
i ~DRAL
('(Daresbury Laboratory I N Rutherford Appleton Laboratory

er - -·

J a: §
;1 8 <(

Client Server Architecture for
MultiDatabase Access coHr.

lngres SQL Server
M Dixon

November 1994

Rutherford Appleton Laboratory Chilton DIDCOT Oxfordshire OX11 OQX

RAL Report
RAL-94-118

ORAL is part of the Engineering and Physical
Sciences Research Council
The Engineering and Physical Sciences Research Council
does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or
in any communication about its tests or investigations

Client Server Architecture
for

MultiDatabase Access

lngres SQL Server

M Dixon

(Visitor to Data Engineering Group
System Engineering Division

ORAL)

Faculty of Information & Engineering Systems
Leeds Metropolitan University

Beckett Park
LEEDS LS6 3QS

Issue Date: 10 October 1994

ABSTRACT
The interoperating of multiple database systems requires a client application which acts as a

mediating agent for database server processes; these server processes must be accessed using

network procedure calls. This report addresses the problems and associated design options

that arise in constructing a dynamic SQL server process for the lngres Relational Database

Management System. The Ingres SQL server has been constructed in C on a Unix platform

and accessed across a Sun.OS network. It is intended that the narrative in this report together

with the source code for both the SQL Server and the primitive Client would act as a starting

template for a writer of application code that required dynamic SQL access to an lngres

database. The choice of a network protocol is discussed.

Contents

1 INfRODUCTION

1.1 Research Context

1.2 Heterogeneity

1.3 Purpose of Technical Report

1.4 Choice of Development Tools

2 INIERPROCESS· COMMUNICATION

2.1 Introduction

2.2

2.3

2.4

2.5

External Data Representation

Data Types

Communication Protocol

Oient Server Recognition

3 INGRES SERVER APPLICATION

3.1

3.2

3.3

3.4

3.5

Introduction

Registering a Server Application

Processing messages from the Oient

Returning messages from the Client

DynamicSQL

Initialising a descriptor block

1

1
2
3

3

4

4

4

5

6

6

7

7

7

8
9

9

10 3.5.1

3.5.2

3.5.3

3.5.4

3.5.5

3.5.6

Connecting to the database 10

Connecting to the dynamic descriptor block 11

Non Retrieval Operations 12

Retrieving field definitions 12

Retrieving data values

4 CLIENT APPLICATION

4.1

4.2
4.3

4.4

Role of the Oient Application

Connection to Server

Construction of SQL string for passing to server

Handling of returned data

5 CONCLUSION

REFERENCES

ACRONYMS

Acknowledgements :

APPENDIX!

Al.l Compiler /library switches

Al.2 lngres enviromnent variables

14

16

16

16

17

17

19

20

21

21

22
22
23

Client Server Architecture
for MultiDatabase Access

lngres SQL Server

1 INTRODUCTION

1 .1 Research Context

The development of inter operating database systems has become a major business

requirement in recent years. Operational databases tend to be developed to meet specific

departmental needs; the use of that data with data from other somces for management

information tends to arise after the database has been in place for some time. Also the merger

of companies with different databases leads to a need for their information systems to

cooperate. Although some system design methodologies such as Information Engineering

[Mar89] seek to take a strategic approach to the development of information systems it is

unlikely that a fully integrated database management system could be developed for a

company that is dynamically adapting to business requirements. Of especial interest to

established companies is the migration and integration of mission critical legacy systems

[~rod92,~rod93].

An extension of the sharing of information systems to allow intercompany data exchange is

underway with the use ofEDI for ordering and invoicing.

There is also an increasing need to be able to access publicly available database sources such

as library catalogues, census data, and travel information. For these databases the information

supplier defines the format of their database and it is the responsibility of the accessor to

conform to the access protocoL

Following Date's 12 rules for distributed data bases [Date90] there has been an underlying

assumption that interoperation of information systems should preserve autonomy of the

individual information systems. This autonomy should include:

1) design autonomy for data models and schema definitions,

2) communication autonomy where an information system can decide whether to

respond to a request from another system,

3) execution autonomy where each information system decides the order in which external

and local transactions are performed.

Oient Server Architecture : lngres SQL Server - M Dixon Page 1

A catagory distinction is made between distributed databases andinteroperating databases.

Distributed databases are seen as tightly coupled global information sharing systems where

the global system has control over local data and processing; the division into subsystems is

constrained solely by engineering issues.[Coul0rl93, BriHurPak92]. It is the unitary nature

of distributed database management systems that precludes them from tackling the

information management issues for which interoperation is required especially since each of

the local systems is of the same type. Gateways provide a way in which one dbms can access

another dbms however there are limits to the extent to which they can be used since they are

dependent on database vendors being willing to incorporate the gateway for a specific dbms

on a specific platform; Ingres I Star provides a good example of a distributed database

which supports a very limited set of gateways.[IngresV6].

MW Bright, A R Hurson and S H Pakzad [BriHurPak92, see also HurBriPak93] have

reviewed current issues in multidatabase systems. They have produced a taxonomy in which

they classify Interoperable systems as loosely coupled information sharing systems which are

limited to simple data exchange. Their papt:f summarises by class the wide range of projects

on multidatabase systems; identifying whether they are cormnercial, prototype or research

products. Most global data models are reported as relational.

1.2 Heterogeneity

The types of heterogeneity that can occur in data bases has been reviewd by Sheth and Larson

[ShethLar90]. They identify four types which they catagorise as Hardware, Operating

System, Cormntmication, and Database System; the latter has subtypes of Semantic

Heterogeneity and Differences in DBMS. A substantial discussion of the these issues is given

in that review. Sheth and Larson then developed the three level ANSI/SPARC schema

architecture for simple databases into a five level schema architecture for federated

databases. The five levels are

1) local schema for a component dbms in its native data model

2) component schema derived by translating the local schema into a cormnon

data model for the federated database system

3) export schema identifying what data is being made available to the

federation

4) federated schema which combine multiple export schema

5} external schema which defines a user's view of the federation

The appropriate transformation, filter, and constructor processes are reported by them.

Coulomb and Orlowska [Coul0rl93] have studied the implications of semantic heterogeneity

for the design autonomy of interoperating information systems and they conclude that

generally it is not possible to resolve semantic heterogeneity without violating design

autonomy. This leads them to question the utility of research on general architectures.

Qient Server Architecture : Ingres SQL Server- M Dixon Page 2

1.3 Purpose of Technical Report

Embedded sql provides a mechanism whereby a user's application programme can issue sql

commands to a database and process the resultant tables; the application programme only

requires knowledge of sql. Unforhm.ately this facility only works for hard coded queries. If

an application user wishes to dyruunically define a query then dynamic sql must be used to

access the database and specific knowledge of the database dynamic data areas is required.

Fortunately. for Ingres at least. a model for a tertninal monitor application has been provided

as part of a tutorial. [IngresC90]. The work 1.n1dertaken so far has entailed the construction of

server task which receives a sql command from a client application and returns the result set

to the client.

This report has been prepared to facilitate the construction of a dynamic sql server for the

Ingres relational database system. The aim is to provide a template for the writers of

interoperating systems so that they have a functioning starting point for the development of

their own applications. Associated libraries of source code will be provided.

1.4 Choice of Development Tools

It was decided to begin this work using a relational DBMS since many of the issues related to

semantic heterogeneity are manifested in relation database systems. It is also the case that a

recent survey of cooperating information systems showed that the global data model most

frequently selected in practice for interoperation was the relational model. [HurBriPak93].

The choice of C/C++ and Unix for the server enviromnnet was determined by the availability

at DRAL of SED's Ingres relational database on the commercially widely used Unix

platform; C was the preferred programming language of the group reflecting its wide

commercial use. The creation of the server was greatly facilitated by the availability of

tutorial code from Ingres for a terminal monitor application which could be used as a starting

template. [IngresC90]. Initial compatibility lead to the choice of Unix and C for the client

application as well.

The choice of the relational approach is particularly appropriate for network

intercomml.nlication because of its set nature. One SQL command retrieves a set of results for

one network call. This can significantly reduce the amount of message passing compared to

navigational data models.[Date83].

Qient Server Architecture : Ingres SQL Server - M Dixon Page 3

2 INTERPROCESS COMMUNICATION

2.1lntroduction

lbis section discusses the way that data is represented as it is passed between applications,

the choice of a communications protocol, and how the server waits for a message from the

client.

2.2 External Data Representation

In order to transfer data between computers the client and the server need to agree the format

of that data. XDR is a standard for the machine independent description and encoding of

data.[NPG37, NPGl 03]. XDR can be used for the communication of data between such

different machines as Sun Workstation, VAX, IBM-PC, and Cray.

There is a Sun xdr sub-library of primitive. functions for handling basic C data types. Access

is made available through

#include <rpc/rpc.h>

at the beginning of a programme.

For a basic C data type xxx the format of the xdr function call would be

XDR *xdrs;

xxx *xp; /* example int *ip *I
if(! xdr_xxx (xdrs, xp)) {return (FALSE); } /*example xdr_int(xdrs, ip) */

return(TRUE);

xdrs is the XDR stream handle and is never inspected or modified.

xp is a pointer to a variable of type xxx.

xdr_xxx is of type bool_t which has been declared as type integer as follows

#define bool_tint

#define TRUE 1

#define FALSE 0

A list of the primitives can be found in [NPGll 0] and a formal definition is available in

[NFXDR]. An attractive feature of these xdr functions is that the same function can be used

for conversion in the client and in the server; the direction of conversion being set by the

context.

Qient Server Architecture: Ingres SQL Server- M Dixon Page 4

When an xdr routine has to be supplied even though no data is to be passed then the function

bool_t xdr_void(); /*always 1RUE */

is used.

A complex function enables the passing of strings.

u_int maxlength; /* maxlength is the maximum length of the string*/

char **sp

bool_t

/*a pointer to the pointer for the string*/

xdr_string(xdrs, sp, maxlength);

Another complex function enables the passing of a vector.

xxx * vectorp; /* pointer to start of vector of type xxx *I
int numelements; /*number of elements in vector */

bool_t xdr_vector(xdrs, vectorp, numelements, sizeof(xxx), xdr_xxx);

The specific fmction that issues the call to the server, clnt_call(), permits one xdr function

with the associated address for the data to be sent; clnt_call() also has one xdr fmction with

the associated address for the data to be received in reply from the server. A programmer can

construct their own xdr fmctions to act as arguments for clnt_call(). Essentially such a

function consists of an ordered set of calls to the xdr library fmctions. The manipulation of

the combinations xdr functions follows the usual rules for a C function; this enables the

programmer to pass within their constructed xdr fmction data which is used to process

following data in the same transfer. In the server application setting the pointer to the data to

NUlL will allow the xdr primitive to allocate the required memory dynamically.

2.3 Data Types

There is a range of data types supported for the server database. Since update to the database

occurs through a SQL command string constructed dynamically in the client and dispatched

by the server to the dbms there is no inherent problem in using the full range of the database's

datatypes. However each database type needs to be mapped to a local type system for

reporting results. Such a mapping should ensure that there_ is no data loss and that the

subsequent processing is as simple as possible. The mapping used here follows that

illustrated by Ingres; it trades simplicity for extra storage.

Client Server Architecture : Ingres SQL Server - M Dixon Page 5

Database Type

integer

float

money

char

varchar

date

C Language Type

long int

double

double

string

string

string[25]

The consequence is that the client application wo- J.ave a relatively simple task in merging

the types extracted from different server dbrnss.

2.4 Communication Protocol

The RPC (remote procedure call) protocol is independent of the transport protocols; it deals

only with the specification and interpretation of the messages and not how a message is

passed. Sun RPC is currently supported on both UDP/IP and TCP/IP transports. An extensive

discussion of the relevant protocols has been given by Black.[Black94]. The criteria for

selection of one transport rather than another are given in [NPG36,NPG37]. TCP/IP was

choosen for the following reasons

1. The size of the results could exceed 8 Kbytes

2. Updates to the database must be performed only once otherwise different data values could

be generated in the database.

3. The application needs to maintain a high degree of reliability.

Use of TCP/IP means that the application does not have to implement its own retransrnission

policy and that a reply from the client means that the remote procedure was executed once

and only once; if no reply is received then the client cannot assume that the procedure has

not been executed. Even with TCP/IP it is necessary to handle server crashes. The server will

keep track of each open client connection so server machine resources will limit the number

of simultaneous clients for TCP/IP.

2.5Ciient Server Recognition

Oient application recognition of a Server application is based upon the concept of a port

which is a logical cormnunication channel in a host. The server application waits on the port

until it receives messages from the network. A server application registers with its host

computer using the port mapper service to allocate a port. A client gets the server

application's port from the server's host portnJ.apper. The client application can then call the

server application with a message that contains the port number [NPG21 ,NPG22].

Oient Server Architecture : Ingres SQL Server ~ M Dixon Page 6

31NGRES SERVER APPLICATION

3.1 Introduction

The server application is based upon the Terminal Monitor Application which is fully listed

in Ingres documentation. [IngresC90]. It is not intended to document that code here; we are

concerned with the aspects that relate to enabling a user to access the column deft.nitions and

data values in order to pass them across the network to a client application.

3.2 Registering a Server Application

It is first necessary to create a TCP/IP service transport handle for sending and receiving

messages; the transport is associated with a socket. svctcp_create() creates a stream socket

providing bidirectional, reliable, sequenced, and unduplicated flow of data without record

boundaries. [NPG288]Using RPC_ANYSOCK causes a new socket to be created and the

socket is bound to a local TCP port.[NFRPC_SVC_CREA1E(3N)]. TCP based calls use

buffered ilo so users may specift.y the size of the buffers with sendsz and recvsz; values of 0

choose defaults.

SVCXPRT *transp;

u_int sendsz;

/* transp is a pointer to a data structure *I
/*size of send buffer *I

u_int recvsz; /* size of recive buffer *I
transp = svctcp_create(RPC_ANYSOCK, sendsz, recvsz); I* NULL if fails *I

The next step is to erase the portmapping of this server application progrannne with its

version number; this is to deregister any possible renmants from a previous run of the server

application which may have crashed.

u_long prognum = PROGNU:MBER;

I* The program number- also known to client *I
I* eg Ox20000008 [NPG37] *I

u_long versnum = VERSIONNUM;

I* The version of PROGNUMBER -known to client *I

pmap_unset(prognum, versnum);

It is now appropriate to register with the local portmap service the server application

identified by prognumber and versionnum. The application is associated with a dispatch

Qient Server Architecture : Ingres SQL Server - M Dixon Page 7

procedure, void faccess(); this is the procedure that i~ executed when the server application

receives a meesage. The application is registered with the TCP/IP protocol by setting the

value of protocol. [NFRPC_SVC_CALLS(3N)]

u_long protocol= IPPROTO_TCP;

/*The interprocess protocol to be used is TCP *I
void faccess();/* void function but void *faccess() in documents*/

svc_register(transp, prognum, versnum, faccess, protocol);

/* retwns 1RUE if succeeds else FALSE*/

The dispatch procedure has the following form

void faccess(rqstp, transp)

struc svc_req *rqstp;

SVCXPRT *transp;

{

see below for main body of this function which accepts an

arguement and sends a reply to the client

3.3 Processing messages from the Client

The final part of the main function of the server application is the function void svc_run()

which waits for incoming messages to arrive and invokes the dispatch procedure faccess().

The fnnction svc_run only returns in the case of some errors. [NFRPC_SVC_REG(3N)]

The message arrives on the stream pointed to by transp and is extracted in function faccess()

using the function

bool_t svc_getargs(transp, xdr_xdrO, strp)

SVCXPRT *transp;

int xdr_xdrO; /*the routine used to decode the incoming args */

char** strp; /*The pointer to the address pointer for where the

arguments will be placed* I
char* pstr[2]; /*pointers to the strings comprising the message; here it is assumed that the

message consists of two strings with the first string being the operational code identifying the

message type and the second string being the detailed message. strp = &pstr; */

The string pointed to by pstr[O] can be used in a test condition to see which dynamic sql

feature is being invoked [comect I sqll discomect].

The string pointed to by pstr[l] can be used as [database name! sqlcormnand I null].

Oient Server Architecture : Ingres SQL Server- M Dixon Page 8

3.4 Returning messages from the Client

Messages are returned to the client on stream transp using function

bool_t svc_sendreply(transp, xdr_proc, strp)

[NFRPC_SVC_REG(3N)]

SVCXPRT *transp;

int xdr_proc; /*the routine used to encode the outgoing data*/

char** strp; /*The pointer to the address pointer for where the

arguments will be placed*/

char* pstr[2]; /*pointers to the strings comprising the message; here it is assumed that the

message consists of two strings with the first string being the operational code identifying the

message type and the second string being the detailed message. strp = &pstr; */

For a simple return with an error code/ completion condition then the use of strp can mirror

its use in function svc_getargs(). However, where there is a significant amount of processing

and the returned data is complicated then xdr_proc can be quite complicated. Although

forming a matched pair with the svc_getargs() function the behaviour is somewhat different

if the data to be transfered exceeds the buffer sizes. It would appear that there is an

asynchronous breakout from xdr_proc and a bufferload of data is sent to the client before

processing resumes within xdr_proc. This is of significance in handling data of unknown

quantity from a database. A consequence may be that the matching decoding xdr routine in

the client handles the data rather than waiting for it to be passed to the calling routine. Under

these circwnstances strp becomes a durrnny.

3.5 Dynamic SOL

Embedded sql provides a way of executing sql statements from within a host 3gl

programming language, in our case within C/C++; this asswnes that the sql cormnand is hard

coded and compiled. Dynamic SQL allows an application to construct a SQL connnand

while running, store the SQL command within a host string variable, and execute the SQL

command. A handbook of the ISO standard for SQL has been produced by Cannan and Otten

[Can0tt93]. SQL statements fall into two categories; those that do not retrieve result data

from the data base (such as delete, insert, create, drop) and those that process data results

returning from the data base (such as select and fetch).[IngresC 90, p4-1 et seq].

Source files which need to be preprocessed by the Ingres C utility ESQLC are given the

extension se. The compilation and linking must occur in an environment in which the Ingres

paths are set. [See Appendix 1,2]. This is normally done by the developer creating a

Qient Server Architecture : Ingres SQL Server - M Dixon Page 9

command tool window and remotely logging into the workstation on which Ingres is run; the

environment varaibles are then set.

SQL cormnands can be embedded almost anywhere in a program where host cormnands are

allowed [OSQLR3-21]. Commands begun by the phrase ''EXEC SQL" are embedded

commands.

3.5.1 Initialising a descriptor block

The first embedded SQL command must be

EXEC SQL INCLUDE SQLCA;

lbis command incorporates SQL's error and status handling mechanisms, known as the SQL

Commmrications Area (SQLCA) into the program. This area is used for control purposes by

such commands as WHENEVER [OSQLR5-72]

EXEC SQL WHENEVER SQLERROR STOP;

3.5 .2 Connecting to the database

Connection of the server to a database eg mdtest, is via the command

EXEC SQL CONNECT mdtest;

For connection to a dynamically defined database name the DEU.ARE SECTION

command must be used for the database name.

define DBNAME_MAX 50 I* max size of database name *I
EXEC SQL BEGIN DECLARE SECTION;

char dbname[DBNAME_MAX + 1];

EXEC SQL END DECLARE SECllON;

fgets(dbname, DBNAME_MAX, stdin); /* collect from keyboard *I

EXEC SQL CONNECT :dbnarne; /* connect to database *I

The server may sever connection to the database by disconnecting via the command

EXEC SQL DISCONNECT;

Oient Server Architecture : Ingres SQL Server- M Dixon Page 10

3.5 .3 Connecting to the dynamic descriptor block

A host language descriptor area, called the SQLDA is a structure that has been defined by

Ingres. SQLDA holds descriptive information about the fields required for the sql command.

In order to include the SQLDA descriptor block in an application the code should contain the

statement

EXEC SQL INCLUDE SQLDA;

The SQL statement that has been dynamically constructed needs to be placed in an especially

prepared character array which is made known to SQL by the I;>ECLARE SECTION

statment. A command name for and a cursor for the command name are also made known

through the commands DECLARE STA1EMENT and DECLARE CURSOR respectively.

In the example below stmt and csr should not be regarded ru; host language variables. The

DECLARE STATEMENT declares a name used in the program to identify prepared SQL

statments. It is regarded as a declarative corrnnand. The DEa.ARE CURSOR FOR names a

cursor for use with a specified statement name. It is a compile time command that must

appear before the first line that refers to the cursor.

The command name is dynamically connected with the contents of stmt_buf through the

prepare command. The return data definitions are then placed in SQLDA using the

DESCRffiE command; it retrieves length and name information about a prepared select

command into the SQLDA. [OSQLR5-28]. It is necessary to allocate memory to receive

these returned data definitions; this is done by setting up a default sized area and then

extending if the actual need exceeds that default.

EXEC SQL DECLARE stmt STA1EMENT; /*dynamic sql command name*/

EXEC SQL DECLARE csr CURSOR FOR stmt; /* cursor for stmt */

#define STMf_MAX 1000 /* max SQL statement size*/

EXEC SQL BEGIN DECLARE SECTION;

char stmt_buf[STMf_MAX + 1]; /*statement dynamically constructed in this*/

EXEC SQL END DECLARE SECTION;

#define DEF _ELEMS 5 /* default number of return columns */

Init_Sqlda(DEF _ELEMS) /* create memory to store column defs *I
EXEC SQL PREP ARE stmt FOR :stmt_buf; /* Prepare the command name *I
EXEC SQL DESCRffiE stmt INTO :sqlda;

/* If the number of returned columns is greater than space reserved

Oient Server Architecture : lngres SQL Server - M Dixon Page 11

then free space, and reserve appropriate amount of space

sqlda->sqln is number of return columns for which space exists

sqlda->sqld is number of columns for which space is wanted*/

if(sqlda->sqld > sqlda->sqln)

{ Init_Sqlda(sqlda->sqld);

EXEC SQL DESCRffiE stmt INfO :sqlda;}

Function lnit_Sqlda (nmn_elems) frees and reserves memory

void lnit_Sqlda(num_elems)

int num_elems; /* mm1ber of return columns */

if(sqlda) free((char *)sqlda); /*Free old SQLDA */
/*Allocate new SQLDA *I

sqlda = (IISQLDA *) calloc(l,

(IISQDA_HEAD _SIZE + (num_elems * IISQDA_ V AR_SIZE));

sqlda->sqln = num_elems;

}

3.5 .4 Non Retrieval Operations

Non SELECf SQL commands do not return data rows to the user so it is not necessary to

handle the return data field definitions. Under these circumstances the SQL command can be

executed directly with only a status code being returned to be detected by WHENEVER

SQLERROR and the number of rows affected.

int rows; /*number of rows affected*/

if (sqlda->sqld = 0)

{

/*test for no return rows */

EXEC SQL EXECU1E stmt;

rows= sqlca.sqlerrd[2];

3.5 .5 Retrieving field definitions

The number of result columns is then straightforwardly obtained from

Oient Server Architecture : lngres SQL Server - M Dixon Page 12

long int numcolwnns; /*number of result columns*/

numcolunms = sqlda->sqld; /* sqld is a two byte integer. */

The details of the column are held in an array, sqlvar[]. It is first necessary to set up a pointer

of type IISQL V AR to the descriptor area;

IISQLV AR * sqv;

char * p_namestr;

For column i we obtain the value of the pointer as follows

sqv = &sqlda->sqlvar[i];

The colwrm. name and the length of the array containing the name can then be obtained as

follows

colnamelength = sqv->sqlname.sqlnamel;

p_namestr = &sqv->sqlname.sqlnamec;

sqv->sqlname.sqlnamec[colnamelength] = '\0'; /*convert to string*/

This is different from the manual page 4-9 which does not split sqlname into the name and

length parts. The name is a character sequence and is converted to a string by adding a

trailing null. The column name length should not exceed 34 characters although lngres

allows names of <=24 characters. Unfortunately the name does not maintain track of the

table so an implied order has to be used to handle that information where it is significant; ie

two columns in different tables with the same name, eg date, but semantically different

would not be distinguished in the naming.

Each column is associated with a data type and a numeric code is used to indicate which data

type.

Type

integer

float

char

varchar

Code

30

31

20

21

Code variable

IISQ_INT_TYPE

IISQ_FLT_TYPE

IISQ_CHA_TYPE

IISQ_ VCH_ TYPE

date 3 IISQ_DTE_TYPE

money 5 IISQ_MNY _TYPE

A negative value for the code indicates that the data values could be null.

int base_type;

base_type = sqv->sqltype; /* the value of the data type code */

if (base_type < 0) base_type = -base_type;

Client Server Architecture : Ingres SQL Server - M Dixon Page 13

A switch on the base_type then allows the identification of the correct storage area for that

colurrm type.

long int colurrmwidth; /*storage required for data type*/

switch (base_type)

{ case IISQ_INT_TYPE:

colurrmwidth = sizeof(long);

break;

/*the length of an array is stored in the structure

pointed at by sqv->sqllen; */

case IISQ_CHA_TYPE:

case IISQ_ V CH_ TYPE:

colurrmwidth = sqv->sqllen + 1;

break;

case IISQ_MNY _TYPE:

colurrmwidth = sizeof(double);

break;

case IISQ_FLT_TYPE:

colurrmwidth = sizeof(double);

break;

case IISQ_D1E_TYPE:

colurrmwidth = DA 1E_SIZE + 1;

/*define DATE_SIZE 25 */

break;

3 5.6 Retrieving data values

Once the SQLDA area has been DESCRIBED and the return columns defined it is possible

to retrieve the data values.

The SQL SELECT statement is initiated when the cursor, csr, is opened using the

command [OSQLR5-49]

EXEC SQL OPEN csr;

Each row can now be retrieved using the command

EXEC SQL FETCH csr USING DESCRIPTOR :sqlda;

A FETCH is the only way to position the cursor on a row [OSQLR5-39]; a cursor must be

closed before reopenning it.

Qient Server Architecture : Ingres SQL Server - M Dixon Page 14

Each row is then retrieved through the use of a fetch cormnand. The data value for column

i+ 1 is stored in the array sqlda->sqlvar[i]. The nmnber of rows returned is not knowable in

advance so a count needs to be kept. Fetching can continue while the sqlca.sqlcode ==0. The

row retrieval loop is covered by failure condition SQLERROR which allows for failure

hancD.ing; in this case no more data leads us to close the cursor.

long int intval;/* returned integer value */

double realval; /* returned real value */

char* p_strval; /*pointer to returned string*/

EXEC SQL WHENEVER SQLERROR GOTO Oose_Csr;

numrows = 0; /*Initialise connter onnwnber of rows retrieved*/

EXEC SQL OPEN csr; /*Opens the cursor for this select statement*/

while (sqlca.sqlcode =0)
{EXEC SQL FETCH csr USING DESCRIPTOR :sqlda;

/*The row is fetched into the descriptor area*/

nunrrows ++;/*increment retrieved row counter*/

for (i=O; i < numcolurnns; i++) /*loop over returned columns*/

{ sqv = &sqlda->sqlvar[i];

if((base_type = sqv->sqltype) < 0) base_type =- base_type;

switch (base_type)

case IISQ_INT_TYPE:

intval = *(long *)sqv->sqldata;

break;

/* p_strval type (char*) is pointer to string*/

case IISQ_DTE_TYPE:

} /*rows*/

Oose_Csr:

case IISQ_CHA_TYPE:

case IISQ_ VCH_TYPE:

p_strval = sqv->sqldata;

break;

case IISQ_MNY_TYPE:

r~alval =*(double *)sqv->sqldata;

break;

case IISQ_FLT_TYPE:

realval =*(double *)sqv->sqldata;

break;

} /*case*/

} /*columns */

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL CLOSE csr;

Oient Server Architecture : Ingres SQL Server- M Dixon Page 15

4 CLIENT APPLICATION

4.1 Role of the Client Application

The role of the client application is to collect SQL connnands from the user and to dispatch

them to the appropriate server application as a string. In order to do this it needs to identify

the host name of the computer on which the server application is running as well as the

specific progrannne number and version of the server application. For reasons of reliability

discussed in Section 2 above a TCP/IP stream socket connection is established between the

client and the server. The SQL command is passed to the server using xdr and the reply

containing the data is received using xdr. At the end of a session the client's handle is

destroyed and the socket is closed.

4.2 Connection to Server

Our template for the connection to the server host and application is adapted from that given

in [NPG75] for use of UDP /lP. In our case we wish to use TCP /lP so that the client is linked

to the server application using a stream socket; this provides for the bidirectional, reliable,

sequenced, and unduplicated flow of data without record bonndaries. (In the Unix domain

stream sockets are nearly identical to pipes [NPG280]).

The pointer to host computer is obtained by use use of a library function call:

struct hostent *hp; /* hostent is defined on p291 Network Progrannning*/

hp= gethostbyname("apple"); /*apple is workstation nmning lngres */

The client hanc:D.e is created [NFRPC_CLNT_CREA1E(3N)]

int sock= RPC_ANYSOCK /*The socket is system issued through RPC *I
bcopy(hp->h_haddr, (caddr_t)&server_addr.sin_addr, hp->h_length);

server_addr.sin_family = AF _INEf; /*socket is in Internet domain*/

server_addr .sin_port = 0; /* remote portmapper to find address */

register CLIENT *client;

u_long prognum;

/*a handle for the client */

u_long

u_int

u_int

versmun;

sendsz;

/* program number on host */

/* version number on host */

/*size of send buffer

recsz; /* size of receive buffer

/* create a client handle; beware this function

succeeds if host has an earlier! version of the progrannne */

Oient Server Architecture : Ingres SQL Server- M Dixon

*I
*I

Page 16

client= clnttcp_create(&server_addr, prognmn, versnum,

&sock, sendsz, recsz);

A call may then be made to the server application passing a message

[NFRPC_CLNT_CAILS(3N)]

u_long procnum = PROC_NUMBER; /* Can be used as case switch to select a

procedure associated with client handle*/

struct timeval total_timeout;

char** strp; /*pointer to outgoing strings */

int xdr_xd:rO();/* to serialise outgoing data -user defined*/

char** retp; /*pointer to results */

int xdr_xdrResult(); /* to deserialize the returned result *I
total_timeout.tv _sec= 60; /*time in secs allowed for response from server*/

total_timeout.tv _usec= 0;

clnt_call(client, procnum, xdr_xdrO, strp, xdr_xdrResult, retp, total_timeout);

Different xdrResult functions are used for different expected return arguments .

At the end of the client session the handle can be destroyed, associated private data areas

deallocated and the socket closed.

clnt_destroy(client);

4.3Construction of SOL string for passing to server

The approach adopted in this prototype assumed that the client would send two strings to the

server each time. The first string would identify the type of message and the second would

contain the substantive SQL .

Message type Message Content Function

Connect to Database

SQL cormnand

Database name

Command string

Disconnect from Database Treated as SQL connnand

4.4 Handling of returned data

Get_Db_Name(strp, pstr)

Get_SQL_Stmt(strp,pstr)

"

The set of fields returned is determined dynamically by the query so each query had a series

of field names, field types, and field lengths returned. The designer has considerable choice

in deciding what is the best way of handling the returned data. In this prototype it was

Qient Server Architecture : Ingres SQL Server - M Dixon Page 17

decided to choose the simplest available approach. The data from the database is of unknown

size unless a count of records was made before the data itself was retrieved. It was decided

that a double pass over the data was not acceptable so a convention was used that associated

a rownumber with each row from the database. A conventional negative value for the row

number was used to indicate no more rows. Adopting this approach meant that the size of the

receiving arrays in xdrResult in the client application had to be created by dynamic allocation

rather than using the inbuilt facilities of the xdr primitives.

Example of how the data was transfered

Inside xdrResult(xdrsp, retp)

XDR *xdrsp;

char **retp;

/*handle for transport*/

/*pointer to return data */

long int numcolumns; /*number of columns retreived */

long int *p_numcolumns; /*pointer to numcolumns */

p_numcolunms = &numcolumns;

xdr_long(xdrsp, p_numcolumns); /* deserialize number of columns */

int maxsize = 36;

char ** p_columnname;

long int * p_columnwidth;

/*maximum size of column name*/

/*pointer to colunm name strings */

/*pointer to colunm width vector */

/*allocate space for for arrays */
p_columnname =(char**) malloc (numcolumns * maxsize * sizeof(char));

p_columnwidth =(long *) malloc (numcolumns * sizeof(long));

int i;

for (i= 0; i < numcolumns; i ++)

xdr_string(xdrsp, &p_columnname[i], maxsize); /* deserialize col name */
xdr_ vector(xdrsp, p _columnwidth, numcolumns, sizeof(long), xdr_long);

retp[O] =(char*) p_numcolumns;

retp[l] =(char*) p_columnname;

retp[3] =(long int *) p_columnwidth;

}

Oient Server Architecture: Ingres SQL Server- M Dixon

/* deserialize col widths */

Page 18

Recall that xdrReseult() is an argument to clnt_call() with (char**) retp as the return data

pointer.

#define MJ\X_RET_COLS 50

char **retp;

char *retstring[MAX_RET_COLS + 6];

long int nwncolumns;

/*maximum nwnber of data colwnns *I
/*return data pointer to pointers *I
/*pointers to header. data *I

char ** ph_columnruune; /* pointer to column name string *I
long int * ph_columnwidth; /* pointer to columnwidth *I

retp = &retstring[O];

nwncolums = *(long *) retstring[O]; /* number of colunms returned *I
ph_columnnmame =(char **)retstring[l]; I* pointer to column, name string *I
ph_columnwidth =(long int *) retstring[3]; I* pointer to colwrmwidth vector *I

5 CONCLUSION

lbis paper has described the way that a client server architecture has been produced for the

Ingres relational database on a Unix platform using the C prograrrnning language. The

network protocol TCP/IP was chosen for interprocess communication.

Qient Server Architecture: Ingres SQL Server- M Dixon Page 19

REFERENCES
Black94 U Black TCP/IP and Related Protocols, McGraw Hill.

1994, ISBN 0-07-005553-X

BriHmPak92 MW Bright, A R Hmson, and S H Pakzad, A Taxonomy and

Current Issues in Multidatabase Systems, Computer Vol25 (3)

p50,1992

Brod92 M Brodie, The Promise of Distributed Computing and the

Challenges of Legacy Systems, BNCOD1 0, p1, 1992

Brod93 M Brodie Interoperable Information Systems: Motivations, Status,

Challenges and Approaches, VLDB, Tutorial, 1993

Can0tt93 S Cannan and Gerard Otten, SQL - The Standard Handbook for

ISO 9075, McGraw Hill, 1993, ISBN 0-07-707664-8

Cou10rl93 RE Coulomb and ME Orlowska,lnteroperability in Information

Systems, Technical Report 263, Department of Computer Science,

University of Queensland, 1993

Date90

Date83

C J Date, Introduction to Database Systems Vol1 ,p621, 1990,

Addison Wesley, ISBN 0-201-52878-9

C J Date, Introduction to Database Systems Vol 2,p303, 1983,

Addison Wesley, ISBN 0-201-14474-3

HurBriPak93 AR Hurson, MW Bright, & S H Pakzad Multi database Systems :

An Advanced Solution for Global Information Sharing

lEE Computer Society Press 1993, ISBN 0-8186-4422-2

IngresC90 Ingres, Embedded sql Language Companian Guide for C January

1990,E-4

IngresV6 Introduction to lngres V6.4 Chap 2, p16, 1991

Mar89 James Martin, Information Engineering Book 1 Introduction,

1989, Prentice Hall

NPGxx Network Programming Guide, Sun MicroSystems, 1990, pxx

NFXDRxx Network Functions, XDR(3N), Sun MicroSystems, 1990, pxx

Qient Server Architecture: Ingres SQL Server- M Dixon Page 20

NFRPCxx Network Functions, RPC(3N), Sun MicroSystems, 1990, pxx

OSQLRx-y Open SQL Reference Manual, Sun MicroSystems, 1989, px-y

ShethLar90 AP Sheth & J ALarson ACM Surveys, Vol22 (3), 183,1990

Federated Database Systems for Managing Distributed,

Heterogeneous, and Autonomous Databases

ACRONYMS
ANSI/SP ARC American National Standards Institute I Systems Planning and Requirements

Committee

BNCOD

DBMS

DRAL

EDI

FIES

ISO

LMU

RPC

SED

SQL

TCP/IP

xdr

UDP/IP
VLDB

British National Conference on Databases

database management system

Dares bury Rutherford Appleton Laboratory

electronic data interchange

Faculty of Information and Engineering Systems

International Standards Organisation

Leeds Metropolitan University

remote procedure call

Systems Engineering Division

Structured Query Language

Transmission Control Protocol/lnternet Protocol

eXternal data representation

User Datagram Protocol/lnternet Protocol

Very Large Database Conference

Acknowledgements:

It is a pleasure to acknowledge the help given by colleagues in the Informatics Department at

DRAL during this study. In particular John Kalmus andKeith Jeffery for guiding the overall

direction of work; Kevin Lewis for much help and assistance with fugres; Ines Day for

helping with systems problems. Zie Jhang of LMU FIES provided advice on remote

procedure calls.

Qient Server Architecture : fugres SQL Server - M Dixon Page 21

APPENDIX 1

A 1.1 Compiler I library switches

The following shows the precompilation of the source code with the esqlc preprocessor for

the C language for a file containing the main application.

esqlc tmasvr4.sc /* precompile file tmasvr4.sc and dependent files */
cc -c tmasvr4.c /* apply C compiler to generated files */
ld -de -dp -e start -X -o tmasvr /usr/lib/crtO.o tmasvr4.o \

$ll_SYSTEM/ingres/libingres.a \

-lm-lc /* link modules accessing functions in ingrs library

II_SYSTEM is an environment variable

for /home/ingres */

Qient Server Architecture : Ingres SQL Server - M Dixon Page 22

A 1 .2 I ngres environment variables

The following describes the environment which was used to compile and link the code.

HOME•/home/nfsB/1/md
SHELL•/bin/csh
TERM= sun
USER=md
PATH=/home/ingres/ingres/bin:
/home/ingres/ingres/lib:
/usr/lib:/usr/openwin/bin:
/usr/openwin/bin/xview:
/usr/openwin/demo:
/home/ingres/ingres/bin:
/home/ingres/ingres/lib:
/usr/lib:
/usr/ucb:
/bin:
/usr/bin:
/etc:
/usr/etc:
/usr/ral/bin:
/home/nfsB/1/md/bin:.
LOGNAME=md
PWD=/tmp mnt/home/nfsB/1/md/Termon
OPENWINHOME=/u/OpenWin3
II_ SYSTEM=/home/ingres
KEYBD=sun4-E
TERM INGRES=wview
ING EDIT=/usr/openwin/xview/textedit
PRINTER=all
DISPLAY=pecan:O.O
TERMCAP=vslxtermlvslOOixterm terminal emulator (X window system) :li#24:co#80:
:cr=~M:do=~J:nl=~J:bl=~G:le=~H:ho=\E[H:

:co#80:li#65:cl=\E[H\E[2J:bs:am:cm=\E(%i%d;%dH:nd~\E[C:up=\E[A:
:ce=\E[K:cd=\E[J:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:
:md-\E[1m:mr=\E[7m:me=\E[m: :ku•\EOA:kd=\EOB:kr=\EOC:kl=\EOD:kb=~H:
:k1=\EOP:k2=\EOQ:k3=\EOR:k4=\EOS:ta-~I:pt:sf=\n:sr=\EM:

:al=\E[L:dl=\E[M:ic=\E[@:dc=\E(P: :MT:ks=\E(?1h\E=:ke• \E(?11\E>:
:is=\E[r\E[m\E[2J\E[H\E[?7h\E[?1;3;4;61:
:rs=\E[r\E<\E[m\E[2J\E[H\E[?7h\E[?1;3;4;6l:xn:
:AL-\E[%dL:DL~\E[%dM:IC=\E[%d@:DC=\E[%dP:
:ti~\E7\E[?47h:te=\E[2J\E[?471\E8:

:hs:ts=\E[?E\E[?%i%dT:fs=\E[?F:es:ds- \E[?E:
WINDOWID=13631510

Client Setver Architecture : fugres SQL Setver - M Dixon Page 23

·------

