fluid has the ability to dissipate energy but not to store it and the stress depends on 

the rate of change of the strain field. 

Real materials have the capacity to both store and dissipate energy and the response to an 

applied force will be a fast deformation followed by a slow flow process. In a linear 

viscoelastic material the strain is directly proportional to the strain field and for a given 

constant applied stress the strain increases with time. This process is known as creep and 

when the applied force is reduced, or stopped, there is a period of creep recovery when the 

material experiences strain decay. This is known as relaxation. The phenomena of 

relaxation and creep are basic characteristics of viscoelastic materials. Any theory that 

successfully describes the behaviour of viscoelastic materials should be able to characterise 

the constitutive relationship between the observed deformation and the forces acting and 

the fluxes flowing. In addition, the theory should be able to characterise the storage and 

dissipative processes that simultaneously act in the material. The present work attempts to 

develop such a theory and to illustrate how the coefficients which characterise these 

relationships can be estimated from experimental data. 

As an example of the basis of the methodology underlying the treatment of complex 

materials, consider a one dimensional linear elastic material that is submitted to a history of 

mechanical forces in the absence of other forces and thermodynamic fluxes. Then the local 

strain, { E(t)} , can be expressed as a convolution between the observed stress, { cr(t)}, and 

the response function, Jm('t1), which is called the creep compliance. 
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For a discrete process which possesses a local fading memory of duration J.l, the 

convolution can be expressed as 

J.! 
E(t)= L, Jm(t1)cr(t-t1 ) 

~~=0 

(5) 

wheret
1 

denotes delay with respect to the timet. As it stands, it is ill posed because there 

are (J.l + 1) unknowns and only one equation. A set of (Jl + 1) equations need to be formed and 

solved for the response function values, J m ( t 1 ) which are the dynamic linear creep 

compliance values. If the local strain, { E(t)}, and the observed stress, { cr(t)}, are drawn from 

stochastic processes, then equation (5) can be operated on to yield the moment equation 

(6) 

where ( cr( t- s1 )E( t)) and ( cr( t- s1 )cr( t- t 1)) are the cross and auto moments between the 

strain field { E(t)} and the stress field { cr(t)}. That is, the average product of each side with 

the delayed value of stress, cr( t- t 1 ) , has been obtained using the operator ( cr( t- t 1 ) *) for 

O:::::t1:::::J.l to give the (J!+1) equations required. In this form the equations, given by (6), can 

be readily solved with standard matrix methods. 

Under steady state conditions the one dimensional linear stress strain relationship becomes 

J.! 

E = 0" L J ecr ( 'tl) (7) 
~~=0 

* * that is £ = cr J m, where J m is the steady state creep compliance. If now the load is 

incremented by and amount ~cr at some time t, then after Jl units of time the strain field 

will be given by 

After Jl units of time have elapsed, the strain field will be given by 

(8) 

which satisfies the Boltzman superposition principle for a linear viscoelastic process. 
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Thus, the general linear stress strain expression for an arbitrary sequence of loading forces 

is the convolution equation 

I! 
E(t)= I J

00
('t 1 )0'(t-'t 1 ) (9) 

'tl=O 

The inverse form, which gives the linear one dimensional strain stress relationship is the 

convolution 

f1 
cr(t)= I Em:('t 1 )E(t-'t1 ) (10) 

'tl=O 

Under steady state conditions this becomes 

(11) 

which is Hook's law for the behaviour of a linear one dimensional elastic material. 

Volterra functional series representation of thermoviscoelasticity 

There are many physical processes where the form of the differential equations that govern 

the observed behaviour are not know. In such cases other representations must be used to 

describe the physical process. For example, in the fields of thermodynamics, fluid dynamics 

and elasticity use a truncated Taylor's series expansion representations have been used. 

When the Taylor's series expansion description is used, the physical laws that describe 

aspects of the observed behaviour can be based on the values of the coefficients of the 

ascending order terms in the expansion. 

Constitutive equations are expressions which characterise the observed behaviour between 

forces and fluxes and conservation expressions relate a conserved variable to the 

constituent variables. For example, an observed thermodynamic flux may be characterised 

in terms of the observed thermodynamic forces and observed properties of the medium. The 

empirical coefficients of the Taylor's series expansion describe the steady state transport 

properties of the process. Such empirical coefficients represent the, so called, steady state 

gains of the independent variable to the dependent variables and cannot be derived from 

any fundamental theory, but are estimated directly from the experimental data. 

8 



If the thermodynamic flux at a given point in space and instant of time depends on a set of 

local thermodynamic forces, { Fi ( t)}, then the thermodynamic flux can be written as a 

multidimensional function of the forces, with 

(12) 

This multidimensional function can be written as an ascending multivariate Taylor's series 

expansion with 

(13) 

where the lowest order transport coefficients are given by 

( af 2 

) and L .. = k 
1
k'I'z a F a F 

11 12 0 

In the linear approximation this expansion reduces to the well known Onsager relations. 

Equally, the phenomena can be described by an expansion of functionals which 

characterises the physical process as a mapping between functional spaces. If there is a 

unique solution to equation then, formally at least, it will be the inverse mapping. 

The inverse mapping associates each value of the independent physical variable to the finite 

history of a set of other dependent physical variables. The emphasis of the inverse problem 

approach is to identify the form of relationship between the observables and hence establish 

the laws govern the process. If the process has a finite memory, of duration~' then the 

nonlinear nonequlibrium behaviour of a macroscopic thermodynamic process can be 

described as a functional expansion of physically observable causal time series quantities. 
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For example, the constitutive equations which describe thermodynamic processes, each 

thermodynamic flux, fk ( t), can be described as a multidimensional convolution expansion 

in terms of the local thermodynamic forces acting, and defined as 

where N is the order of the system, where t denote time and where the cri's denotes time 

delay with respect to the time t. 

A discrete approximation to the multidimensional convolution expansion can be defined as 

where N is the order of truncation the system, where t denote time, where I is the number of 

and where the cri's denotes time delay with respect to the timet. 

On discretisation, the truncated Volterra series remains ill posed in the sense that there are 

too many unknown coefficients to solve for. Thus, the approximate method of discretisation 

used for the linear case cannot by themselves be used to solve the Volterra series. A 

tractable set of simultaneous equations with well behaved coefficients can be generated by 

taking time series moments of a suitably truncated Volterra series expansion. 

The kernel function values, JVi ... Fi (ip···•in,crP ... ,cr"), characterise the behaviour of 
I n 

fk ( t), in terms of the forces, { Fi ( t)}. Integrating each kernel function yields the linear and 

nonlinear gain between the dependent and independent variables [2] , with 

(16) 

That is, the integral of the kernel function values yields the steady state gain between the 

observables and are equivalent to the ascending order transport coefficients of the 

phenomena being characterised. 
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Equations ( 15) is ill posed, in the sense that there are many coefficients to solve for with 

only one equation. In addition, as thermodynamic processes are stochastic, in general, the 

equation is also ill conditioned because it has stochastic variables. 

The conditioning can be improved statistical averaging and the use of operators allows a 

set of tractable equations with average variable values to be generated. Equation (15) is 

operated on with a series of averaging operators, one for each permutation of delayed 

applied forces (F; (t- 'ti) *),to give a moment hierarchy of the form 

(17) 

where <*> denotes the averaging operation. The moment hierarchy can be rewritten in the 

obvious matrix form C = Mh where M is a square matrix whose elements are the auto-

moments of the applied forces { Fi ( t - 't j)}, where C is a column vector whose elements 

are the cross moments between the thermodynamic flux, { fk ( t)} and the applied forces 

{ Fi ( t)} and where h. is a column vector whose elements are the kernel function values of 

the mapping between { Fi ( t)} and { fk ( t)}. 

If the matrix M is non-singular then h = (Mt
1 
C has a unique solution. If however M is 

singular, then M is rank deficient and some of its rows will be linearly dependent on the 

others. If the same relationship holds between the corresponding elements of the column 

vector C, the solution will not be unique, indeed an infinity of solutions will exist. If this 

is not the case then the matrix expression is not consistent and there will not be any 

solution. Thus, in general, there may be a unique solution, an infinite number of solutions 

or no solution. However, given the construction of the moment values used in the moment 

hierarchy, the rows of M will be linearly independent of each other, thus the matrix will 

usually be non-singular and have a unique solution. This will be true for many mixed 

stochastic and deterministic processes. 

At this stage an observation can be made. The Volterra functional expansion is not, in 

general, tractable. However, the application of averaging operators has generated a tractable 

hierarchy of moment equations which are likely to have well behaved coefficients for many 

physical processes. The truncated Volterra expansion has been operated on in order to 

obtain a linear algebraic expression where the elements of the vector and matrix retain all 

of the information about the complex dynamical nonlinear process being studied. 
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There are exceptions to this however, for example, 

1) when the data { x(t)} are composed of delta function, a step function, and for any 

distribution which has a delta functional form of each member of the ascending order of 

auto moments, or their transformation, of the data {x(t)} 

2) when the data { x(t) }at successive time series points are not causally linked 

3) when the data {x(t)} are composed of a very nonstationary sequence and 

4) when the representation of the process is not of a closed form, i.e. some of the 

contributing variables are not measured or analysed. 

Consider representing an observable, for example the components of a deformation 

gradient, { E ii ( t)}, in terms of a set of physical observables, { 8 r; ( t)}. That is, the 

deformation gradient, { E;i ( t)}, is a function of the set of physical observables which may 

include the mechanical, thermal, electrical and other properties of the media and external 

forces that act on the media. These interactions with the deformation gradient, { Eii ( t)}, 

can be represented as a multidimensional convolution expansion in terms of the other 

observables, { e f· ( t)}' which in discrete form is defined as 
I 

where { 't;} denote time delay, where N is the order of the expansion and where I is the 

number of observables used to describe the field cr(t). The estimated response values 

J £ .. a a (r1, ••• , r., 't1 , ••• , 't") not only characterise the process in terms of the observed 
IJ r1 ··· rn 

material properties and the forces acting and fluxes flowing, but they also represent the 

solutions to the equations which describe the process [13]. 
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The moment hierarchy in the thermoviscoelastic case is given by 

(19) 

m 

here the averaged values < rr e s ( t - <; p ) £ ij ( t)) denotes the ascending cross moments 
p=l p 

between the component of strain, { £ ii ( t)}, and the other observables; and where 

m n 

< rr e s ( t - <; p ) rr er ( t - 't k ) ) denote the ascending auto moments between the fluxes, 
p=l p k=l k 

physical properties and forces observed to be acting. 

Facilities and provisional analysis of the thermoviscoelasticity experiments 

The above formalism is currently being tested in a comprehensive fatigue test of 

experiments on coupons, plates and a composite turbine blade, the latter being subjected to 

a stochastic three dimensional loading. The local deformation is being determined by 

photoelastic and holographic methods. Two dimensional stress field point measurements 

are being made at many positions on the blade, the thermal gradient within the solid is 

being measured with thermocouples. A thermal ~amera is being used to identify regions of 

critical stress and temperature gradient. Information regarding the state of the 

microstructure throughout the fatigue test is being determined from acoustic emission 

measurements. These experiments facilitate a detailed analysis of the macroscopic 

thermoviscoelastic process in a complex composite material under realistic forcing 

conditions and provide a relationship between the microstructural damage to the 

macroscopic response through the life cycle of the composite material. For example, during 

the fatigue test the blade is clamped at the root, the longitudinal axis horizontal and chord 

vertical. The load is applied with two actuators, acting in a plane which is perpendicular to 

the longitudinal axis of the blade. A time varying combination of flapwise and edgewise 

loading is applied with a maximum load of 7 5 kN and minimum load of -7 5 kN. The test 

has three phases, an initial static load test, 5 million cycles at 1 Hz below the maximum 

loading and finally about 1 million cycles at 1 Hz at maximum loading until failure. The 

results from that experiment will be reported in detail when the analysis has been 

completed early in 1995. 
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Prior to the full blade test, a series of fatigue tests on 1 dimensional composite coupons and 

two dimensional blade sections were performed. The samples used in that sequence were 

glass/polyester coupons which had been manufactured with the lay-up of typical wind 

turbine blade material were drilled with various depths of small hole (diameter 6mm). 

Stress concentrators, in the form if bored holes, were introduced into the coupons, with four 

hole depths in the range of 50% (5mm from viewed surface) to 95% (0.5mm from viewed 

surface) being tested in fatigue at frequencies between 0.1 Hz and 10 Hz. The coupons were 

loaded in uniaxial fatigue with a maximum load of 27 kN and an R-ratio of 0.1. A sequence 

of thermograms was recorded for the 95% hole, a hot spot due to the influence of the hole 

became apparent almost immediately on applying the cyclic load. 

The provisional analysis has considered the observed stress as a mixed linear and nonlinear 

dynamical function of the applied load and temperature within the solid. Time series 

readings were collected each 40ms throughout each experiment, the time interval for data 

collection being determined by the response time of the sensors used. A total of some 1000 

time series points for each sensor were collected. Of these some 400, in sample, points were 

used to estimate the response factor values of the process and 500, out of sample, points 

were used to compare with the values of the strain field values predicted using the response 

factor values estimated in sample. This enabled the accuracy and time invariant nature of 

the estimated response function values to be determined. These response function values 

were then used to predict the behaviour of the sample under a different loading regime, thus 

testing the nature of the solutions determined by the moment hierarchy method. 

The time series values of the stress field were considered as 1) a linear function of the 

applied load and the local temperature gradient 2) a mixed linear and nonlinear function of 

the applied load and 3) a mixed linear and nonlinear function of the applied load and 

temperature within the solid. In each case the properties of the process were characterised 

with 400 data points. The response functions estimated with these 400 points were then 

used to predict the future, out of sample, behaviour of the stress field for 500 points. 
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These predicted values of stress, {E(t)}, were then compared statistically with the observed 

values, { EP ( t)}, it should be stressed that during the prediction phase no use was made of 

the observed stress values. It should also be noted that the mean value had to be subtracted 

from the data in order to perform the linear analysis, no such modification was made in the 

nonlinear analyses. This provides a quantitative measure of the quality of the response 

function characterisation of the thermoviscoelastic process. The accuracy of the predicting 

ability was determined by comparing the root mean square differences between the actual, 

{ E( t)}, and predicted { EP ( t)}, time series sequences. An example of the prediction together 

with the actual values is shown in figure 1. These sample statistics are presented in table 1 

and below. This provides a sensitive measure of the quality of the response function 

characterisation of the thermoviscoelastic process. 

T bl 1 R t diffi b t th d · t d d t I t s values a e . oo mean square erence e ween e pre IC e an ac ua s res . 
Mean Linear Nonlinear Nonlinear 
applied load vector analysis univariate analysis vector analysis 

6.0kN 39. * 10-3 6.7 *10-3 13. *10-3 

@ 0.4 Hz 

8.3 kN 38. *10-3 4.3 *10-3 7.7 *10-3 

@ 0.4 Hz 

12.1 kN 40. *10-3 4.0 *10-3 5.6 *10-3 

@ 0.4 Hz 

T bl 2 F f I d"ffi b t th d" t d d t I t values a e . rac 10na mean 1 ere nee e ween e pre IC e an ac ua s ress . 
Mean Linear Nonlinear Nonlinear 
applied load vector analysis univariate analysis vector analysis 

6.0kN 0.18 0.018 0.025 

@ 0.4 Hz 

8.3 kN 0.025 0.0018 0.0075 

@ 0.4 Hz 

12.1 kN 0.062 0.0080 0.0085 

@ 0.4 Hz 
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In linear analysis without correcting for the mean value (which itself may be linear or 

nonlinear) the null hypothesis that the thermoviscoelastic process is linear was not 

accepted by the sample statistics. However, the sample statistics for both of the nonlinear 

and mean corrected linear analyses the values of the test statistics for the differences 

between the measured, { £( t)}, and predicted, { £P ( t)}, output stress field for both 

modelled and predicted data lay within the acceptance region; thus each representation 

accurately characterises the observed behaviour of the stress. 

Integrating the estimated response function values yields an estimate of the steady state 

transport coefficients. These transport coefficient values can be compared with the transport 

coefficient as estimated from the measured mean applied load, stress and cross sectional 

area of the sample. The estimated creep compliance at the three mean applied fatigue loads 

are 1.44±0.20, 1.46± 0.21 and 1.46±0.22 respectively. Until the present work, no 

simultaneous estimates of creep compliance and the thermoviscoelastic transport 

coefficient have been made, for this reason only estimates of the mechanical transport 

coefficient are presented here. However, on the basis of the current provisional analysis, the 

thermal gradient thermodynamic force is approximately the same size the mechanical 

thermodynamic force, both containing elements of dynamical potential storage with the 

thermal force also providing a dissipation mechanism. 

T bl 3 A a e : d h rea un er t e response f f unc tons assoctate d "th h Wl t e mec h am ea If orce 
Mean Linear analysis Linear term Non linear term Linear term Nonlinear term 
applied load univariate univariate vector analysis vector analysis 

analysis analysis 
11 11 . ' I. Jr F (il'crJ) 

11 
I. Jr F (il'crJ) ~"f:oJV;/,2(ir,iJ,crt,o~) 

al =ll k 'J I. Jr F (il'crl) .+.on~0 JrkL',t, 1 (il,i!,Q'L,a2) 
"1 =0 k I I 

cr
1 
=0 k 11 

6.0kN 2.59*10-4 4.61*10-4 -1.70*10-5 4.81 qo-4 -1.18*10-5 

± 0.33*10-4 ± 0.45*10-4 
± 0.38*10-5 ± 0.49*10-4 

± 0.32*10-5 

@ 0.4 Hz 

8.3kN 2.69*10-4 4.62*10-4 -1.16*10-5 4.97*10-4 -1.25*10-5 

± 0.33*10-4 ± 0.47*10-4 
± 0.30*10-5 ± 0.50*10-4 

± 0.32*10-5 

@ 0.4 Hz 

12.1 kN 2.85*10-4 4.05*10-4 -0.52*10-5 4.21 *10-4 -0.56*10-5 

± 0.33*10-4 ±0.43*10-4 ± 0.25*10-5 ±0.51*10-4 ± 0.27*10-5 

@ 0.4 Hz 
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Table 4: Effective linear and nonlinear creep compliance determined from the 
f1 f I resp_onse unc Ion va ues 

Mean applied Linear analysis Linear term Nonlinear term Linear term Nonlinear term 
load univariate univariate vector analysis vector analysis 

analysis analysis 

6.0kN 1.04 1.85 -0.068 1.93 -0.047 
±0.13 ±0.18 ± 0.015 ±0.19 ±0.013 

@ 0.4 Hz 

8.3kN 1.08 1.85 -0.047 1.98 -0.054 
±0.13 ±0.19 ± 0.012 ±0.20 ±0.013 

@ 0.4 Hz 

12.1 kN 1.14 1.62 -0.021 1.68 -0.022 
±0.14 ±0.17 ± 0.010 ±0.20 ±0.011 

@ 0.4 Hz 

The sample statistics for the differences between the measured, { E( t)}, and predicted, 

{ EP ( t)}, output stress field for both modelled and predicted data lay well within the 

acceptance region for the linear and mixed linear with nonlinear representations. Thus the 

mean corrected linear representation and each of the mixed linear and nonlinear 

representations can accurately characterise the observed behaviour of the stress. The linear 

representation where the mean level was included in the analysis could not accurately 

represent the observed behaviour. However, in the experiments currently underway a more 

comprehensive set of observables are being measured in a more accurate way, in particular, 

more accurate measurements of the thermal gradient within the solid body. The results of 

that work will be presented early in 1995. 

Conclusions 

The results presented in this paper can be summarised as follows: a hierarchy of moment 

equations of the Volterra series can used to study nonlinear thermoviscoelastic process in 

complex materials. The nature of one dimensional thermoviscoelasticity was considered. 

Linear and mixed linear and nonlinear local constitutive representations were used to 

characterise the thermoviscoelastic process. The results of the linear and mixed linear and 

nonlinear analysis of the one dimensional thermoviscoelastic data show that the process is, 

within the experimental uncertainties, linear with a weak nonlinear component. The 

analysis has been demonstrated that the moment hierarchy can extract and isolate linear and 

ascending order nonlinear response functions when the input data are drawn from a 

stochastic process. 
17 



The moment hierarchy was used to analyse the properties a composite solid under a range 

of applied loads. The first and second order response functions were estimated from the 

time series data collected from the applied force, strain gauge and temperature gradient 

values. These estimated response functions were then used to predict the out of sample 

stress field values. These predictions demonstrated that the response functions provided a 

good, locally time invariant, representation of the thermoviscoelastic process. The range of 

applied loads span a significant region of the phase space for the specimen and the 

estimated response function values and steady state transport coefficients remained constant 

over this range. The final results from the present project will be reported early in 1995. 

Acknowledgements 

The authors would like to acknowledge that this work was funded by the UK Science and 

Engineering Research Council and the CEC Non Nuclear Energy Program JOULE 11. The 

authors would like to acknowledge that Dr. A G. Dutton and Dr. G. M. Smith collected the 

time series data used in this paper. 

18 



References. 

[1] Green A E and Rivlin R S, The Mechanics of Non-linear Materials with 

Memory, Arch. Ration. Mech. and Anal., Vol. 1 (1), 1957, p 1-21. 

[2] Irving AD, Stochastic Sensitivity Analysis, Applied Mathematical 

Modelling, Vol. 16, January, 1992, p 3-15. 

[3] Gradowczyk M H, On the Accuracy of the Green-Rivlin Representation 

for Viscoelastic Materials, lnt. J. Solids and Struct., Vol. 5 (8), 1969, 

p 873-877. 

[4] Wiener N. Nonlinear problems in random theory. John Wiley, 1958. 

[5] Schetzen M, The Wiener and Volterra Theories ofNonlinear Systems, John 

Wiley, New York, 1980. 

[6] Pipkin A C and Rogers T G, A Non-linear Integral Representation for 

Viscoelastic Behaviour, J. of the Mechanics and Physics of Solids, Vol. 16, 

1968, p 59-74. 

[7] Lukas E. and Laka R. G., Applications of characteristic functions, Charles 

Griffin and Co. Ltd., London, 1964. 

[8] Lou YC and Schapery RA, Viscoelastic characterisation of nonlinear fibre 

reinforced plastic, J. Composite Materials, Vol5, 1971, p 208-234 

[9] Y aglom, An introduction to the theory of stationary random functions, 

Prentice Hall, Englewood Cliffs, 1962 

[10] Marsden JE and Hughes TJR, Mathematical foundations of elasticity, 

Prentice Hall, Englewood Cliffes, New Jersey, 1983 

[11] Ottino JM, The kenematics of mixing: stretching, chaos and transport, 

Cambridge University Press, Cambridge, 1989 

[12] Irving AD and Dewson T, On the analysis of complex time series, Submitted to 

App. Math. Modelling., 1994. 

[13] lrving AD, Dewson T, Hong G and Cunliffe N, General nonlinear response of 

a single input system to stochastic excitations, Submitted to App. Math. 

Modelling., 1993. 

19 



-J 
U1 
0 

00 

8 

00 
U1 
0 

0 
0 
0 
00 






