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Abstract 

MUON SPIN RELAXATION IN ANTIFERROMAGNETS: 
A STUDY OF RbMnF3 BASED ON THE COUPLED

MODE THEORY OF PARAMAGNETIC AND CRITICAL 
SPIN FLUCTUATIONS 

S. W. Lovesey0 >, E. BalcarCZ) and A. CuccoliC3> 

(1) DRAL Rutherford Appleton Laboratory, 
Oxon OXll OQX, England, U.K. 

(2) Atominstitut of the Austrian Universities, 
A-1020 Vienna, Austria. 

(3) Dipartimento di Fisica, Universita' di Firenze, 
L.E. Fermi 2, 1-50125 Firenze, Italy. 

The relaxation rate for the depolarization . of a positive muon implanted in an 

antiferromagnetically coupled Heisenberg magnet is studied on the basis of a coupled-mode theory of 

critical and paramagnetic spin fluctuations, which gives overall an unrivalled account of spin 

fluctuations. The paper includes the first comprehensive treatment of the dipole field that couples 

the muon and atomic (spin) magnetic moments. An analytical calculation of the relaxation rate is 

feasible in the vicinity of the critical temperature, because of the dominant role of the critical 

fluctuations, whereas in general numerical methods are required to calculate the spiB response 

function and the dipole field. In the approach to the critical temperature, the muon relaxation rate 

increases as the square root of the correlation length. Results for the isotropic antiferromagnet 

RbMnF3 demonstrate that, the relaxation rate is not a monotonic function of the temperature, and the 

magnitude and temperature variation of the relaxation rate depend to a significant degree on the site 

of the implanted muon. A theoretical framework for the interpretation of the muon relaxation rate is 

reviewed in a set of appendices. 

1. Introduction 

It is well established that, the depolarization of positive muons implanted in a magnetic 

material is a signal which contains useful information, at an atomic level of description, on magnetic 

fluctuations; for a review of the experimental technique see, for example, Cox (1987). Here, we 



report the first comprehensive theoretical investigation of the muon relaxation rate in an 

antiferromagnetically coupled paramagnet. The dipole field which couples the implanted muon and 

the atomic moments is treated exactly. The critical and paramagnetic atomic spin fluctuations are 

described by the coupled-mode theory applied to an isotropic Heisenberg magnet, and the resulting 

equation for the spin response function is solved numerically for several temperatures. Our report is 

a significant contribution to the growing development of a theoretical framework for the 

interpretation of muon spin relaxation experiments (Lovesey 1992, Lovesey et al. 1992). In this 

instance, the inspiration for the work is provided by an interesting scientific conundrum in a much

studied magnetic salt. 

In the history of the development of modern, magnetic critical phenomena, which dates from 

the late 1960s, experiments on the isotropic antiferromagnetic salt RbMnF3, and the coupled-mode 

theory of critical and paramagnetic spin fluctuations·have each played a prominent role. The theory 

is consistent with dynamic scaling arguments and results from the renormalization group method, 

and it successfully explains a wide variety of experiments, not only on magnetic materials. With 

regard to the data gathered on the van Hove spin response function of RbMnF3 it is widely reported 

to be in accord with the celebrated theories. But, recent work has demonstrated that, in at least one 

important aspect, coupled-mode theory is not in accord with the data. Our aim is to draw attention 

to the discrepancy, and, at the same time, provide a feasibility study for a muon spin relaxation 

experiment that might shed light on the apparent conspicuous shortcoming of the theory. 

Let us denote the van Hove spin response function by S(q,ro), where q and ffi are the wave 

vector and frequency variables, respectively. As the temperature is reduced toward the critical 

temperature the response function gradually bears the signature of critical spin fluctuations at the 

incipient magnetic ordering wave vector. For an antiferromagnet, the condensed phase is labelled by 

a wave vector w "# 0, whereas in a ferromagnet the corresponding wave vector is the zone centre 

since the chemical and magnetic ordering coincide. 

The functionS( q,ro) can be extracted from the signal measured by inelastic magnetic neutron 

scattering. Tucciarone et al. (1971) found for RbMnF3 at Tc that S( q,ffi) for .q in the vicinity of w is a 

three peaked structure; a central ( ffi - 0) component and two distinct peaks equidistant from the 



elastic line. An intuitive description for these features is a non-propagating spin diffusion process, 

and collective (spin-wave) excitations. This picture of the spin fluctuations continues to hold in the 

paramagnetic phase, where it has been substantiated by computer simulation and neutron scattering 

experiments (Tucciarone et al. 1971, Evans and Windsor 1973). 

Recently, Cuccoli et al. (1994) have shown, in a thorough investigation of coupled-mode 

theory applied to the standard model for RbMnF3, namely the isotropic Heisenberg magnet, that 

S(q,ro) in the vicinity of w does not, at Tc, contain a diffusive contribution. Instead, S(q,ro) is a 

narrow function with a minimum at ro = 0. The absence of a central peak in the coupled-mode 

prediction for the van Hove response function of an antiferromagnet at its critical temperature is 

apparent in seminal work by Wegner (1969). For some reason, unknown to the authors, the 

discrepancy between theory and experiment for RbMnF3 is not mentioned in recent reviews of 

magnetic critical phenomena (Cowley 1987, Collins 1989, Privman et al. 1990). 

In closing this survey of theoretical and experimental investigations of RbMnF3 at its critical 

temperature, we remind the reader of the success to date achieved by the theory. To the best of our 

knowledge, the discrepancy referred to between coupled-mode theory and experimental 

investigations of magnetic materials is the only really significant one on record. 

We turn now to the possible benefit of a muon beam experiment. It might be expected that, 

the relaxation rate for the depolarization of a positive muon implanted in a magnet can be expressed 

in terms of S(q,ro); a theoretical framework for the interpretation of muon relaxation rates is 

reviewed in appendices A, B and C. Our formula for the relaxation rate, 'A, derived from Fermi's 

Golden Rule for transition rates, contains S( q,ro) weighted by a geometric structure factor 

(determined by the contact interaction and the dipole field of the atomic moments) integrated over all 

wave vectors. The value of ro in this formula is the Larmor precession frequency for the muon, ro
11 

• 

But, this can safely be set to zero since ro
11 
= 0.56 11e V T - \ i.e. the relaxation rate in zero magnetic 

field is determined by the elastic value of the spin response function, which is fortunately just the 

component in question in the interpretation of the early neutron scattering experiments. (In a 

paramagnet the average magnetic field from the atomic moments is zero, of course, and the 

experiment can be performed without need of an applied magnetic field.) 



In this paper we report our findings for A. calculated using coupled-mode theory for the 

standard model of RbMnF3• Before looking at our full calculation, and by way of orientation, we 

sketch a relatively simple calculation which is appropriate for the critical region. 

If the geometric structure factor derived from the contact interaction and the dipole field is set 

to one side, assuming it is a benign function in the small range of wave vectors that dominate in the 

description of atomic spin fluctuations, the relaxation rate is simply, 

A. oc J dq S( q,O). (1.1) 

In the so-called Markovian approximation, S( q,O) is characterized by a decay rate, r( q), for the very 

slow, critical spin fluctuations at the antiferromagnetic Bragg point. For q measured relative to w, 

one finds, 

(1.2) 

where K is the inverse correlation length, and K = 0 at Tc. To complete the description of S( q,O) in 

the vicinity of Tc one needs the susceptibility, X(q). A reasonable approximation is the form 

proposed by Omstein and Zemike, namely (the critical exponent 11 is set equal to zero), 

Combining these factors in the Markovian relation, 

S(q,O) oc {X(q) I r(q)}, (1.3) 

we find, 

A. oc (1 I Kl/2 ). (1.4) 



Thus, as T ~ Tc the relaxation rate diverges with a power law temperature dependence 

(T- Tcfv12
, where V is the critical exponent for lC. 

The foregoing line of reasoning cannot be applied with confidence in the paramagnetic phase 

because fluctuations with all wave vectors come into play. Hence, outside the critical region, the 

geometric (dipole) structure factor must be calculated at all points in the Brillouin zone, and in the 

calculation of A convoluted with the spin response function. As mentioned already, the latter is 

calculated from the coupled-mode theory of spin fluctuations, following the study of RbMnF3 by 

Cuccoli et al. (1994). Results from this calculation provide reliable values for A that can be used to 

study its temperature dependence, and its dependence on the location of the implanted positive 

muon. 

The next section contains a recap of coupled-mode theory applied to the Heisenberg 

antiferromagnet; we adhere to the notation and formulation used by Cuccoli et al. (1994). In §3 we 

provide the complete expression for the relaxation rate in terms of the spin response function by 

drawing on the theoretical framework found in appendices A - C. Results created from the 

numerical solution of the coupled-mode theory, and the numerical evaluation of the dipole field 

(appendix D) are presented in §4. Such calculations are computationally very demanding. However, 

it is the only secure way to assess the temperature dependence of A. In the immediate vicinity of the 

critical temperature the calculation of A simplifies because of the increasing importance of long 

wavelength fluctuations near the incipient ordering wave vector. An appropriate calculation is given 

in §5. Our results are discussed in §6. 

2. Magnetic Model and Coupled-Mode Theory 

Spin operators Sa are placed on a lattice with N sites labeiied by the index a. The spins interact 

through a Heisenberg interaction of strength J, so the model Hamiltonian is, 

n.n. 

%=JL Sa ·S~;. , (2.1) 
a,b 

where the sum is over all nearest-neighbour pairs on the lattice. 



We will study the time development of spatial Fourier components S(k) defined through, 

S., = (11 N) L exp (-ik·a) S(k). (2.2) 
k 

The isothermal susceptibility is, 

X(k) = t (S(k), · S( -k)). (2.3) 

Here, (,) denotes a Kubo relaxation function; for classical variables (A,B) = ( <.AB>IT) where the 

angular brackets denote a thermal average, and T is the temperature 

(k8 = 1i = 1). The dynamic properties of (2.1) are studied in terms of the normalized relaxation 

function, 

F(k, t) = t (S(k, t), · S(k)) I X(k), (2.4) 

where S(k,t) is the standard Heisenberg time-dependent operator. 

The spectrum of neutrons inelasticaHy scattered by spin fluctuations is proportional to, 

-
F(k, ro) = (1 I 21t) I dt exp( -irot)F(k, t) . (2.5) 

In the context of neutron scattering, ro is the energy transferred from the primary beam to the spin 

fluctuations. The concomitant change in the wave vector of the neutrons is k = w + q, where w is an 

antiferromagnetic ordering wave vector. 

Coupled-mode theory is a closed set of equations for F(k,t). The latter is determined by, 

t 

a tF(k. t) = - I dt' F(k. t- t')K(k. t'), (2.6) 
0 



and the so-called memory function, K(k,t), is approximated by, 

K(k,t) = (4rJT I Nx(k)) L {'Y p-k- y p}F(p, t)F(p- k, t)X(P). (2.7) 
p 

Here, 'Yk is a geometric factor that depends on the point group symmetry of the lattice; for a simple 

cubic lattice with a cell length a, 

The spherical model susceptibility is, 

(2.8) 

In the key equations (2.6), (2.7) and (2.8) the wave vector variables p and k are general wave 

vectors in the Brillouin zone for the reciprocal lattice of the chemical structure. The quantity flo 

varies with temperature. In fact, the temperature scale is determined by, 

(2rJS(S+1)13T)=(11N)L (flo -ypf1 =l(flo), (2.9) 
p 

in which r is the number of nearest neighbours (r = 6, s.c.), and the integral on the right-hand side is 

the standard extended Watson integral. For a simple cubic lattice, the critical temperature, Tc , 

satisfies, 

(4J S(S+ 1) I Tc) = 1.5164. (2.10) 

As the critical temperature is approached from above flo --t 1, and the susceptibility has a 

maximum at the antiferromagnetic ordering wave vector, w, for which 'Yw = - 1. Hence, for 

(flo - 1) << 1 we expand the geometric factor 'Yk in the susceptibility about w using the small 

argument expansion, and find an Ornstein-Zernike form, 



(2.11) 

in which the inverse correlation length, K, satisfies, 

(2.12) 

and q is measured relative to w. For the spherical model, (2.12) leads to K- (T- Tcr where the 

critical exponent v = 1. 

3. Moon Relaxation Rate 

A theory of the rate for depolarization of a positive muon implanted in a magnetic material is 

reviewed in appendices A, B and C. Here we apply the theory to RbMnF3 which is an isotropic 

antiferromagnet (Evans and Windsor 1973, Collins 1989). The relaxation rate, A, averaged over the 

orientations of the muon polarization with respect to the crystal axes is given by (C.l). 

In the present case, the field experienced by the muon, B, satisfies < B > = 0, i.e. there is no 

steady magnetic field. Moreover, it is assumed to come solely from the dipole-dipole interaction 

between the muon and atomic magnetic moments. A Cartesian component of the field, labelled by 

a, is, 

where, 

a 

= - (gJ.L B IN) L Daf> (k)S~ (k), 
kj3 

(3.1) 

(3.2) 



In these expressions, Ra = o + a where {a} are lattice vectors that define the positions of the atomic 

(manganese) moments, and o defines the position of the implanted muon. The calculation of Dall(k), 

the lattice Fourier transform of the dipole field, is the subject of appendix D. 

For an isotropic spin system, like RbMnF3, 

(3.3) 

Now, the standard definition of the van Hove spin response function, S(k,co), is, 

"" 
S(k, eo)= (1 I 67tN) J dt exp (- icot) (S(- k) · S(k, t)), (3.4) 

whereupon, 

The relation between the van Hove response function and the time Fourier transform of the Kubo 

relaxation function, evaluated for zero frequency, is, 

S (k,O) = {T X(k) IN} F(k, eo = 0), (3.6) 

where T is the temperature. 

The expression (3.5) relates the muon relaxation rate, A., to the response function which is 

usually extracted from the signal measured in inelastic neutron scattering. For various reasons, it is 

not convenient to couch theoretical developments in terms of S(k,ro). Instead, it is usual to employ 

an auxiliary function which, in the present case, is chosen to be Kubo's relaxation function. The 

latter is obtained from the coupled-mode theory introduced in §2. 



In applications of (3.5) a useful figure is, 

(2glL ~n ~NI ha~)= 10.66 nsec-1
, (3.7) 

where ao is the Bohr radius, and we have g = 2 for the gyromagnetic factor of the atomic moment. 

4. Results from Coupled-Mode Theory 

Various properties of RbMnF3 are gathered in Table (1). Here we report our findings for the 

relaxation rate calculated for this material using the coupled-mode theory described in §2. A review 

of coupled-mode theory applied to the isotropic, antiferromagnetically coupled Heisenberg magnet is 

provided by Cuccoli et al. (1994), and so we focus here on results for 'A, and do not dwell on the 

nature of the spin fluctuations observed in the van Hove spin response function. 

Values for 'A are given in Table (2) for four temperatures in the interval (T!Tc) = 1.125 to 3.55. 

These values are based on the coupled-mode theory of the time-dependent fluctuations, and the 

spherical model of static fluctuations. The latter sets a temperature scale which is reviewed in Table 

(3) and compared with one determined by neutron diffraction data for lC. A second important feature 

of the results appearing in Table (2) is the choice of the site for the implanted muon, defined by the 

vector B. Results in Table (2) are for the choice B = (~, lf4,0), in units of the lattice spacing, a. For a 

perovskite structure, this choice for B seems a reasonable first guess. 

The increase in 'A seen in Table (2) as the temperature approaches Tc was anticipated in the 

introduction. For T closer to Tc than T = 1.125Tc the calculation sketched in §1 becomes 

increasingly reliable. At the higher temperatures included in Table (2) the relaxation rate begins to 

slowly increase. 

To obtain an independent estimate of 'A at infinite temperature we have approximated 

F(k,ro = 0) by its value obtained from a gaussian model of F(k,t) with the exact value of the second 

frequency moment, namely, 



F(k, t) = exp {- t t 2 ro~}, 

with, 

8J2 
ro~ = -

3
- r S(S + 1) (1- y k). 

This leads to (T = oo), 

The value of the wave vector sum is 3471.35, and this taken together with data in Table (1) leads to 

A (T = oo) = 0"695 llS-1
• It is satisfying to find this totally independent, realistic estimate of A is 

reasonably consistent with the value found at T = oo from the full theory and shown in Table (2). 

Also shown in Table (2) is the ratio of A to its temperature dependence in the critical region, 

given by (5.8), namely (T!Tc aK:) 112
, and K: obtained from the spherical model. The mild variation of 

this ratio between T = 1.125Tc and T = 1.25Tc is also satisfying, since it is further evidence that data 

from the full theory is understood. 

The final topic in this section is the variation of A with B·. Table ( 4) shows the temperature 

dependence of the ratio of values obtained with two B's. One vector, labelled B1, is the same as the 

one used in the calculations reported in Table (2). The second choice for the muon site, Bz = (0.4, 

0.3, 0.2), is a non-symmetric site of the type which could be occupied if the muon distorts the crystal 

lattice, i.e. should the positive muon not be a passive, environmentally friendly observer of spin 

fluctuations. (Data in appendix (D) shows that the dipole field varies quite dramatically as B is 

moved around the site B1). From the data given in Table ( 4) we conclude that not only is the 

magnitude of A a strong function of B but also the temperature dependence of A. varies with B. This 



latter finding does not bode well for the use of tJ-SR as a valuable probe of critical and paramagnetic 

spin fluctuations. 

5. Critical values of A. 

In the introduction we sketched an argument by which to estimate the muon relaxation rate in 

terms of the decay rate for critical fluctuations. Let us now fill in the various steps in the argument, 

which amounts to no more than determining the constant of proportionality in the relation (1.4). We 

shall then judge if the argument is efficacious by comparing the outcome to results reported in the 

previous section. The expectation is that the estimate is good very close to the critical temperature. 

Combining (3.5) and (3.6), 

For a temperature, T, close to Tc the susceptibility X(k) is sharply peaked at k = w, and it is well 

described by the Ornstein-Zernike form (2.11). Using the latter in the exact relation (5.1), and taking 

the dipole field evaluated for k = w outside the sum, 

A.-(1t/3rlp 2 )(gg1J.IlNilsln)2 L ID~(wf(T!N)L, {F(q+w,ro=O)/(K2 +q2
)}. (5.2) 

~ q 

Two further steps are taken. First, the Markovian approximation is invoked to describe 

F(q + w, 0), and this means, 

F(q + w,O)- {1 I 1t f'(q)}. (5.3) 

Cuccoli et al. (1994) find for the decay rate of the critical spin fluctuations, 

(5.4) 



in which the material constant, 

(5.5) 

and r is the number of nearest neighbours and v0 is the volume of a unit cell. The second step is to 

replace the sum over the Brillouin zone in (5.2) by an integral over all q, viz., 

~ 

(1/ N) L ~ (v0 /2rt 2
) f q2 dq. (5.6) 

q 0 

Assembling the various pieces we arrive, finally, at the result, 

(5.7) 

This can be evaluated for RbMnF3 with the aid of the material properties gathered in 

Table (1), and the value for the dipole sum provided in appendix D. 

We find for RbMnF3, in the limit T ~ Tc , 

A.-55.94(T!TcaK)112 L jvona!3(w)r sec-1
• 

ap 
(5.8) 

Values of the dipole field for various positions of the implanted muon are given in 

appendix D. In Table (3) we compare values of the temperature dependent factor in (5.8) obtained 

in one case from the spherical model, and secondly from experimental data reviewed by Als-Nielsen 

(1974). In the latter work data are well represented by, 



where v = 0.70. ForT close to Tc the spherical model predicts (s.c. lattice), 

This result, and tabulated values of the Watson integral have been used to construct the entries in 

Table (3). 

Returning to (5.8), on using the value, 

and the spherical model estimate of K, cf. Table (3), we find 'A= 0.34 J.lS-
1 at T = l.l25Tc. This is 

about a factor of 2 smaller than the value listed in Table (2) obtained from the full theory. Our view 

ts that the temperature dependence predicted by (5.8) is soundly based for 

T ~ Tc, even though the estimate of the prefactor is not reliable at the relatively high temperature T 

= l.l25Tc. (The Ornstein-Zemike approximation for the susceptibility is not seriously in question. 

The main sources of the discrepancy are approximation of the wave vector sum by an integral over 

all wave vectors, and factorization of the dipole field from the spectrum of spin fluctuations.) 



6. Discussion 

Several of our findings merit comment. First, the depolarization relaxation rate, A, for a 

positive muon in RbMnF3 is not a monotonic function of the temperature. Near the critical 

temperature A is proportional to the square-root of the correlation length. Moving away from the 

critical region A passes through a minimum and eventually saturates deep in the paramagnetic phase 

(a similar behaviour has been observed in estimates for a ferromagnetically coupled magnet, Lovesey 

et al. 1992). We have verified that the entire source of the non-monotonic temperature dependence 

of A is the atomic spin dynamics, i.e. a similar temperature dependence is found if the dipole field in 

(5.1) is replaced by a constant. Secondly, we present incontrovertible evidence that A depends to a 

significant degree on the position of the implanted muon. Not only the magnitude but, also the 

temperature dependence of the relaxation rate depends on the position. Finally, our work shows that 

a realistic interpretation of A must include a full treatment of the dipole field (unless, of course, this is 

completely dominated by a contact interaction, cf. appendix C). 

The results presented have been subjected to several checks to ensure accuracy in the various 

numerical procedures. These checks include: calculations of the dipole field by independent 

methods; a test of the Brillouin sum integration in (5.1) by calculating the extended Watson integral; 

a test of S(k,O) and A for sensitivity to the q-mesh size used in the numerical solution of the coupled

mode equations and Brillouin zone integration. 

With regard to the nature of spin fluctuations in RbMnF3 two recent neutron scattering studies 

are noted. Data reported by Yazaki et al. (1994) for the paramagnetic phase concurs with the first 

data, published by Tucciarone et al. (1971); it is interesting that the two groups of authors use 

different experimental methods. On the other hand, an experiment performed on the ordered state by 

Cox et al. (1989) reveals features that are significantly different from those at Tc reported by 

Tucciarone et al. (1971). Regarding the conundrum mentioned in §1, the diffusive component of the 

spectrum reported by Cox et al. (1989) is a very weak feature; weaker than in the spectrum at Tc 

from Tucciarone et al. (1971), to a degree larger than might reasonably be anticipated from the 

difference in the thermodynamic states of the samples. 
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Figure Captions 

1.) Axes that define the magnetic moment of the muon (x', y', z') relative to the crystal axes 

(a, b, c). 

2.) Representative values of the dipole field 'L lv o DaJl (wf are shown for various values of the 
all 

muon position, defined by the vector B. The selected B's are in the vicinity of B = a (V.., lA, 0) 

at which the dipole field has the value 3357.0. The other B that features in the main text is 

B =a (0.4, 0.3, 0.2), and here 'L lvo Dall(wf = 444.7. All values have been verified in a 
aj3 

completely independent check performed by E. Engdahl using a program that is based on the 

standard Ewald summation method. 



Appendix A 

The muon relaxation rate A., which is at the centre of our discussion in the main text, is 

proportional to the probability per unit time for the implanted muon to make a transition from the 

state with magnetic quantum number m = - ~ to the state with m = + ~. We denote this 

probability by W. In the next appendix, W is related, using first-order perturbation theory, to 

properties of the host material. For the moment, we note the relation A. = 2W, and provide a 

justifying argument. 

To this end, let N: denote the average number of muons in the state labelled by 

m = ± ~. The average polarization at time t is, 

t{N_(t)-N+ (t)} = tn(t)=texp( -A.t). (A.l) 

The final equality defines A. in terms of the average polarization. The expression for n(t) that 

supports the use of an exponential decay, as in (A.l), is obtained from the standard rate equations for 

N%, namely, 

(A.2) 

With our chosen definitions, W = W_ + and, 

~~ =2(W+,- N+- WN_). (A.3) 

The steady-state condition for N+(t) provides the relation, 

where w
11 

is the Larmor frequency of the muon. If 1iw
11 

<<k8T, then (A.3) provides the estimate, 

(A.S) 

which is consistent with (A.l) if A.= 2W. 



Appendix B 

Here, the goal is to obtain a relation for 'A = 2W in terms of the properties of the material in 

which the observed muon is implanted. 

The muon and host material are described by a Hamiltonian X which is the sum of a 

Hamiltonian for two independent systems, Xo, the material and the free muon in a steady field, and 

the Hamiltonian Jl1 which describes their mutual interaction, so, 

(B.l) 

In the subsequent argument, it is assumed that Jl1 is weak, so the effect of the muon-material 

interaction is adequately described by first-order perturbation theory, or, what is the same thing, 

Fermi's Golden Rule for transition rates. 

The wave function, -.p (t), associated with X satisfies the Schrodinger equation, 

(B.2) 

Properties described by Jloare to be fully taken into account, and to this end -.p (t) is expressed in the 

form, 

'!J(t) = exp(-itXo I 1i)4>(t), 

and the equation, 

in(a I at)4>(t) =X1 (t) 4>(t), 

with, 

follows directly from (B.2). The value of cj>(t) correct to first-order in X1(t) is, 

t 

4>(t) = 4>(0) - (i 1 n) f dt' X1 (t ') 4>(0). (B.3) 
0 

In this expression, it is assumed that Jl1 is switched on at time t = 0. 



The second term in (8.3) determines the probability that the system changes on application of 

%1 from the state cj>(O) = I m, v >to a state I m', v' >,where m=- m' = - lh and the labels {v} 

specify states of the material. The required probability is, of course, 

I 

I< m', v'l( -i In) exp( -it%0 In) I dt' J£1 (t') lm, V >1 2 

0 

I 

= (1 I 1i2 )1< m', v'IJ dt' Jl1(t')lm, v >1 2
• (8.4) 

0 

The probability observed in an experiment is the sum of this expression over all final states, and 

averaged over all initial states. Let us define, 

(8.5) 

where Ev is the energy of the v -th eigenstate of the material, and the partition function Z is obtained 

from lPv = 1. The expression for Wis then, 

I 

W = lim.t(1 I 1i 2
) I. Pv I< m', v'IJ dt' X1(t')lm, V >12

• 
~~~ vv' 0 

(8.6) 

In order to develop this key expression for W for the case of muon relaxation it is necessary to 

introduce the specific form for Je 1• 

The material creates a fluctuating magnetic field, B, at the site occupied by the muon (the 

steady, including applied, magnetic field is contained in J£0). If the muon spin angular momentum 

operator is denoted by I then, 

(8.7) 

where ~N is the nuclear Bohr magneton. The quantization axes for the muon are labelled (x', y', z'), 

in which case (m = - m' = - lh, and I= lh ), 

< m' I Ix' lm > = lh 

< m' I IY, I m > = - il 2 
< m' I(, lm > = 0 . 

The (x', y', z') and crystal axes (a, b, c) are related by angles a and ~ depicted in 
Fig. (1). The matrix elements of I with respect to the crystal axes are, 



<m' I I aim>= ~(sin~- i cosa cos~)=~ s 
<m' I I b lm > = -~(cos~+ i cosa sin~)=~ 11 
< m' I I c lm > = (il2) sina = ~ ~ , 

(8.8) 

in which the parameters ;, 11 and ~ are convenient for subsequent use. The free muon spin dynamics 
is described by its l..armor frequency oo

11 
which is determined by the steady magnetic field in Xo. From 

(B. 7) and (8.8) we then have, 

<m', v'IX 1(t)lm, v > =- g11 ~N < m'II(t)jm > · < v'IB(t)lv > 

(8.9) 

in which, 

B(t) = exp (it X m In) Bexp( -it Jlm In), 

and Jlm is the Hamiltonian which described the material in which the muon is implanted, with, of 

course, 

(8.10) 

Inserting (8.9) in the key formula (8.6), the latter reduces to the master formula, 

00 

W =(g11 ~N I 21i)2 J dt exp ( -itoo
11
)<Y+ Y(t) >, (B.ll) 

with, 

(8.12) 

The components Ba, Bb and Bc expressed in terms of Bx, BY and Bz that refer to the appropriate co

ordinate system for the magnetic ions in the material are, 

B a = B X sin <P + By cos 8 cos <P + B z sin 8 cos <P 

Bb= -Bxcos <P +By cos 8 sin <P + Bz sin 8 sin <P 

BC=- By sin 8 + Bz cos e. 
(8.13) 



The angles e and q, relate the (x, y, z) and (a, b, c) axes as depicted in Fig. (1) with a and~ replaced 

bye and q,, respectively. The result (B.ll) together with (B.12) is the basis of the work reported in 

the text. Several special cases that merit attention are provided in the next appendix. 

Appendix C 

In some instances, such as a polycrystal or a domain structure with perfect cubic symmetry, it 

is appropriate to average the result (B.ll) for W over the orientations of the muon polarization with 

respect to the crystal axes. In practice this means averaging the products of the ~. 'YJ and ~ over the 

angles a and~; denoting the spatial average by a horizontal bar, all off-diagonal products vanish, e.g. 

~~"" 0, and all diagonal products have the same value, namely, 2/3. The corresponding value of the 

relaxation rate is, 

-
A.=2W=t(g .. ~N 1nl J dtexp(-itoo .. )<B~.B(t)>. (C.l) 

Thus, in this special case, the relaxation rate is simply the time Fourier transform of the scalar 

product correlation function of the fluctuating magnetic field at the site of the implanted muon. 

A second special case is that of a pure contact interaction, i.e., 

B = I A(£) S (f)., (C.2) 
t 

where S are spin angular momentum operators associated with magnetic ions at sites defined by the 

set of indices { .e}, and{A }are interaction parameters. In an ordered magnetic material, the dominant 

contribution to A. if oo" - 0 arises from longitudinal spin fluctuations, i.e. the components parallel to 

the magnetic axis of quantization, denoted here by the z-axis. For this case one keeps just the 

z-component of Bin (C.2). From (B.ll), (B.12), (B.13) and (C.2) we arrive at the result, on setting 

oo .. = 0, 

(C.3) 

-L f dtA * (f)A(f')< sz(R)Sz(R',t) >. 
t,t' -oo 

Here,~. 'YJ and~ are defined in (B.8). Inspection of these factors in conjunction with the form of the 

geometric prefactor in (C.3) shows that this prefactor vanishes if the muon polarization and magnetic 

quantization axes coincide, i.e. a = e and ~ = cp. So, as expected for this special geometry, there is 



no relaxation due to longitudinal spin fluctuations mediated by the contact interaction. However, it 

is to be noted that, for a uniaxial magnet at the critical temperature it is only these fluctuations that 

can generate a critical enhancement of the relaxation rate. 

In genral, the muon is not depolarized if B is parallel to the muon polarization; this intuitively 

obvious result, of course, is borne out by the general expression (B.ll). 

Appendix D: Dipole Sums 

The methods described here have been used to obtain our results, quoted in the main text, for 

the spatial Fourier transform of the dipole operator, Da.P (k). It is well known that the lattice sums 

involved can converge slowly and some care is needed in the numerical analysis to obtain reliable 

results. Both the methods used exploit the fact that the implanted muon does not occupy a lattice 

site. This fact results in an incoherence in the lattice Fourier transform which can be used to good 

effect in providing rapid convergence of the lattice sums. The methods used differ in several respects 

from the conventional Ewald summation technique, e.g. no auxiliary functions and introduced. 

The first method we describe makes use of formulae in which the convergence induced by the 

incoherence is explicit. The second method is a straightforward spatial Fourier transform which is 

coded to produce a fast and accurate computational method. Results from the two, distinct 

numerical methods are in complete agreement. 

To illustrate the first method we consider the calculation of the diagonal components of Dap 

(k). We employ two identities: 

and, (0.1) 

00 

(1 I R) = (1 I .J1t) f d~ ~- 112 exp ( -I;R 2
). 

0 

In the calculation of Da.p(k), the position variable R = (Rt. R2, R3) is, 

R= a+ o, 

where {a} defines the magnetic lattice, and o defines the position of the implanted muon. Since o 
does not coincide with a position on the lattice the dipole operator is well defined, and non-singular. 



For a simple cubic lattice, wjth a unit lattice spacing a = (£1, £2, £3) and the integers { £;} take 

all values. Thus, 

~ 

L (l I R) exp (ik. a)= (1 I Ji) J ds S-112 L exp {ikl£1 + ik2£2 + ik/3- SR 2
} 

D 0 {(} 

(0.2) 

~ 

= Ji f ds S- 312 L exp {-sa+ ik3£3} L exp {-i~lol- i~202- b I~}. 
0 13 qlq2 

In arriving at the second equality in (0.2), use is made of the identity, 

.. ~ 

I 0 (x-I)= I exp (2rtiqx), (0.3) 
1=-~ q=-(>0 

to re-write the sums over £1 and £2; this amounts to use of the Poisson formula. We have chosen to 

re-write these two sums, rather than some other combination of { £;}, with a view to calculating 

D 33(k) by an application of (D.l). In terms of the variables used in the second equality in (D.2), the 

derivatives in (0.1) with respect to R
3 

are easily cast as derivatives with respect to the variable a, 

viz., 

(0.4) 

The integral in (D.2) is standard, 

"" 
J ds ~-3/2 exp(- as- b IS)= (1t I b)112 exp ( -2 (ab) 112

), (D.S) 
0 

for a, b > 0. Using this result together with (D.4) one arrives from (0.2) at the desired expression, 

D 33 (k) = .2, exp (ik · f)(3R? - R2
) I R5 

t 

(D.6) 



= 47t I exp(ik3R)L exp(-io 1~ 1 - io 2 ~;) b112 exp(-2(a3b)112
), 

qq' 

where the integers £, q and q' take all values. The remaining two diagonal components of D"" (k) are 

obtained from (D.6) by a suitable choice of the component o and k in 

~a= (27tq + kj, a a=(£+ oj2
, and b. 

A similar bag of tricks can be applied with advantage to the off-diagonal components of D~ 

(k). We find, for example, 

D12 (k) = - 1t I, exp(ik3R) I, ~ 1~; exp( -io 1~ 1 - io 2 ~;) b -112 exp( -2( a ab )112 
). (0.7) 

l qq' 

The remammg off-diagonal components are obtained from (0.7) by a suitable choice of the 

components of o and k. The same notation is used in (D.6) and (0.7). 

In the second method we perform a direct (straightforward) spatial Fourier transform of the 

dipole operator as given in (3.2). The code was set up in such a way as to monitor the convergence 

of the lattice sums. 

Each sum value is obtained from separate contributions in which a subsum over all points lying 

on a cubical surface in lattice space is accumulated. In almost all cases considered the subsums 

showed a rapid decrease, eventually falling below a preset value. For a few combinations of wave 

vector and muon position vector the convergence is slow and the lattice summation has to be taken 

to a large limit. However, changing the critical values by a small amount immediately improves the 

speed of convergence, while the result for the corresponding dipole field hardly varies. This 

demonstrates the benign behaviour of the quantity under study. In all cases, the two numerical 

methods described are in complete agreement. 

As an indication of the strong dependence of the dipole field on the muon position vector o, 

we display in Fig. (2) the results for several sites around the most likely position of the muon, 

(0.25, 0.25,0.), for one selected wave vector, k = (1, 1, 1), the incipient ordering wavevector. The 

values of the dipole field for other wave vectors will be of the same order since the variation across 

the Brillouin zone is rather weak. The value at o = (0.25, 0.25, 0.) is 3357 and is not given in 

Fig. 2. 



Table (1): Properties of RbMnF3 

Quantity Symbol Value 

Chemical unit cell dimension a 
0 

4.24A 

Critical temperature (l) Tc 83K 

Nearest neighbour exchange interaction J 0.28 me V 

Non-universal material constant in the 
damping rate A 361.0 meV2 A3 

Superlattice wave vector w (n/a)(l,l,l) 

Geometrical factor (a = x,y,z) Yk t:L cos( aka.) 
a 

Number of nearest neighbours r 6 

Spin magnitude s 5/2 

(1) The quoted value of J and the spherical model relation (2.9) produce a critical temperature 

= 78K. Evans and Windsor (1973) report the value]= 0.28 ± 0.03 me V obtained from an 

analysis of the spin wave dispersion. All our results are provided as a function of the reduced 

temperature (T!Tc), and A is calculated with Tc = 78K. 



Table (2) 

Values of the relaxation rate (in units of Jls-1
) as a function of temperature calculated for a muon at 

~ = (0.25, 0.25, 0). 

A.(Jls-1) A.(Jls -1)/~ (b) 

1.125 0.661 0.363 

1.25 0.573 0.399 

2.0 0.584 0.530 

3.55 0.653 0.591 

00 
0.805 (a) 

(a) We are grateful to E. Engdahl for calculating this result. The gaussian model described in §4 

gives the result 0.695. 

(b) The quantity ~ = (TITcaK)112 is the temperature variation of A. in the critical region, cf. (5.8); 

values of 'K are calculated from the spherical model of spin correlations. 



Table (3) 

Spherical model and measured temperature scales. 

(f -1) (T!Tc aK)
112 

Spherical Measured 
model values 

0.001 17.76 7.94 

0.01 5.67 3.56 

0.10 1.98 1.66 

1.0 1.10 1.0 

( 
T )o.1o 

The measured values for RbMnF3 are obtained from the relation aK = 2.0 Tc - 1 ; after 

Als-Nielsen (1974). 



Table (4) 

Ratio of the relaxation rates for two sites of the implanted muon, ~h = (0.25, 0.25,0) and 

B2 = (0.4, 0.3,0.2) 

A(2)/ A(1) 

1.0 0.13ia) 

1.125 0.122 

1.25 0.119 

2.0 0.113 

3.55 0.109 

00 
0.109 (b) 

(a) The listed value is the ratio of the dipole field L lvoDaJl(w)l
2 

for the two sites which gives the 
aJl 

ratio of the relaxation rates evaluated within the theory described in §5 which is appropriate 

very close to Tc , cf. fig. 2. 

(b) The value is derived from the gaussian model for F(k,ro) described in §4 which is appropriate 

for infinite temperature. 
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