
RAL Report
RAL-94-092

Partitioning Methods for Unstructured
Finite Element Meshes
C Greenough and R F Fowler

August 1994

Rutherford Appleton Laboratory Chilton DIDCOT Oxfordshire OX11 oax

ORAL is part of the Engineering and Physical
Sciences Research Council
The Engineering and Physical Sciences Research Council
does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or
in any communication about its tests or investigations

Partitioning Methods for Unstructured Finite Element
Meshes

C. Greenough and R.F. Fowler

1 March 1994

Abstract

During the last few years there has been a rapid development of computer systems that use parallelism to achieve

high computational performance. This has lead to a growth in research in the area of parallel computational

methods. As part of this research. as in the field SIMD research, old algorithms have been revisited to assess

their inherent parallelism. In the field ofMIMD architectures the general belief held is that divide and conquer

algorithms are most suitable for these types of machines. This has re-opened research into domain decomposition

methods.

In this paper we review and compare a range of basic methods which can be used to partition finite element

meshes. These have been implemented within a software tool called ralpar and tests made on a small set of

3D meshes. The comparisons are made in terms of the basic attributes of the partitions such as number of

neighbours. number of interface nodes and number of cut edges in the underlying graph.

We also describe some of the extensions to these methods we have made and compare these with existing

techniques together with some ideas of partition assessment based on software and architectural models.

Mathematical Software Group

Computational Modelling Division

Rutherford Appleton Laboratory

Chilton, Didcot

Oxfordshire OXll OQX

Contents

1 Introduction ~ o o " o " o 0 " I o 1

2 Domain Decomposition Methods 1

3 Mesh Partitioning Techniques 2
3.1 Greedy methods 3
3.2 Bandwidth minimisation . 3
3.3 Recursive Bisection Methods 4

3.3.1 Coordinate bisection . 4
3.3.2 Graph bisection ... 4
3.3.3 Spectral bisection .. 4
3.3.4 Kemighan and Lin methods . 6

3.4 Element and domain weighting 6

4 Performance Assessment . 6

5 Some Test Examples 7

6 Partitioning Results 9

7 Conclusions 10

1 Introduction

The use of computing systems with some type of parallel.architecture has grown significantly over
the past few years. These systems are seen as the path by which suffiCient computing power can be
provided for accurate 3D simulations of complex phenomenon in fluid dynamics, stress analysis and
electromagnetism. Such simulations typically use meshes or grids containing 105 to 106 nodes and
may employ automatic grid refinement during the solution.

Many of the parallel machines being used are based on the MIMD form of parallelism where the
memory of the machine is distributed over a network of processors. A consequence of this is that
the program and its associated data must be distributed between ·these processors. In finite volume

and finite element methods this leads to the problem of qow to distribute large unstructured grids and
meshes initially, and how to redistribute them subsequently, if refinement is made.

In section 2 we briefly discuss domain decomposition methods and related techniques for paral­
lelisation of unstructured grid calculations. We then describe the set of partitioning methods that have
been studied in this work. Ways of measuring the quality of the partitions are then considered, and
finally we present and discuss some comparative results on 3D meshes.

2 Domain Decomposition Methods

The partitioning of finite volume and finite element meshes is fundamental to the use of computing
systems with parallel architectures. This is true whether the numerical algorithm being used is explicit

or implicit. At some point in the solution there will be a need to transfer data between processors. The

goal of partitioning methods is to reduce to a minimum the communication cost of this information
transfer whilst ensuring that the computational load for each processor is, as near as possible, equal.
In many problems the load balance can be simply related to an equi~distribution of the number of grid
points or finite elements between the processors and the communication cost to the number of node

points on the subdomain interfaces.
The most practical method offormalising the division of a grid or mesh into a number ofsubdomains

is by use of the connectivity graph associated with the mesh. Each vertex of the graph is associated

with an element or volume and the edges of the graph depict the connectivity.

There is considerable interest in the mesh partitioning problem as can be seen in recent publications,

e.g. [2], [10], [3]. Hendrickson [11] and Barnard [16] review the current situation with multi-level

graph partitioning methods and demonstrate some of the potential of the approach.
One deficiency in the literature is the lack of references to mesh re-distribution on parallel systems.

This will be important in the case of automatic mesh adaption. A recent publication which addresses

this problem is a report by Diniz [6] on a distributed graph partitioning algorithm, though this was not
available at the time of writing. Khan and Topping [18] have considered the problem using Genetic
algorithms and neural networks and they present some interesting results for two dimensional meshes.

The basic objectives of Domain Decomposition algorithms (DD) are to:

• decompose the original problem into smaller subdomains,

• solve the original problem on the subdomains, and

• to somehow patch the subdomainsolutions together to form the solution to the original problem.

In general the above must be repeated iteratively until some convergence criterion is satisfied.

The alternative approach. which is usually differentiated from true domain decomposition. is to

retain the algorithm used in the serial solution, but to implement it in parallel. This still requires
a partitioning of the mesh that assigns equal amounts of data to each processor and minimises

communication costs of the interfaces.

Originally DD methods were used to enable the solution of stress analysis problems too large for

computer memories. This was often termed substructuring. Many different algorithms have been

developed over the last few years and indeed there is an annual conference on DD methods [4].

The methods mainly differ in the following ways:

• the partitioning of the domain (with or without overlap regions)

• the way in which they solve the subdomain problems (exactly or inexactly)

• the way in which they construct the problem for the interfaces (from the PDE or algebraically

from the matrix)

Not all these approaches are suitable for all problems. The method must in general be matched to

the problem. The two main approaches are characterised by the way the subdomains are constructed,

namely, overlapping or non-overlapping. The main overlapping approach is based on the Schwarz

alternating procedure [14] or variants of this .

The non-overlapping approach decomposes the domain into non-overlapping subdomains with

lower dimensional interfaces. In a two-dimensional problem the interface will be one-dimensional.

The reduced interface operator is usually not local and requires subdomain solutions. The most

common approach is to form the Schur complement matrix of the interface.

In both cases a partitioning of the mesh is required that will minimise communication costs. In

this paper we only consider non-overlapping partitions.

3 Mesh Partitioning Techniques

A large number of methods of mesh partitioning have been developed. Most rely on the topology of

the finite element mesh either directly or through processing the connectivity graph. A number of the

techniques are:

• Coordinate bisection (Fox, [9])

• Greedy (Farhat & Wilson. [7])

• Bandwidth minimisation (Malone, [13])

• Inertial bisection

• MINCUT (Kemighan & Lin , [12])

• Recursive Graph Bisection (Williams, [17])

• MINGRAPH (Hu and Blake, [3])

• Spectral bisection (Simon el al. [15])

• Simulated annealing (Baiardi et a/, [1])

• Multi-level methods (Bamard & Simon, [16])

We outline some of these methods below. Full implementation details will be given in [20, 21].

2

3.1 Greedy methods

The algorithm of Farhat (7] is a ''Greedy" method which gathers elements about a seed point for each

domain. It is based on assigning a weight to each node equal to the number of elements attached to

it. In a problem with N elements and p processor we require NP = N fp elements assigned to each

processor. The algorithm proceeds as follows:

1. Form nodal weighting array

2. do p = 1 until NP

2.1 Locate node n with next minimum available weight

2.2 Label all elements attached to this node; they initiate the list of elements of

the pth subdomain
2.3 Recursively add to this list the elements adjacent to those already labeled,

starting always from the first labeled element in the previous step.

2.4 Remove used elements from list and update nodal weights.

This process is repeated until the complete mesh is partitioned.

Many variations of this method are possible. A Modified Farhat method has been proposed by

Fowler et a/ [19]. This is based on the observation that at each cycle the algorithm selects a new

minima as its next starting point. It is clear from the structure of finite element meshes that at each

cycle of this algorithm there are going to be a number of nodes with the minimum connection weight.
The Modified algorithm seeks to try a limited number of these alternative starting points at each cycle

of the algorithm. The number of trials has to be limited because the total number of choices increases

rapidly with the number of partitions.

3.2 Bandwidth minimisation

This method was proposed in [13] by Malone. An arbitrary finite element mesh is fully defined by

specifying the element types, the coordinates of the nodes and a list of the nodes associated with each

element. From the node association a connection matrix C is formed. C is defined by:

C'· =l '.7

if nodes i and j are connected, otherwise

Cii =0

The half-bandwidth m of the matrix C is defined by

m = max { li - j I}
e;J:;eo

(1)

(2)

(3)

The connection matrix C presents the sparsity distribution of the system matrices that will results in

the finite element assembly.
The Malone method first requires a bandwidth minimisation on the nodal numbering. There are a

number of well known algorithms to do this. Then the list of elements is sorted according to the lowest

node number within each element. The partition into p parts is than made be dividing this ordered list

into the required number of sections.

A simple variation on this method is to use an algorithm for profile minimisation, rather than

bandwidth minimisation. It is shown in [20] that in many cases this gives slightly superior results

to bandwidth minimisation. Another possibility is to use the Malone method in a recursive bisection

manner as described in the next section.

3

3.3 Recursive Bisection Methods

Recursive bisection methods seek to divide the connection graph in half at each step. This is usually

easier than trying to do p-sections. The methods have two main advantages:

• each subproblem is easier than the general problem, and

• there is some natural parallelism in the method.

In many methods a scale quantity se is associated with each graph vertex e, which is often called a
separator field. By evaluating the median S of se the graph is split according to se being greater or

less than S. However, any partitioning method. including the Greedy and Bandwidth ones above, can

be used recursively if desired. Strict recursive bisection is limited to 211 partitions for integer n.
Four methods which have been implemented in this way are as follows:

3.3.1 Coordinate bisection

In the coordinate bisection method the (x, y, .:) coordinates of the centroid of an element are used
to define the position of that element. The coordinates are then sorted into order in each coordinate
direction. The bisection is made by dividing the graph into two about the median in one direction.

This process can then be repeated on the sub graphs to generate 4,8.16, ... partitions. Typically the

first cut will be made in the :z: direction, followed by y, ::, :r and so on. A variation of this. which we
have investigated. is to attempt to cut the graph in each of the 3 directions at every bisection step. We
then select the cut direction that gives the fewest interface nodes between domains. We refer to this as

Cost-Geometric bisection.

The above type of geometric bisection uses the Cartesian coordinate directions. However in general

there is no reason for the mesh to "align" with these directions and the results are not invariant to

rotation of the mesh. An alternative is to use the principal axes of inertia of the mesh. determined by
assuming unit mass at each vertex. Again a number of variations are possible, such as making the cut
on the axis of lowest inertia or trying all3 axes to find the one with lowest interface node cost.

3.3.2 Graph bisection

The graph bisection algorithm tries to find the maximum diameter of the connectivity graph. This can

be done by a few iterations of labeling levels of the graph about a seed point and then setting the new

seed point to the last labeled vertex. The basic step of the graph partitioning then is then to divide the

vertices of the graph according to their level numbers from the last seed point.

The results obtained are dependent on how the connectivity graph is defined. One possibility is to
say that two elements are connected if they share a common face (or. in 2D, a common edge). In [3]

this is called the edge communication graph. Another definition is that two elements are connected
if they share a common node, and [3] refers to this as the true communication graph. Which is more

appropriate may depend on the details of the computational method. We allow either definition to be
used.

3.3.3 Spech·al bisection

Below is a simple example of the Spectral Bisection method. A full explanation can be found in e.g.

[2]. The mesh and graph are:

4

6

3
5

4

Figure 1: A Simple Finite Element Mesh with Associated Graph

The Lap1acian of the connection graph L (G) is given by:

{

-1 if (vi, Vj)EE

li.i = deg(vi) if i = j
0 otherwise

(4)

This simple mesh lead to the following Laplacian matrix:

1 -1 0 0 0 0

-1 3 -1 0 0 -1

L(G) = 0 -1 2 -1 0 0
(5)

0 0 -1 2 -1 0

0 0 0 -1 2 -1
0 -1 0 0 -1 2

Starting from the requirement to minimise the number of cut edges in the graph bisection, it can be

shown [2] that the eigenvector associated with the second smallest eigenvalue is a good candidate for

use as a separator field.

The second eigenvalue and associated eigenvector in this case are:

,\2 = 0.6972

X2 = [-6.606 -2 1 3.303 3.303 1]

On the basis of this we can partition graph the as:

P1 = { 1, 2, 6 } and P2 = { 3, 4, 5 }

or

P1 = { 1, 2, 3 } and P2 = { 4, 5, 6}

(6)

(7)

Either choice is valid. For realistic problem sizes an efficient solution of the sparse eigenvalue problem

is essential.

5

3.3.4 Kemighan and Lin methods

The MINCUT algorithm of Kernighan and Lin [12], can be used to improve an existing bisection of
the graph. It does this by repeatedly swapping vertices between domains in an ordered manner, and
then selecting the best result as the starting point for the next iteration. The function that this method

tries to minimise is the number of cut edges in the graph, as in the spectral method. Vertices are
selected for swapping according to their effect on the cost function, with those that decrease it most

taken first. Moves that increase the cost function can be accepted, if a lower minimum occurs later in
the iteration. Careful implementation of the method is necessary to prevent it becoming excessively
expensive for large meshes.

The starting configuration may be totally random or some ordered partition. Hu and Blake [3]
use the Graph Bisection method to generate a starting configuration (MINGRAPH). This and the
random start method have been implemented along with a Greedy variation. This starts by assigning
all vertices to one domain and then uses the ordered swapping technique of the MINCUT method to
achieve balance. This works because swaps are always made from the partition with most vertices to
the one with least. In this paper refer to this as RKLG (Recursive Kernighan and Lin with Greedy
start) though MINGREEDY might be more appropriate.

3.4 Element and domain weighting

An important extension to the partitioning methods discussed above is the inclusion of element
weighting. This can be required if the computational work associated of each element is not the same.
This is the case when using a mixed element mesh as the amount computation will depend on the
number of nodes in an element.

The user can specify the weight as a real value for each element, or in terms of the number of
nodes in an element. Then each method is modified so that instead of trying to produce p partitions of
N fp nodes each, it looks for partitions with weight as close as possible to:

where w; is the weight of the element i.

TV= L;Wi
N

(8)

Another extension that is becoming important for computations on heterogeneous workstation
clusters is that of domain weighting. It may be that one machine is more powerful than the others and
hence should have a larger share of the work. This can also be included in the above scheme.

4 Performance Assessment

There are a number of factors that can be used to assess the performance of these methods:

• The cost of the method in computational time.

• The cost of the method measured as a function of the effect of the partition on the complete
solution process.

• To what degree can the method be parallelised?

The first of these is not difficult to measure. A complexity analysis coupled with timings from a
number of trial meshes will allow some objective measures to be made. Care must be taken to ensure
that the trial meshes contain a representative selection of geometries and connection patterns.

6

The second type of assessment is far more difficult since the methods used to parallelise the

application program will depended on the computational methods being used to solve the physical

problem. The parallelisation techniques will have their own requirements on the properties of the

partitions. In this paper we present some results for the number of interface nodes that are generated

by each method. This measure will be important if an algorithm that solves the interface problem is

being used. We also look at the average number of neighbouring domains for each processor which is

important if communication start up time is significant.

The final criterion is very important if methods involving adaptive refinement are going to be used

in the application.

5 Some Test Examples

Three meshes have been used in testing and assessing the partitions produced by the different methods.

These meshes were provided by Bertin & Cie within the IDENTIFY Esprit project.

Although the initial testing of the methods was performed using two-dimensional meshes, these

are all three-dimensional meshes using a range of element types. The first, referred to as JET, is

illustrated in Figure 2 and is a composed of 360 hexahedral elements with 548 nodes.

Figure 2: The JET test mesh. Only the surface mesh is shown.

The second mesh (COUDE), is composed of tetrahedral elements and prisms (6 noded elements),

with 399 nodes and 902 elements. This is illustrated in Figure 3.

The final example, which is more representative of the sort of mesh used in real engineering

applications, is that of an engine cylinder. This mesh has 23446 hexahedral elements and 26573

nodes. The mesh, referred to as TUBU, is shown in Figure 4. This mesh is still small compared to

many current requirements, but does represent the expected level of complexity.

7

Figure 3: The COUDE mesh. A mixed mesh of tetrahedra and prisms.

Figure 4: The TUBU engine cylinder mesh.

8

6 Partitioning Results

To compare the methods, each of the test meshes has been partitioned, using a selection of techniques,
into N = 2n parts for n from 2 to 8.

In addition to the methods which have implemented ourselves, we have looked at the software
package CHACO [5], from Sandia National Laboratories, which implements the spectral bisection
method of mesh partitioning.

At the present time we have only obtained results using spectral bisection on the TUBU mesh.
The CHACO package allows the user a range of options and the results reported here refer to the
multilevel version of the spectral method. In this approach, the mesh is "coarsened" by allowing
certain neighbouring elements to merge. This reduces the size of the eigenvalue problem that has to be

solved for bisection. After the bisection on the coarse mesh has been made the results are propagated
up to the real mesh. Since the bisection on the fine mesh may now be less good than if the standard
spectral method had been used , an extra refinement is made using the Kemighan and Lin algorithm
[12].

Table 1 gives the results for the cost function for the JET mesh along with the average number of
neighbour domains for each domain. Similar results are given in tables 2 and 3 for the COUDE and

TIJBU meshes. The cost value is the number of interface nodes generated.

Interface node cost of Method
Partitions Farhat Malone Geo-bis. Cost-Geo. Inertia

2 71 51 64 55 64
4 144 152 Ill 112 111
8 252 .357 218 205 231

16 339 440 326 290 331
32 413 472 380 385 395

64 476 505 472 457 476
128 513 527 521 507 525
256 531 535 533 526 534

Average number of neighbours

Partitions Farhat M alone Geo-bis. Cost-Geo. Inertia

2 1.00 1.00 1.00 1.00 1.00
4 2.50 1.50 2.50 3.00 2.50
8 3.50 1.75 5.50 5.25 5.00

16 7.13 3.63 6.50 6.50 6.25
32 9.38 6.63 8.00 8.38 7.75
64 9.67 6.03 10.65 10.03 10.59

128 11.78 9.00 10.72 13.22 10.86
256 10.33 9.24 10.37 13.64 10.46

Table 1: Cost and neighbour results for partitioning the JET mesh.

The cost results for the TUBU mesh are illustrated in Figure 5. It can be seen that, in terms of

the cost function, the spectral bisection and Kemighan and Lin (RKLG) methods give the best results.
For the case of 2 or 4 partitions the spectral cost is about half that of the Farhat (greedy) and the
cost-geometric bisection methods . For larger numbers of partitions the relative advantage of spectral

9

Interface node cost of Method
Partitions Farhat Malone Geo-bis. Cost-Geo. Inertia

2 36 49 56 50 66
4 106 122 144 94 114
8 168 235 190 149 195

16 227 299 256 216 270
32 289 345 301 285 315
64 330 365 350 329 353

128 360 374 375 358 377
256 382 385 388 382 387

Average number of neighbours
Partitions Farhat Malone Geo-bis. Cost-Geo. Inertia

2 1.00 1.00 1.00 1.00 1.00
4 2.50 1.50 3.00 3.00 2.50
8 4.75 3.00 5.50 5.25 5.25

16 7.38 5.13 7.00 6.50 7.25

32 9.06 9.19 8.94 8.38 8.63
64 10.53 12.47 10.06 10.03 10.09

128 11.13 12.63 10.28 13.22 11.16
256 9.98 11.15 9.98 13.64 10.13

Table 2: Cost and neighbour results for partitioning the COUDE mesh.

bisection decreases. With 512 partitions the spectral method gives a cost only 7% better than Farhat,
though of course the domains are very small at this point.

In Figure 6 we show the average number of neighbouring domains for each method on the TUBU
mesh, again as a function of the number of partitions.

It can be seen that the Malone method (profile minimisation) generally gives the lowest number
of neighbouring domains, though at the cost of generating large interfaces due to its slicewise decom­
position. The spectral bisection method is not as good as the M alone method in this respect, though
better than many of the others. For larger numbers of partitions the RKLG method is better than the
spectral method on this measure.

7 Conclusions

The best domain partitioning method will depend both on the mesh used and on the particular
application the decomposition will be employed in. For the TUBU mesh, which is the test example

most closely representing the expected meshes for real engineering applications, we have seen that
the best results, in terms of our cost function, are given by the multilevel spectral bisection algorithm
used in the CHACO package and the RKLG method. However, the simpler cost-geometric bisection
and Farhat methods give results that are only slightly worse for larger numbers of partitions.

This comparison is valid if the parallel computation is dependent on the number of interface nodes
that are generated, as is often the case. However, if the parallel machine used has a very high start up
time for communications, or very expensive multi-hop communication, then minimising the number
of neighbour domains may be an advantage. In this case the Malone method would be the one of

10

Interface node cost of method
Partitions Far hat Malone Geo-bis Cost-Geo Inertia RGraB Speco·al RKLG

2 660 699 1315 825 1102 741 377 474
4 2040 2156 3899 1879 3578 1931 983 1103

8 3610 4824 4890 3185 5035 3826 2202 2352
16 5279 9309 6688 4947 7197 5605 3660 3753
32 7760 18390 10645 7199 10961 7894 6103 5997

64 9990 23270 12244 9594 13399 10901 8741 9286
128 12885 24706 15557 12474 16641 13839 11582 11985
256 15984 25245 20169 15774 20723 16884 14686 14700
512 19096 25627 21909 19124 22800 19921 17906 17408

Average number of neighbours
Partitions Farhat M alone Geo-bis. Cost-Geo. Inertia RGraB Spectral RKLG

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 3.00 1.50 2.50 2.00 2.50 2.00 2.00 3.00

8 3.75 1.75 4.75 3.25 5.50 3.00 3.00 3.50
16 5.63 1.88 6.00 5.38 6.63 4.25 4.50 4.50

32 8.13 2.56 7 .81 6.44 8.50 6.31 5.81 5.38

64 9.25 4.38 9.31 8.34 9.72 8.47 7.75 6.78
128 11.19 7.34 10.16 9.81 10.81 10.73 9.08 8.20

256 12.43 10.36 12.29 11.00 13.50 12.31 10.73 9.98
512 13.21 12.13 13.51 12.32 14.31 13.52 11 .83 11.93

Table 3: Cost and neighbour results for partitioning the TUBU mesh. RGarB is recursive graph

bisection and RKLG is recursive Kemighan and Lin with a "greedy" start.

25ooo r----,r---r--...---.--....--:-=~==::::.-J

...
"' 8

20000

.g 15000
c
8 -s
£ 10000

13 .s

5000

2

Malone­
Inertia -+···

Geo ·G···
R-inertia

Graph -•·-··
Cost-Geo -•·· ·

Farhat ··• ·· ·
RKLG ··+···

Spectral ·-B····

4 8 16 32 64 128 256 512
No. of partitions

Figure 5: Cost as a function of number of partitions for the TUBU mesh.

11

14

"' 12 .s
"' e
.g

10 ...
:::>
0
.0
..<::
bll 8
~
0

~
6

G)
bll
~
G)

4

~
2

0
2

Malone-+­
Inertia ·+···

Geo ·O···
R-inertia -M--·

Graph -•·-··
Cost-Geo ·•·· ·

Farhat ·+···
RKLG · ·~···

Spectral ·-B····

4 8 16 32 64 128 256 512
No. of partitions

Figure 6: Average number of neighbouring domains as a function of number of partitions for the
TUBUmesh.

choice.
Since in most engineering applications the linear algebra will dominate the solution time it is

important that the effect of a particular partition on this element of the solution be assessed. The
simple cost function implemented in our software goes some way towards this assessment but a more

sophisticated cost function is required. It is necessary to consider both the algorithm and the parallel
machine it is to be used on.

Although considerable work has been done on static partitioning methods there are still further
areas to be explored. However, with meshes becoming larger and larger, the need is for dynamic data
allocation methods. The parallel versions of some of the partitioning techniques outlined in this paper
may be the starting point of such algorithms.

Acknowledgments

This work was supported in part by the European Commission through the ESPRIT project IDENTIFY,
number 6753. Test meshes were supplied by Bertin et Compagnie, France. We wish to thank Bruce
Hendrickson and Robert Leland for making the CHACO package available to us.

12

References

[1] F Baiardi and S Orlando: "Strategies for a massively parallel implementation of simulated
annealing", Springer-Verlag Lecture Notes in Camp. Sci. 366,273 (1989).

[2] C Walshaw and M Berzins: "Dynamic load-balancing for PDE solvers using adaptive un­
structured meshes", School of Computer Studies, University of Leeds, 1992

[3] YF Hu and RJ Blake: "Numerical Experiences with Partitioning Unstructured Meshes",
Daresbury Laboratory Report, DL/SCI/P865T, March 1993

[4] T Chan (ed): "Proceedings of the 2nd International Symposium on Domain Decomposition
Methods for PDEs", SIAM Publications, Philadelphia, (1988).

[5] B Hendrickson and R Leland: "The Chaco User's Guide, Version 1.0", SANDIA Report
SAND93-2339, November 1993, SANDIA Laboratories.

[6] P Diniz, B Hendrickson, R Leland and S Plimton: "A new parallel distributed graph parti­
tioning algorithm", Technical Report, Sandia National Laboratories, Albuquerque, NM, 1993
(In preparation)

[7] C Farhat, W Wilson and G Powell: "Solution of Finite Element Systems on Concurrent
Processing Computers" Engineering with Computers, 2, 157-165, (1987).

[8] RP Fowler, BW Henderson and C Greenough: "Grid Partitioning Techniques", IDENTIFY
Report, RAL.93.8, December 1993.

[9] GC Fox: Numerical Algorithms for Modem Parallel Computers, Springer-Verlag, Berlin
(1988).

[10] G Reeve: "The CAMAS domain decomposition tool", EUROPORT-1 Workshop on Unstruc­
tured Grids, GMD, Schloss Birlinghoven, Germany (1994).

[11] B Hendrickson and R Le1and: "A Multilevel Algorithm for Partitioning Graphs", Technical

Report SAND93-1301, Sandia National Laboratories, A1buquerque, NM, 1993

[12] B Kemighan and S Lin: "An efficient heuristic procedure for partitioning graphs", Bell System
Technical Journal, 29 (1970), pp. 291-307.

[13] JG Malone: "Automatic Mesh Decomposition and Concurrent Finite Element Analysis for
Hypercube Multiprocessor Computer", Comp. Meth. in Applied Mechanical Eng., 70, 27-58
(1988).

[14] HA Schwarz: "Uber einige Abbildungsauf-gaben", Ges. Marh. Abh. 11 65-83 (1869).

[15] A Pothen, HD Simon and KP Liu: "Partitioning Sparse Matrices with Eigenvectors of

Graphs", Report RNR-89-009, NASA Ames Research Center, July 1989.

[16] ST Bamard and HD Simon: "A fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems", in Proc. 6th SIAM Conf. Parallel Processing for

Scientific Computing, SIAM, pp. 711-718, 1993

13

[17] RD Williams: "Performance of Dynamics Load Balancing Algorithms for Unstructured Mesh
Calculations", Concurrency, Practice and Experience, 3, No.5, 457-482 (1991).

[18] AI Khan and BHV Topping: "Subdomain generation for parallel finite element analysis",
Computing Systems in Eng., Vol. 4, Nos. 4-6, pp. 473-488 (1993).

[19] RF Fowler, BW Henderson, and C Greenough, "Initial Experiences in Porting a Three­
Dimensional Semiconductor Device Modelling Program to the Intel iPSC/860", Rutherford
Appleton Laboratory Report, RAL-92-090 (1992).

[20] C Greenough and RF Fowler: "Partitioning Methods for Unstructured Finite Element
Meshes", Rutherford Appleton Laboratory Report, (In preparation).

[21] C Greenough and RF Fowler: "RalPar- The RAL Mesh Partitioning Program", Rutherford
Appleton Laboratory Report, (In preparation).

14

