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Abstract 

During the last few years there has been a rapid development of computer systems that use parallelism to achieve 

high computational performance. This has lead to a growth in research in the area of parallel computational 

methods. As part of this research. as in the field SIMD research, old algorithms have been revisited to assess 

their inherent parallelism. In the field ofMIMD architectures the general belief held is that divide and conquer 

algorithms are most suitable for these types of machines. This has re-opened research into domain decomposition 

methods. 

In this paper we review and compare a range of basic methods which can be used to partition finite element 

meshes. These have been implemented within a software tool called ralpar and tests made on a small set of 

3D meshes. The comparisons are made in terms of the basic attributes of the partitions such as number of 

neighbours. number of interface nodes and number of cut edges in the underlying graph. 

We also describe some of the extensions to these methods we have made and compare these with existing 

techniques together with some ideas of partition assessment based on software and architectural models. 
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1 Introduction 

The use of computing systems with some type of parallel.architecture has grown significantly over 
the past few years. These systems are seen as the path by which suffiCient computing power can be 
provided for accurate 3D simulations of complex phenomenon in fluid dynamics, stress analysis and 
electromagnetism. Such simulations typically use meshes or grids containing 105 to 106 nodes and 
may employ automatic grid refinement during the solution. 

Many of the parallel machines being used are based on the MIMD form of parallelism where the 
memory of the machine is distributed over a network of processors. A consequence of this is that 
the program and its associated data must be distributed between ·these processors. In finite volume 

and finite element methods this leads to the problem of qow to distribute large unstructured grids and 
meshes initially, and how to redistribute them subsequently, if refinement is made. 

In section 2 we briefly discuss domain decomposition methods and related techniques for paral­
lelisation of unstructured grid calculations. We then describe the set of partitioning methods that have 
been studied in this work. Ways of measuring the quality of the partitions are then considered, and 
finally we present and discuss some comparative results on 3D meshes. 

2 Domain Decomposition Methods 

The partitioning of finite volume and finite element meshes is fundamental to the use of computing 
systems with parallel architectures. This is true whether the numerical algorithm being used is explicit 

or implicit. At some point in the solution there will be a need to transfer data between processors. The 

goal of partitioning methods is to reduce to a minimum the communication cost of this information 
transfer whilst ensuring that the computational load for each processor is, as near as possible, equal. 
In many problems the load balance can be simply related to an equi~distribution of the number of grid 
points or finite elements between the processors and the communication cost to the number of node 

points on the subdomain interfaces. 
The most practical method offormalising the division of a grid or mesh into a number ofsubdomains 

is by use of the connectivity graph associated with the mesh. Each vertex of the graph is associated 

with an element or volume and the edges of the graph depict the connectivity. 

There is considerable interest in the mesh partitioning problem as can be seen in recent publications, 

e.g. [2], [10], [3]. Hendrickson [11] and Barnard [16] review the current situation with multi-level 

graph partitioning methods and demonstrate some of the potential of the approach. 
One deficiency in the literature is the lack of references to mesh re-distribution on parallel systems. 

This will be important in the case of automatic mesh adaption. A recent publication which addresses 

this problem is a report by Diniz [6] on a distributed graph partitioning algorithm, though this was not 
available at the time of writing. Khan and Topping [18] have considered the problem using Genetic 
algorithms and neural networks and they present some interesting results for two dimensional meshes. 

The basic objectives of Domain Decomposition algorithms (DD) are to: 

• decompose the original problem into smaller subdomains, 

• solve the original problem on the subdomains, and 

• to somehow patch the subdomainsolutions together to form the solution to the original problem. 

In general the above must be repeated iteratively until some convergence criterion is satisfied. 



The alternative approach. which is usually differentiated from true domain decomposition. is to 

retain the algorithm used in the serial solution, but to implement it in parallel. This still requires 
a partitioning of the mesh that assigns equal amounts of data to each processor and minimises 

communication costs of the interfaces. 

Originally DD methods were used to enable the solution of stress analysis problems too large for 

computer memories. This was often termed substructuring. Many different algorithms have been 

developed over the last few years and indeed there is an annual conference on DD methods [4]. 

The methods mainly differ in the following ways: 

• the partitioning of the domain (with or without overlap regions) 

• the way in which they solve the subdomain problems (exactly or inexactly) 

• the way in which they construct the problem for the interfaces (from the PDE or algebraically 

from the matrix) 

Not all these approaches are suitable for all problems. The method must in general be matched to 

the problem. The two main approaches are characterised by the way the subdomains are constructed, 

namely, overlapping or non-overlapping. The main overlapping approach is based on the Schwarz 

alternating procedure [14] or variants of this . 

The non-overlapping approach decomposes the domain into non-overlapping subdomains with 

lower dimensional interfaces. In a two-dimensional problem the interface will be one-dimensional. 

The reduced interface operator is usually not local and requires subdomain solutions. The most 

common approach is to form the Schur complement matrix of the interface. 

In both cases a partitioning of the mesh is required that will minimise communication costs. In 

this paper we only consider non-overlapping partitions. 

3 Mesh Partitioning Techniques 

A large number of methods of mesh partitioning have been developed. Most rely on the topology of 

the finite element mesh either directly or through processing the connectivity graph. A number of the 

techniques are: 

• Coordinate bisection (Fox, [9]) 

• Greedy (Farhat & Wilson. [7]) 

• Bandwidth minimisation (Malone, [13]) 

• Inertial bisection 

• MINCUT (Kemighan & Lin , [12]) 

• Recursive Graph Bisection (Williams, [17]) 

• MINGRAPH (Hu and Blake, [3]) 

• Spectral bisection (Simon el al. [15]) 

• Simulated annealing (Baiardi et a/, [1]) 

• Multi-level methods (Bamard & Simon, [16]) 

We outline some of these methods below. Full implementation details will be given in [20, 21]. 
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3.1 Greedy methods 

The algorithm of Farhat (7] is a ''Greedy" method which gathers elements about a seed point for each 

domain. It is based on assigning a weight to each node equal to the number of elements attached to 

it. In a problem with N elements and p processor we require NP = N fp elements assigned to each 

processor. The algorithm proceeds as follows: 

1. Form nodal weighting array 

2. do p = 1 until NP 

2.1 Locate node n with next minimum available weight 

2.2 Label all elements attached to this node; they initiate the list of elements of 

the pth subdomain 
2.3 Recursively add to this list the elements adjacent to those already labeled, 

starting always from the first labeled element in the previous step. 

2.4 Remove used elements from list and update nodal weights. 

This process is repeated until the complete mesh is partitioned. 

Many variations of this method are possible. A Modified Farhat method has been proposed by 

Fowler et a/ [19]. This is based on the observation that at each cycle the algorithm selects a new 

minima as its next starting point. It is clear from the structure of finite element meshes that at each 

cycle of this algorithm there are going to be a number of nodes with the minimum connection weight. 
The Modified algorithm seeks to try a limited number of these alternative starting points at each cycle 

of the algorithm. The number of trials has to be limited because the total number of choices increases 

rapidly with the number of partitions. 

3.2 Bandwidth minimisation 

This method was proposed in [13] by Malone. An arbitrary finite element mesh is fully defined by 

specifying the element types, the coordinates of the nodes and a list of the nodes associated with each 

element. From the node association a connection matrix C is formed. C is defined by: 

C'· =l '.7 

if nodes i and j are connected, otherwise 

Cii =0 

The half-bandwidth m of the matrix C is defined by 

m = max { li - j I} 
e;J:;eo 

(1) 

(2) 

(3) 

The connection matrix C presents the sparsity distribution of the system matrices that will results in 

the finite element assembly. 
The Malone method first requires a bandwidth minimisation on the nodal numbering. There are a 

number of well known algorithms to do this. Then the list of elements is sorted according to the lowest 

node number within each element. The partition into p parts is than made be dividing this ordered list 

into the required number of sections. 

A simple variation on this method is to use an algorithm for profile minimisation, rather than 

bandwidth minimisation. It is shown in [20] that in many cases this gives slightly superior results 

to bandwidth minimisation. Another possibility is to use the Malone method in a recursive bisection 

manner as described in the next section. 
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3.3 Recursive Bisection Methods 

Recursive bisection methods seek to divide the connection graph in half at each step. This is usually 

easier than trying to do p-sections. The methods have two main advantages: 

• each subproblem is easier than the general problem, and 

• there is some natural parallelism in the method. 

In many methods a scale quantity se is associated with each graph vertex e, which is often called a 
separator field. By evaluating the median S of se the graph is split according to se being greater or 

less than S. However, any partitioning method. including the Greedy and Bandwidth ones above, can 

be used recursively if desired. Strict recursive bisection is limited to 211 partitions for integer n. 
Four methods which have been implemented in this way are as follows: 

3.3.1 Coordinate bisection 

In the coordinate bisection method the (x, y, .:) coordinates of the centroid of an element are used 
to define the position of that element. The coordinates are then sorted into order in each coordinate 
direction. The bisection is made by dividing the graph into two about the median in one direction. 

This process can then be repeated on the sub graphs to generate 4,8.16, ... partitions. Typically the 

first cut will be made in the :z: direction, followed by y, ::, :r and so on. A variation of this. which we 
have investigated. is to attempt to cut the graph in each of the 3 directions at every bisection step. We 
then select the cut direction that gives the fewest interface nodes between domains. We refer to this as 

Cost-Geometric bisection. 

The above type of geometric bisection uses the Cartesian coordinate directions. However in general 

there is no reason for the mesh to "align" with these directions and the results are not invariant to 

rotation of the mesh. An alternative is to use the principal axes of inertia of the mesh. determined by 
assuming unit mass at each vertex. Again a number of variations are possible, such as making the cut 
on the axis of lowest inertia or trying all3 axes to find the one with lowest interface node cost. 

3.3.2 Graph bisection 

The graph bisection algorithm tries to find the maximum diameter of the connectivity graph. This can 

be done by a few iterations of labeling levels of the graph about a seed point and then setting the new 

seed point to the last labeled vertex. The basic step of the graph partitioning then is then to divide the 

vertices of the graph according to their level numbers from the last seed point. 

The results obtained are dependent on how the connectivity graph is defined. One possibility is to 
say that two elements are connected if they share a common face (or. in 2D, a common edge). In [3] 

this is called the edge communication graph. Another definition is that two elements are connected 
if they share a common node, and [3] refers to this as the true communication graph. Which is more 

appropriate may depend on the details of the computational method. We allow either definition to be 
used. 

3.3.3 Spech·al bisection 

Below is a simple example of the Spectral Bisection method. A full explanation can be found in e.g. 

[2]. The mesh and graph are: 
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Figure 1: A Simple Finite Element Mesh with Associated Graph 

The Lap1acian of the connection graph L (G) is given by: 

{ 

-1 if (vi, Vj)EE 

li.i = deg(vi) if i = j 
0 otherwise 

(4) 

This simple mesh lead to the following Laplacian matrix: 

1 -1 0 0 0 0 

-1 3 -1 0 0 -1 

L(G) = 0 -1 2 -1 0 0 
(5) 

0 0 -1 2 -1 0 

0 0 0 -1 2 -1 
0 -1 0 0 -1 2 

Starting from the requirement to minimise the number of cut edges in the graph bisection, it can be 

shown [2] that the eigenvector associated with the second smallest eigenvalue is a good candidate for 

use as a separator field. 

The second eigenvalue and associated eigenvector in this case are: 

,\2 = 0.6972 

X2 = [ -6.606 -2 1 3.303 3.303 1 ] 

On the basis of this we can partition graph the as: 

P1 = { 1, 2, 6 } and P2 = { 3, 4, 5 } 

or 

P1 = { 1, 2, 3 } and P2 = { 4, 5, 6} 

(6) 

(7) 

Either choice is valid. For realistic problem sizes an efficient solution of the sparse eigenvalue problem 

is essential. 
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3.3.4 Kemighan and Lin methods 

The MINCUT algorithm of Kernighan and Lin [12], can be used to improve an existing bisection of 
the graph. It does this by repeatedly swapping vertices between domains in an ordered manner, and 
then selecting the best result as the starting point for the next iteration. The function that this method 

tries to minimise is the number of cut edges in the graph, as in the spectral method. Vertices are 
selected for swapping according to their effect on the cost function, with those that decrease it most 

taken first. Moves that increase the cost function can be accepted, if a lower minimum occurs later in 
the iteration. Careful implementation of the method is necessary to prevent it becoming excessively 
expensive for large meshes. 

The starting configuration may be totally random or some ordered partition. Hu and Blake [3] 
use the Graph Bisection method to generate a starting configuration (MINGRAPH). This and the 
random start method have been implemented along with a Greedy variation. This starts by assigning 
all vertices to one domain and then uses the ordered swapping technique of the MINCUT method to 
achieve balance. This works because swaps are always made from the partition with most vertices to 
the one with least. In this paper refer to this as RKLG (Recursive Kernighan and Lin with Greedy 
start) though MINGREEDY might be more appropriate. 

3.4 Element and domain weighting 

An important extension to the partitioning methods discussed above is the inclusion of element 
weighting. This can be required if the computational work associated of each element is not the same. 
This is the case when using a mixed element mesh as the amount computation will depend on the 
number of nodes in an element. 

The user can specify the weight as a real value for each element, or in terms of the number of 
nodes in an element. Then each method is modified so that instead of trying to produce p partitions of 
N fp nodes each, it looks for partitions with weight as close as possible to: 

where w; is the weight of the element i. 

TV= L;Wi 
N 

(8) 

Another extension that is becoming important for computations on heterogeneous workstation 
clusters is that of domain weighting. It may be that one machine is more powerful than the others and 
hence should have a larger share of the work. This can also be included in the above scheme. 

4 Performance Assessment 

There are a number of factors that can be used to assess the performance of these methods: 

• The cost of the method in computational time. 

• The cost of the method measured as a function of the effect of the partition on the complete 
solution process. 

• To what degree can the method be parallelised? 

The first of these is not difficult to measure. A complexity analysis coupled with timings from a 
number of trial meshes will allow some objective measures to be made. Care must be taken to ensure 
that the trial meshes contain a representative selection of geometries and connection patterns. 
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The second type of assessment is far more difficult since the methods used to parallelise the 

application program will depended on the computational methods being used to solve the physical 

problem. The parallelisation techniques will have their own requirements on the properties of the 

partitions. In this paper we present some results for the number of interface nodes that are generated 

by each method. This measure will be important if an algorithm that solves the interface problem is 

being used. We also look at the average number of neighbouring domains for each processor which is 

important if communication start up time is significant. 

The final criterion is very important if methods involving adaptive refinement are going to be used 

in the application. 

5 Some Test Examples 

Three meshes have been used in testing and assessing the partitions produced by the different methods. 

These meshes were provided by Bertin & Cie within the IDENTIFY Esprit project. 

Although the initial testing of the methods was performed using two-dimensional meshes, these 

are all three-dimensional meshes using a range of element types. The first, referred to as JET, is 

illustrated in Figure 2 and is a composed of 360 hexahedral elements with 548 nodes. 

Figure 2: The JET test mesh. Only the surface mesh is shown. 

The second mesh (COUDE), is composed of tetrahedral elements and prisms (6 noded elements), 

with 399 nodes and 902 elements. This is illustrated in Figure 3. 

The final example, which is more representative of the sort of mesh used in real engineering 

applications, is that of an engine cylinder. This mesh has 23446 hexahedral elements and 26573 

nodes. The mesh, referred to as TUBU, is shown in Figure 4. This mesh is still small compared to 

many current requirements, but does represent the expected level of complexity. 
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Figure 3: The COUDE mesh. A mixed mesh of tetrahedra and prisms. 

Figure 4: The TUBU engine cylinder mesh. 

8 



6 Partitioning Results 

To compare the methods, each of the test meshes has been partitioned, using a selection of techniques, 
into N = 2n parts for n from 2 to 8. 

In addition to the methods which have implemented ourselves, we have looked at the software 
package CHACO [5], from Sandia National Laboratories, which implements the spectral bisection 
method of mesh partitioning. 

At the present time we have only obtained results using spectral bisection on the TUBU mesh. 
The CHACO package allows the user a range of options and the results reported here refer to the 
multilevel version of the spectral method. In this approach, the mesh is "coarsened" by allowing 
certain neighbouring elements to merge. This reduces the size of the eigenvalue problem that has to be 

solved for bisection. After the bisection on the coarse mesh has been made the results are propagated 
up to the real mesh. Since the bisection on the fine mesh may now be less good than if the standard 
spectral method had been used , an extra refinement is made using the Kemighan and Lin algorithm 
[12]. 

Table 1 gives the results for the cost function for the JET mesh along with the average number of 
neighbour domains for each domain. Similar results are given in tables 2 and 3 for the COUDE and 

TIJBU meshes. The cost value is the number of interface nodes generated. 

Interface node cost of Method 
Partitions Farhat Malone Geo-bis. Cost-Geo. Inertia 

2 71 51 64 55 64 
4 144 152 Ill 112 111 
8 252 .357 218 205 231 

16 339 440 326 290 331 
32 413 472 380 385 395 

64 476 505 472 457 476 
128 513 527 521 507 525 
256 531 535 533 526 534 

Average number of neighbours 

Partitions Farhat M alone Geo-bis. Cost-Geo. Inertia 

2 1.00 1.00 1.00 1.00 1.00 
4 2.50 1.50 2.50 3.00 2.50 
8 3.50 1.75 5.50 5.25 5.00 

16 7.13 3.63 6.50 6.50 6.25 
32 9.38 6.63 8.00 8.38 7.75 
64 9.67 6.03 10.65 10.03 10.59 

128 11.78 9.00 10.72 13.22 10.86 
256 10.33 9.24 10.37 13.64 10.46 

Table 1: Cost and neighbour results for partitioning the JET mesh. 

The cost results for the TUBU mesh are illustrated in Figure 5. It can be seen that, in terms of 

the cost function, the spectral bisection and Kemighan and Lin (RKLG) methods give the best results. 
For the case of 2 or 4 partitions the spectral cost is about half that of the Farhat (greedy) and the 
cost-geometric bisection methods . For larger numbers of partitions the relative advantage of spectral 
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Interface node cost of Method 
Partitions Farhat Malone Geo-bis. Cost-Geo. Inertia 

2 36 49 56 50 66 
4 106 122 144 94 114 
8 168 235 190 149 195 

16 227 299 256 216 270 
32 289 345 301 285 315 
64 330 365 350 329 353 

128 360 374 375 358 377 
256 382 385 388 382 387 

Average number of neighbours 
Partitions Farhat Malone Geo-bis. Cost-Geo. Inertia 

2 1.00 1.00 1.00 1.00 1.00 
4 2.50 1.50 3.00 3.00 2.50 
8 4.75 3.00 5.50 5.25 5.25 

16 7.38 5.13 7.00 6.50 7.25 

32 9.06 9.19 8.94 8.38 8.63 
64 10.53 12.47 10.06 10.03 10.09 

128 11.13 12.63 10.28 13.22 11.16 
256 9.98 11.15 9.98 13.64 10.13 

Table 2: Cost and neighbour results for partitioning the COUDE mesh. 

bisection decreases. With 512 partitions the spectral method gives a cost only 7% better than Farhat, 
though of course the domains are very small at this point. 

In Figure 6 we show the average number of neighbouring domains for each method on the TUBU 
mesh, again as a function of the number of partitions. 

It can be seen that the Malone method (profile minimisation) generally gives the lowest number 
of neighbouring domains, though at the cost of generating large interfaces due to its slicewise decom­
position. The spectral bisection method is not as good as the M alone method in this respect, though 
better than many of the others. For larger numbers of partitions the RKLG method is better than the 
spectral method on this measure. 

7 Conclusions 

The best domain partitioning method will depend both on the mesh used and on the particular 
application the decomposition will be employed in. For the TUBU mesh, which is the test example 

most closely representing the expected meshes for real engineering applications, we have seen that 
the best results, in terms of our cost function, are given by the multilevel spectral bisection algorithm 
used in the CHACO package and the RKLG method. However, the simpler cost-geometric bisection 
and Farhat methods give results that are only slightly worse for larger numbers of partitions. 

This comparison is valid if the parallel computation is dependent on the number of interface nodes 
that are generated, as is often the case. However, if the parallel machine used has a very high start up 
time for communications, or very expensive multi-hop communication, then minimising the number 
of neighbour domains may be an advantage. In this case the Malone method would be the one of 
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Interface node cost of method 
Partitions Far hat Malone Geo-bis Cost-Geo Inertia RGraB Speco·al RKLG 

2 660 699 1315 825 1102 741 377 474 
4 2040 2156 3899 1879 3578 1931 983 1103 

8 3610 4824 4890 3185 5035 3826 2202 2352 
16 5279 9309 6688 4947 7197 5605 3660 3753 
32 7760 18390 10645 7199 10961 7894 6103 5997 

64 9990 23270 12244 9594 13399 10901 8741 9286 
128 12885 24706 15557 12474 16641 13839 11582 11985 
256 15984 25245 20169 15774 20723 16884 14686 14700 
512 19096 25627 21909 19124 22800 19921 17906 17408 

Average number of neighbours 
Partitions Farhat M alone Geo-bis. Cost-Geo. Inertia RGraB Spectral RKLG 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
4 3.00 1.50 2.50 2.00 2.50 2.00 2.00 3.00 

8 3.75 1.75 4.75 3.25 5.50 3.00 3.00 3.50 
16 5.63 1.88 6.00 5.38 6.63 4.25 4.50 4.50 

32 8.13 2.56 7 .81 6.44 8.50 6.31 5.81 5.38 

64 9.25 4.38 9.31 8.34 9.72 8.47 7.75 6.78 
128 11.19 7.34 10.16 9.81 10.81 10.73 9.08 8.20 

256 12.43 10.36 12.29 11.00 13.50 12.31 10.73 9.98 
512 13.21 12.13 13.51 12.32 14.31 13.52 11 .83 11.93 

Table 3: Cost and neighbour results for partitioning the TUBU mesh. RGarB is recursive graph 

bisection and RKLG is recursive Kemighan and Lin with a "greedy" start. 
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Figure 5: Cost as a function of number of partitions for the TUBU mesh. 
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Figure 6: Average number of neighbouring domains as a function of number of partitions for the 
TUBUmesh. 

choice. 
Since in most engineering applications the linear algebra will dominate the solution time it is 

important that the effect of a particular partition on this element of the solution be assessed. The 
simple cost function implemented in our software goes some way towards this assessment but a more 

sophisticated cost function is required. It is necessary to consider both the algorithm and the parallel 
machine it is to be used on. 

Although considerable work has been done on static partitioning methods there are still further 
areas to be explored. However, with meshes becoming larger and larger, the need is for dynamic data 
allocation methods. The parallel versions of some of the partitioning techniques outlined in this paper 
may be the starting point of such algorithms. 
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