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Abstract 

Some preliminary calculations, using the matrix Hartree-Fock model, for the ground (X1 :E+) 
state ofthe thallium fluoride molecule are presented. The convergence ofthe calculations, carried 
out within the algebraic approximation, is monitored by employing systematically constructed 
basis sets of increasing size. The importance of bond centred functions is emphasized. For 
diatomic molecules containing light atoms the finite difference method has proved useful in 
calibrating calculations carried out with finite basis sets. The prospects for finite difference 
calculations for diatomic systems containing heavy atoms is assessed. 

1 Introduction 

Martensson-Pendrill [1] has recently surveyed the calculation of parity(P)- and time(T)-violating 
effects in atoms and molecules. An electron dipole moment on an elementary particle constitutes 
a violation of both parity and time reversal invariance [2]. Several reasons have been advanced for 
the choice of 205 Tl 19 F as a promising system to work with in the search for P- and T-violating 
effects[3] [4]. The most important advantage is the Z 2 of higher enhancement of the various P- and 
T- violating interactions for the Tl nucleus. The large mass number for 205 Tl implies a large nuclear 
radius maximizing any possible 'volume effect'. It is estimated that the polarization in the T lF 
molecule will lead to effects which are 105 larger than for the free 205Tl atom [5]. Tl and F nuclei 
have spin l=~ and no additional complexity due to non-spherical nuclei is introduced. 205Tl (1 9 F) 
has a single unpaired proton (hole) hence for volume and magnetic effects, the measure electric 
dipole moment is, to a first approximation, that of a proton. Finally, the 205Tl 19F is particularly 
suitable for molecular beam experiments [6]. 

• An invited paper delivered at the European Science Foundation Workshop on Parity Non-Con1ervation, Oxford, 
England, 7-10 April, 1994 
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The theoretical determination of proton electric dipole moment essentially requires the calcu
lation of the electric field gradient at the Tl nucleus. Coveney and Sandars [4] conclude that 

The electronic part of this problem poses the greatest theoretical difficulties. The molec
ular orbital calculations have been performed well away from the Hartree-Fock limit; this 
accounts for the strong dependence of our results both on the basis set employed and the 
internuclear distance used. 

Pseudo potential methods which are widely used in the study of molecules containing such heavy 
atoms are not useful for our present purposes because they are not capable of providing an accurate 
description of the electron density in the region of the nuclei. The use of an ab initio approach 
which describes all electrons in the system is an essential ingredient of any serious study of P
and T- violating interactions in the TIF molecule. However, even with today's high performance 
computing machines the accurate determination of the properties of the TIF molecule constitute 
a considerable challenge. 

The independent electron model provides a first approximation for the description of the elec
tronic structure of such systems. The non-relativistic Hartree-Fock model, formulated within the 
algebraic approximation, is ubiquitous in molecular electronic structure studies. The single parti
cle functions (orbitals) are parameterized by expansion in some finite basis set and the resulting 
algebraic equations solved for the expansion coefficients according to some self-consistent field pro
cedure. This matrix Hartree-Fock method yields at representation of the single particle spectrum, 
occupied and unoccupied, which can be used to develop a description of electron correlation effects. 
In recent years, fundamental problems, which arise when formulating the relativistic Dirac-Hartree
Fock method within the algebraic approximation, have been overcome permitting an accurate de
scription of systems containing heavy atoms for which the single particle functions associated with 
the atomic cores require a relativistic description. Beyond the independent electron model, elec
tron correlation effects can be systematically described by using the many-body perturbation theory 
within the algebraic approximation. The relativistic many-body perturbation theory can also be 
formulated within the algebraic approximation, within the no-virtual-pair approximation in which 
excitation from the negative energy sea are not considered, and beyond. 

Although an accurate energy does not necessarily imply accurate electric field gradient at the 
nucleus, it is suggested that the determination of an accurate energy must be considered a necessary 
first requirement, since any calculation which results in the accurate determination of a property 
such as the electric field gradient without obtaining an accurate energy value must result from 
a fortuitous cancellation of errors. However, the determination of an accurate energy value is a 
necessary but not sufficient condition for the determination of reliable electric field gradients at 
nuclei. Indeed, Sundholm et al [7] have emphasized that 

The electric field gradient, q, at a nucleus can be a notoriously difficult property to 
calculate reliably using the L CA 0 approach. For a simple system, like 1ft, the errors 
range from 2.1 percent [8] to 0. 5 percent [9]. Already for qLi in LiH, the typical basis 
set truncation errors for the largest basis sets are of the order of 10 percent [9]. 

For molecules the use of basis set expansion techniques is ubiquitous. For diatomic molecules 
containing light atoms finite difference and finite element methods can afford very accurate Hartree
Fock energies. The finite basis set method also involves an error attributable to truncation of the 
basis set. Comparisons of finite basis set studies with the results of finite difference and finite ele
ment calculations can afford a useful calibration of the former. This work describes our preliminary 
attempts to obtain an accurate non-relativistic Hartree-Fock description of the TlF (1:E+) system 
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and is merely the first step to a high precision description of this system. incorporating a description 
of both relativistic and electron correlation effects . 

The ground state electronic configuration for the Tl atom is 

Tl e P) : 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s 2 6p 

The Hartree-Fock energy (determined by finite difference calculation) for this atom has been quoted 
as -18,961.825 hartree (10]. The ground state electronic configuration for the F atom is 

F eP): 1s2 2s2 2p5 

and the Hartree-Fock energy for this has been quoted as -99.409349 hartree [10]. The ground state 
electronic configuration for the TlF (1 .E+) molecule 

TlF e .E+) : 1u2 2u2 3u2 4u2 5u2 6u2 7 CT
2 8u2 9u2 10u2 llu2 12u2 13u2 

14CT2 15CT2 h·4 271"4 371"4 471"4 571"4 671"4 771"4 87!"4 .971"4 1071"4 

164 264 364 464 1<p4 

It has recently been demonstrated that finite basis set Hartree-Fock calculations can yield 
energies which are of an accuracy approaching that achieved in finite difference and finite element 
calculations[ll] [12] [13] [14). The ground state of the N2 molecule at its equilibrium nuclear 
separation was used as a prototype[12]. The potential energy curve for the ground state of the 
CO molecule determined by the matrix Hartree-Fock method for those nuclear separations close 
to equilibrium for which the Hartree-Fock model provides a useful approximation have been shown 
to be in close agreement with the curve resulting from finite difference calculations[13). Very 
recent work has examined the ground state of the CS molecule using finite basis set and finite 
difference approaches[14]. Two-dimensional finite difference Hartree-Fock calculations for diatomic 
molecules are computationally feasible and give very accurate total energies and occupied orbital 
energies [15) [16) [17). The finite difference approach has been refined over recent years both in 
terms of the accuracy achieved and in terms of efficiency of the computational implementation (17) 
and has been shown to be competitive with the alternative fully numerical approach, the finite 
element technique(18]. Algorithms have been designed to take advantage of the vector processing 
capabilities of modern high performance computers [19]. It has been stressed [17) that, whilst finite 
difference and finite element techniques are often described as basis set independent methods, they 
are in fact grid dependent and ... inadequate grid size can easily spoil .the results, ensuring that the 
Hartree-Fock limit values are never reached. 

2 The accuracy of finite basis set Hartree-Fock calculations for 
diatomic molecules 

Almost ten years ago, it was established [20) that an accuracy approaching that achieved in finite 
difference Hartree-Fock calculations for diatomic molecules containing light atoms could be repro
duced in finite basis set calculations by using basis functions adapted to the special coordinate 
system available for such systems, namely, elliptical basis functions 

(1) 

in which a and {3 are screening constants and the prolate spheroidal coordinates 

{2) 
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(3) 

and 
(4) 

the azithmuthal angle. R is the internuclear separation and r 1 and r2 are the distances of a given 
point from nucleus 1 and 2, respectively. In addition to not being readily applicable to polyatomic 
molecular systems, basis sets of elliptical function exhibit more pronounced near linear dependent 
than the more common basis sets of exponential- or Gaussian-type basis function. Furthermore, 
evaluation of integrals over the electron-electron repulsion for basis sets of elliptical functions involve 
numerical integration which can affect the accuracy with which they are determined. 

Over the past year, it has been demonstrated that Hartree-Fock calculations for diatomic 
molecules containing first-row atoms carried out with finite basis sets expansions of Gaussian-type 
functions [11] [12] [13] [14] can lead to total energies approaching a sub-JLhartree level of accu
racy which had previously only been realized in fully numerical calculations using finite difference 
[15] [17] or finite element [18] techniques. 

The finite basis sets employed in the present study comprise spherical harmonic Gaussian-type 
functions 

(5) 

where the Yr(B, <p) are normalized spherical harmo~cs and the radial functions, R~ct(r), have the 
form 

Rkl(r) = {((/J.)2l+3 24l+7 j1r(2l + 1)!!2}t exp( -(,ft r2 ) 

with the exponents, (/J., forming a geometric progression 

In (/J. = In a:f + k In f3f, f3f > 1, k = 1, 2, ... , N 

(6) 

(7) 

As the number of basis functions, N, is increased we require that the basis set approach a complete 
set. The generalized Miintz-Szasz theorem [21] [22] [23] can be used to show that this is the case if 

lim a:f = 0 
N->oo 

(8) 

lim f3f = 1 
N-.oo 

(9) 

and 
. ( N)N lim {3l = oo. 

N->oo 
(10) 

The limits can be guaranteed by generating successive basis sets according to the following empirical 
recursions [24] 

(11) 

(12) 

In the present work the parameters employed in generating the basis sets are those used in our 
previous study of the gronnd state of the N 2 molecule [11] [12] and the CO molecule[13], and 
which has also recently been employed as a universal basis set in a study of a series of isoelectronic 
diatomic molecules [25). 

For diatomic molecules, the use of prolate spheroidal coordinates leads to two-dimensional, finite 
difference Hartree-Fock equations [15] which exhibit both stability and high precision [17] [19). 
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Table I: Values of the parameters a and f3 defining a sequence of even-tempered basis sets 

N a f3 
5 0.0938 4.9427 

6 0.0857 4.2906 

7 0.0797 3.8444 

8 0.0750 3.5192 

9 0.0712 3.2710 

10 0.0681 3.0749 

11 0.0654 2.9157 

12 0.0632 2.7838 

13 0.0612 2.6724 

14 0.0594 2.5770 

15 0.05782 2.4942 

A detailed description of the finite difference approach to the Hartree-Fock problem for diatomic 
molecules may be found elsewhere [15} [17} [19}. The solution of the Hartree-Fock equations involves 
the solution of Poisson-like, two-dimensional partial differential equations for the molecular orbitals 
and potentials, which are written in prolate spheroidal coordinates. The equations are defined on 
a rectangular region 

[1,eoo] x [-1, 1} (13) 

with eoo sufficiently large. The coordinate system actually employed in the present finite difference 
calculations is defined through the transformation 

11- = cosh - 1 e' ( 0 :S 11- :S 00) (14) 

and 
11 = COS-

1 77, (0 :S 11 :S 1r) (15) 

In these coordinates the grid points were distributed uniformly according to 

Jl-i = Jl-i-1 + 6p., i = 1, 2, ... ,np., p.o = 0 (16) 

with a step given by 
6p. = Roo/np. (17) 

where Roo is an approximation to infinity and np. is the number of points, and 

11j = 11j-l + 6", j = 1, 2, ... , n", 110 = 0 (18) 

with a step given by 6" = 2?r /n" where n" is the number of points. 
In Table II, the accuracy that can be achieved in matrix Hartree-Fock calculations of the total 

electronic energy using basis sets of atom-centred Gaussian-type functions is compared with the 
corresponding finite difference result for the ground state of the nitrogen molecule at its equilibrium 
nuclear geometry. The improved accuracy obtained in the finite basis set calculations upon adding 
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Table II: Matrix Hartree-Fock energies for the nitrogen molecule ground state from a sequence of 
atom-centred Gaussian-type functionst 

Basis set 

30s15p 

30s15p15d 

30s15p15d15/ 

finite differencet 

-E/hartree 

108.91072760 

108.99063433 

108.99361015 

108.993808 

t D.Moncrietf & S.Wilson, J. Phys. B: At. Mol. & Opt. Phys. 26, 1605 (1993) 

t D.Sundholm, P.Pyykkii & L.Laaksonen, Molec. Phys. 56, 1411 (1985) 

Table Ill: Comparison of finite basis set, finite difference and finite element Hartree-Fock calcula
tions for the nitrogen molecule ground state 

Method 

finite basis sett 

finite difference* 

finite element* 

-E/hartree 

108.9938234 

108.9938257 

108.993826 

t D.Moncrieff & S.Wilson, Chem. Phys. Lett. 209, 423 (1993) 

t J.Kobus, Chem. Phys. Lett. 202, 7 (1993) 

* D.Heinemann, A.Rosen & B.Fricke, Physica Scripta 42, 692 (1990); 
D.Heinemann, B.Fricke & D.Kolb, Phys. Rev. A38, 4994 (1988) 

Table IV: Calculated Hartree-Fock energies for the ground state of the CO molecule as a function 
of internuclear distancet 

r E finite difference E finite ba&iB s 
1.970 -112.781702 3 -112.781699 7 2.6 

2.000 -112.787 019 0 -112.787 016 4 2.6 

2.030 -112.790 497 7 - 112.790 495 2 2.5 

2.080 -112.792 699 7 -112.792 697 1 2.6 

2.132 -112.790 907 2 -112.790 904 5 2.7 

2.180 -112.786 171 2 -112.786168 6 2.6 

2.200 -112.783 446 6 -112.783 443 9 2.7 

2.230 -112.778 628 4 -112.778 625 8 2.6 

2.280 -112.768 885 1 -112.768 882 4 2.7 

2.330 -112.757 342 7 -112.757 340 0 2.7 

Energies are in hartree; energy differences, D = Efinile difference -Eflnile buia 1 

are in iJ.hartree; internuclear distance, r, is in bohr. 

t J. Kobus, D. Moncrietf and S. Wilson, submitted for publication 
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bond centred functions is illustrated in Table Ill where a difference of 2.3 JLhartree between the 
matrix Hartree-Fock and the numerical Hartree-Fock energy values is recorded. Table IV shows 
some recently obtained results for the ground state of the carbon monoxide molecule for that 
portion of the ground state potential energy curve which is adequately described by the Hartree
Fock model. Finally, in Table V, the results of some recently completed calculations for the ground 
state of the carbon monosulphide molecules are presented. They demonstrate little degradation of 
the accuracy achieved for a molecule containing a second row atom. 

Table V: A comparison of the recent Hartree-Fock calculations for CS with previous workt 

Method R E (M)HF Reference 

Finite difference 2.9006 -435.362 73 Pyykko et al [26] 

2.89964 -435.362 419 Kobus et al [13] 

2.89964 -435.362 419 81 Kobus et al [13] 

Finite basis set -435.329 69 Richards [27] 

2.8 -435.329 Robbe and Schamps [28] 

2.9 -435.309 4 Bruna et al [29] 

2.89964 -435.331 7 Green [30] 

2.89964 -435.346 27 Wilson [31] 

2.89964 -435.362 417 7 Kobus et al [13] 

Energies are in hartree; internuclear distance, r, is in bohr. 

t J.Kobus, D.Moncrieff and S.Wilson, J. Phys B: At. Mol. Opt. Phys. '(in press) 

3 The accuracy of finite basis set Dirac-Hartree_.Fock 
calculations 

The basis set requirement for relativistic electronic structure calculations are similar to those in 
the corresponding non-relativistic calculations. Table VI demonstrates the convergence of a Dirac
Hartree-Fock calculation for the ground state of the argon atom using a systematically constructed 
sequence of even-tempered basis sets. The total relativistic electronic energy converges to an accu
racy which is comparable with that achieved in finite difference calculations. However, unlike the 
finite difference calculations, the calculations carried out within the algebraic approximation also 
yield a representation of the entire Dirac spectrum, both positive and negative energy branches, 
which can be employed in a many-body perturbation expansion for correlation effects. Some rel
ativistic many-body perturbation theory calculations for the ground state of the argon atom are 
displayed in Table VII. 

Once the algebraic approximation has been invoked there is no difference in principle between 
atomic and molecular calculations . The molecular calculations are more demanding from a com
putational point of view and it is, therefore, often necessary to use a restricted basis set in order 
to maintain tractability. In Table VIII, the results of some previously reported Dirac-Hartree-Fock 
calculations for the ground state of the hydrogen chloride molecule are shown. They demonstrate 
the magnitude of the basis set truncation error in such calculations. However, by introducing basis 
sets of the type described in the preceding section for the non-relativistic case, it is to be ex-
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Table VI: Relativistic matrix Dirac-Hartree-Fock calculations for the ground state of the argon 
atom from a sequence of even-tempered basis setst 

N a: {3 -E/hartree 

9 0.500 1.500 528.64394819 

10 0.484 1.516 528.68336415 

11 0.470 1.486 528.68431173 

12 0.458 1.462 528.68428973 

13 0.447 1.440 528.68443068 

14 0.437 1.421 528 .68443246 

15 0.429 1.404 528.68444856 

16 0.421 1.389 528.68444990 

17 0.413 1.376 528.68445050 

finite difference 528.68445077 

t H.M.Quiney, I.P.Gra.nt & S.Wilson, in Many-Body Method1 in Quantum Chemi!try, 
edited by U.Kaldor, Lecture Notes in Chemistry 52, 307 (1989) 

Table VII: Relativistic finite basis set calculations for the argon ground state taking account of the 
effects of electron correlation 

Hartree-Fock (HF) energyt 

(Finite difference HF energy )f 
Dirac-Hartree-Fock-Coulomb (DHFC) energy* 

(Finite difference DHFC energy)* 

Dirac-Hartree-Fock-Breit (DHFB) energy* 

First order Breit energy* 

Dirac-Hartree-Fock-Breit energy plus 
first order Breit energy* 

Non-relativistic correlation energy {HF /MBPT-2)* 

Total non-relativistic energy (HF+MBPT-2)* 

Relativistic correlation energy (DHFC/MBPT-2)* 

Total relativistic energy (DHFC+MBPT-2)* 

Relativistic correlation energy (DHFB/MBPT-2)* 

Total relativistic energy {DHFB+MBPT-2)* 

t B.H. Wells & S. Wilson, J. Phys. B: At. Mol. Phys. 19, 2411 (1986) 

E/hartree 

-526.817 48 

-526.817 51 

-528.684 45 

-528.684 45 

-528.55212 

+0.132 37 

-528.552 09 

-0.638 68 

-527.456 16 

-0.639 42 

-529.323 87 

-0.646 20 

-529.198 32 

t C. Froese Fischer, The Hartree-Fock Method for Atom!. A numerical approach (New York, Interscience, 1977) 

* H.M. Quiney, I.P. Grant & S. Wilson, J. Phys. B: At. Mol. Phys. 23, L271 (1990) 
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Table VIII: Some calculated energies for the ground state of the HCl molecule with an internuclear 
separation of 2.40 bohrt 

E(MHF) 

E(NHF) 

E(MDHFC) 

eBSTE 

eRel. 

eNon-Rel. MBPT-2 

E/hartree 

-460.060 54 

-460.113 05 

-461.525 38 

0.054 52 

-1.464 56 

-0.304 06 

MHF: Matrix Hartree-Fock; NHF: Numerical Hartree-Fock; 
MDHFC: Matrix Dirac-Hartree-Fock-Coulomb; BSTE: Basis Set Truncation -Error 

t L. Laaksonen, I.P. Grant &; S. Wilson, J. Phys. B: At. Mol. Opt. Phys. 21, 19.69 (1988) 

pected that a sub-JLhartree level of accuracy can also be achieved in relativistic.Dirac-Hartree-Fock 
calculations. 

4 Preliminary calculations for the TlF molecule 

A series of non-relativistic calculations for the ground state of the thallium fluoride molecule have 
been commenced using the approach which has been described above and previously been em
ployed in our study of the nitrogen, carbon monoxide and carbon monosulphide molecules. The 
calculations were performed with the program of Frisch et al [32]. 

A basis set for the Tl and F atoms was developed using the parameters wb.ich have previously 
been employed for the ground state of the nitrogen molecule and in a study of.universal basis set 
for high precision studies. Following Bardo and Ruedenberg [33] and Clementi T10] the exponents 
for each symmetry type were taken to be identical although only certain functions where taken 
to be "active" in each case. Starting from the 27 s basis set for the nitrogen :atom extra diffuse 
and contracted functions were added until the range of values taken by the ·.exponents included 
the range covered by the exponents given by Clementi in his extra-large geometric basis set [10). 
Explicitly, the exponents where generated using the formula 

(p = a(JP, p =it, il + 1, ... , fl- 1, fl 

The specific values of the exponents employed are presented in Table IX. This 'table defines a basis 
set of 379 primitive, atom-centred, Gaussian-type functions which is designated .[Tl : 31s25p19d14; 
F : 26s18p]. The energy calculated with this basis set was found to lie /"V 21 hartree below the 
value reported by Coveney and Sandars [4] 

The basis set was further extended by keeping the parameters a and {3 fixed and varying the 
indices il and fl. The details of this refinement of the basis set are presented ,in Table XI. The 
corresponding energies are given in Table X. Linear dependence in the basis sets was monitored 
by recording the number of eigenvalues of the overlap matrix lying below 10-6 together with the 
smallest eigenvalue. This is done in Table XII. In Table XIII, the variation of the energy associated 
with the Tl core orbital is given for each of the basis sets studied. Finally, in Table X, the 
improvement obtained on adding a set of bond centred functions is recorded. 
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Table IX: Even-tempered basis sets for thallium and fluorine 

(p Tl F 

0.0120 p 

0.0237 SP 

0.0466 SP SP 

0.0918 SPD SP 

0.1808 SPD SP 

0.3562 SPD SP 

0.7015 SPDF SP 

1.3818 SPDF SP 

2.7216 SPDF SP 

5.3606 SPDF SP 

10.558 SPDF SP 

20.796 SPDF SP 

40.961 SPDF SP 

80.677 SPDF SP 

158.90 SPDF SP 

312.98 SPDF SP 

616.46 SPDF SP 

1214.21 SPDF SP 

2391.55 SPDF SP 

4710.5 SPDF SP 

9277.9 SPD s 
18274.1 SPD s 
35993.2 SP s 
70893.4 SP s 

139634.0 SP s 
275027.9 s s 
541704.1 s s 

1066958.5 s s 
2101517.1 s 
4139218.2 s 
8152742.4 s 

16057913.7 s 
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Table X: Some calculated total Hartree-Fock energies for the ground state of the TlF molecule 

Basis set Nbasis Reference E/hartree 

Minimum set of exponential functions 33 a -19019.27264 

Double zeta set of exponential functions 51 a -19040.30775 

[Tl: 31s25p19d14; F: 26s18p] 379 b -19061.36279 

[Tl: 37s28p21d15; F: 30s20p] 421 b -19061.36 789 

[Tl: 43s31p23d165f; F: 34s22p] 463 b -19061.36855 

[Tl : 44s33p26d18f; F : 34s22p] 499 b -19061 .36856 

[Tl: 44s33p26d18f; F: 34s22p; 27s be] 526 b -19061.37001 

a Coveney & Sandars (1983) 
b Present work 

Table XI: Even-tempered basis sets of Gaussian-type functions employed in preliminary calculations 
for the TlF ground state 

Basis set i. !. ip fp id !d 'tf ft 
Tl : 31s25p19d14 -1 29 -2 22 1 19 4 17 

F: 26s18p 0 25 0 17 - - - -
Tl: 37s28p21d15 -5 31 - 4 23 0 20 3 17 

F: 30s20p -1 28 - 1 18 - - - -

Tl:43s31p23d165f -7 35 - 5 25 -1 21 3 18 

F: 34s22p -2 31 - 2 19 

Tl: 44s33p26d18f -7 36 - 5 27 -1 24 3 20 

Table XII: Near linear dependence in the basis sets m is the number of eigenvalues of the overlap 
matrix which are less than 10-5 , E is the smallest eigenvalue of the overlap matrix 

Basis set Nbasis m E 

[Tl : 31s25p19d14; F : 26s18p] 379 0 6.7 x 10-5 

[Tl: 37s28p21d15; F: 30s20p] 421 0 4.1 X 10-5 

[Tl : 43s31p23d165/; F : 34s22p] 463 3 1.5 X 10-6 

[Tl: 44s33p26d18/; F: 34s22p] 499 5 3.6 x 10-7 
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Table XIII: Orbital energy for the thallium core 

Basis set 

[Tl : 31s25p19d14; F : 26s18p] 

[Tl: 37s28p21d15; F: 30s20p] 

[Tl: 43s31p23d165f; F : 34s22p] 

[Tl : 44s33p26d18f; F : 34s22p] 

-2851.560 147 62 

-2851.559 019 11 

-2851.558 829 13 

-2851.558 821 02 

The convergence of finite basis set calculations can be monitored by comparison with the results 
of finite difference (or finite element) Hartree-Fock calculations when available. Finite difference 
programs for diatomic molecules available at present employ an equidistant grid (19] . Now for 
the ground state of the Tl atom a finite difference calculation using the GRASP2 package has 
shown that the 1s orbital assumes a maximum at "' 0.01 bohr whilst the 6s orbital has nodes at 
"' 0.019, "' 0.076, "' 0.19, "'0.46, "' 1.0 bohr and a.n outermost maximum at "' 2.3 bohr. To be 
able to reproduce the orbitals and their nodal structure in the TlF molecule to a reasonable level 
of accuracy one might expect to adopt an equidistant grid w.ith a step size of"' 0.002 bohr. Setting 
the practical approximation to infinity, Roo, at 10 bohr, which is probably not adequate, leads to a 
requirement of 5000 points in p., which together with an estimated 1000 points in v, gives a total of 
5 x 106 points. Calculations of this magnitude will only be rendered tractable by exploiting sparcity 
and/or by using multiple grids. 

5 Prospect 

Some preliminary matrix Hartree-Fock studies of the ground state of the TIF molecule using 
systematically constructed basis sets of even-tempered basis sets of Gaussian-type functions have 
been presented. The results suggest that it will be possible to achieve the level of accuracy which 
has been realized in previous studies of diatomic molecules containing lighter atoms. It is proposed 
that, by studying the sequence BF, AlF, GaF, InF, TlF, the accuracy that can be obtained for 
the T l F molecule within the Hartree-Fock approximation can be reliably assessed. Fully numerical 
Hartree-Fock calculations for the first two members of this sequence have been reported by Pyykko 
et al (26] . The prospects for fully numerical Hartree-Fock calculations for the remaining member 
of this sequence have been briefly discussed. The matrix Hartree-Fock study will yield a basis set 
that can be employed in high precision Dirac-Hartree-Fock-Breit calculations and representation 
of the virtual spectrum which can be employed in describing developing accurate descriptions of 
electron correlation effects. 

Acknowledgement. DM acknowledges the support of the US Department of Energy through 
Contract No. DE-FC05-85ER2500000. 

N ate added in proof. 
Ishikawa [34] has pointed out that it is possible to calculate accurate electric field gradients at 
nuclei with Gaussian-type basis sets provided that the point nucleus model is abandoned in favour 
of a more realistic finite nucleus model. 
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