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ITERATIVE METHODS FOR SYMMETRIC
QUASI-DEFINITE LINEAR SYSTEMS

PART I: THEORY

MARIO ARIOLI AND DOMINIQUE ORBAN

Abstract. Symmetric quasi-definite systems may be interpreted as regular-
ized linear least-squares problem in appropriate metrics and arise from ap-
plications such as regularized interior-point methods for convex optimization
and stabilized control problems. We propose two families of Krylov methods
well suited to the solution of such systems based on a preconditioned variant of
the Golub-Kahan bidiagonalization process. The first family contains methods
operating of the normal and Schur-complement equations, including general-
izations of well-known methods such as Lsqr and Lsmr but also a new method
named Craig-mr aiming to minimize the residual of the Schur-complement
equations. The second family follows from a related Lanczos process and con-
tains methods operating directly on the augmented system, which generalize
the conjugate-gradient and minimum-residual methods. We establish connec-
tions between augmented-system and reduced-system methods. In particular,
the conjugate-gradient method is well defined despite the indefiniteness of the
operator. We provide an explanation for the often-observed staircase behavior
of the residual in the minimum-residual method. An additional contribution is
to provide explicit stopping criteria for all methods based on estimates of the
relative direct error in appropriate norms, as opposed to criteria based on the
residual. A lower bound estimate is available at no additional computational
cost while an upper bound estimate comes at the cost of a few additional scalar
operations per iteration.
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1. Introduction

Symmetric quasi-definite (SQD) linear systems have the general form

(1.1)
[
M A

AT −N

] [
x
y

]
=

[
f
g

]
,

where M ∈ Rn×n and N ∈ Rm×m are symmetric and positive definite. The co-
efficient matrix of (1.1) is then itself said to be SQD. It is always symmetric and
indefinite unless m = 0 or n = 0, in which case it is definite. Vanderbei (1995)
shows that SQD matrices are strongly factorizable, i.e., any symmetric permutation
of their rows and columns admits a Cholesky-like factorization without pivoting.
The latter factorization can therefore typically be computed in much less operations
than a traditional symmetric indefinite factorization such as that of Duff (2004) and
often has sparser factors. We adopt the following definition of an SQD matrix.

Definition 1.1. Amatrix K ∈ R(n+m)×(n+m) is said to be symmetric quasi-definite
(SQD) if K = KT and there exists a permutation matrix P ∈ R(n+m)×(n+m) such
that PTKP has the form (1.1).

Among other important properties of (1.1) are that the system is always square,
symmetric, indefinite and nonsingular, irrespective of the rank of A, and the inverse
of the coefficient matrix is itself SQD. For more details, we refer to (Vanderbei,
1995).

In this paper, we devise iterative methods for the solution of (1.1) that exploit its
structure. Our methods are generalizations of Lsqr (Paige and Saunders, 1982),
Craig (Craig, 1955) and Lsmr (Fong and Saunders, 2011) based on a Golub-
Kahan process (Golub and Kahan, 1965) occurring in the appropriate metric. In
addition, we present a method named Craig-mr aiming to minimize the residual
of the Schur-complement equations. Those methods determine specialized imple-
mentations of Cg (Hestenes and Stiefel, 1952) and Minres (Paige and Saunders,
1975) by identifying specialized Lanczos processes. The implementation of Cg is
particularly interesting given the indefiniteness of (1.1).

All methods presented here especially apply to cases where systems with co-
efficient matrices M and N can be solved efficiently. In follow-up research, we
investigate preconditioning strategies and error analyses related to cases where this
assumption is not satisfied. All methods methods discussed below are dimension
agnostic in the sense that each applies irrespective of the fact that m < n or m ≥ n.

Systems of the form (1.1) arise in numerous applications and their efficient iter-
ative solution is crucial to matrix-free methods. In interior-point methods for the
optimization of the inequality-constrained convex problem

minimize
x∈Rn

f(x) subject to c(x) ≥ 0,

where f is convex and c is concave, Newton-based methods typically solve direction-
finding systems of the form[

∇xxL(x,y) J(x)T

J(x) −Y −1C(x)

] [
∆x
−∆y

]
= −

[
∇xL(x,y)

c(x)− µY −1e

]
,

where L(x,y) = f(x) − c(x)Ty is the Lagrangian of the problem, J(x) is the
Jacobian of the constraints, Y = diag(y), C(x) = diag(c(x)), µ > 0 is a parameter,
and (c(x),y) > 0 is enforced. Whenever either f is strictly convex or J(x) has
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full row rank, the leading block is positive definite and the system above is SQD.
When either of those assumptions is not satisfied, regularized methods such as that
of Friedlander and Orban (2012) recovers an SQD system, even in the presence of
linear equality constraints.

Regularized linear least-squares problems are often cast as sytems of the form
(1.1) in which M and N are multiples of the identity. The right-hand side in this
case is typically of the form (b,0) or (0,b). With such a right-hand side, the
methods we propose below are in fact an interpretation of (1.1) as a regularized
linear least-squares problem in a non-Euclidian metric.

The mixed finite-element approximation to the globally stabilized Stokes problem
in weak form can be stated as

(1.2)

∫
Ω

∇u : ∇v dx−
∫

Ω

p∇ · v dx =

∫
Ω

fv dx, for all v ∈ V,

−
∫

Ω

q∇ · udx− βC(p, q) = 0 for all q ∈ Q,

where u is the velocity field, p is the pressure field, Ω is the domain, “:” represents the
componentwise inner product, V and Q are compatible finite-dimensional function
subspaces of test functions, β > 0 is a stabilization parameter and C is a stabilization
term. After discretization with, e.g., P1–P1 triangular elements and continuous
linear pressure, the above equations reduce to a linear system of the form (1.1)
where g = 0, A is the gradient matrix, AT is the divergence matrix, M is the
vector-Laplacian matrix and N represents the stabilization term. For more details,
we refer the interested reader to (Silvester and Wathen, 1994).

Other applications of regularized linear least squares include Kalman (1960) fil-
ters (Bunse-Gertner, 2012; Strang, 1986) and variational data assimilation (Courtier,
1997). The problem formulation in both applications is very similar. The incre-
mental formulation of the three-dimensional variational data assimilation problem
may be stated as

minimize
∆x∈Rn

1
2‖∆x‖2

B
−1 + 1

2‖H∆x− d‖2
R

−1 ,

where ∆x = x0−xb is referred to as an increment used to obtain an initial climatic
model state x0 from a background state xb—i.e., a state resulting of previous fore-
casts, B is the covariance matrix of background error, R is the covariance matrix
of observation errors, H represents a linearization of the observation operator and
d = y0 −Hxb is the innovation vector, in which y0 is the observation vector. The
optimality conditions of this problem have precisely the form (1.1) with A = H,
M = R, N = B−1, f = d and g = 0.

SQD systems have been used in the past to precondition standard symmetric
saddle-point systems, i.e., for which N = 0 (Axelson and Neytcheva, 2003; Perugia
and Simoncini, 2000). Benzi, Golub, and Liesen (2005, Section 10.2, pp. 82–83)
provide several references and summarize key results including eigenvalue estimates
of the preconditioned system.

Notation. Throughout the paper, vectors and matrices are typeset in boldface while
scalars appear in lightface. We use the notation Ik to denote the k-by-k identity
matrix. For conciseness and when the context leaves no possible ambiguity, we
will simply denote by I the identity matrix of appropriate size. For a symmetric
positive definite n×n matrix C, let ‖u‖2C = uTCu = ‖C

1
2 u‖22 be the norm defined
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by C, where C
1
2 is the unique symmetric positive definite matrix square root of C.

Finally, the shorthand blkdiag(C,D) is used to denote the block-diagonal matrix[
C 0
0 D

]
for any matrices C and D of appropriate size. For any x ∈ R, bxc denotes the
largest integer k ≤ x and dxe denotes the smallest integer k ≥ x.

Related Work. Existing iterative methods for symmetric indefinite systems, such as
Minres, Symmlq (Paige and Saunders, 1975) and Symmbk (Chandra, 1978) do
not exploit the rich quasi-definite structure of (1.1).

Assume we are able to factor N = LDLT. Upon introducing auxiliary variables
z := −DLTy, it is possible to reformulate (1.1) as the traditional saddle-point point
system M A

D−1 LT

AT L

x
z
y

 =

f
0
g

 .
Dollar et al. (2006) propose to solve the resulting system by way of the projected
conjugate gradient method. This approach requires a projection into the nullspace
of
[
AT L

]
at each iteration, which may be achieved via a one-time factorization

of a projection matrix of the formM̃ A

D̃−1 LT

AT L

 ,
for appropriate approximations M̃ ≈ M and D̃ ≈ D such that the above matrix
has precisely m negative and n+m positive eigenvalues.

Saunders (1995) derives extended versions of Lsqr and Craig for the case where
N = λIm for some λ 6= 0 and establishes a connection with Cg applied to the
corresponding SQD system.

Gill, Saunders, and Shinnerl (1996) provide stability results for the LDLT fac-
torization of SQD matrices. George et al. (2000) and George and Ikramov (2000)
examine additional properties of SQD matrices, of their eigenvalues and their con-
dition number. Korzak (1999) gives the precise spectrum in the case of matrices
arising from linear programming.

Benbow (1999) proposes a variant of Lsqr similar to what we propose in the
sequel of the present paper, only for the case where N = 0 and systems with M
can be solved efficiently.

The definite reference on solution methods for saddle-point linear systems is
given by Benzi, Golub, and Liesen (2005). Although they mention SQD systems,
no specialized iterative approach is suggested.

Marcia (2008) proposes a Kylov-type iterative method for general symmetric
indefinite systems based on a symmetric indefinite factorization of the tridiagonal
matrix generated by a Lanczos process. His method reduces to Cg when applied
to definite systems and is provably stable on indefinite systems.

Arioli (2010) derives a version of Craig for indefinite systems where N = 0
based on the so-called elliptic singular values of A.
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The rest of this paper is organized as follows. Section 2 points out connections
between various linear least-squares problems and (1.1) and §3 sets the prerequi-
sites for the remainder of the paper. Section 4 defines the generalized Golub-Kahan
process that forms the basis of our iterative methods. This process gives rise to
generalized versions of Lsqr in §6.1, Craig in §6.3 and Lsmr in §6.5, as well as to
a new method named g-Craig-mr in §6.7. Section 8.1 defines Lanczos processes
determined by the generalized Golub-Kahan process and used to connect the pre-
vious methods to the method of conjugate gradients in §8.2 and to Minres in §8.4.
In particular, we demonstrate that the conjugate gradient method is well defined
for SQD systems and solves a min-max problems. We also provide an explana-
tion for the often-observed staircase behavior of the Minres residual on symmetric
saddle-point systems together with a description of what Minres minimizes dur-
ing iterations where the residual decreases and during iterations where the residual
appears to plateau. We discuss our implementation in §9 and present numerical
results on problems arising from optimization and discretized PDEs. We conclude
with a discussion in §10.

2. Linear Least-Squares Problems

In this section, we recall the connections between various symmetric indefinite
and SQD linear systems, and the solution of certain linear least-squares problems.
Note that most of the connections are known. They are repeated here because they
are the motivation for the derivation of iterative methods for (1.1). By convexity,
all optimality conditions mentioned below are both necessary and sufficient.

The optimality conditions of the M−1-norm least-squares problem1

(2.1) minimize
y∈Rm

1
2‖Ay − b‖2

M
−1 ,

may be written

(2.2)
[
M A

AT 0

] [
x
y

]
=

[
b
0

]
,

where x = M−1(b−Ay) is the residual. The coefficient matrix of (2.2) is symmetric
indefinite, but not SQD. Upon writing the Cholesky decomposition M = LLT, (2.2)
are also the optimality conditions of both of the following weighted, or preconditioned
least-squares problems

minimize
y∈Rm

1
2‖L

−1(Ay − b)‖22, and minimize
y∈Rm

1
2‖M

− 1
2 (Ay − b)‖22.

Whenever A does not have full column rank, (2.2) is singular. A typical remedy
is to regularize the least-square problem, i.e., to change (2.1) to

(2.3) minimize
y∈Rm

1
2

∥∥∥∥[AR
]

y −
[
b
0

]∥∥∥∥2

M
−1
+

, where M+ :=

[
M 0
0 Im

]
and R is a square nonsingular matrix of appropriate size. Typically, R = λIm, for
some regularization parameter λ ∈ R but other choices are possible. Note that the
objective of (2.3) may equivalently be written

1
2‖Ay − b‖2

M
−1 + 1

2‖Ry‖22 = 1
2‖Ay − b‖2

M
−1 + 1

2‖y‖
2

R
T
R
.

1Sometimes referred to as the generalized least-squares problem.
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The optimality conditions of (2.3) may then be written as the general SQD system[
M A

AT −RTR

] [
x
y

]
=

[
b
0

]
.

Similarly, a positive-definite matrix of the form N
1
2 can be used in place of R and

this leads to (1.1) with f = b and g = 0. Additionally, (1.1) with f = b and g = 0

represents the optimality conditions of the E−1
+ -norm regularized problem

(2.4) minimize
y∈Rm

1
2

∥∥∥∥[AIm
]

y −
[
b
0

]∥∥∥∥2

E
−1
+

, where E+ :=

[
M 0

0 N−1

]
.

Equivalently, if M = LLT and N = RTR, (1.1) represent the optimality conditions
of the weighted regularized problem

(2.5) minimize
y∈Rm

1
2

∥∥∥∥[L−1 0
0 R

]([
A
Im

]
y −

[
b
0

])∥∥∥∥2

2

.

A similar interpretation is derived when L and R are replaced by M
1
2 and N

1
2 ,

respectively.
At this point it might seem attractive to simply employ Lsqr to solve either

(2.4) or (2.5). This would however require that we either compute L or solve
systems with M

1
2 , and that we compute one of R and N

1
2 . Moreover, those must

be computed accurately. Fortunately, there is an alternative in applications where
solving systems with coefficient matrices M and N can be performed efficiently.
We now give a few examples of such situations that arise in practice.

In regularized interior-point methods for linear programming—see, e.g., (Fried-
lander and Orban, 2012)—the matrices M and N are diagonal and solving systems
with those matrices is therefore trivial. In interior-point methods for nonlinear
programming in which the Hessian of the Lagrangian is approximated by a limited-
memory quasi-Newton matrix in inverse form, solving systems with M is cheap
since the limited-memory approximation represents M−1. A matrix-vector prod-
uct is thus all that is required. Similarly, if the limited-memory quasi-Newton
matrix is updated in factored form, solving systems with M is cost effective.

In fluid dynamics applications, the discretization of Darcy’s law for incompress-
ible flow in a saturated medium gives rise to a badly scaled matrix M but for which
diagonal preconditioning will only leave a few clusters of eigenvalues independently
of the mesh size (Wathen, 1987). It can thus be expected that the conjugate gra-
dient method with diagonal preconditioner will converge quickly.

Without loss of generality, we assume from now on that the right-hand side of
(1.1) has f = b and g = 0. Reduction to this situation is always possible, though
admittedly at some cost, by first finding any (x0,y0) satisfying Ax0 −Ny0 = g

and setting b = f −Mx0 −ATy0. A variety of iterative methods can be used to
identify such (x0,y0). For instance, the minimum norm problem

minimize
x,y

1
2

(
‖x‖22 + ‖y‖22

)
subject to Ax−Ny = g

can be solved with either the standard Lsqr (Paige and Saunders, 1982) or Craig
(Craig, 1955). Because of our assumption that solving systems with N can be done
easily and efficiently, a simpler solution consists in setting x0 := 0 and solving
Ny0 = −g for y0.



ITERATIVE METHODS FOR SQD SYSTEMS 9

Consider (1.1) with f = b and g = 0. Upon eliminating x from the first equation,
the y component of the solution must satisfy

(2.6) (ATM−1A + N)y = ATM−1b.

We refer to (2.6) as the normal equations. Similarly, eliminating y from the second
equation of (1.1), the x component must satisfy

(2.7) (AN−1AT + M)x = b,

to which we refer as the Schur-complement equations. Those equations are not,
strictly speaking, normal equations as they do not directly describe the optimality
conditions of a linear least-squares problem. As becomes apparent in later sections,
the coefficient matrices of (2.6) and (2.7) play an important role in our iterative
methods in that they define energy norms suitable to measure direct errors.

We close this section by mentioning that (2.4) is always equivalent to the least-
norm problem

(2.8) minimize
x,y

1
2 (‖x‖2M + ‖y‖2N) subject to Mx + Ay = b.

Indeed the Lagrange multipliers associated to the equality constraints are precisely
equal to x. It is only when regularization is present that the least-squares problem
and the least-norm problems are equivalent.

3. Preliminaries

3.1. The Lanczos Process. In the sequel, we often refer to Lanczos processes in
various contexts. To establish the notation, consider a generic symmetric linear
system with coefficient matrix H and right-hand side d. A Lanczos (1950, 1952)
process applied to H and d constructs a sequence of vectors {sk} according to the
following recursion:

(3.1)
ω1s1 = d,

ωk+1sk+1 = Hsk − χksk − ωksk−1, χk := sTkHsk,

with the convention s0 := 0. The constants ωk are chosen at each iteration so
‖sk‖2 = 1. The notation used in (3.1) is intentionally non-standard so as to avoid
confusion with scalar and vector quantities defined in the rest of the paper, the
latter adhering more closely to standard notation found in the literature. It is pos-
sible to derive (3.1) from the standard Gram-Schmidt orthogonalization process, by
exploiting symmetry of H, and therefore, the vectors sk are theoretically orthonor-
mal. After k iterations, the Lanczos process has generated k+1 vectors. We gather
the first k Lanczos vectors into the matrix Sk :=

[
s1 · · · sk

]
. The situation after

k iterations may be summarized as

(3.2) HSk = SkΩk + ωk+1sk+1e
T
k ,

where Ωk is the tridiagonal matrix

Ωk :=


χ1 ω2

ω2 χ2

. . .
. . . . . . ωk

ωk χk

 .
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In floating-point arithmetic, orthogonality of the vectors sk is soon compromised
and it is only mathematically that we are allowed to expect that

ST
kHSk = Ωk,

but (3.2) generally holds to within machine precision.

3.2. Hilbert Space Setting. Let H ∈ Rk×k be symmetric and positive definite.
Then Rk endowed with the scalar product uTHv is a Hilbert space. Conversely,
let H be a k-dimensional Hilbert space with basis {φj}j=1,...,k and equipped with a
scalar product (u, v)H. Then H is isometric to Rk with a scalar product determined
by the Gramian matrix H, i.e., Hij := (φi, φj)H. Indeed, upon decomposing u =∑
j ujφj and v =

∑
j vjφj , we have (u, v)H = uTHv. Owing to the Riesz theorem

(Brézis, 1983), the dual space H? of H is itself a Hilbert space with a scalar product
induced by H−1. In particular, the operator

H : H→ H? 〈H u, v〉H?
,H := vTHu

is self-adjoint and strictly positive, and therefore invertible. Furthermore, the basis
{φi} is made of the columns of H and the corresponding basis {ψi} of H

? is made
of the columns of H−1. Hereafter, all our Hilbert spaces are finite dimensional.

Given z ∈ H?, we have

〈z, u〉H?
,H = zTu = zTH−1Hu = (u,H−1z)H,

and we have that w = H−1z is the representation of the Riesz vector w =∑
j wjφj ∈ H. Let K : H → F be an operator between the Hilbert spaces H

and F. Its adjoint operator K ? : F? → H? is defined (Brézis, 1983) by

〈K ?v, u〉H?
,H := 〈v,K u〉F?

,F ∀v ∈ F?, u ∈ H.

Therefore, we have

(3.3) 〈K ?v, u〉H?
,H = (H−1v,Ku)H = uTKTv,

where K is a matrix representation of K . Finally, if we assume that F = H? then
the “normal equations operator” is

K ? ◦H −1 ◦K : H→ H?,

and it is represented by the matrix KTH−1K. If KT = K then K is self-adjoint.
Moreover, the operator

(3.4) H −1 ◦K : H→ H

maps H into itself. Therefore, we can define its powers (H −1◦K )i as the operators
represented by the matrices (H−1K)i for i ≥ 0.

Let us consider now the Hilbert spaces

M := (Rn, ‖ · ‖M), N := (Rm, ‖ · ‖N),

their duals
M? := (Rn, ‖ · ‖

M
−1), N? := (Rm, ‖ · ‖

N
−1),

and assume that

(3.5) K :=

[
M A

AT −N

]
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M N?

M? N

A
?

A

N
−1NMM

−1

Figure 3.1. Commutative diagram between the relevant Hilbert spaces.

with the corresponding operator

K : M× N→M? × N?.

The norm and scalar product in M× N are induced by the block-diagonal matrix

(3.6) H =

[
M

N

]
.

Let the matrix A represent the linear operator A : N → M? with respect to the
canonical bases. For y ∈ N, A y may be considered as a linear operator defined on
M via the relation

〈A y, u〉M?
,M := (u,M−1Ay)M = uTAy for all u ∈M,

where 〈·, ·〉M?
,M is the duality pairing between M and its dual. It is now clear

that the appropriate norm to measure the residual b−Ay is the M−1-norm. Let
A ? : M→ N? denote the adjoint operator of A , i.e.,

〈A ?u, y〉N?
,N := (y,N−1ATu)N = yTATu, for all y ∈ N.

Finally, let M : M → M?, N : N → N? and their inverses M−1 : M? → M and
N −1 : N? → N denote the linear operators whose representations are the matrices
M, N and their inverses.

We define the operator

(A ? ◦M−1 ◦A ) + N : N→ N?

as the normal operator. This operator appears in the normal equations (2.6). The
appropriate norm to measure the residual of the normal equations is the N−1-norm.
Similarly, we call the operator

(A ◦N −1 ◦A ?) + M : M→M?

the Schur-complement operator. The residual of the Schur-complement equations
is measured in the M−1-norm. The situation is summarized in the commutative
diagram of Figure 3.1.

The next sections will regularly refer to Figure 3.1 as they provide appropriate
norms in which various quantities such as direct errors y∗−yk and residuals x∗−xk,
should be measured. The commutative diagram proves to be a consistently useful
tool in understanding why such norms are appropriate.
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4. Generalized Golub-Kahan Bidiagonalization

Motivated by the least-squares problems of the previous section we recall the
standard Golub and Kahan (1965) bidiagonalization process that forms the ba-
sis of several numerical methods for such problems. The standard Golub-Kahan
bidiagonalization process with initial vector b ∈ Rn can be stated as Algorithm 4.1.

Algorithm 4.1 Golub-Kahan Bidiagonalization

Require: Ā, b̄
1: β1ū1 = b̄ with β1 > 0 so that ‖ū1‖2 = 1

2: α1v̄1 = ATū1 with α1 > 0 so that ‖v̄1‖2 = 1
3: for k = 1, 2, . . . do
4: βk+1ūk+1 = Āv̄k − αkūk with βk+1 > 0 so that ‖ūk+1‖2 = 1

5: αk+1v̄k+1 = ĀTūk+1 − βk+1v̄k with αk+1 > 0 so that ‖v̄k+1‖2 = 1.

In exact arithmetic, Algorithm 4.1 generates two sets of orthonormal vectors
{ūi} and {v̄i} that can be used to determine the left and right singular vectors of
Ā (Golub and Kahan, 1965).

Consider the application of Algorithm 4.1 to the operator Ā = M− 1
2 AN−

1
2 with

initial vector b̄ = M− 1
2 b. It is straightforward to verify that after the change of

variable ui := M− 1
2 ūi and vi := N−

1
2 v̄i, the resulting process may be written as

Algorithm 4.2.

Algorithm 4.2 Generalized Golub-Kahan Bidiagonalization, first variant
Require: M, A, N, b
1: β1Mu1 = b with β1 > 0 so that ‖u1‖M = 1

2: α1Nv1 = ATu1 with α1 > 0 so that ‖v1‖N = 1
3: for k = 1, 2, . . . do
4: βk+1Muk+1 = Avk − αkMuk with βk+1 > 0 so that ‖uk+1‖M = 1

5: αk+1Nvk+1 = ATuk+1 − βk+1Nvk with αk+1 > 0 so that ‖vk+1‖N = 1.

We refer to Algorithm 4.2 as the Generalized Golub-Kahan Bidiagonalization
process in the sense that the left and right singular vectors {ui} and {vi} are
orthonormal with respect to inner products defined by M and N respectively. It is
important to note that at each iteration, one solve with M and one solve with N
must be performed. Indeed the terms Muk and Nvk in the right-hand sides of the
assignments in the loop were computed during the previous pass through the loop.
For instance, the computation of βk+1 and uk+1 could be detailed as

(1) Set ûk+1 = Avk − αk(ûk/βk)
(2) Solve Mũk+1 = ûk+1 for ũk+1

(3) Set βk+1 =
√

ũT
k+1ûk+1

(4) Set uk+1 = ũk+1/βk+1.
The storage per iteration required by Algorithm 4.2 is the same as that required

by Algorithm 4.1 with the addition of one n-vector for Muk and one m-vector
for Nvk. The computational effort per iteration is that of Algorithm 4.1 with the
addition of one solve with M and one solve with N.
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After k steps of Algorithm 4.2, the situation can be summarized as

AVk = MUkBk + βk+1Muk+1e
T
k(4.1a)

= MUk+1Ek,(4.1b)

ATUk+1 = NVk+1B
T
k+1(4.1c)

= NVkE
T
k + αk+1Nvk+1e

T
k+1,(4.1d)

where ek is the k-th vector of the canonical basis, Uk and Vk are the n-by-k and
m-by-k matrices whose columns are u1 through uk and v1 through vk, respectively,
and

(4.2) Bk :=


α1

β2 α2

. . . . . .
βk αk

 , Ek :=


α1

β2 α2

. . . . . .
βk αk

βk+1

 =

[
Bk

βk+1e
T
k

]

i.e., Bk is k-by-k lower bidiagonal and Ek is Bk with one extra row. The orthog-
onality properties of the vectors uj and vj implies that the matrices M

1
2 Uk and

N
1
2 Vk are orthogonal for all k.
Algorithm 4.2 is a generalization of the process referred to as GKLB(M) by

Benbow (1999) and it may be denoted GKLB(M,N). An analysis mirroring that
of Paige (1974) is instructive in relation to the stopping of the generalized Golub-
Kahan process. The first situation that can cause the process to stop is that
βk+1 = 0 is generated. In this case, we obtain from (4.1) that, in exact arithmetic,

(4.3) AVk = MUkBk, ATUk = NVkB
T
k , UT

kMUk = Ik, VT
k NVk = Ik.

The second situation is that αk+1 = 0 is generated. In this case, in exact arithmetic,
(4.4)
ATUk+1 = NVkE

T
k , AVk = MUk+1Ek, UT

k+1MUk+1 = Ik+1, VT
k NVk = Ik.

Let Ek = Pk+1ΣkQ
T
k be the singular value decomposition of Ek, where Pk+1 is

orthogonal (k + 1)-by-(k + 1), Σk is (k + 1)-by-k, Qk orthogonal is k-by-k and

Σk =


σ1

σ2

. . .
σk

0 0 . . . 0

 , σi > 0, i = 1, . . . , k.

We have from (4.4) that ATUk+1Pk+1 = NVkQkΣ
T
k and AVkQk = MUk+1Pk+1Σk.

Equivalently, the last two identities can be stated as

(M− 1
2 AN−

1
2 )TŪk+1Pk+1 = V̄kQkΣ

T
k ,(4.5a)

(M− 1
2 AN−

1
2 )V̄kQk = Ūk+1Pk+1Σk.(4.5b)

where we used ūj = M
1
2 uj and v̄j = N

1
2 vj for all j. The relations (4.5) show that

Ā := M− 1
2 AN−

1
2 has a zero singular value and that the associated right singular
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vector is the last column of Ūk+1Pk+1. This last column can be written

t =

k+1∑
j=1

pk+1,jM
1
2 uj ,

where pk+1 is the last column of Pk+1. This vector t is a linear combination of
the vectors M

1
2 uj and must lie in Null(ĀT) = Null(ATM− 1

2 ). Assume now that
b ∈ Range(A). Then u1 ∈ Range(M−1A). A recursion argument easily establishes
that each uj ∈ Range(M−1A). In this case, the vector t thus lies in Range(M− 1

2 A)

which is in contradiction with the previous conclusion that t ∈ Null(ATM− 1
2 ).

Therefore, if b ∈ Range(A), Algorithm 4.2 cannot terminate with αk+1 = 0. It
must thus terminate with βk+1 = 0 and the final situation must be described by
(4.3).

Conversely, if (4.3) describes the final situation, necessarily u1 ∈ Range(M−1A),
i.e., b ∈ Range(A) because Uk = M−1AVkB

−1
k , which shows that all uj lie in

Range(M−1A). Therefore if b 6∈ Range(A), the final situation must be described
by (4.4).

In the same way that Algorithm 4.1 is closely related to the singular-value decom-
position of A, Algorithm 4.2 is related to the elliptic singular-value decomposition
of A (Arioli, 2010) in the sense that the families {ui} and {vi} determine families
{wi} and {zi} satisfying

Azi = σiMwi, zTi Nzj = δij ,

ATwi = σiNzi, wT
i Mwj = δij .

In matrix form, this can also be cast as the generalized eigenvalue problem[
A

AT

] [
w
z

]
= λ

[
M

N

] [
w
z

]
.

The positive scalars σi are referred to as the elliptic singular values of A and the
families {wi} and {zi} are its left and right elliptic singular vectors, respectively.
The latter may equivalently be interpreted as the stationary points of the indefinite
quadratic mapping

(w, z) 7→ wTAz

restricted to the unit sphere ‖w‖M = 1 and ‖z‖N = 1. In exact arithmetic, we have
from (4.1) that ŪT

k (M− 1
2 AN−

1
2 )V̄k = Bk, where ūj = M

1
2 uj and v̄j = N

1
2 vj .

Since the matrices Ūk and V̄k are orthogonal for all k, the singular values of
Bmin(m,n) are the same as those of M− 1

2 AN−
1
2 .

There are algebraically equivalent alternatives to Algorithm 4.2. For instance, if
we use instead the change of variables ui := M

1
2 ūi and vi := N−

1
2 v̄i, and use the

initial vector M
1
2 b, we obtain the process described in Algorithm 4.3.

The process of Algorithm 4.3, which we could denote GKLB(M−1, N) gener-
alizes the process referred to by Benbow (1999) as GKLB(M−1). As both are
mathematically equivalent, in the rest of this paper, we concentrate on the process
GKLB(M,N) described by Algorithm 4.2. However, all methods examined in the
next sections could be examined instead with Algorithm 4.3 and similar conclusions
could be drawn.
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Algorithm 4.3 Generalized Golub-Kahan Bidiagonalization, second variant
Require: M, A, N, b
1: β1M

−1u1 = b with β1 > 0 so that ‖u1‖M−1 = 1

2: α1Nv1 = ATM−1u1 with α1 > 0 so that ‖v1‖N = 1
3: for k = 1, 2, . . . do
4: βk+1uk+1 = Avk − αkuk with βk+1 > 0 so that ‖uk+1‖M−1 = 1

5: αk+1Nvk+1 = ATM−1uk+1 − βk+1Nvk with αk+1 > 0 so that ‖vk+1‖N = 1.

5. Properties of SQD matrices and of their Krylov spaces

5.1. Eigenvalues. From Sylvester’s law of inertia, the congruence relation

(5.1)
[
M A

AT −N

]
=

[
In

ATM−1 Im

] [
M

−(ATM−1A + N)

] [
In M−1A

Im

]
shows that the coefficient matrix of (1.1) always possesses precisely n positive and
m negative eigenvalues. Note that a second possible decomposition illustrating this
result is

(5.2)
[
M A

AT −N

]
=

[
In −AN−1

Im

] [
AN−1AT + M

−N

] [
In

−N−1AT Im

]
.

The result below is more precise. Consider centered preconditioning of (1.1) with
f = b and g = 0:

(5.3)

[
M− 1

2

N−
1
2

][
M A

AT −N

][
M− 1

2

N−
1
2

][
M

1
2 x

N
1
2 y

]
=

[
M− 1

2 b

0

]
.

It is straightforward to verify that the coefficient matrix of the previous system is

(5.4) K̄ :=

[
In Ā

ĀT −Im

]
with Ā := M− 1

2 AN−
1
2 .

The next result gives the eigenvalues of K̄. It is a special case of (Saunders, 1995,
Result 2).

Theorem 5.1. Suppose Ā has rank p ≤ min(m,n) with nonzero singular values
σ1, . . . , σp. The eigenvalues of K̄ are

• λ = +1 with multiplicity n− p,
• λ = −1 with multiplicity m− p,
• λ = ±

√
1 + σ2

k, k = 1, . . . , p.

The scalars σk are the singular values of M− 1
2 AN−

1
2 , which we call the elliptic

singular values of A. A similar result clearly also holds if we replace M
1
2 with L

and N
1
2 with R, where M = LLT and N = RTR.

Theorem 5.1 implies that the spectrum of K̄ is symmetric, i.e., if λ is an eigen-
value of K̄, then −λ is another. An important result related to operators with
symmetric spectrum due to Fischer (2011, Theorem 6.9.9) will prove to be instru-
mental to our analysis.
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Consider K, H and K̄ as defined in (3.5), (3.6) and (5.4), and observe that

(5.5) K = H
1
2 K̄H

1
2 .

By direct computation,

(5.6) K̄2 =

[
In + ĀĀT

Im + ĀTĀ

]
:= D̄.

From (5.6) and the symmetry of K̄, we have the following properties:

K̄−1 = D̄−1K̄ = K̄D̄−1(5.7)

K̄D̄ = K̄3 = D̄K̄(5.8)

KH−1K = H
1
2 D̄H

1
2 =

[
M + AN−1AT

N + ATM−1A

]
:= D.(5.9)

Note that D contains the coefficient matrix of both the normal equations (2.6) and
the Schur-complement equations (2.7). Finally, from (5.9), we have

(5.10) K−1 = D−1KH−1 = H−1KD−1.

Because (5.8) says that D̄ and K̄ commute, both matrices can be simultaneously
diagonalized. In addition, (5.5) and (5.9) imply that D and K can be simultaneously
diagonalized by the solutions of the generalized eigenvalue problem

Kz = λjHz,

where the λj , j = 1, . . . , p = rank(Ā) are the same eigenvalues presented in The-
orem 5.1. Again, the entire discussion above remains if we replace H

1
2 by the

Cholesky factor of H.

5.2. Krylov subspaces. We denote

(5.11) Ki(K̄, z̄) = Range
{

K̄iz̄, K̄i−1z̄, . . . , K̄z̄, z̄
}

the i-th Krylov subspace generated by K̄ and a vector z̄. Note that Ki(K̄, z̄) is also
the i-th Krylov subspace generated by K symmetrically preconditioned by H

1
2 and

the vector z = H
1
2 z̄. Moreover, taking into account (3.4), the discussion in §3.2

and (5.5), we have

(5.12) H−1K = H−
1
2 K̄H

1
2 ,

and

(5.13) Ki(H
−1K,w) = H−

1
2Ki(K̄, z), where w = H−

1
2 z.

Owing to the symmetry of the spectrum of K̄—see Theorem 5.1—it is known (Fis-
cher, 2011, Theorem 6.9.9) and (Freund et al., 1991) that Lanczos-based algorithms
such as Minres perform redundant iterations. Taking into account the structure
of K̄, it is possible to be more precise.

From (5.6) and (5.8), we have, for all k ≥ 0,

(5.14) K̄2k = D̄k and K̄2k+1 = K̄D̄k = D̄kK̄.
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Consequently, for all i ≥ 0, the Krylov subspace Ki(K̄, z̄) can be written as the
direct sum

(5.15)
Ki(K̄, z̄) = Kbi/2c(D̄, z̄)⊕Kbi/2c(D̄, K̄z̄)

= Kbi/2c(D̄, z̄)⊕ K̄Kbi/2c(D̄, z̄).

Let D̄1 and D̄2 be defined such that D̄ = blkdiag(D̄1, D̄2). Then, if z̄ = (z̄1, z̄2),
we have

(5.16) Ki(D̄, z̄) =

[
Ki(D̄1, z̄1)

0

]
⊕
[

0
Ki(D̄2, z̄2)

]
and

K̄Ki(D̄, z̄) =

[
Ki(D̄1, z̄1)

ĀTKi(D̄1, z̄1)

]
⊕
[

ĀKi(D̄2, z̄2)
−Ki(D̄2, z̄2)

]
(5.17)

=

[
Ki(D̄1, z̄1)

Ki(D̄2, Ā
Tz̄1)

]
⊕
[
Ki(D̄1, Āz̄2)
−Ki(D̄2, z̄2)

]
.(5.18)

In particular, if we choose z = (b,0) or (0,g), we have, respectively,

Ki
(

D̄,

[
b
0

])
=

[
Ki(D̄1,b)

0

]
and Ki

(
D̄,

[
0
g

])
=

[
0

Ki(D̄2,g)

]
.

With z = (b,0), we finally obtain

Ki
(

K̄,

[
b
0

])
=

[
Kbi/2c(D̄1,b)

0

]
⊕
[

0

Kbi/2c+1(D̄2,A
Tb)

]
.

6. Methods Based on Reduced Equations

This section presents a family of four methods based on the normal and Schur-
complement equations. Three methods are generalizations of known methods in
appropriate metrics: Lsqr, Craig and Lsmr. The last one is new and may be
viewed as an alternative to Lsmr when m < n. It also serves as an essential tool
to explain the behavior of Minres on (1.1) in §8.4. For each method, we give
implementation details in order to be complete and to provide a self-contained
reference. The implementation details of Lsqr and Lsmr are our interpretation of
the descriptions in (Paige and Saunders, 1982) and (Fong and Saunders, 2011). The
implementation details of Craig were pieced together from various hints scattered
across the literature and those of Craig-mr are new although they essentially
mirror Lsmr.

6.1. Generalized Lsqr. The generalized Lsqr method seeks a solution to the
normal equations (2.6). At the end of the k-th iteration of Algorithm 4.2, we may
seek an approximation yk to the solution y of (2.6) in the k-th Krylov subspace
spanned by {v1, . . . , vk}, i.e.,

y ≈ yk := Vkȳk

for some ȳk ∈ Rk. Using (4.1), we have, in exact arithmetic, Ayk = AVkȳk =
MUk+1Ekȳk so that

ATM−1Ayk = (NVkE
T
k + αk+1Nvk+1e

T
k+1)Ekȳk,
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and, using the definition of yk, Nyk = NVkȳk. Similarly, the initialization of
Algorithm 4.2 guarantees that b = MUk+1(β1e1) holds to machine precision at
each iteration. This implies that

ATM−1b = (NVkE
T
k + αk+1Nvk+1e

T
k+1)(β1e1).

Finally, (2.6) may be equivalently written

((NVkE
T
k + αk+1Nvk+1e

T
k+1)Ek + NVk)ȳk = (NVkE

T
k + αk+1Nvk+1e

T
k+1)(β1e1).

Upon premultiplying the previous equality with VT
k and using the fact that the vk’s

are N-orthonormal in exact arithmetic, we obtain

(6.1) (ET
kEk + Ik)ȳk = ET

k (β1e1),

which are the optimality conditions of the linear least-squares problem

(6.2) minimize
ȳ∈Rk

1
2

∥∥∥∥[Ek

Ik

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

.

The latter is exactly the k-th regularized least-squares subproblem solved by Lsqr
with regularization parameter λ = 1. Equivalently, ȳk solves the SQD subsystem

(6.3)
[
Ik+1 Ek

ET
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
for some x̄k. As in (Benbow, 1999), this means that all that need be changed
in Lsqr to solve (1.1) with f = b and g = 0 is Algorithm 4.1, which should be
replaced with Algorithm 4.2.

The `2-norm residual satisifes

‖x̄k‖2 = ‖M
1
2 Uk+1x̄k‖2 = ‖M− 1

2 (Mxk)‖2 = ‖Mxk‖M−1 = ‖xk‖M,

where we used the fact that M
1
2 Uk+1 is an orthogonal matrix. Thus ‖Mxk‖M−1

may be updated recursively by updating ‖x̄k‖2 as in the original Lsqr, and the
sequence {‖Mxk‖M−1} is non-increasing.

It is convenient to solve (6.1) by computing a (2k + 1)-by-(2k + 1) orthogonal
matrix Qk as a product of Givens rotations and a (2k + 1)-by-k upper bidiagonal
matrix Rk such that

(6.4) Ẽk :=

[
Ek

Ik

]
= QkRk.

We give the details of the construction of Qk in the next section.
The following result is algebraic and generalizes (Saunders, 1995, Result 8). It

is based on the observation that the coefficient matrix of (2.6) may also be written

N
1
2

(
(M− 1

2 AN−
1
2 )T(M− 1

2 AN−
1
2 ) + In

)
N

1
2 .

Theorem 6.1. The generalized Lsqr iterates on (2.4) are the same as those gen-
erated by the standard conjugate gradient method on the positive definite system
(2.6) with preconditioner N.
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Proof. Proceeding as above, using (4.1) and post-multiplying the coefficient matrix
of (2.6) by Vk, we have

(ATM−1A + N)Vk = N(VkE
T
kEk + αk+1vk+1e

T
k+1Ek + Vk)

= N(Vk(ET
kEk + Ik) + αk+1βk+1vk+1e

T
k ),

where we used the fact that eT
k+1Ek = βk+1e

T
k . The matrix Tk := ET

kEk + Ik
is tridiagonal, symmetric and positive definite, and its i-th off-diagonal element is
αiβi. Therefore, upon comparing with (3.2), the above represents a Lanczos process
applied to the coefficient matrix of (2.6) in a metric defined by N. Moreover, by
definition of Qk and Rk,

ET
kEk + Ik =

[
ET
k Ik

]
QkQ

T
k

[
Ek

Ik

]
= RT

kRk.

Therefore, Rk is the Cholesky factor of Tk, updated at each iteration, and the
generalized Lsqr method is equivalent to the method of conjugate gradients applied
to (2.6) with preconditioner N. �

6.2. Generalized Lsqr Recursive Expressions. In this section we give update
formulae to perform the factorization (6.4) iteratively. Substituting the identity

RT
kRk ȳk =

[
ET
k Ik

] [Ek

Ik

]
ȳk = (ET

kEk + Ik)ȳk,

into (6.1), we obtain

(6.5) RT
kRk ȳk = ET

kβ1e1 =
[
ET
k Ik

] [β1e1

0

]
= RT

kQT
k

[
β1e1

0

]
= α1β1e1.

The (2j + 1, j)-th element of Ẽk (equal to 1) may be zeroed out by applying a
Givens rotation acting on rows j and 2j, denoted QT

j,2j+1, the last index indicating
the row of the element being zeroed out. This rotation does not create any new
nonzero in the other columns of Ẽk. Its effect may be represented schematically as
(ignoring irrelevant rows and columns)

[ j 2j + 1

j cj sj
2j + 1 sj −cj

] [ j j + 1

α̂j 0
1 0

]
=

[ j j + 1

ρ̂j 0
0 0

]
,

where ρ̂j :=
√
α̂2
j + 1, cj := α̂j/ρ̂j , sj = 1/ρ̂j and initially, α̂1 = α1. Next, the

βj+1 in position (j+ 1, j) may be zeroed out by a second Givens rotation acting on
rows j and j + 1, denoted QT

j,j+1. This rotation creates a new nonzero element in
position (j, j + 1) as the following schema illustrates

[ j j + 1

j c̄j s̄j
j + 1 s̄j −c̄j

] [ j j + 1

ρ̂j 0
βj+1 αj+1

]
=

[ j j + 1

ρj θj+1

0 α̂j+1

]
,

where ρj :=
√
ρ̂2
j + β2

j+1, c̄j := ρ̂j/ρj , s̄j := βj+1/ρj , θj+1 := s̄jαj+1 and α̂j+1 :=

−c̄jαj+1. It is now easy to see that the overall orthogonal matrix Qk is given by

Qk = (Q1,4Q1,2)(Q2,6Q2,3) · · · (Qk,2kQk,k+1).
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Recalling that Ek is (k + 1)-by-k, the result of the first k Givens rotations may
be described as

QT
k

[
Ek β1e1

Ik 0

]
= QT

k

 Bk β1e1

βk+1e
T
k 0

Ik 0

 =

Rk zk
0 ζ̄k+1

0 wk

 ,
where zk = (ζ1, . . . , ζk), wk = (ω1, . . . , ωk) and ζ̄k+1 will be updated into ζk+1 with
the next Givens rotation.

The update of the right-hand side may be visualized as


j j + 1 2j + 1

j c̄j s̄j
j + 1 s̄j −c̄j
2j + 1 1

 
j j + 1 2j + 1

cj sj
1

sj −cj

ζ̄j0
0

 =

 ζj
ζ̄j+1

ωj

 ,
where ζj := c̄jcj ζ̄j , ζ̄j+1 := s̄jcj ζ̄j , ωj := sj ζ̄j , and where we initialize ζ̄1 := β1.
The value ζ̄j+1 will be replaced by ζj+1 by the next Givens rotation.

A consequence of the rotation above is that the subproblem (6.2) may equiva-
lently be rewritten

minimize
ȳ∈Rk

1
2

∥∥∥∥∥∥
Rk

0
0

 ȳ −

 zk
ζ̄k+1

wk

∥∥∥∥∥∥
2

2

,

whose solution is readily identified, ȳk := R−1
k zk, and whose residual is the norm

of (ζ̄k+1,wk).
Since ȳk is the solution of an upper triangular system, all of its components likely

change at each iteration. Fortunately, it possible to update yk directly without
requiring ȳk. Following Paige and Saunders (1982), let dj be the j-th column of

(6.6) Dk := VkR
−1
k .

Upon rearranging, we have RT
kDT

k = VT
k so that we find the rows of DT

k , i.e., the
vectors dj , recursively:

(6.7) d1 =
1

ρ1

v1, dj+1 =
1

ρj+1

(vj+1 − θj+1dj), (j = 1, . . . , k − 1).

Consequently,

(6.8) yk = Vkȳk = VkR
−1
k zk = Dkzk = yk−1 + ζkdk.

The following result shows that Dk is a partial factor of ATM−1A + N and that
the latter matrix defines the appropriate norm to measure direct errors.
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Theorem 6.2. Let the vectors dk be updated according to (6.7). Then, for k =
1, . . . ,m, we have

(6.9) DT
k (ATM−1A + N)Dk = Ik.

In particular,

yk =

k∑
j=1

ζjdj ,(6.10a)

‖y‖2
A
T
M

−1
A+N

=

m∑
j=1

ζ2
j(6.10b)

‖y − yk‖
2

A
T
M

−1
A+N

=

m∑
j=k+1

ζ2
j ,(6.10c)

where y is the solution of (2.4).

Proof. We have from (4.1), (6.4), and (6.6) that

DT
k (ATM−1A + N)Dk = R−Tk VT

k (ATM−1A + N)VkR
−1
k

= R−Tk (VT
kATM−1AVk + Ik)R−1

k

= R−Tk (ET
kUT

k+1MUk+1Ek + Ik)R−1
k

= R−Tk

[
ET
k Ik

] [
Ek

Ik

]
R−1
k

= QT
kQk = Ik,

which establishes (6.9). Formulae (6.10a), (6.10b), and (6.10c) follow easily from
(6.9) and (6.8). �

Truncating the sum in (6.10b) and (6.10c) yields lower bounds on ‖y‖2
A
T
M

−1
A+N

and ‖y− yk‖
2

A
T
M

−1
A+N

. In particular, given an integer d sufficiently large and an
iteration k ≥ d, the sum over the most recent d iterations

(6.11)
k∑

j=k−d+1

ζ2
j ≤ ‖y − yk−d+1‖

2

A
T
M

−1
A+N

can be a good approximation of the direct error between the exact solution y and
the iterate yk−d+1 in the energy norm defined by ATM−1A+N. Analogously to the
approach used by Arioli (2010), Hestenes and Stiefel (1952), Golub and Meurant
(1997), Golub and Meurant (2010) and others, this suggests a stopping criterion
where we stop the iterations when the partial sum above falls below a tolerance τ2

times
∑k
j=1 ζ

2
j .

The update of dk+1 appears to require knowledge of ρk+1, which is not available
during the k-th iteration. It is possible to circumvent this by defining hk := ρkdk.
We then initialize h1 := v1 and update according to hk+1 = vk+1 − θk+1/ρk hk.
The update of yk becomes yk = yk−1 + ζk/ρk hk. The main steps of g-Lsqr are
summarized as Algorithm 6.1.
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Algorithm 6.1 Generalized Lsqr

Require: M, A, N, b, d, τ , kmax
1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: h1 = v1, ζ̄1 = β1, α̂1 = α1, y0 = 0
3: k = 1, ∆ = 0, converged = false
4: while not converged and k < kmax do
5: // Continue bidiagonalization
6: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk

7: ρ̂k = (1 + ρ̄2
k)

1
2 , ck = α̂k/ρ̂k, sk = 1/ρ̂k // Rotation of type II

8: ρk = (ρ̂2
k + β2

k+1)
1
2 , c̄k = ρ̂k/ρk, s̄k = βk+1/ρk // Rotation of type I

9: θk+1 = s̄kαk+1, α̂k+1 = −ĉkαk+1

10: ζk = c̄kck ζ̄k, ζ̄k+1 = s̄kck ζ̄k, ωk = sk ζ̄k // Update solution and residual
11: yk = yk−1 + ζk/ρk hk // Update
12: hk+1 = vk+1 − θk+1/ρk hk,
13: ∆ = ∆ + ζ2

k

14: if k ≥ d then
15: converged =

(∑k
j=k−d+1 ζ

2
j < τ2∆

)
// Test convergence

16: k ← k + 1
17: y = yk
18: x = M−1(b−Ay)
19: return (x,y)

6.3. Generalized Craig. The Generalized Craig method seeks a solution to the
least-norm problem (2.8), which, we reiterate, it perfectly equivalent to the least-
squares problem (2.4). After k steps of Algorithm 4.2, we seek approximations

x ≈ xk := Ukx̄k, and y ≈ yk := Vkȳk

for some x̄k ∈ Rk and ȳk ∈ Rk. In doing so, we have ‖y‖2N ≈ ‖yk‖
2
N = ‖ȳk‖

2 and
‖x‖2M ≈ ‖xk‖

2
M = ‖x̄k‖

2. Moreover,

Mx + Ay ≈Mxk + Ayk

= MUkx̄k + AVkȳk

= MUkx̄k + MUkBkȳk + βk+1Muk+1e
T
k ȳk.

Upon premultiplying by UT
k , the right-hand side becomes x̄k + Bkȳk. Therefore,

(x̄k, ȳk) solves

(6.12) minimize
x̄,ȳ

1
2 (‖x̄‖2 + ‖ȳ‖2) subject to x̄ + Bkȳ = β1e1,

where we again used the fact that b = MUk(β1e1) for all k. Since the constraints
of the latter problem always form a compatible system, Craig’s method may be
applied. As in the previous section, the k-th subproblem solved by this generalized
Craig method is identical to that solved by the Extended Craig Algorithm of
Saunders (1995) with the regularization parameter set to one. The only part of the
implementation that need be modified is the bidiagonalization step.
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By contrast with §6.1, the solution of (6.12) solves the SQD subsystem

(6.13)
[

Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
which represents the optimality conditions of the regularized least-squares problem

minimize
ȳ∈Rk

1
2

∥∥∥∥[BT
k

Ik

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

.

The similarity between the latter and the least-squares problem solved at iteration
k of Lsqr makes it possible to transfer from the Craig point to the Lsqr point
(Saunders, 1995).

Following Saunders (1995) and Paige (1974), (6.12) may be solved via the LQ
factorization of the k-by-2k matrix

[
Bk Ik

]
by applying 2k − 1 Givens rotations

that zero out the identity block. The construction of the rotations is explained
below. Their effect is to produce an orthogonal 2k-by-2k matrix Qk and a k-by-k
lower bidiagonal matrix B̂k such that

(6.14)
[
Bk Ik

]
QT
k =

[
B̂k 0

]
.

We denote

(6.15) B̂k :=


α̂1

β̂2 α̂2

. . . . . .
β̂k α̂k

 .
Suppose y∗ is the y-component of the exact solution to (1.1) with f = b and

g = 0 and write y∗ = Vmȳ for some vector ȳ. The direct error is measured by

‖ȳ − ȳk‖2 = ‖N
1
2 Vm(ȳ −BT

k z̄k)‖2 = ‖Vm(ȳ −BT
k z̄k)‖N = ‖y∗ − yk‖N,

where we used the facts that ȳk = BT
k z̄k, yk = Vmȳk and the orthogonality of

N
1
2 Vm. Similarly, ‖x∗ − xk‖M = ‖x̄− x̄k‖2, where x∗ = Umx̄ is the x-component

of the exact solution to (1.1). The generalized Craig method thus generates a
sequence {(xk,yk)} such that ‖x∗ − xk‖

2
M + ‖y∗ − yk‖

2
N is non-increasing.

By definition of the Craig method—(Craig, 1955) and (Saunders, 1995, Re-
sult 9)—and the observation that

M + AN−1AT = M
1
2

(
In + (M− 1

2 AN−
1
2 )(M− 1

2 AN−
1
2 )T
)

M
1
2 ,

we have the following result.

Theorem 6.3. The generalized Craig iterates yk are related to the iterates xk
of the conjugate gradient method applied to

(6.16) (M + AN−1AT)x = b

with preconditioner M according to yk = N−1ATxk.

Proof. Upon multiplying the second block equation of (6.13) by Bk and substituting
the value of Bkȳk from the first block equation, we obtain

(6.17) (BkB
T
k + Ik)x̄k = β1e1.
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Our subsitution combined with (4.1) yield

yk = Vkȳk = VkB
T
k x̄k = N−1BTUkx̄k = N−1ATxk.

Using the approximation x ≈ xk := Ukx̄k in (6.16) and premultiplying with UT
k ,

and using the M-orthogonality of the uk, the N-orthogonality of the vk and (4.1),
we obtain precisely (6.17).

The system (6.17) may be written equivalently[
Bk Ik

] [BT
k

Ik

]
x̄k = β1e1.

Substituting the factorization (6.14) and using the orthogonality of Qk, we obtain

(6.18) B̂kB̂
T
k x̄k = β1e1.

In the latter system, the matrix T̂k := B̂kB̂
T
k is tridiagonal, symmetric and positive

definite, and its Cholesky factor is B̂k. It is the tridiagonal matrix generated by a
Lanczos process applied to (6.16). Indeed, consider (6.16) in which we substitute
x by an approximation of the form xk = Ukx̄k. Using (4.1), we have

(6.19)
(M + AN−1AT)Uk = M

(
Uk(Ik + BkB

T
k ) + βk+1uk+1e

T
kBT

k

)
= M

(
Uk

[
Bk Ik

] [BT
k

Ik

]
+ αkβk+1uk+1e

T
k

)
.

It is easy to verify that the k-th off-diagonal element of T̂k = BkB
T
k +Ik is precisely

equal to αkβk+1. Comparing with (3.2), we conclude that (6.19) corresponds to
a Lanczos process on the coefficient matrix of (6.16) with a metric defined by
the matrix M. This and the facts established above confirm that the generalized
Craig method is equivalent to the conjugate gradient method applied to (6.16)
with preconditioner M. �

The proof of Theorem 6.3, and (6.18) in particular, suggests a numerical proce-
dure. Indeed, letting

(6.20) z̄k := B̂T
k x̄k,

solving for the components of z̄k = (ζ1, . . . , ζk) is easy:

(6.21) ζ1 := β1/α̂1, ζi+1 := −β̂i+1ζi/α̂i, (i = 1, . . . , k − 1).

Solving for xk directly, and bypassing x̄k, may now be done as in §6.2. By definition,

xk = Ukx̄k = UkB̂
−T
k z̄k.

Since B̂−Tk is upper bidiagonal, all components of B̂−Tk z̄k are likely to change at
every iteration. Fortunately, upon defining Dk := UkB̂

−T
k , and denoting di the

i-th column of Dk, we are able to use a recursion formula for xk provided that di
may be found easily. Slightly rearranging, we have

B̂kD
T
k = UT

k

and therefore it is easy to identify each di—i.e., each row of DT
k—recursively:

(6.22) d1 := u1/α̂1, di+1 := (ui+1 − β̂i+1di)/α̂i+1, (i = 1, . . . , k − 1).

This yields the update

(6.23) xk+1 = xk + ζk+1dk+1
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for xk+1. In the next section, we return to the expansion of each xk as a linear
combination of the columns of Dk.

6.4. Generalized Craig Recursive Expressions. Saunders (1995) describes
an implementation of the extended Craig method in the variable y. In this section,
we describe an implementation in the variable x that resembles that of Arioli (2010).

The (1, k+1)-st element of
[
Bk Ik

]
(equal to 1), may be zeroed out by applying

a Givens rotation acting on columns 1 and k + 1. By convention, we denote this
rotation Q1,k+1, the last index indicating the column of the element being zeroed
out, and label it a rotation of type I. As the (2, 1)-th element of the constraint
matrix is β2 > 0, the rotation creates a new nonzero element in position (2, k+ 1),
which we denote γ2. The newly created γ2 may be zeroed out by a second rotation,
of type II, acting on columns k + 1 and k + 2, i.e., Qk+2,k+1. Aside from zeroing
out γ2, the effect of Qk+2,k+1 is to change the value 1 in position (k + 2, k + 2) to
some other value, denoted δ2, which can be zeroed out by a new rotation of type I.
With the convention that δ1 = 1, a general rotation of type I, with the purpose of
zeroing out a δk, may be represented schematically as (ignoring all irrelevant rows
and columns):

[ k 2k

k αk δk
k + 1 βk+1 0

] [ k 2k

ck sk
sk −ck

]
=

[
ρk 0

ckβk+1 γk+1

]
:=

[
α̂k 0

β̂k+1 γk+1

]
,

where ρk :=

√
α2
k + δ2

k, ck := αk/ρk, sk := δk/ρk, β̂k+1 := ckβk+1, and γk+1 :=

skβk+1, and where labels to the left and above a matrix indicate row and column
indices, respectively. It is easy to show by induction that α̂k > 0 and therefore that
the procedure (6.21) is well defined. Similarly, a general rotation of type II, with
the purpose of zeroing out a γk+1, may be represented schematically as

[ 2k + 1 2k + 2

k + 1 γk+1 1
k + 2 0 0

] [ 2k + 1 2k + 2

c̄k s̄k
s̄k −c̄k

]
=

[
0 δk+1

0 0

]
,

where c̄k := −1/
√
γ2
k+1 + 1, s̄k := γk+1/

√
γ2
k+1 + 1, and δk+1 := s̄kγk+1 − c̄k =√

γ2
k+1 + 1. It is now not too difficult to see that the sequence of rotations required

to perform the LQ factorization is given by

QT
k := (Q1,k+1Qk+2,k+1)(Q2,k+2Qk+3,k+2) · · · (Qk−1,2k−1Q2k,2k−1)Qk,2k.

Other rotations are possible; the one given coincides with that of Saunders (1995).
We can verify by induction that

(6.24)

α̂1 =

√
α2

1 + 1,

α̂k+1 =

√
α2
k+1 + δ2

k+1, k ≥ 2,

β̂k+1 = αkβk+1/α̂k, k ≥ 2.

At this point, we have constructed B̂k and we may update the vectors dk and the
estimate xk as in (6.22) and (6.23).

The factorization (6.14) implicitly fixes ȳk = BT
k x̄k in (6.13).
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At each iteration, the residual of (1.1) at (xk,yk),

(6.25)
[
rk
sk

]
:=

[
b
0

]
−
[
M A

AT −N

] [
xk
yk

]
is given by[
rk
sk

]
=

[
β1Mu1

0

]
−
[
M A

AT −N

] [
Uk

Vk

] [
x̄k
ȳk

]
=

[
β1Mu1

0

]
−
[
M

N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
−
[
βk+1Muk+1

0

]
eT

2k

[
x̄k
ȳk

]
=

[
−βk+1ηkMuk+1

0

]
,

where we used (4.1), (6.13) and where ηk is the k-th component of ȳk. The vector
ȳk is not directly available but ηk can nonetheless be monitored cheaply since, by
definition,

(6.26) ηk = eT
k

[
ȳk
x̄k

]
= eT

kQT
k

[
z̄k
0

]
= eT

kQk,2k

[
z̄k
0

]
= ckζk,

where ζk is the k-th component of z̄k, while ck is the cosine defining Qk,2k. This
establishes that

(6.27) ‖rk‖M−1 = |βk+1ckζk|.

The residual of (6.16) may be monitored similarly. As in (6.19), we have

qk := b− (M + AN−1AT)Ukx̄k(6.28)

= β1Mu1 −M
(
Uk(Ik + BkB

T
k )x̄k + αkβk+1uk+1e

T
k x̄k

)
= αkβk+1ξkMuk+1.

where we used (6.17) and we denoted ξk the last component of x̄k. As before, x̄k
is not directly accessible but, by definition,

(6.29) ξk = eT
2k

[
ȳk
x̄k

]
= eT

2kQ
T
k

[
z̄k
0

]
= eT

2kQ2k,2k−1Qk,2k

[
z̄k
0

]
= skζk,

where we have used the facts that eT
2kQ2k,2k−1 = s̄ke

T
2k−1−c̄ke

T
2k, that eT

2k−1Qk,2k =

0, and eT
2kQk,2k = ske

T
k−cke

T
2k. Since qk ∈M?, we have, using the M-orthogonality

of uk+1,

(6.30) ‖qk‖M−1 = |αkβk+1skζk|.

Note that from (6.21), (6.26) and (6.29), we also have

(6.31) ξ2
k + η2

k = ζ2
k for all k.

The generalized Craig method is summarized as Algorithm 6.2.
As in the case of Lsqr, Algorithm 6.2 implicitly constructs and updates a partial

factorization of a matrix determining the energy norm.
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Theorem 6.4. Let B̂k be defined by (6.14) and Dk := UkB̂
−T
k . For k = 1, . . . , n,

we have

(6.32) DT
k (AN−1AT + M)Dk = Ik.

In particular,

(6.33) xk =

k∑
j=1

ζjdj

and we have the estimates

‖xk‖
2

AN
−1

A
T
+M

=

k∑
i=1

ζ2
i ,(6.34a)

‖x∗ − xk‖
2

AN
−1

A
T
+M

=
n∑

i=k+1

ζ2
i ,(6.34b)

‖xk‖
2
M =

k∑
i=1

ξ2
i ,(6.34c)

‖x∗ − xk‖
2
M =

n∑
i=k+1

ξ2
i ,(6.34d)

where ζi and ξi are as in (6.21) and (6.29).
In addition, the residuals rk and qk defined in (6.25) and (6.28) satisfy

(6.35) ‖rk‖M−1 ≤ ‖Ā‖2 |ζk| and ‖qk‖M−1 ≤ ‖Ā‖22 |ζk|.

Proof. We have from (6.14), the orthogonality of Qk, the M-orthogonality of the
uk, the N-orthogonality of the vk and (4.1), that

DT
k (AN−1AT + M)Dk = B̂−1

k UT
k (AN−1AT + M)UkB̂

−T
k

= B̂−1
k (UT

kAN−1ATUk + Ik)B̂−Tk

= B̂−1
k (BkV

T
k NVkB

T
k + Ik)B̂−Tk

= B̂−1
k (BkB

T
k + Ik)B̂−Tk

= B̂−1
k

[
Bk Ik

] [BT
k

Ik

]
B̂−Tk

= B̂−1
k

[
B̂k 0

]
QkQ

T
k

[
B̂T
k

0

]
B̂−Tk

= B̂−1
k B̂kB̂

T
k B̂−Tk

= Ik,

which establishes (6.32).
Using the update formula (6.23) for xk, we may write xk = Dkz̄k. Thus,

‖xk‖
2

AN
−1

A
T
+M

= xT
k (AN−1AT + M)xk = z̄TkDT

k (AN−1AT + M)Dkz̄k = ‖z̄k‖
2
2.
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Therefore

‖xk‖
2

AN
−1

A
T
+M

=

k∑
i=1

ζ2
i ,

and this establishes (6.34a). Since

‖x∗‖2
AN

−1
A
T
+M

= ‖xn‖
2

AN
−1

A
T
+M

=

n∑
i=1

ζ2
i ,

we obtain (6.34b) as before.
Since Mxk = MUkx̄k and ‖x̄k‖

2
2 =

∑k
i=1 ξ

2
i by definition of ξi, we obtain the

second equality in (6.34c).
Using

‖x∗‖2M = ‖xn‖
2
M =

n∑
i=1

ξ2
i ,

we have the error estimate

‖x∗ − xk‖
2
M =

n∑
i=k+1

ξ2
i ,

which is identical to (6.34d).
The proof of (6.35) follows directly form (6.25), (6.28) and (Arioli, 2010, Propo-

sition 3.1). �

As in §6.2, (6.34b) suggests a stopping condition of the form
k+d+1∑
i=k+1

ζ2
i ≤ τ

2
k+d+1∑
i=1

ζ2
i ,

for a user-chosen integer d ∈ N0 and τ ∈ (0, 1).
In Theorem 6.4, the quantity ‖Ā‖2 is the largest singular value of Ā, which

coincides with the largest elliptic singular value of A.

6.5. Generalized Lsmr. Lsmr (Fong and Saunders, 2011) consists in applying
Minres (Paige and Saunders, 1975) to the normal equations (2.6). Since the appro-
priate norm for measuring the residual of the normal equations is the N−1-norm,
we premultiply (2.6) by N−

1
2 :

(6.36) N−
1
2 (ATM−1A + N)y = N−

1
2 ATM−1b.

By definition, Minres then computes y so as to

minimize
y∈Rm

1
2‖N

− 1
2 (ATM−1b− (ATM−1A + N)y))‖2.

Seeking again an approximation y ≈ yk := Vkȳk and using (4.1), we have

M−1(b−Ay) = M−1(MUk+1(β1e1)−AVkȳk) = Uk+1(β1e1 −Ekȳk)

and
ATM−1(b−Ay) = (NVkE

T
k + αk+1Nvk+1e

T
k+1)(β1e1 −Ekȳk).

Using the identities

eT
k+1e1 = 0, eT

k+1Ek = βk+1e
T
k , and ET

ke1 = α1e1,
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Algorithm 6.2 Generalized Craig

Require: M, A, N, b, d, τ , kmax
// Initialization

1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: δ1 = 1, α̂1 = (α2

1 + 1)
1
2 , c1 = α1/α̂1, s1 = 1/α̂1, ζ1 = s1β1

3: d1 = s1u1, x1 = ζ1d1

4: k = 1, ∆ = ζ2
1 , converged = false

5: while not converged and k < kmax do
6: // Continue bidiagonalization
7: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk
8: β̂k+1 = ckβk+1, γk+1 = skβk+1 // Continue rotation of type I
9: δk+1 = (γ2

k+1 + 1)
1
2 , c̄k = −1/δk+1, s̄k = γk+1/δk+1 // Rotation of type II

// Compute next Givens rotation of type I
10: α̂k+1 = (α2

k+1 + δ2
k+1)

1
2 , ck+1 = αk+1/α̂k+1, sk+1 = δk+1/α̂k+1

11: ζk+1 = −β̂k+1ζk/α̂k+1, ∆ = ∆ + ζ2
k+1, // Update

12: dk+1 = (uk+1 − β̂k+1dk)/α̂k+1

13: xk+1 = xk + ζk+1dk+1

14: if k ≥ d− 1 then
15: converged =

(∑k+1
j=k−d+2 ζ

2
j < τ2∆

)
// Test convergence in x

16: k ← k + 1
17: x = xk+1

18: y = N−1ATx
19: return (x,y)

there remains

ATM−1(b−Ay) = NVk+1

(
α1β1e1 −

[
ET
kEk

αk+1βk+1e
T
k

]
ȳk

)
.

Similarly,

Ny = NVkȳk = NVk+1

[
ȳk
0

]
.

By orthogonality of N
1
2 Vk+1,

(6.37) ‖N−
1
2 (ATM−1b− (ATM−1A + N)y))‖2 =∥∥∥∥∥N 1

2 Vk+1

(
α1β1e1 −

[
ET
kEk + Ik

αk+1βk+1e
T
k

]
ȳ

)∥∥∥∥∥
2

=∥∥∥∥∥α1β1e1 −

[
ET
kEk + Ik

αk+1βk+1e
T
k

]
ȳ

∥∥∥∥∥
2

.

Minimizing the latter residual is precisely the subproblem solved by the classic
regularized Lsmr with parameter λ = 1. Once again, changing the Golub-Kahan
procedure in Lsmr is all that is required to solve (1.1) with f = b and g = 0.
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A by-product of the above is the underlying Lanczos process

(6.38)

(N + ATM−1A)Vk+1 = N
(
Vk(ET

kEk + Ik) + αk+1βk+1vk+1e
T
k

)
,

= NVk+1

[
ET
kEk + Ik

αk+1βk+1e
T
k

]
which we already discovered in the proof of Theorem 6.1 and which is equivalent
to what would be generated by applying the standard Lanczos process to (N +

ATM−1A) with initial vector ATM−1b in the metric defined by N. We detail the
Lanczos process that characterizes Minres on this set of normal equations in §8.4.

We have established the following result, which follows directly from the very
definition of Lsmr and the Lanczos process (6.38).

Theorem 6.5. The generalized Lsmr iterates on (2.4) are the same as those
generated by the Minres method on the positive definite system (2.6) in the
metric defined by N.

6.6. Generalized Lsmr Recursive Expressions. Most of the details in this
section come directly from (Fong and Saunders, 2011) but will turn out to be
useful in designing a stopping condition in the appropriate norm.

The core of g-Lsmr revolves around two QR factorizations. The first is the
factorization of §6, i.e.,

QT
k

[
Ek

Ik

]
=

[
Rk

0

]
, Rk =


ρ1 θ2

ρ2

. . .

. . . θk
ρk

 .
As before, ET

kEk + Ik = RT
kRk. The least-squares problem (6.37) then reads

(6.39) minimize
ȳ

1
2

∥∥∥∥∥α1β1e1 −

[
RT
kRk

αk+1βk+1e
T
k

]
ȳ

∥∥∥∥∥
2

.

Define the approximation y ≈ yk := Vkȳk where ȳk solves the above least-squares
problem and let tk := Rkȳk. Define also qk := R−Tk (αk+1βk+1ek) = γkek where

(6.40) γk := αk+1βk+1/ρk.

We now perform a second QR factorization

Q̄k

[
RT
k α1β1e1

γke
T
k 0

]
=

[
R̄k zk
0 ζk+1

]
, R̄k =


ρ̄1 θ̄2

ρ̄2

. . .

. . . θ̄k
ρ̄k

 .
For this second factorization to be well defined recursively, it is necessary to show
that γk = θk+1 so that the matrix

[
Rk γkek

]
is Rk with one extra column taken

from Rk+1. But upon examination of the sets of two rotations defining the first
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factorization in §6, we see that θj+1 = s̄kαj+1 = αj+1βj+1/ρj = γj . The least-
squares problem in ȳ may now be restated as

minimize
t̄

1
2

∥∥∥∥∥
[

zk
ζk+1

]
−

[
R̄k

0

]
t

∥∥∥∥∥
2

.

The solution is obtained by setting tk := R̄−1
k zk and the value of the residual is

|ζk+1|.
Since R̄k is upper triangular, it is likely that all components of tk change from

one iteration to the next and it is more efficient to seek an update of yk directly. The
first step to achieve this is to define the matrix Dk as in (6.6) and to additionally
define

(6.41) D̄k := DkR̄
−1
k .

This defines the columns d̄i of D̄k recursively as the solution of a lower triangular
system:

(6.42) d̄0 := 0, and d̄i+1 :=
1

ρ̄i+1

(di+1 − θ̄i+1d̄i) i ≥ 0.

With these definitions we may update yk as follows:

(6.43) yk = Vkȳk = VkR
−1
k tk = Dktk = D̄kR̄ktk = D̄kzk = yk−1 + ζkd̄k.

The matrix D̄k yields a partial factorization of the operator that determines the
energy norm in which errors should be measured in g-Lsmr. The rationale behind
this energy norm is the following. Consider temporarily a hypothetical symmetric
and positive-definite system Cx = b. It is the defining property of Minres that
‖rk‖2 decreases monotonically, where rk := b−Cxk = C(x∗ − xk), and where x∗
is the unique solution of the system. Thus ‖rk‖2 = ‖x∗ − xk‖C2 is the quantity
that decreases. Suppose now, as in (6.36) that the residual must be measured in
the N−1-norm. Then

‖rk‖N−1 = ‖N−
1
2 rk‖2 = ‖N−

1
2 C(x∗ − xk)‖ = ‖x∗ − xk‖CN

−1
C

is the appropriate energy norm in which the error should be measured in Minres.
The next result summarizes the main properties in our SQD context.
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Theorem 6.6. Let D̄k be defined as in (6.41). Then, for k = 1, . . . ,m, we have

(6.44) D̄T
kGD̄k = Ik, where G := (ATM−1A + N)N−1(ATM−1A + N).

In particular,

(6.45) yk =

k∑
j=1

ζjd̄j ,

and

(6.46) ‖yk‖
2
G =

k∑
j=1

ζ2
j ,

and we have the error estimate

(6.47) ‖y − yk‖
2
G =

m∑
j=k+1

ζ2
j ,

where y is the solution of (6.36).

Proof. We establish (6.44). The expansion (6.45) follows by repeated application of
(6.43). The proof of (6.46) and (6.47) is a direct consequence of (6.44) and (6.45),
as in the proof of Theorem 6.4.

We deduce from (6.41) and (6.6) that D̄T
kGD̄k = R̄−Tk R−Tk VT

kGVkR
−1
k R̄−1

k .
We now expand this expression from the inside and out. Using (4.1), we have

(ATM−1A + N)Vk = ATUk+1Ek + NVk

= N((VkE
T
k + αk+1vk+1e

T
k+1)Ek + Vk)

= N(Vk(ET
kEk + Ik) + γkρkvk+1e

T
k ),

where we used the identity eT
k+1Ek = βk+1e

T
k and the definition (6.40) of γk. Using

the above identity twice, we obtain, after some basic manipulations,

VT
kGVk = (ET

kEk + Ik)2 + γ2
kρ

2
keke

T
k .

When forming the product above, cross terms vanish because they contain the
expression VT

kNvk+1, which is zero by orthogonality.
As we already noticed at the beginning of this section, ET

kEk + Ik = RT
kRk, and

therefore,
(ET

kEk + Ik)2 = RT
kRkR

T
kRk.

Consequently,

R−Tk

(
(ET

kEk + Ik)2 + γ2
kρ

2
keke

T
k

)
R−1
k = RkR

T
k + γ2

keke
T
k ,

where we used the identity R−Tk ek = ρ−1
k ek.

Note now that by definition of R̄k,

R̄T
k R̄k =

[
R̄T
k 0T

] [R̄k

0

]
=
[
Rk γkek

]
Q̄kQ̄

T
k

[
RT
k

γke
T
k

]
= RkR

T
k + γ2

keke
T
k .

This last identity finally yields

D̄T
kGD̄k = R̄−Tk (RkR

T
k + γ2

keke
T
k )R̄−1

k = R̄−Tk (R̄T
k R̄k)R̄−1

k = Ik,
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and this completes the proof. �

The last rotation computes R̄k by eliminating the subdiagonals of RT
k , i.e., θj+1

for j = 1, . . . , k − 1 as follows:

[ k k + 1

k ĉk ŝk
k + 1 ŝk −ĉk

] [ k k + 1

ρ̃k
θk+1 ρk+1

]
=

[
ρ̄k θ̄k+1

ρ̃k+1

]
,

with the initialization ρ̃1 := ρ1. In other words, ρ̄k :=
√
ρ̃2
k + θ2

k+1, ĉk := ρ̃k/ρ̄k,
ŝk := θk+1/ρ̄k, θ̄k+1 := ŝkρk+1 and ρ̃k+1 := −ĉkρk+1.

During the k-th iteration, ρk+1 is not yet available. Therefore, the computation
of θ̄k+1 and ρ̃k+1 can only take place during the next iteration. The k-th iteration
computes θ̄k and ρ̃k as soon as ρk becomes available using the previous values ĉk−1

and ŝk−1. To update, yk we first compute d̄k according to (6.42) and update y
using (6.43). Computing dk+1 appears to require ρk+1. However, as Fong and
Saunders (2011) point out, it is possible to bypass this requirement by defining
instead

hk := ρkdk, and h̄k := ρkρ̄kd̄k,

and updating

h̄k = hk +
ρkθ̄k

ρk−1ρ̄k−1

h̄k−1, yk = yk−1 +
ζk

ρk−1ρ̄k−1

h̄k, hk+1 = vk+1 −
θk+1

ρk
hk.

The least-squares residual is initially given by[
ĉ1 ŝ1

ŝ1 −ĉ1

] [
β1

0

]
=

[
ĉ1β1

ŝ1β1

]
,

so that ζ1 := ĉ1β1. Define ζ̂2 := ŝ1β1 to obtain the recursion[
ĉk ŝk
ŝk −ĉk

] [
ζ̂k
0

]
=

[
ĉk ζ̂k
ŝk ζ̂k

]
,

i.e., ζk := ĉk ζ̂k and ζ̂k+1 := ŝk ζ̂k. The recursion begins with ζ̂1 := ζ1. Note that
there is a lag in the residual value—the component ζ̂k+1 is obtained when computing
xk but it is |ζk| that gives the residual value, and it corresponds to xk−1, not to
xk. The main computational steps of g-Lsmr are summarized as Algorithm 6.3.

6.7. Generalized Craig-mr. In this section, we present the main features of a
method similar to Lsmr but that is equivalent to applying Minres to the Schur-
complement equations. By analogy with Lsmr, we dub this method Craig-mr.
Its application to (6.16) is dubbed the generalized Craig-mr, or g-Craig-mr.
The reason for introducing this method becomes clear in §8.4, where we show that
Minres applied directly to (1.1) with right-hand side (b,0) alternates between
g-Lsmr steps and g-Craig-mr steps.

It follows from (6.19) that the approximation xk = Ukx̄k reveals the associated
Lanczos process

(6.48)

(M + AN−1AT)Uk = MUk(BkB
T
k + Ik) + αkβk+1Muk+1e

T
k ,

= MUk+1

[
BkB

T
k + Ik

αkβk+1e
T
k

]
,
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Algorithm 6.3 Generalized Lsmr

Require: M, A, N, b, d, τ , kmax
1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: α̂1 = α1, ρ̄1 = α1, ζ̂1 = α1β1, ĉ0 = −1, ŝ0 = 0, ρ0 = 0, ρ̄0 = 0
3: h1 = v1, h̄0 = 0, y0 = 0
4: k = 1, ∆ = 0, converged = false
5: while not converged and k < kmax do
6: // Continue bidiagonalization
7: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk

8: ρ̂k = (1 + α̂2
k)

1
2 , ck = α̂k/ρ̂k, sk = 1/ρ̂k // Rotation of type II

9: ρk = (ρ̂2
k + β2

k+1)
1
2 , c̄k = ρ̂k/ρk, s̄k = βk+1/ρk // Rotation of type I

10: θk+1 = s̄kαk+1, α̂k+1 = −c̄kαk+1,
11: θ̄k = ŝk−1ρk, ρ̃k = −ĉk−1ρk // Rotation of type III
12: ρ̄k = (ρ̃2

k + θ2
k+1)

1
2 , ĉk = ρ̃k/ρ̄k, ŝk = θk+1/ρ̄k,

13: ζk = ĉk ζ̂k, ζ̂k+1 = ŝk ζ̂k, ∆ = ∆ + ζ2
k // Residual and error update

14: h̄k = hk + ρkθ̄k/(ρk−1ρ̄k−1) h̄k−1 // Update
15: yk = yk−1 + ζk/(ρk−1ρ̄k−1) h̄k
16: hk+1 = vk+1 − θk+1/ρk hk
17: if k ≥ d then
18: converged =

(∑k
j=k−d+1 ζ

2
j < τ2∆

)
// Test convergence

19: k ← k + 1
20: y = yk
21: x = M−1(b−Ay)
22: return (x,y)

where we note that the matrix (BkB
T
k + Ik) is tridiagonal, and by definition, b =

β1Mu1.
Note that for any x, the residual of (6.16) lies in M?. The appropriate norm to

measure this residual is thus the M−1-norm. By definition, g-Craig-mr computes
xk as the solution of

minimize
x∈Range(Vk)

1
2‖M

− 1
2 (b− (M + AN−1AT)x)‖2.

Since the system is always consistent in Rn, the final solution x solves

(6.49) M− 1
2 (M + AN−1AT)x = M− 1

2 b.

We have established the following result, which follows directly from the very
definition of g-Craig-mr and the Lanczos process (6.48).

Theorem 6.7. The generalized Craig-mr iterates on (2.4) are the same as
those generated by the Minres method on the positive definite system (2.7) in
the metric defined by M.
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Using the approximation x ≈ xk = Ukx̄k and (6.48), the k-th subproblem may
be written

(6.50) minimize
x̄k

1
2

∥∥∥∥∥β1e1 −

[
BkB

T
k + Ik

αkβk+1e
T
k

]
x̄k

∥∥∥∥∥
2

,

which is again a regularized subproblem with regularization parameter λ = 1.
An implementation of g-Craig-mr starts, as in g-Craig, by computing the LQ

factorization (6.14), where B̂k is k-by-k lower bidiagonal. As before, BkB
T
k + Ik =

B̂kB̂
T
k . We define

tk := B̂T
k x̄k, and qk := B̂−1

k (αkβk+1ek) =
αkβk+1

α̂k
ek := γkek.

The least-squares residual of the k-th subproblem may now be rewritten

β1e1 −

[
BkB

T
k + Ik

αkβk+1e
T
k

]
x̄k = β1e1 −

[
B̂kB̂

T
k

qT
k B̂T

k

]
x̄k = β1e1 −

[
B̂k

γke
T
k

]
tk.

As in Lsmr, we now perform the third QR factorization

Q̄k+1

[
B̂k β1e1

γke
T
k 0

]
=

[
Rk zk
0 ζk+1

]
with Rk =


ρ1 θ2

ρ2

. . .

. . . θk
ρk

 ,
where Q̄k+1 is orthogonal. Again for this second factorization to be well defined
recursively, it is necessary to verify that γk = β̂k+1. Fortunately, we have already
verified this fact in (6.24). This helps us write the k-th subproblem as

minimize
tk

1
2

∥∥∥∥[ zk
ζk+1

]
−
[
Rk

0

]
tk

∥∥∥∥
2

.

Clearly, we obtain the solution by picking tk := R−1
k zk and the least-squares resid-

ual is simply |ζk+1|. The remaining algorithmic details essentially follow those
developed by Fong and Saunders (2011) for Lsmr.

Seeking once again a direct update of xk, we define the columns d1 to dk of Dk

recursively via the definition

Dk := UkB̂
−T
k , i.e., B̂kD

T
k = UT

k ,

which yields

d1 :=
1

α̂1

u1, and dj+1 :=
1

α̂j+1

(uj+1 − β̂j+1dj) (j ≥ 0).

Similarly, define the columns d̄1 to d̄k of D̄k via

(6.51) D̄k := DkR
−1
k , i.e., RT

k D̄T
k = DT

k ,

which yields

d̄1 :=
1

ρ1

d1, and d̄j+1 :=
1

ρj+1

(dj+1 − θj+1d̄j), (j ≥ 0).

With these definitions, we may use the update

xk = Ukx̄k = UkB̂
−T
k tk = Dktk = DkR

−1
k zk = D̄kzk = xk−1 + ζkd̄k.
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Theorem 6.8. Let D̄k be defined as in (6.51). Then, for k = 1, . . . , n, we have

(6.52) D̄T
kWD̄k = Ik, where W := (AN−1AT + M)M−1(AN−1AT + M).

In particular,

(6.53) xk =

k∑
j=1

ζjd̄j ,

and

(6.54) ‖xk‖
2
W =

k∑
j=1

ζ2
j ,

and we have the error estimate

(6.55) ‖x− xk‖
2
W =

n∑
j=k+1

ζ2
j ,

where x is the solution of (6.49).

Proof. The proof is analogous to that of Theorem 6.6. �

The rotation necessary to compute Rk, which we call a rotation of type III,
eliminates the subdiagonals of B̂k, i.e., β̂j+1, j = 1, . . . , k − 1, as follows:

[ k k + 1

k ĉk ŝk
k + 1 ŝk −ĉk

] [ k k + 1

α̃k
β̂k+1 α̂k+1

]
=

[
ρk θk+1

α̃k+1

]
,

with the initialization α̃1 := α̂1. In other words, ρk :=
√
α̃2
k + β̂2

k+1, ĉk := α̃k/ρk,

ŝk := β̂k+1/ρk, θk+1 := ŝkα̂k+1, and α̃k+1 = −ĉkα̂k+1.
The main details of g-Craig-mr are summarized as Algorithm 6.4. It is worth

noting again that the least-squares residual, |ζk| lags one step behind and corre-
sponds to the previous iterate xk−1.

7. Upper Bound Error Estimates

In the previous sections, we proposed several lower bounds on the direct error
that are linked to the techniques described by Golub and Meurant (2010). Even
though those lower bounds estimate the error at step k−d, it is safe to use the most
recent solution estimate, i.e., that computed at step k, owing to the monotonicity
of the error sequence.

To motivate our approach, consider the generalized Lsqr method and the re-
lation (6.5), which determines the coefficients ȳk of the k-th approximation yk in
terms of the initial values β1 = ‖b‖

M
−1 and α1 = ‖ATu1‖N−1 = β−1

1 ‖A
TM−1b‖

N
−1 .

Let T̂k denote the symmetric and positive definite tridiagonal matrix RT
kRk. Then

ȳk = α1β1T̂
−1
k e1. Theorem 6.2 indicates that ‖yk‖AT

M
−1

A+N
= ‖zk‖2 where

zk = Rkȳk. Therefore,

‖yk‖AT
M

−1
A+N

= ‖zk‖2 = ‖Rkȳk‖2 = ‖ȳk‖T̂k
= |α1β1| ‖e1‖T̂−1

k
.
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Algorithm 6.4 Generalized Craig-mr

Require: M, A, N, b, d, τ , kmax

1: β1Mu1 = b, α1Nv1 = ATu1 // Initialize bidiagonalization
2: δ1 = 1, α̂1 = (α2

1 + 1)
1
2 , c1 = α1/α̂1, s1 = 1/α̂1

3: ζ̂1 = β1, α̃1 = α̂1, θ1 = 0
4: d1 = 1/α̂1u1, d̄0 = 0, x0 = 0
5: k = 1, ∆ = 0, converged = false
6: while not converged and k < kmax do
7: // Continue bidiagonalization
8: βk+1Muk+1 = Avk − αkMuk, αk+1Nvk+1 = ATuk+1 − βk+1Nvk
9: β̂k+1 = ckβk+1, γk+1 = skβk+1 // Continue rotation of type I

10: δk+1 = (γ2
k+1 + 1)

1
2 , c̄k = −1/δk+1, s̄k = γk+1/δk+1 // Rotation of type II

// Compute new Givens rotation of type I
11: α̂k+1 = (α2

k+1 + δ2
k+1)

1
2 , ck+1 = αk+1/α̂k+1, sk+1 = δk+1/α̂k+1

12: ρk = (α̃2
k + β̂2

k+1)
1
2 , ĉk = α̃k/ρk, ŝk = β̂k+1/ρk // Rotation of type III

13: θk+1 = ŝkα̂k+1, α̃k+1 = −ĉkα̂k+1

14: ζk = ĉk ζ̂k, ζ̂k+1 = ŝk ζ̂k, ∆ = ∆ + ζ2
k // Update

15: dk+1 = 1/α̂k+1(uk+1 − β̂k+1dk)
16: d̄k = 1/ρk(dk − θkd̄k−1)
17: xk = xk−1 + ζkd̄k
18: if k ≥ d then
19: converged =

(∑k
j=k−d+1 ζ

2
j < τ2∆

)
// Test convergence

20: k ← k + 1
21: x = xk
22: y = N−1ATx
23: return (x,y)

But ‖e1‖
2

T̂
−1
k

= eT
1 T̂−1

k e1 and so the above states that the squared energy norm of

yk is a factor of the leading element of T̂−1
k . Using the same logic as in the proof

of Theorem 6.2, if T̂ := T̂n is the value of the tridiagonal when convergence has
occurred, then we may measure the direct error as

‖yk − y‖
A
T
M

−1
A+N

= |α1β1|
∣∣∣‖e1‖T−1

k
− ‖e1‖T−1

∣∣∣ ,
and this direct error is related to the quality of the approximation of the lead-
ing entry of T̂−1 at step k. The same reasoning holds for the generalized Lsmr
method using (6.39). A similar result follows for the generalized Craig and Craig-
mr methods using (6.17) and (6.50), with the difference that α1 does not appear
explicitly.

In order for the discussion of this section to apply to all four methods, we intro-
duce the notation

T̂k := ÛT
k Ûk,

where the value of Ûk is given in Table 1 for each method based on reduced equa-
tions. Note that Ûk is upper bidiagonal and T̂k is tridiagonal, symmetric and
positive definite. From theorems 6.2, 6.4, 6.6, and 6.8 the error estimates are re-
lated to the approximation of the leading entry T̂−1

11 by (T̂−1
k )11.
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Table 1. Factor Ûk of the tridiagonal and coefficient matrix W
of the system solved by each method based on a reduced system.
The same matrix W defines the energy norm for the method.

Method Ûk W Theorems
g-Lsqr Rk ATM−1A + N 6.1 and 6.2
g-Craig B̂T

k AN−1AT + M 6.3 and 6.4
g-Lsmr Rk (ATM−1A + N)N−1(ATM−1A + N) 6.5 and 6.6
g-Craig-mr B̂T

k (AN−1AT + M)M−1(AN−1AT + M) 6.7 and 6.8

The vector z of entries ζj defines different quantities depending on the algorithm
choice. In g-Lsqr and g-Lsmr,
(7.1)

‖z‖22 = ‖ATM−1b‖2
N

−1 T̂−1
11 and

n∑
j=k+1

ζ2
j = ‖ATM−1b‖2

N
−1

(
T̂−1

11 − (T̂−1
k )11

)
,

while in g-Craig and g-Craig-mr,

(7.2) ‖z‖22 = ‖b‖2
M

−1 T̂−1
11 and

m∑
j=k+1

ζ2
j = ‖b‖2

M
−1

(
T̂−1

11 − (T̂−1
k )11

)
,

where T̂k is the k × k principal submatrix of T̂.
Let 0 < λ1 ≤ · · · ≤ λp be the eigenvalues of the matrix W defining the energy

norm in the method chosen, where p is eitherm or n. As explained in Theorems 6.2,
6.4, 6.6 and 6.8 and summarized in Table 1, W is also the coefficient matrix of the
system being solved. Therefore, W and T̂ have the same eigenvalues.

Let T̂ = QΛQT be the eigendecomposition of T̂, where Q is orthogonal and
Λ = diag(λ1, . . . , λp). The squared energy norm of the solution may then be
expressed as

(7.3) ‖z‖22 = γ2 eT
1 T̂−1e1 = γ2 µTΛ−1µ = γ2

p∑
i=1

λ−1
i µ2

i ,

where γ > 0 is either ‖ATM−1b‖
N

−1 or ‖b‖
M

−1 and µ := QTe1 = (µ1, . . . , µp).
Note that the components of µ are the first components of the normalized eigen-
vectors of T̂. Similarly, the squared energy norm of the k-th approximation may
be written as

‖zk‖
2
2 = γ2

k∑
i=1

λ−1
i µ2

i ,

so that the squared energy norm of the error is given by

‖z− zk‖
2
2 = γ2

p∑
i=k+1

λ−1
i µ2

i .

As earlier, we may choose to terminate the iterations as soon as

(7.4)
k∑

i=k−d+1

λ−1
i µ2

i ≤ τ
2

k∑
i=1

λ−1
i µ2

i



ITERATIVE METHODS FOR SQD SYSTEMS 39

for a given window size d ∈ N0 and tolerance τ2 > 0. Note that this relative
stopping test does not depend on γ.

Following the exposition of Golub and Meurant (1997) and Golub and Meurant
(2010), the energy norm of z can be interpreted as the approximation by a Gauss
quadrature of the Riemann-Stieltjes integral

(7.5)
∫ λp

λ1

1

λ
dµ(λ),

where the measure µ is the nondecreasing step function

µ(λ) =


0 if λ < λ1,∑k
i=1 µ

2
i if λk ≤ λ < λk+1,∑p

i=1 µ
2
i if λ ≥ λp.

Comparing the last sum in (7.3) with (7.5), we see that in this Gauss approximation,
the nodes are given by the eigenvalues of T̂ while the weights are the squared first
components of the normalized eigenvectors of T̂. Following this interpretation, the
errors (7.1) and (7.2) can be viewed as the remainder of the approximation of (7.5)
by this Gauss quadrature. In practice there is no need to compute explicitly the
eigenvalues λi or the weights µi—we simply accumulate the tems of the quadrature
by computing recursively eT

1 T̂−1
k e1 for all k, stopping when new terms no longer

add significantly to the overall sum.
The interesting feature of the above interpretation, as noted by Golub and Meu-

rant (2010), is that because the sign of the remainder can be known in advance,
the quadrature approximation will either yield an upper or a lower bound on the
energy norm. This is due to the sign of the derivatives of λ 7→ 1/λ being known
in advance. A pure Gauss approximation can be shown to yield a lower bound.
But other quadratures are possible, such as the Gauss-Radau quadrature in which
one node is fixed, or the Gauss-Lobatto quadrature in which two nodes are fixed.
Fixing nodes amounts to augmenting T̂k so as to give it one or two prescribed
eigenvalues. It can be shown that the Gauss-Radau rule yields an upper bound if
a ≤ λ1 is the fixed node, or a lower bound if b ≥ λp is the fixed node, while the
Gauss-Lobatto rule, in which both a ≤ λ1 and b ≥ λp are fixed nodes, yields an
upper bound. Note that the measure µ(λ) ensures that∫ b

a

1

λ
dµ(λ) =

∫ λp

λ1

1

λ
dµ(λ)

for all such values of a and b.
We denote by ςj the diagonal entries of Û and νj the entries under the diagonal,

so that

T̂k =


ς1

ν2 ς2
. . . . . .

νk ςk



ς1 ν2

ς2
. . .
. . . νk

ςk

 =


ς21 ς1ν2

ς1ν2 ς22 + ν2
2

. . .
. . . . . . ςk−1νk

ςk−1νk ς2k + ν2
k

 .
Note that in all four methods, T̂k has the form ET

kEk + Ik or BkB
T
k + Ik. In

both cases, λ1 ≥ 1. Let 0 < a < 1 be a lower bound on all the eigenvalues of
T̂. We now follow Golub and Meurant (2010) and describe how to implement the
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Gauss-Radau rule with a fixed node at a, thereby obtaining an upper bound on the
error. When advancing from T̂k to T̂k+1, we compute the new off-diagonal element
ςkνk+1 and modify the new diagonal element so that T̂k+1 has an eigenvalue equal
to a. The key element to setting the appropriate value on the diagonal resides in the
relationship between the Lanczos process and the family of normalized polynomials
pi(λ) that are orthogonal with respect to the measure µ, i.e.,∫ λp

λ1

pi(λ)pj(λ)dµ(λ) = δij ,

where δij = 1 if i = j and zero otherwise is the Kronecker symbol. Like all
orthogonal polynomials, these satsify a three-term recurrence relationship that is
none other than, in matrix form,

(7.6) λpk+1(λ) = T̂k+1pk+1(λ) + ςk+1νk+2pk+1(λ)ek+1,

where pk+1(λ) = (p0(λ), . . . , pk(λ)). From this relation, it becomes apparent that
λ = a is an eigenvalue of T̂k+1 if and only if pk+1(a) = 0. In this case, the last
equation of (7.6) reads

apk(a) = ςkνk+1pk−1(a) + (ς2k+1 + ν2
k+1)pk(a).

We now modify the (ς2k+1 +ν2
k+1) on the diagonal and replace it with the value that

ensures satisfaction of this last identity, i.e.,

(7.7) ωk+1 := a− ςkνk+1

pk−1(a)

pk(a)
.

The modified tridiagonal may be written as

(7.8) T̃k+1 =

[
T̂k ςkνk+1ek

ςkνk+1e
T
k ωk+1

]
.

By construction, the smallest eigenvalue of T̃k+1 is precisely a. The next difficulty
is that the polynomials pi(λ) are not directly accessible. Fortunately, it is possible
to evaluate ωk+1 by extracting the k-th component δk of the solution δk of a
symmetric, positive-definite and tridiagonal system. To see this, note that (7.6) at
iteration k evaluated at λ = a may be written

(7.9) (T̂k − aIk)δk = −ς2kν
2
k+1ek,

where

δk = (δ1, . . . , δk) :=
ςkνk+1

pk(a)
pk(a) = ςkνk+1

(
p0(a)

pk(a)
, . . . ,

pk−1(a)

pk(a)

)
.

Therefore, (7.7) may equivalently be written

ωk+1 = a+ δk.

Analogously to Arioli (2010) and Golub and Meurant (2010), we can recursively
compute δk and ωk+1 by using the Cholesky decomposition for the system (7.9).
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Let

T̂k − aIk =


ς21 − a ς1ν2

ς1ν2 ς22 + ν2
2 − a

. . .
. . . . . . ςk−1νk

ςk−1νk ς2k + ν2
k − a



=


`1

c2 `2
. . . . . .

ck `k



`1 c2

`2
. . .
. . . ck

`k

 .
It is easy to verify that the Cholesky factors are given by the recurrence relations

`1 =

√
ς21 − a, cj = ςj−1νj/`j−1, `j =

√
ς2j + ν2

j − a− c
2
j , j = 2, 3, . . .

We may now compute δk by first solving
`1
c2 `2

. . . . . .
ck `k



π1

π2
...
πk

 =


0
0
...

−ς2kν
2
k+1

 ,
i.e., πk = (π1, . . . , πk) = −ς2kν

2
k+1/`k ek, and next extracting the last component of

the solution to 
`1 c2

`2
. . .
. . . ck

`k



δ1

δ2
...
δk

 =


0

0
...

−ς2kν
2
k+1/`k

 ,
i.e,

δk := − ς
2
kν

2
k+1

`2k
= − ς2kν

2
k+1

ς2k + ν2
k − a− c

2
k

,

with the special case that νk = ck = 0 when k = 1.
There remains to accumulate the terms of the quadrature. Having chosen a

Gauss-Radau approximation to (7.5), we are interested in computing eT
1 T̃−1

k+1e1

with T̃k+1 defined as in (7.8). It is easy to verify that the Cholesky factorization
L̃k+1L̃

T
k+1 of T̃k+1 is given by

T̃k+1 =

[
T̂k ςkνk+1ek

ςkνk+1e
T
k ωk+1

]
=

[
ÛT
k

νk+1e
T
k uk+1

] [
Ûk νk+1ek

uk+1

]
= L̃k+1L̃

T
k+1,

where uk+1 =
√
ωk+1 − ν

2
k+1. Then, eT

1 T̃−1
k+1e1 = ‖L̃−1

k+1e1‖
2
2 and this last squared

norm is accumulated into the variable Ξ2 using the procedure

χ1 =1/ς1, Ξ2 ← χ2
1,

χj+1 =− νj+1χj/uj+1, Ξ2 ← Ξ2 + χ2
j+1, j = 1, 2, . . .
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Observe that by definition zk = γÛ−Tk e1 and therefore the first k components of
χk = (χ1, . . . , χk) are precisely equal to γ−1zk. Since the main loop of the algorithm
already computes zk, we need only compute the last χk+1 = −νk+1ζk/(γuk+1).
Since the γ in the denominator appears in both the components of χk and in Ξ, we
remove it from both places.

Finally, we obtain the realization of the Gauss-Radau convergence test described
in Algorithm 7.1. This algorithm should be interleaved with one of Algorithm 6.1,
6.2, 6.3 or 6.4, which we indicate with comments in lines 1 and 9.

Algorithm 7.1 Gauss-Radau Convergence Test

Require: Ûk, d ∈ N0, τ ∈ (0, 1), a ∈ (0, 1)
1: // Generate ς1 and ζ1
2: Set ν1 := 0, c1 := 0, χ1 := ζ1, Ξ2 := χ2

1, k := 1 and converged := false.
3: while k < kmax do
4: `2k = ς2k + ν2

k − a− c
2
k, δk = ς2kν

2
k+1/`

2
k, c2k+1 = ν2

k+1/`
2
k

5: ωk+1 = a+ δk, uk+1 =
√
ωk+1 − ν

2
k+1

6: χk+1 = −νk+1ζk/uk+1, Ξ2 =
∑k
j=1 ζ

2
j + χ2

k+1

7: if k ≥ d then
8: converged =

(∑k
j=k−d+1 ζ

2
j ≤ τΞ2

)
9: // Compute ζk+1

Theorem 6.4 of Golub and Meurant (2010) ensures that Algorithm 7.1 computes
an upper bound on the direct error. In typical situations, the major inconvenient
of the Gauss-Radau approach is the need for an accurate estimate of the smallest
eigenvalue of T̂, which can be very difficult in general. It is remarkable that in our
case, the nature of T̂ guarantees that any value 0 < a < 1 is such an estimate and
produces an upper bound on the error.

The choice of the delay d is driven by the application and the values of M and
N. If M and N can be chosen such that the elliptic singular values of A become
bounded in an interval independent of n and m, the delay parameter d can be quite
small. We expect this to be the case in certain fluid flow problems such as Stokes
and stabilized Stokes for then, M and N are spectrally equivalent to operators
defining appropriate norms in the relevant function spaces.

8. Full-Space Methods

In this section we investigate the relation between the methods of §6 and two
well-known Lanczos-based methods applied directly to the SQD system (1.1) with
appropriate right-hand side: the conjugate gradient method and the minimum resid-
ual method.
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8.1. Full-Space Lanczos Process: I. Upon pasting the relations (4.1) together,
we have

[
M A

AT −N

] [
Uk+1

Vk

]
=

[
M

N

] [
Uk+1

Vk

] [
Ik+1 Ek

ET
k −Ik

]
+

[
0

αk+1Nvk+1

]
eT

2k+1

(8.1a)

[
M A

AT −N

] [
Uk

Vk

]
=

[
M

N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

]
+

[
βk+1Muk+1

0

]
eT

2k.

(8.1b)

We claim that (8.1) describe a Lanczos process on the coefficient matrix of (1.1)
using a metric defined by the block diagonal matrix blkdiag(M,N) and that the
matrix generated after k steps is itself SQD. Indeed, using the permutation matrix
P :=

[
e1 ek+1 e2 ek+2 . . . ek e2k

]
, we have

PT

[
Ik+1 Ek

ET
k −Ik

]
P = T2k+1 :=



1 α1

α1 −1 β1

β1 1 α2

. . . . . . . . .
αk −1 βk+1

βk+1 1


(8.2)

=

[
T2k βk+1e2k

βk+1e
T
2k 1

]
,(8.3)

which is the tridiagonal matrix T2k+1 generated after 2k + 1 steps of the Lanczos
process described above. The Lanczos vectors sk generated by the above process
have the form s2k+1 := (uk,0) and s2k+2 := (0,vk) for k ≥ 0. Moreover, the permu-
tation P restores the order in which those vectors are generated by the algorithm,
i.e.,

PT

[
Uk

Vk

]
P =

[
s1 s2 · · · s2k

]
.

8.2. Relation with the Direct Lanczos Method. According to Definition 1.1,
T2k and T2k+1 defined in (8.2) and (8.3) are symmetric and quasi-definite. They
therefore possess the Cholesky-like factorizations without pivoting:

T2k = L2kD2kL
T
2k

and, using (8.2)–(8.3),

T2k+1 =

[
L2kD2kL

T
2k βk+1e2k

βk+1e
T
2k 1

]

=

[
L2k

`2ke
T
2k 1

] [
D2k

d2k+1

] [
LT

2k `2ke2k

1

]
= L2k+1D2k+1L

T
2k+1,

where d2k+1 > 0. Similarly, T2k+2 is given by[
L2k+1

`2k+1e
T
2k+1 1

] [
D2k+1

d2k+2

] [
LT

2k+1 `2k+1e2k+1

1

]
= L2k+2D2k+2L

T
2k+2,
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where d2k+2 < 0. The factors are computed using the recursions

d1 = 1, dj+1 = tj+1,j+1 − dj`
2
j , `j = tj+1,j/dj , j = 1, 2, . . .

The entries ti,j of Tk are given by (8.2), i.e., tj,j = (−1)j+1, t2j,2j−1 = αj and
t2j+1,2j = βj .

The direct Lanczos method, referred to as DLanczos by Saad (2003, Algo-
rithm 6.17), is simply the Lanczos process in which the tridiagonal system with
coefficient Tk and with right-hand side β1e1 is solved at each iteration. Our ap-
proach is to compute the factors Lk and Dk of Tk and update them at each it-
eration. Systems involving Tk are then solved by way of the usual forward and
backward substitutions. Note that each Lk is unit lower bidiagonal.

Let k = 2i be an even iteration number. Consider the system (1.1) with right-
hand side (b,0) and an approximation in the k-th Krylov subspace of the form
(xk,yk) = (Ukx̄k,Vkȳk). Upon premultiplying (1.1) with blkdiag(UT

k ,V
T
k ) and

using (8.1b), the M-orthogonality of the vectors {uk} and the N-orthogonality of
the vectors {vk}, we obtain (6.13), which is a step of g-Craig and is precisely the
subproblem solved at iteration k of DLanczos. Observe that the choice ȳk = BT

k x̄k
automatically satisfies the second block of the equations (6.13) when x̄k solves
(6.17). Consider now an approximation in the (k + 1)-st Krylov space of the form
(xk+1,yk) = (Uk+1x̄k+1,Vkȳk). Proceeding as above, we obtain (6.3), which is
a step of g-Lsqr and is precisely the subproblem solved at iteration k + 1 of
DLanczos. In particular, ȳk satisfies the normal equations (6.1) and x̄k+1 satisfies
the first (k + 1) equations of (6.3).

This behaviour is a consequence of the expressions (5.16) and (5.17) for the
Krylov spaces, which alternate between

Ki
(

D̄,

[
b
0

])
=

[
Ki(D̄1,b)

0

]
and K̄Ki

(
D̄,

[
b
0

])
=

[
Ki(D̄1,b)

Ki(D̄2, Ā
Tb)

]
.

The above shows that the DLanczos method does not break down when applied
to the SQD system (1.1) with f = b and g = 0. Moreover, the underlying Lanczos
process generates SQD matrices at each iteration. In particular, in exact arithmetic,
the conjugate gradient method alternates between the minimization of the convex
part of the quadratic form generated by the SQD matrix and the maximization of
its concave part. In other words, upon denoting ex,k = x− xk and ey,k = y − yk,
the DLanczos method solves the problem

(8.4)
minimize

x
maximize

y

[
eT
x,k eT

y,k

] [M A

AT −N

] [
ex,k

ey,k

]
subject to (x,y) ∈ Kk

(
H−1K,

[
M−1b

0

])
.

A consequence of the previous paragraphs and the stability analysis of the LDLT

factorization of SQD matrices due to Gill et al. (1996) is that there is no need for
a symmetric indefinite factorization of Tk in the vein of Marcia (2008) for problem
(1.1).

We have proved the following result.
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Theorem 8.1. The DLanczos method on the SQD system (1.1) with right-
hand side (b,0) is well defined and will not break down. At each iteration, the
tridiagonal matrix generated by the Lanczos process is SQD. Every odd step is a
generalized Lsqr step. Every even step is a generalized Craig step.

If we denote zk = (xk,yk), xk = Ukx̄k, yk = Vkȳk, and z̄k = (x̄k, ȳk), the
tridiagonal system (6.13) may be written T2kz̄2k = β1e1. Taking into account the
factorization of Tk, we obtain

zk = Skz̄k = SkL
−T
k D−1

k L−1
k (β1e1) = Wkqk,

where we defined

Wk := SkL
−T
k D−1

k and qk := L−1
k (β1e1).

This is equivalent to the usual derivation of the DLanczos method based on the
LU factorization of the Lanczos tridiagonal. However, our usage of the LDLT fac-
torization highlights the fact that each Tk is SQD. The components (γ1, . . . , γk) of
qk are easily found by recursion:

γ1 = β1, γj+1 = −`jγj , j = 1, 2, . . .

Similarly, using the equivalent identity LkDkW
T
k = ST

k , we find the rows of WT
k ,

i.e., vectors w1, . . . ,wk, recursively based on the vectors sk:

w1 = s1/d1, wj+1 = (sj+1 − `jdjwj)/dj+1, j = 1, 2, . . .

Knowledge of the vectors wk leads to an efficient update of zk, bypassing the com-
putation of z̄k altogether:

zk = Wkqk = zk−1 + γkwk.

As we show below, the matrix Wk forms a partial factor of K, as defined in
(3.5). This is a form of orthonormality of the vectors wk in spite of the fact that K

is indefinite. Indeed, the LDLT factorization of Tk can be arranged so that Lk is
lower bidiagonal, but not with unit diagonal and Dk has ±1 on its diagonal. With
this alternative factorization, we have the updates

(8.5) γ1 = β1/`1,1, γj+1 = −`j+1,jγj/`j+1,j+1, j = 1, 2, . . .

and

(8.6) w1 = s1/`1,1, wj+1 = (sj+1 − `j+1,jwj)/`j+1,j+1, j = 1, 2, . . .

Thus without loss of generality, we may understand Dk as having diagonal elements
(−1)j+1.
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Theorem 8.2. Let Wk be defined as above and let Tk = LkDkL
T
k where Lk is

lower bidiagonal and Dk is diagonal. Then, for k = 1, . . . , n + m, we have the
partial factorization

(8.7) WT
k KWk = D−1

k .

The DLanczos iterates satisfy

(8.8) zk =

k∑
j=1

γjwj

and

(8.9) zTkKzk =

k∑
j=1

γ2
j

dj
=

dk/2e∑
j=1

γ2
2j−1

d2j−1

−
bk/2c∑
j=1

γ2
2j

(−d2j)
,

as well as the error identity

(8.10) (z− zk)TK(z− zk) =

n+m∑
j=k+1

γ2
j

dj
=

dn+m
2 e∑

j=k+1

γ2
2j−1

d2j−1

−
bn+m

2 c∑
j=k+1

γ2
2j

(−d2j)
,

where z is an exact solution of (1.1) with f = b and g = 0.

Proof. It suffices to note that, after applying the permutation P, we have from
(8.1b)

ST
kKSk = ST

kHSkTk = LT
kDkLk,

where H is defined in (3.6) and where we used the fact that the vectors sk are
orthonormal in the metric defined by H. Introducing now the definition of Wk, we
obtain

WT
k KWk = D−1

k L−1
k ST

kKSkL
−T
k D−1

k = D−1
k .

The rest of the proof follows directly, as in previous sections. �

It is important to note that K, being indefinite, does not define a norm. It
does however define a distance and this is why we do not use the norm notation in
(8.9) and (8.10). Indeed, d2k < 0 and d2k+1 > 0. Following the nomenclature of
Gohberg, Lancaster, and Rodman (2005, Chapter 2), the vectors wk are orthogonal
in the metric K and orthonormal if the factorization of Tk is arranged so that

D2k+1 = PT

[
Ik+1

−Ik

]
P.

For these reasons, we emphasized the negative terms in (8.9) and (8.10) by sepa-
rating odd and even indices. The sum over odd indices corresponds to g-Craig it-
erations where d2j−1 > 0 and where the primal, minimum-norm, problem is solved.
The sum over even indices corresponds to g-Lsqr iterations where the dual, nega-
tive least-squares, problem is solved.

The conjugate gradient method is simply a reformulation of DLanczos in which
the LU factorization of Tk is computed instead. Therefore, the conclusions above
also apply to Cg with appropriate redefinitions of Lk and Dk. Interestingly, even
in the present indefinite context, the conjugate gradient algorithm continues to
perform its well-known minimization of the error in the energy “norm” with the
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difference that it alternates between minimization steps in one problem and maxi-
mization steps in the dual problem viewed as a maximization problem. In particu-
lar, it is possible to define a corresponding stopping test based on the direct error
in “energy norm”. Select an integer d > 0 and a threshold τ > 0. We may terminate
the DLanczos iterations as soon as the partial sums (8.10) computed only over
the past d iterations stabilize. More precisely, we terminate the iterations as soon
as

d k+d+1
2 e∑

j=k+1

γ2
2j−1

d2j−1

< τ2

d k+d+1
2 e∑
j=1

γ2
2j−1

d2j−1

and
b k+d+1

2 c∑
j=k+1

γ2
2j

(−d2j)
< τ2

b k+d+1
2 c∑
j=1

γ2
2j

(−d2j)
.

In exact arithmetic, it is equivalent to stop as soon as

(8.11)
k+d+1∑
j=k+1
dj>0

γ2
j

dj
< τ2

k+d+1∑
j=1
dj>0

γ2
j

dj
and

k+d+1∑
j=k+1
dj<0

γ2
j

(−dj)
< τ2

k+d+1∑
j=1
dj<0

γ2
j

(−dj)
.

Alternatively, it is also possible to stop as soon as

k+d+1∑
j=k+1

γ2
j

|dj |
< τ2

k+d+1∑
j=1

γ2
j

|dj |
.

We stress that the error (8.10) measured in the metric K can be either positive or
negative. Although we have not formally established this fact, in practice, its sign
typically alternates, as does the sign of the pivots dj , and exhibits an oscillatory
behavior. It approaches zero in absolute value as k approaches n + m. This is
illustrated in the numerical experiments of §9.

8.3. Full-Space Lanczos Process: II. The two methods g-Lsmr and g-Craig-
mr of §6.5 and §6.7 turn out to combine to become equivalent to an appropriately-
preconditioned Minres on (1.1). This result parallels Theorem 8.1 and the combi-
nation of g-Lsqr and g-Craig to form g-Cg. Upon pasting the Lanzcos processes
(6.38) and (6.48) together, we obtain

(8.12)

[
M + AN−1AT

N + ATM−1A

] [
Uk

Vk

]
=

[
M

N

]([
Uk

Vk

][
BkB

T
k + Ik

ET
kEk + Ik

]
+[

αkβk+1uk+1e
T
k

αk+1βk+1vk+1e
T
k

])
.

As already noted in (5.10),[
M A

AT −N

] [
M−1

N−1

] [
M A

AT −N

]
=

[
M + AN−1AT

N + ATM−1A

]
.

Upon premultiplying (8.12) by blkdiag(UT
k ,V

T
k ) and using the M-orthogonality of

the vectors uk and the N-orthogonality of the vectors vk, the Lanczos process may
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be equivalently rewritten[
Uk

Vk

]T [
M + AN−1AT

N + ATM−1A

] [
Uk

Vk

]
=[

BkB
T
k + Ik

ET
kEk + Ik

]
=[

BkB
T
k + Ik

BT
kBk + Ik

]
+ β2

k+1e2ke
T
2k.

8.4. Relation with the Minimum Residual Method. In Minres, the system
(1.1) with f = b and g = 0 is tackled directly using sequential approximations in
a Lanczos subspace by iteratively minimizing the norm of the residual. Typically,
the Euclidian norm is used but other norms can be used via preconditioning. It
turns out that the relevant Lanczos process in this case is precisely (8.1) and the
k-th Krylov subspace Kk is spanned by the vectors (uk,0) and (0,vk). Let (xk,yk)
be our approximation of (x,y) in Kk. The corresponding residual is given by[

rk
sk

]
:=

[
b
0

]
−
[
M A

AT −N

] [
xk
yk

]
(8.13)

=

[
β1Mu1

0

]
−
[
M A

AT −N

] [
Uk

Vk

] [
x̄k
ȳk

]
,(8.14)

for some vector (x̄k, ȳk). In this section we show that the Lanczos process (8.1)
determines an implementation of Minres in which the residual (8.13) is minimized
in the norm defined by blkdiag(M−1,N−1), which imposes that (x̄k, ȳk) satisfy the
Ritz-Galerkin condition

(8.15)
[
Uk

Vk

]T [
M A

AT −N

] [
M−1

N−1

] [
rk
sk

]
=

[
0
0

]
.

Upon premultiplying (8.1b) with[
Uk

Vk

]T [
M A

AT −N

]T [
M−1

N−1

]
,

we obtain a sum of two terms. The first term is[
UT
k

VT
k

][
M A

AT −N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

]
.

Using (8.1b) itself, this term may be rewritten[
UT
k

VT
k

] [
M

N

] [
Uk

Vk

] [
Ik Bk

BT
k −Ik

]2

+[
UT
k

VT
k

] [
βk+1Muk+1

0

]
eT

2k

[
Ik Bk

BT
k −Ik

]
=

[
Ik Bk

BT
k −Ik

]2

,
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where we used the M-orthogonality of {v1, . . . ,vk} and the N-orthogonality of
{u1, . . . ,uk}. The second term is[

Uk

Vk

]T [
M A

AT −N

] [
M−1

N−1

] [
βk+1Muk+1

0

]
eT

2k = β2
k+1e2ke

T
2k,

where we used (8.1b) and the orthogonality properties of the Lanczos vectors one
more time, in the same way as for the first term. We have just showed that

(8.16)
[
Uk

Vk

]T [
M A

AT −N

] [
M−1

N−1

][
M A

AT −N

] [
Uk

Vk

]
=

[
Ik Bk

BT
k −Ik

]2

+ β2
k+1e2ke

T
2k

is the underlying Lanczos process governing the minimum residual method. The
first matrix in the right-hand side of this last equality is the square of a symmetric
permutation of T2k. It is thus a symmetric permutation of the pentadiagonal
matrix T 2

2k.
On the other hand, since[

Uk

Vk

]T [
M A

AT −N

]T [
M−1

N−1

] [
β1Mu1

0

]
=

[
β1e1

α1β1e1

]
,

the condition (8.15) amounts to the (psychologically) pentadiagonal system

(8.17)

([
Ik Bk

BT
k −Ik

]2

+ β2
k+1e2ke

T
2k

)[
x̄k
ȳk

]
=

[
β1e1

α1β1e1

]
.

The system (8.17) is precisely the system solved by the standard Minres at iter-
ation k (Paige and Saunders, 1975, Equations (6.1) and (6.2)). It is also easy to
verify that (8.17) represents the optimality conditions of the linear least-squares
problem

minimize
x̄,ȳ

1
2

∥∥∥∥[Ik+1 Ek

ET
k −Ik

] [
x̄
ȳ

]
−
[
β1e1

0

]∥∥∥∥2

2

.

As a consequence, we obtain the generalized Minres by substituting the standard
Lanczos process used at each iteration of Minres with (8.1). We have just proved
the following theorem.

Theorem 8.3. The generalized Minres iterates on (1.1) with right-hand side
(b,0) are the same as those generated by Minres on (1.1) with preconditioner
blkdiag(M−1,N−1). In addition, every even step is a g-Lsmr step and every odd
step is a g-Craig-mr step.

Proof. It suffices to note that[
BkB

T
k + Ik

BT
kBk + Ik

]
=

[
Ik Bk

BT
k −Ik

]2

and that the Lanczos processes (8.12) and (8.16) are identical. This common Lanc-
zos process implies that the g-Minres method applied to (1.1) with right-hand
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side (b,0) and preconditioner blkdiag(M−1,N−1) alternates between g-Craig-mr
steps and g-Lsmr steps. �

By definition of Minres, the quantity ‖M− 1
2 rk‖

2
2 + ‖N−

1
2 sk‖

2
2 = ‖rk‖

2

M
−1 +

‖sk‖
2

N
−1 is nonincreasing with k. As we now show, Minres also lends itself to

an interpretation in terms of direct error, as opposed to residual, and a related
stopping condition emerges. We begin with generalities on Minres that lead to
a new result indicating the appropriate norm in which Minres measures direct
errors. Because this result is general and always applies to Minres, it is given in a
separate section. We next specialize this result to the current SQD framework to
provide an interpretation of Minres as a decoupled combination of g-Lsmr and
g-Craig-mr.

8.4.1. Generalities on Minres. In this section, we use the same notation as in
§3. Consider a generic linear system Hx = d where H = HT. Minres generates
Lanczos vectors sk and a symmetric tridiagonal matrix Ωk according to (3.1). The
process is summarized by (3.2). Much as in the previous section, Minres can be
summarized with the identity

(8.18) ST
k H2Sk = Ω2

k + β2
k+1eke

T
k ,

where the columns of Sk are theoretically orthonormal. Paige and Saunders (1975)
compute the LQ factorization of Ωk and show that

(8.19) Ω2
k + β2

k+1eke
T
k = LkL

T
k ,

where Lk is lower tridiagonal. The iterates are updated according to

xk = Wktk =

k∑
j=1

τjwj = xk−1 + τkwk,

where tk = (τ1, . . . , τk) and Wk := SkL
−T
k . The scalar τk is easily obtained by way

of a recurrence at each iteration. We refer the reader to (Paige and Saunders, 1975,
Section 6) for details. The above is sufficient to establish the following result.
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Theorem 8.4. Let Wk be defined as above. Then, for k = 1, . . . , n, we have the
partial factorization

(8.20) WT
k H2Wk = Ik.

The Minres iterates satisfy

(8.21) xk =

k∑
j=1

τjwj ,

and

(8.22) ‖xk‖
2
H

2 =

k∑
j=1

τ2
j ,

as well as the error identity

(8.23) ‖x− xk‖
2
H

2 =

n∑
j=k+1

τ2
j ,

where x is the solution of Hx = d.

Proof. It suffices to note that

WT
k H2Wk = L−1

k ST
kH2SkL

−T
k = L−1

k LkL
T
kL−Tk = Ik,

where we used (8.18) and (8.19). The rest of the proof is analogous to those of
previous similar results. �

In the next section, we specialize Theorem 8.4 to the SQD context.

8.4.2. An Error Estimate for Minres. In the SQD context, the generic identity
(8.18) is paralleled by (8.16). The matrix multiplied left and right by the Lanczos
vectors in the left-hand side of (8.16) is precisely the block-diagonal matrix D given
by (5.9). Minres performs an LQ factorization of

[
Ik Bk

BT
k −Ik

]

in such a way that

[
Uk

Vk

]T [
M + AN−1AT

N + ATM−1A

] [
Uk

Vk

]
= LkL

T
k ,

where Lk is lower tridiagonal. The following result is a simple rewrite of Theo-
rem 8.4.
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Corollary 8.5. Let Wk be defined as in Theorem 8.4. Then, for k = 1, . . . , n+m,
we have the partial factorization

(8.24) WT
k DWk = Ik

where D is defined in (5.9). In addition, the Minres iterates satisfy

(8.25)
[
xk
yk

]
=

k∑
j=1

τjwj ,

and

(8.26) ‖(xk,yk)‖2D = ‖xk‖
2

M+AN
−1

A
T + ‖yk‖

2

N+A
T
M

−1
A

=

k∑
j=1

τ2
j ,

as well as the error identity

(8.27)

‖(x− xk,y − yk)‖2D = ‖x− xk‖
2

M+AN
−1

A
T + ‖y − yk‖

2

N+A
T
M

−1
A

=

n+m∑
j=k+1

τ2
j ,

where (x,y) is the solution of (1.1) with f = b and g = 0.

In particular, applying Minres on (1.1) consists in applying g-Lsmr in the
variable y and g-Craig-mr in the variable x in a decoupled manner. This comes
from the fact that D is block diagonal. It is then clear that, by contrast with Cg,
Minres performs twice the work as it applies both g-Lsmr and g-Craig-mr and
terminates when both have reached satisfactory accuracy.

Note that the energy norm given in (8.26) and (8.27) differs from that of Silvester
and Simoncini (2011), who use the norm defined by the matrix H of (3.6) in the
context of systems of partial differential equations. The two error norms are related
in some cases such as the simulation of Stokes flows by way of a mixed finite-element
discretization. In this case, N is typically assumed to spectrally equivalent to the
appropriate mass matrix Q in the sense that there exist positive constants γ1 and
γ2 such that

γ1 ≤
qT(N + ATM−1A)q

qTQq
≤ γ2

for all appropriate vectors q (Elman et al., 2005). Similarly, it is typically assumed
that

γ1 ≤
vT(M + AQ−1AT)v

vTMv
≤ γ2

for all appropriate vectors v. Under such assumptions, the preconditioner H de-
fines a natural error norm and it is spectrally equivalent to the error norm of
Corollary 8.5.

9. Implementation and Numerical Experiments

Implementing the methods of Section 6 can be done by modifying existing im-
plementations of the standard Lsqr and Lsmr. Each code has two lines in its
initialization that compute the first Golub-Kahan vectors ū1 and v̄1. Those two
lines should be replaced by those of Algorithm 4.2 that compute u1 and v1. Simi-
larly, the two lines in the main loop that compute ūj+1 and v̄j+1 should be replaced
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by the two lines in the main loop of Algorithm 4.2 using appropriate callbacks to
solve systems with M and N. Our implementation is in the Python language using
the Lsqr and Lsmr implementations from the PyKrylov package (Orban, 2011).
The implementations of Craig and Craig-mr are original.

We present below numerical results on two categories of test cases: problems
originating from optimization and from discretized partial-differential equations
for fluid flow. In both cases the stopping conditions for all methods are those
described in Algorithms 6.1, 6.2, 6.3 and 6.4 with τ = 10−12. This results in more
iterations than would typically be necessary but illustrates the decrease of the
relevant error estimates to tight tolerances. The stopping test used for DLanczos
is that described in (8.11). The latter proved more reliable than a test based on even
and odd iterations as in practice, due to occasional instabilities in the factorization
of the Lanczos tridiagonal, pivots do not always alternate sign at each iteration.
As we explain below, it was necessary to select looser values of τ for this method.
The stopping test used for Minres is similar to those of §6 based on (8.27) with
τ = 10−12.

Among other stopping conditions, both g-Lsqr and g-Lsmr declare optimality
when either the relative residual or the relative residual of the normal equations
falls below a certain threshold. More precisely, with εa = εr = 10−12, the first
stopping conditions is

(9.1)
r̄k
‖b‖2

≤ εa + εr
‖A‖2‖ȳk‖2
‖b‖2

,

where r̄k is the value of the objective function of (2.4) at yk = Vkȳk and ‖A‖2 is
estimated by both g-Lsqr and g-Lsmr at each iteration. The second condition is

(9.2)
ρ̄k

‖A‖2r̄k
≤ εa,

where ρ̄k is the right-hand side of (6.37). In our experiments, those stopping con-
ditions were never the reason for terminating.

For the purpose of the numerical illustration below, linear systems with coef-
ficient M or N are solved using a one-time Cholesky factorization. In practice,
the application should dictate the most appropriate solution method. It should be
noted that no attempt was made to ensure clustering of the generalized singular
values of A. Each problem name is followed by a tuple (n,m) where n is the order
of M and m is the order of N. For each iterative method, we report the history
of the relative direct error in the appropriate metric together with relative error
estimates for d = 5 and d = 15. At each iteration k, the direct error estimates
are the quantities of the general form (6.11) while relative error estimates have the
general form  k∑

j=k−d+1

ζ2
j /

k∑
j=1

ζ2
j

 1
2

.

The error metric for each method is as given by Theorems 6.2, 6.4, 6.6, 6.8, 8.2
and Corollary 8.5. Because DLanczos and Minres combine two methods for the
normal or Schur-complement equations, the value of d is doubled for them, i.e.,
setting d = 5 corresponds to an effective d = 10, so both underlying methods have
time to converge.

Table 2 collects statistics on our test problems.
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Table 2. Summary of test problems.

Name Type n m nnz(M) nnz(A) nnz(N)
DUAL1 Optimization 255 171 3728 425 171
STCQP1 Optimization 12291 10246 34797 29726 10246
COLLIDE Stokes 578 289 2202 3465 1345
LID Stokes 578 289 2202 3465 1345

9.1. Problems from Optimization. The two problems below are generated at
the third iteration of the primal-dual regularized interior-point method of Friedlan-
der and Orban (2012). They originate from quadratic programming problems in
standard form

minimize
x∈Rn

gTx + 1
2xTHx subject to Cx = d, x ≥ 0,

where g ∈ Rn and H = HT ∈ Rn×n is positive semi-definite, and result in linear
systems with coefficient matrix[

H + X−1Z + ρI CT

C −δI

]
where ρ > 0 and δ > 0 are regularization parameters. The system is initially shifted
as in §6.1 to recover a right-hand side with all zeros in its last m components. The
quadratic programs are part of the CUTEr collection (Gould et al., 2003) and were
chosen because they are representative of the behavior of the error curves. The
numerical behavior of each method is illustrated in Figs 9.1 and 9.2.

Note that for both values of the window size d, the error estimates for g-Lsqr
and g-Lsmr qualitatively follow the exact error although they underestimate it
by one or two orders of magnitude. This is typical of the problems we tested
In g-Craig and g-Craig-mr, the error estimates are not monotonic and this
behavior is more apparent on DUAL1. The exact error curve for both methods
exhibits a temporary plateau and at this point the error estimates try to recover
from an under-estimation. Due to the window size, this recovery takes a number
of iterations. The estimates otherwise closely follow the exact error curve. The
hump in the error estimates is echoed in the g-Minres curves, which combines g-
Lsmr and g-Craig-mr, located directly above it in the figure. Note that the hump
occurs around iteration 80 for g-Craig-mr and around iteration 160 for Minres,
which consolidates the fact that every other Minres step is a g-Craig-mr step.

The curves for DLanczos are less intuitive. Note first that Theorem 8.2 states
that the error is measured in an indefinite metric while Theorem 8.1 explains that
DLanczos steps alternate between g-Lsqr and g-Craig steps, again located di-
rectly above the DLanczos plot in the figure. Following (8.10), the error changes
between positive and negative values but globally decreases in absolute value. Fig-
ure 9.1 and those that follow plot the exact error curve for DLanczos on a symmet-
ric logarithmic scale, i.e., a logarithmic scale in both positive and negative values.
DLanczos turns out to be significantly less stable numerically than the other meth-
ods. Setting τ = 10−12 results in failure for several problems due to roundoff errors,
possibly including fatal loss of orthogonality and instability of the factorization of
the Lanczos tridiagonal. Similarly, a window size of 15 iterations resulted in failures
for at least one problem. Those failures are consistently due to the norm of the
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preconditioned residual becoming negative. Following this, DLanczos exits with
an error message stating that the preconditioner is not positive definite. Another
sign of numerical instability is that consecutive pivots occasionally have the same
sign. We expect that an alternative implementation such as Symmlq (Paige and
Saunders, 1975) would be more stable, although it is not yet clear how to recover
the error estimates in Symmlq.

For the reasons above, the plots presented in this section for DLanczos use
τ = 10−6 and window sizes of 5 and 10. In exact arithmetic we expect that
the oscillations of the exact error should be contained between two enveloping
monotonic curves. It is almost the case for STCQP1 but we see that the curve
exhibits a spike for DUAL1. It is not entirely clear what the origin of this spike
is but we speculate that it is partly due to DLanczos not exactly reducing to a
decoupled combination of g-Lsqr and g-Craig in finite-precision arithmetic. It
also appears to overlap the plateau in the g-Craig error. The DLanczos error
remains positive for a few iterations during which the g-Craig error does not
decrease significantly. During those iterations, g-Lsqr is essentially working alone
towards reducing the error. For DUAL1, the error estimates are not particularly
close to the exact error. For STCQP1, the error estimates follow the exact error
more faithfully.

9.2. Problems from Discretized PDEs. The two test cases of this section are
discretizations of the stabilized Stokes equations for incompressible fluid flow (1.2)
over a two-dimensional domain. The mesh and discretization are generated by the
software IFISS 3.1 of Elman et al. (2007). The problems originate from (Elman
et al., 2005). In both problems, the domain is Ω := (−1, 1)× (−1, 1) and the stabi-
lization parameter is set to β = 0.25. These are examples where the regularization
term N is not diagonal—in both examples, N is tridiagonal with semi-bandwidth
18. For both problems, the discretization occurs on a 16 × 16 grid with Q1-Q1
elements.

The first problem describes a colliding flow with analytic solution

u(x, y) = (20xy3, 5x4 − 5y4), p = 60x2y − 20y3 + constant

in Ω. Dirichlet boundary conditions are imposed along the whole boundary using
the interpolant of the finite-element discretization of u(x, y). Results are summa-
rized in Fig. 9.3.

The second problem describes a flow in a lid-driven regularized cavity. The lid
velocity is given by u(x, y) = (1 − x4, 0). Results are summarized in Figs. 9.3 and
9.4.

The behavior of the error estimates is smoother than in the case of optimization
problems. In all cases the error estimates for d = 5 and d = 15 are superposed and
follow closely the exact error curve. For g-Lsqr, g-Craig, g-Lsmr and g-Craig-
mr, it would take of the order of 30 iterations to reduce the error by a factor of
106.

We set the DLanczos stopping tolerance to τ = 10−3, which is reasonable
given the discretization step size. For tighter tolerances, DLanczos again fails,
complaining about an indefinite preconditioner, which indicates that the method
has been driven past the numerical convergence point.

In the case of the lid-driven cavity problem, the exact error curve for Minres
increases in the last few iterations and we believe that this is due to cancellation
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Figure 9.1. Problem DUAL1 (255, 171). Note the symmetric
logarithmic scale of the vertical axis for DLanczos used to capture
the fact that the error is measured in an indefinite metric.

when computing the error. This behavior is visible to a lesser extent in g-Lsqr
and g-Lsmr.

10. Discussion

In all instances, methods for the normal or Schur-complement equations are
attractive because the lower bounds estimates of the direct error follow the same
trend as the exact error. Our experiments illustrate that the two are tighter in
Schur-complement equations methods. The behavior of DLanczos, and therefore
or the conjugate gradient method and of Symmlq, on SQD systems is instructive.
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Figure 9.2. Problem STCQP1 (12291, 10246). Note the sym-
metric logarithmic scale of the vertical axis for DLanczos used to
capture the fact that the error is measured in an indefinite metric.

Those methods solve the min-max problem

minimize
x∈Rn

maximize
y∈Rm

L(x,y)

where
L(x,y) := 1

2‖x‖
2
2 + xTĀy − 1

2‖y‖
2
2 − fTM− 1

2 x− gTN−
1
2 y,

whose first-order optimality conditions coincide with (1.1) preconditioned with H
defined in (3.6), and in which the sign of the error alternates. Every other step
is a minimization step on the convex part of L, i.e., the function x 7→ L(x,y) for
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Figure 9.3. Colliding Flow (578, 289). Note the symmetric log-
arithmic scale of the vertical axis for DLanczos used to capture
the fact that the error is measured in an indefinite metric.

fixed y, while the next step is a maximization step on the concave part of L, i.e.,
y 7→ L(x,y) for fixed x.

It is possible to develop an upper bound estimate of the direct error for full-space
methods using the same principles as in §7. In full-space methods, the tridiagonal
T̂ has the form (8.2) and is itself SQD. Implementing a Gauss-Radau upper bound
requires an accurate estimate of the smallest eigenvalue of T̂. Theorem 5.1 indi-

cates that this smallest eigenvalue is −
√

1 + σ2
max where σmax is the largest elliptic

singular value of A. In general, such an estimate is not directly available.
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Figure 9.4. Lid-Driven Cavity (578, 289). Note the symmetric
logarithmic scale of the vertical axis for DLanczos used to capture
the fact that the error is measured in an indefinite metric.

We insist that we have concentrated on the case where systems with the diagonal
blocks M and N are easily and efficiently solved. There are clearly numerous
practical cases where this assumption is not realistic. For instance, in optimization
applications, M may represent a (possibly dense) quadratic term that is not easily
inverted. It remains relatively typical that systems with N are easily solved. For
instance in optimization N is usually diagonal. The same is not necessarily true in
fluid flow applications where N may represent a mass matrix but Wathen (1987)
shows that such systems are efficiently solved in a few iterations of the conjugate
gradient method with diagonal preconditioner. The study of the general case,
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possibly allowing for inexact solves with M and/or N, is the subject of ongoing
research. As a special case, this includes a finite-precision arithmetic extension of
our framework.

The study of symmetric quasi-definite systems in the context of preconditioning
is also the subject of ongoing research. A first important aspect is the precondi-
tioning of SQD systems. In particular, not all preconditioners preserve the SQD
structure. A second important aspect is that SQD operators may be used to pre-
condition standard saddle-point systems, whether symmetric or not. For instance,
systems encountered during the iterations of an iterative process to solve the Navier-
Stokes equations typically have a zero (2, 2) block. As pointed out by Benzi et al.
(2005), it is possible to devise efficient SQD preconditioners for such systems.

The methods presented in this paper are relevant to optimization contexts be-
yond the occurence of SQD systems. Indeed, in trust-region based Gauss-Newton
methods, subproblems such as (2.4) must be solved at each iteration but an accu-
rate solution is not necessarily sought. Rather, sufficient decrease in the residual is
acceptable and a constraint on the maximal norm of y is imposed. It is a property
of standard Lsqr and Lsmr that the iterates ȳk increase in Euclidian norm (Paige
and Saunders, 1982; Fong and Saunders, 2011). Thus the quantities ‖yk‖N increase
along the generalized Lsqr and Lsmr iterations. Consequently, it is reasonable to
solve (2.4) with a trust-region constraint of the form ‖y‖N ≤ ∆ for some trust-
region radius ∆ > 0 using the initial guess y0 = 0. As Lsqr is equivalent to the
conjugate gradient method on the normal equations, interrupting the iterations as
soon as the boundary of the trust-region is crossed ensures sufficient decrease. In
the case of Lsmr, it remains necessary to establish that the decrease thus obtained
is a fraction of that obtained at the Cauchy point—we refer the interested reader
to (Conn et al., 2000, Chapter 7) for details.

All methods covered above apply equally to the SQD system (1.1) with f = 0
and g = b. Indeed the system can be reduced to the normal equations

(AN−1AT + M)x = AN−1b,

which are the optimality conditions of the regularized and weighted linear least-
squares problem

minimize
x∈Rn

1
2

∥∥∥∥∥
[

AT

M
1
2

]
x−

[
b
0

]∥∥∥∥∥
2

N
−1
+

.

All methods presented in this paper are based on the lower bidiagonalization
procedure referred to as “bidiag1” by Paige and Saunders (1982). A corresponding
family of numerical methods may also be derived from the “bidiag2” procedure in
the same paper, which performs an upper bidiagonalization of A and is initialized
with ATb instead of b. Two variants of the Golub-Kahan process based on inner
products defined by M and N and corresponding to Algorithms 4.2 and 4.3 give
rise to alternative generalizations of Lsqr, Craig, Cg, Lsmr, Craig-mr and
Minres. Whether one of those methods dominates the others numerically should
be determined via intensive testing. Arioli (2010) derives a generalized variant of
Craig based on “bidiag2” in the case where the bottom block of the matrix in (1.1)
is zero, yet there exists an appropriate metric N to measure the norm of y.

It does not appear possible to apply the conjugate gradient to SQD systems in
general if the right-hand side does not have the form (b,0). Consider for instance
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the SQD system [
I
−I

] [
x
y

]
=

[
e
e

]
,

where e is the vector of all ones. At the first iteration, the conjugate gradient needs
to generate the denominator[

eT eT
] [

I
−I

] [
e
e

]
= 0

and must break down.
We provide stopping criteria for each method based on estimates of the relative

direct error measured in the appropriate metric. It should be noted that our error
estimates are not upper bounds on the actual direct error as they are measured
over a window of a fixed number of iterations. Ongoing research aims to determine
a cheaply-computable upper bound in the vein of Arioli (2010). For this it seems
necessary to obtain a lower bound on the smallest eigenvalue in absolute value of
the preconditioned operator K̄. Thanks to Theorem 5.1 an obvious lower bound is
simply 1.

We gave an interpretation of the conjugate gradient method applied to a SQD
system with appropriate right-hand side in terms of a min-max problem on a saddle-
point function and in terms of a combination of Lsqr and Craig. Minres performs
twice as much work as is really necessary since it aims to minimize the residual of
both the normal and Schur-complement equations. Computations can be saved by
employing only g-Lsmr or g-Craig-mr.

It appears from our analysis that, on the one hand, the generalized Lsqr and
Craig, and on the other hand the generalized Lsmr and Craig-mr are the ap-
propriate implementations of Cg and Minres for SQD systems.
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