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INTRODUCTION

Solving the phase problem is the crucial step in obtaining a crystal structure. For
macromolecular crystallographers it may also be the most difficult and time-consuming
step. The traditional methods used are Multiple Isomorphous Replacement and
Molecular Replacement. This meeting covered aspects of some of the newer methods
that are in use and some potential methods for the future.

Multiwavelength Anomalous Dispersion (MAD) was covered in some detail. In the
first session, John Helliwell described the basic principles of anomalous scattering,
Andy Thompson explained the beamline requirements of MAD and Janet Smith
introduced us to MAD on proteins. This introduction to the method was followed by
several case studies (Valerie Biou, Mark Peterson, Ian Glover and Harry Powell). Eric
de la Fortelle described the use of the program SHARP for MAD phasing and Phil
Evans talked about multiple wavelength simultaneous scaling. Rather more unusual
uses of anomalous diffraction were described by Bill Shepard and Edgar Weckert.

The second day of the meeting was more theoretical. An introduction to direct
methods was given by Zbyszek Dauter followed by two talks on ab-initio phasing of
proteins (and the limitations of the method) by the Shake-and Bake method (Charles
Weeks) and using ShelX (George Sheldrick). Gerard Bricogne covered maximum
entropy techniques and Abraham Szoke introduced to us the application of
holographic methods to crystallography. Case studies of using wARP to improve your
phasing were presented by Anastassis Perrakis. The final presentations were on low
resolution phasing strategies, based on solution scattering (Dimitri Svergun) or
crystallographic images (Alexandre Urzhumtsev). Kevin Cowtan summarised what we
had learnt in the meeting and led the discussion.

The meeting, this year, was held at York University for the first time. There were 418
participants in total, including 111 participants from Europe, 16 from the Americas and
2 from Japan. Bursaries, covering the cost of registration and accomodation were
given to 232 young scientists, and an additional contribution was made to the travel
costs of 23 young scientists from outside the UK. The speakers comprised 8 from the
UK, 8 from elsewhere in Europe and 3 from the USA. '

The meeting was organised and supported by the BBSRC Collaborative
Computational Project in Protein Crystallography (CCP4). We thank the invited
speakers for sharing their expertise with us and for the contributions to this booklet.
We are greatful to Daresbury Laboratory for providing organisational support, with
particular thanks to Diane Travers, Val Matthews and the rest of the SAS team who
ensured that the meeting ran to plan.

Keith Wilson
Gideon Davies
Sue Bailey
Alun Ashton
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Basic Principles of Anomalous Scattering and MAD

Professor John R Helliwell

Department of Chemistry

University of Manchester
M13 9PL, U.K.

1. Introduction’

The phase problem in macromolecular crystallography is amenable to the
multiwavelength anomalous dispersion method, which is now known as the
MAD method. The theory of various approaches has been developed over a long
period (see e.g. Okaya and Pepinsky (1956), Mitchell (1957), Herzenberg and Lau
(1967), Karle (1967, 1980), Hoppe and Jakubowski (1975)). The harnessing of
synchrotron radiation and the chance thereby to finely tune the X-ray
wavelength around the X-ray absorption edge of a target (heavy) atom, so as to
vary the scattering in amplitude and phase of that atom, has made the method
practical. If an anomalous scatterer can certainly be introduced, as with the
seleno-methionine labelling of proteins (Hendrickson (1991)), then relatively
speedy structure determination of a new protein structure is practicable. The
protein size that is tractable is advancing as synchrotron machine, and beamline,
as well as detector capability, improves. Experimental knowledge of anomalous
dispersion effects has also improved. This involves fundamental studies
whereby very fine profiles (Arndt et al. (1982)) or anisotropies (Templeton and
Templeton (1985)) have been investigated for bound atoms. Moreover different
strategies in macromolecular crystal phase determination (Peterson et al. (1996))
as well as phase improvement and extension methods (Chayen et al. (1996)) have
given practical ideas of these capabilities. For other examples see the companion
papers in this Proceedings. The growth of the number of SR instruments in the
last 15 years is testimony to a confidence in these approaches. For an overview
see Helliwell (1992) and for an update see Chayen et al. (1996), as well as ideas and
plans at the outset see Helliwell (1979). The purpose of this paper is to set down
the principles and basis of anomalous scattering for MAD.

2. X-ray absorption and scattering

An electron of an atom can be ejected when a photon has sufficient energy. A
heavy atom has K and L, or even M, edges in the wavelength range which is
useful for X-ray crystallography. The atomic scattering factor for X-rays of that
atom in the resonant condition becomes complex i.e. alters the normal scattering
factor in amplitude and phase. The anomalous dispersion coefficients f' and f"
are used to describe this effect and which are wavelength dependent. Hence for
the heavy atom we have

f=f,+f(A)+if"(A) 1)



This equation thereby serves to correct for the standard, more simple, model of
X-ray scattering. 'Normal scattering' is basically determined by the total number
of electrons in the atom and which takes no account of absorption edge
resonance effects. For a heavy atom this is not the situation for the wavelengths
we use! For the light atoms (C, N, O and H) their corrections to the normal
scattering are negligible for our purposes. A free atom (i.e. without neighbours)
has a relatively simple form for the variation with wavelength of f' and " (figure
la). The edge wavelength is then where the scattering factor becomes complex.
A bound atom has neighbours which can scatter back the ejected photoelectron
and thereby seriously modulate the absorption effect and also alter therefore the
X-ray scattering anomalous dispersion coefficients (figs. 1b and c). Furthermore
the values can become dependent on direction (so called dichroism effects) as
there can be for example a high density of neighbours in one direction or plane
over another (for example see Templeton and Templeton (1985) for Kj PtCly).
Moreover the exact edge position depends on the oxidation state of the atom as
the inner shell electron can be more tightly bound when valence outer shell
electrons are removed. Finally the X-ray wavelength bandpass needs to be
considered because inherent effects can be masked if this is broader than the
linewidths of the features naturally present. To guide our understanding of
these phenomena the classical treatment of the 'forced harmonic oscillator with
damping’ will be reviewed in the next section as it forms the basis for the free

atom case.

3. A mathematical model: Forced harmonic oscillator with damping

An inner shell electron can be modelled as having vibrational motion in an
alternating electric field subject to a restoring force with associated spring
constant k and a damping force proportional to the velocity (see Woolfson (1970,
1997)). The equation of motion is then described by the equation

mX + gx + kx = Ege el® )

Since we can expect that the oscillation of the electron will not in general be in

phase with the driving electric field E, ' then the amplitude will prove to be
complex. Hence the amplitude and phase angle between the driving force and
the resultant oscillation must be considered. The undamped resonant frequency
is given by

‘@d=k/m 3)



The amplitude solution to the forced damped case is then

E,e/m @)

Xo = 2 2, .80
m

Hence the modulus of the amplitude is obtained by multiplying x, by its

complex conjugate x, and taking the square root to give
E,e/m 5)

1/2
[(@% -0’ %"%2-]

IXOI =

and the phase angle of the oscillation relative to the driving force is then

tanq)=—-rg; (m—z‘f?)- 6)

Equations 5 and 6 tell us much about the basic resonance condition. This is
obviously according to the mechanical oscillator model rather than where, at
resonance, the electron is ejected as a photoelectron! So this is basically referred
to as the classical treatment rather than the full quantum treatment. One aspect
of the approximation then which is incorrect is that the imaginary part of the
complex amplitude varies symmetrically about the resonance frequency but of
course f", which is the analogous quantity, is only finite on one side of the
frequency range (namely the high frequency, short wavelength range in the
atomic case). Nevertheless a plot of the amplitude and phase versus ®, for
various degrees of damping (expressed numerically as the Q factor of the
resonance where Q=a®,/Yandy =g/ m) shows that the resonance when free of
damping (infinite Q) is instantaneous. At finite Q the resonance is not sharp and
can be characterised by the frequency band (8®) over which the amplitude has a

value %/2 of the resonant amplitude. In fact

W, /80 =Q (7)

In the case of radiation, rather than a mechanical oscillator, the damping effect
is usually attributed to radiation damping, which is weak and thereby Q is very
large and the resonance is very sharp (see figure 1a) and whereby the core hole
lifetime defines the line width. Note also that if the application of the electric
field involves a frequency bandpass then this will degrade the resonance
sharpness measured experimentally.



At low Q there is a marked difference between the frequency for maximum
amplitude when undamped than when it is damped i.e.

1/2
1
. litude) =4[ 1~— 8
@(max. amplitude) o[ 2Q2] 8

In this treatment, as well as the limitation of ignoring the ejection of the
photo-electron, we are assuming that the atom is a free atom and that of course
is not true in the bound atom case.

4.  X-ray anomalous dispersion coefficients and the KKT

The quantities f' and f" are related by the Kramers-Kronig transform (KKT for
short). These are

= ©%(dg / do). do’
f'(0)= = 9
@2 a7 o2
£'(@) = -;-an(dg /do) (9b)

Since the mass absbrption coefficient is proportional to (dg/dw) (i.e. f') the
measured absorption or fluorescence spectrum from the sample can be used to
derive f also.

These equations give the minimum of f at the half way point up the edge i.e. "
for the simple step function absorption edge case (note that this is not as shown
in the paper Hoppe and Jakubowski (1975) page 445 figure 4 which places f min
at " max and which is correct for a resonance of infinite Q; see also the tabulated
theory cases i.e. as per Sasaki (1989) which is similar for the interval used of

1074 8\ /M.

5. Maximal dispersive and anomalous signals in the 'white line' case

The presence of 'white line' features alters the simple edge shape (fig. 1b and c);
in such a situation 'half way up' the edge (M) is between the floor of the pre-
edge region and the top of the spike and is the f' minimum; the top of the
absorption spike is a value of f' mid way between f min and f' max (Ag); the
point half way down the absorption spike to the post edge plateau is an f'



maximum (Ac). Clearly the maximal Af' and a maximal ' to be stimulated can

be probed by use of the wavelengths A4 and A as well as Ap respectively. Use of
La and A alone, whilst yielding maximal Af would (via A¢) involve a slight
reduction in size of f" harnessed.

6. Concluding remarks and the scope of the method

Anomalous scatterers can now be purposely inserted into a protein such as
seleno-methionine labelling (Hendrickson (1991)) or the wide range of accessible
absorption edges for different types of metal atom derivative utilised.
Anomalous dispersion effects are optimised when the X-ray wavelength is
tuned right to an absorption edge. Further enhancements are possible
experimentally (for a recent review see Chayen et al. (1996)) by use of high
brilliance insertion devices such as tunable undulators, in conjunction with high
heat load optics, whereby a high flux onto the sample is preserved even with a
tiny bandpass (i.e. 10-5 to 10~4) so as to explore sharper linewidth features and
possibly dichroism as well. Moreover hybrid experimental strategies involving a
'quick pass' data collection at a minimum of two wavelengths followed by a
'slow pass’ higher resolution data collection at one wavelength could allow
novel theoretical atomic resolution direct methods to be combined with the
MAD methods. These then are the sort of structure determination tools that can
form the basis to tackle the tens of thousands of protein structures of interest on
genome scales.

References

Arndt, UW., Greenhough, T.J., Helliwell, J.R., Howard, J.A.K., Rule, S.A. and
Thompson, A.W. Nature, 298 (1982) 835-838.

Chayen, N.E., Boggon, T.J., Cassetta, A., Deacon, A., Gleichmann, T., Habash, J.,
Harrop, S.J., Helliwell, J.R., Nieh, Y.P., Peterson, M.R., Raftery, J., Snell, E.H.,
Hadener, A., Niemann, A.C., Siddons, D.P., Stojanoff, V., Thompson, A.W.,
Ursby, T. and Wulff, M. Quarterly Reviews in Biophysics, 28 (1996) 227-278.
Helliwell, J.R. Daresbury Study Weekend Proceedings DL/SCI, R13 (1979) p1-6.
Helliwell, J.R. Reports on Progress in Physics, 47 (1984) 1403-1497.

Helliwell, J.R. "Macromolecular Crystallography with Synchrotron Radiation"
Cambridge University Press (1992).

Hendrickson, W.A. Science, 254 (1991) 51-58.
Herzenberg, A. and Lau, H.S.M. Acta Cryst, 22 (1967) 24-28.

Hoppe, W. and Jakubowski, U. in Anomalous Scattering. Edited by Abrahams,
S.C. and Ramaseshan, S. (1975) pp 437-461.



Karle, J. Applied Optics, 6 (1967) 2132-2135.

Karle, J. Int. J. of Quantum Chemistry, 7 (1980) 356-367.
Mitchell, CM. Acta Cryst, 10 (1957) 475-476.

Okaya, Y. and Pepinsky, R. Phys. Rev., 103 (1956) 1645.

Peterson, M., Harrop, S.J., McSweeney, S.M., Leonard, G.A., Thompson, A.W.,
Hunter, W.N. and Helliwell, J.R. J. Synchrotron Rad., 3 (1996) 24-34.

Sasaki, S. KEK Report (1989) 88-14. National Laboratory for High Energy Physics,
Tsukuba, Japan.

Templeton, D.H. and Templeton, L.K. Acta Cryst, A41 (1985) 365-371.

Woolfson, M.M. X-ray crystallography (1970) [2nd Edition 1997] Cambridge
University Press.

i e



~ -
7] P‘\J N .
- | ~a
I S :
fl
(a)
" .t
f ':,;'\/\\
(b)
fl
(c)
) ———
Flggre 1 energy

(a)

Theoretical values of f' and f" with wavelength for platinum around its Ly,

Ly and Ly edges illustrates the typical situation for a free atom. From
Sasaki (1989) tabulated in intervals of 0.0001A very near to the edges and in

intervals of 0.01A remote from the edges.

(b)
Ky PY(CN), (Helliwell (1984)).

(©
(from Arndt et al. (1982)).

Measured 'monochromatic step scan' absorption curve for the Ly edge of

Measured f' (by a polychromatic profile approach) for rhenium Ly edge






Design of Synchrotron Beamlines for
MAD Protein Crystallography - ESRF
BM14.

A. Thompson *

24th April 1997
*EMBL Grenoble Outstation

Introduction

The method of Multiple Wavelength Anomalous Diffraction [MAD] has been developed extensively in recent
years by Hendrickson [1], Fourme [2] and Smith [3]. Small variations in intensity of diffraction spots due to
resonant scattering of a heavy atom excited by the frequency of the incoming X-rays can be used in order to solve
the crystallographic phase problem. The techniques and physics involved are described in the above reviews. The
method is best pursued using the variable wavelength of radiation available at synchrotron sources, although in
cases where the anomalous scattering is strong with respect to the size of the molecule allied techniques may be

used on rotating anode sources ([4],[5] and [6]).

The “anomalous” intensity changes produced in the diffraction patterns are typically of the order of a few percent,
and are (unfortunately) of a similar size to the errors (random and systematic) in good data! The methods of
designing a beamline to maximise the chance of being able to collect MAD data by being aware of where error
may creep into measurements are discussed in conjunction with the design of the MAD beamline‘ (BM14) at the

ESREF, its advantages and drawbacks.

Generalities

It is very important to appreciate that a synchrotron beamline (whether for protein crystallography or anything
else) is a single instrument designed for a specific function or type of measurement. The more flexible the
beamline, the more compromises are likely to have been made in its design! Moreover almost any decision about
a beamline parameter affects all the rest. For example if you require to study extremely small crystals and the X-
ray source size is large compared to the crystal, substantial source demagnification (and hence increased

divergence through the sample) may be required. This will have a knock on effect on the type of 2-D detector



required - a large detector set far away from the sample would not necessarily be a good choice because of the

increased divergence of the beam after the sample.

Beamline optimisation should then be discussed in terms of the source, optics, sample environment and detector,
although I will discuss only the first two. The requirements of MAD will be discussed in the light of each of these.

For a rigorous and well thought out discussion of beamline design, see Nave [7].

The Properties of the Source - how they help or hinder!

Some General Principles

Basically 3 types of source are available at modern synchrotrons - bending magnets (dipoles) or one of two
insertion devices (wigglers or undulators). Their properties have been extensively discussed elsewhere. Table 1
gives several typical propertiés of these devices based on the ESRF source. The vertical and horizontal source size
and divergences are matched to the sample size and mosaicity via conditioning optics. To achieve a narrow
monochromatic bandpass with maximal flux, the divergence of the synchrotron beam in the dispersive direction

must be matched to the natural monochromator bandpass.

Wavelength Range

MAD experiments have been reported at various absorption edges between the U M, edge, 3.482 A [8] and the Xe
K edge, 0.358 A [9]. Table 2 gives a copy of the periodic table showing absorption edges which may in principle
at least be used - almost all of them! The source should be tunable between these limits, therefore. Some devices
on 4th generation synchrotrons (bending magnets, wigglers) fulfil this requirement easily. Undulators, however,
give a high peak brilliance in a narrow energy range (figure 1) with several harmonics of this energy, and
therefore have to be tuned to give optimal intensity for a 3 wavelength MAD experiment. In this case, “tuning”
refers to changing the gap between the permanent magnets in order to change the field and shift the energy
spectrum. Wiggler and bending magnet sources are, by their nature, smoother, and hence require no "tuning" over

the above wavelength range.

The above tuning of the undulator gap can perturb the electron beam position in the storage ring if the undulator
field is not sufficiently symmetric (due to errors in construction or the increasing distortion of its frame due to the
increasing magnetic field). Undulator “shimming” techniques developed at the ESRF have now improved to such
an extent that this field inquality is much reduced and “tuning” is routinely possible L10]. In addition, shorter

wavelength experiments which will need much tighter gap setting (for example for a MAD experiment at the Xe

10



edge using the Sth harmonic of a “typical” undulator, a2 gap of 17 mm would be required) will soon be possible at
the ESRF [11] and [12]). It is worth noting, however that a beamline optic that is optimised for 0.35 A will not

necessarily be optimised for 3.5 A! In other words multiple lines may be needed to cover the whole wavelength

range.
Source size and divergence

The source characteristics should be matched to the sample. Nowadays a “typical” crystal seems to be more like
150 ym than 300 um on edge. Source sizes and the corresponding convergence angles for a bending magnet,
wiggler and high and low B undulator on the ESRF are given in table 3, assuming the source is demagnified to a

150 ym image. A typical sample mosaicity (after freezing) may be 0.3° (5 mrad). The divergence of the beam at

focal spot should ideally be less than this.

Stability and Reproducibility

A drifting wavelength causes different values of f* and f” to be “mixed” together, whereas a drifting intensity
causes errors in inter filmpack scaling. The stability required depends on the actual bandpass chosen and the type
of experiment performed. On BMI4, the bandpass has been measured to be 2.4 x 104 from an Si (111)
monochromator. For the anomalous signal to vary only 5% during the experiment with this bandpass and a
wavelength of 1 A, the energy must be stable to 0.2 eV over the period of the experiment. An energy stability of
0.5 eV rms can thus be regarded as good enough for all practical purposes, and this is easily within the measured

source stability of the ESRF.

The beamline optics can also contribute to beam instability by heating, vibration or other obscure effects! The
source power should thus not exceed practical limits of what modern (cooled) optics can tolerate. Typical power
densities at 30m from the ESRF source with a single section insertion device (up to 3 possible) and 100 mA stored
beam followed by the power ACTUALLY USED in recording a diffraction pattern (assuming 2.5 x 10 bandpass)
are given in Table 4 [13] Many papers have been written on high power beam optics, and several successful
approaches are available for both undulator and wiggler beams. Even so, when the requirement is for stability,

reproducibility and reliability, it seems logical to use the most efficient source available, ie the undulators.

11



Source Intensity

This has to be adequate to perform the experiment in a “reasonable” period of time, both from the point of view of
getting good data (“systematic errors” can be time dependent, and sufficient couting time per image has to be
spent to have adequate statistics) and getting your experiment scheduled when there is so much pressure on
synchrotron beamlines! At the ESRF (even on the bending magnet beamline) the detector readout time is almost
always longer than the required exposure time (for image plate detectors). The overall source intensity chosen
therefore depends only on the thermal properties of the beam (see above) and the capacity of the sample 10

withstand the beam.

Optics.
Required Wavelength Resolution

What is the appropriate energy bandpass for MAD experiments? These limits are defined by the fineness of the
sharpest features (“white lines”) in your absorption spectrum. Krause and Oliver [14] tabulate the I; and L level X-
ray line widths for Z from 1 to 110 . The widths result from the lifetime of excited states, limited by the

h
AE At = —
uncertainty principle 27 “White line” effects (Lye et al [15], Brown et al [16] and Lytle et al [17]) are

present in L “edges” (where a transition from a core level to one of a high possible density of final states gives the
"amplified" nature of the feature) or K edges (which may be due to different transitions to exciton levels). The line
widths of some L edge white lines have been reported by Arp et al [18] and are in close agreement with the above
tabulated values for Z 3 50. Hence the required energy bandpass for a MAD beamline should be such that the
instrument broadening due to the monochromator bandpass, vibration etc do not obscure the natural widths of
features on the absorption edges. Table 5 gives (in percent) the ratio between the "core-hole" lifetime as given in
[14] and energy of the X-ray absorption edge. Features are broadened by the convolution of the instrument
resolution and the width of the feature. In the case of the fine Se absorption edge, a bandpass of 1 x 10 would
give cffectively no broadening. It can be inferred that a bandpass lower than around 1.0 x 10* will limit intensity
without making features significantly sharper. However it is also clear that in some cases (for example Hg) such a
narrow bandpass will give no useful increase in anomalous signal. It may be then useful to have a facility with a
changeable bandpass between 1.0 x 10 and 3.0 x 10 such as could be achieved, for example, by an
interchangeable pair of Si (111) and Si(311) monochromators such as are available on BM14 (allowing for

increased bandpass due to the intrinsic Si quality, surface finish etc).

12



Possible Optical Configurations for MAD - their advantages
and drawbacks.

The combination of a vertical focussing mirror and a horizontal focussing triangular monochromator as described
in [19] is one of the most commonly used optics for synchrotron radiation. This geometry can be used for MAD
measurements where the beamline bandpass (Emitted by the monochromator bandpass and beam horizontal
divergence) is small enough, for example in [10]. It offers several important advantages:

. Can focus a large horizontal acceptance, depending on the exact geometry.

. Angle of monochromator, sample and collimation defines wavelength therefore changes in machine

vertical and horizontal orbit or mirror vibration cause only intensity (not wavelength) changes.
. Easy to get fine focal spot - Si or Be give adequate bandpass.

. Permits “Simultaneous” MAD t20] if used with a large crossfire angle and hence bandpass, but can be

used for ordinary MAD {10] with a narrow bandpass monochromator and pencil beam.
On the other hand the system has the following disadvantages:

. A nuisance to change wavelength, and hard to make wavelength change reproducible (need to move

monochromator and sample and detector).
. Crossfire from the focussing - either the beamline is very long, or has a large defocussing ratio.
A more recent approach to a MAD beamline is evidenced by SRS 9.5 [21] which uses a toroidal mirror and
channel cut monochromator to provide a beam whose position changes very little with wavelength, and a tight
focus. This very simple optic has two major disadvantages :
. Need to limit vertical aperture (and hence intensity) to get a narrow energy bandpass.

. Small horizontal acceptance (less than 2 mrad).

It is interesting to note that both these disadvantages are almost eliminated with the narrow vertical and horizontal

divergences of an undulator source.
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Of course there are many variations on the theme of focussing beam with narrow bandpass and constant focal spot
position with wavelength, for example the extremely successful Howard Hughes Medical Institute line at

Brookhaven [22] which uses a horizontally focussing constant height monochromator and a vertically focussing

mirror.

The ESRF beamline D2AM [23] uses a similar horizontal focussing monochromator, sandwiched between two X-
ray mirrors. The first of these collimates the incoming radiation in the vertical ie there is (almost) no beam

divergence component to the energy bandpass of the monochromator. The monochromatic beam is subsequently

focussed by the second mirror.

The horizontally focussing monochromator arrangement has two main disadvantages in producing a fine focal

spot -

. Its main advantage lies in focussing large horizontal divergences. However unless the surface shape of
the monochromator can be made conical rather than cylindrical, it has to be used close to a 3:1
demagnifying configuration to give maximum throughput into the narrow bandpass [24]. This
demagnifying ratio causes significant beam crossfire and hence reduces the unit cell size resolvable for

a given detector.

. The bending radius has to be continually changed with energy in order to keep a tight focal spot (and
hence stable intensity with wavelength variation on the sample). In fact the change in intensity over a

typical experimental energy range can be large [25,26].

The approach adopted on ESRF beamline BM14 is a combination of the above approaches, with a collimating
mirror, channel cut monochromator and a vertical and horizontal focussing mirror. The great disadvantage of this
system are the optical aberrations due to the double mirror arrangement (the so called “slope error” contributes
twice to the vertical broadening of the focal spot) and the differing object and image distances for the vertical
(source at “infinity” as the beam is collimated) and horizontal (source at “source” position) foci. This latter effect
is in practise very small for a narrow horizontal beam acceptance and small mirror grazing angle. A recent scheme

for the proposed British Beamline at the ESRF [25] suggested using parabaloidal mirrors to limit this aberration.

Other geometries exist, for example the novel trichromator [27] principle proposed for the RIKEN beamline on

SPRING-8. The success of this approach is for the future to reveal!
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BM14

The beamline BM14 was designed to give a high stability beam with maximum intensity into a narrow

wavelength bandpass.

. Wavelength Range 0.6 - 1.8 A

. Intensity approximately 2.5 x 1012 photons per second at 1 A wavelength into a focal spot of 0.8 mm x
0.3 mm.
. Rapid tunability - a few minutes to scan the whole wavelength range.

. Wavelength stability 0.1 eV rms.

. Intensity stability 0.8 % rms.

. Fast readout detectors (Offline FUJI plate, CCD and MAR 345)
To date a fifteen new structures have been solved on BM14 by MAD phasing, with several others in various stages
of data analysis. Amongst these the weakest anomalous signal was 2.5%, and a typical signal is more like 3.5%.

(Data quality (and hence crystal quality) has to be extremely good to use signals below 3% for MAD).

Beam intensity and wavelength stability can be good enough to collect data from stable (cryo-cooled) crystals in a
random orientation, and a substantial fraction of the successful MAD phasing experiments on BM14 have been
performed in this way. Care must of course be taken in order to record complete data including all measurements
of Bijvoets, and to have a large redundancy of measurement. Inverse beam data collection or setting of a crystal
around a mirror plane are preferable when searching for an extremely small signal, with an unstable beam or with
uncooled crystals. A typical experiment on BM14 takes between 24 and 48 hours, depending on whether image

plate or CCD detector is used.

The largest number of anomalous scatterers (that I am aware of) used in ab initio MAD phasing was 12 (a
bacterial synthetase on the French ESRF Beamline D2AM by Fanchon and Bertrand). Examples of 6-10
anomalous scatterers are relatively common (for example Matias [28], Ceska [29]). Larger structures (J. A. Smith)
have been shown to give good phases based on already refined Se signals, and direct methods has been used to

identify 18 out of 22 Se sites in the asymmetric unit from a MAD data set collected on BM14 [30]
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Recently some attention has been paid to the advantages of measuring phases to very high resolution [31]. the

ability to do this without worries of lack of isomorphism being one of the major advantages of MAD.

What the Future Holds for MAD

Interest is now being focussed on undulator beamlines for MAD protein crystallography (Westbrook(APS).
Thompson et al [32], Shapiro et al [10]), where smaller crystals can be studied, or higher resolution data should be
improved due to the improved beam collimation. Data collection times will become much smaller, and with rapid
readout CCD detectors, fine phi oscillations will improve data quality due to the improved background per
reflection. Finally, with extensive work by Schiltz et al [33] and increasing interest in soft “M™ absorption edges,

MAD will soon be extended to new wavelength ranges.

Conclusions

. MAD is a routine technique on modern beamlines, and many technical problems have solved (only to

reveal subtle new ones!)

. An undulator is the best currently available source for a MAD beamline.
. Several optics solutions exist which should be well adapted to an undulator source.
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Figure 1

A calculated ESRF Undulator spectrum showing the discrete and narrow peaks of
X-ray intensity. Brilliance is plotted against energy.
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Table 1

ESRF Source Properties
At beam exit from the shield wall

Taken from ESRF “Red” Book

Storage Ring at 200 mA
Power Horiz Size mm | Vert Size mm Power / length Power / area
KW W/mm W/mm**2
B.M. 0.84 126 23 6.7 29
Und. 24 5.5 33 495 149
Wigg. 14 52 33 252 76

Table 2

Note on table 2:-

Normally the larger edge transitions are better for MAD ie an L edge gives a bigger signal than a K edge etc. For
this reason only the L3 and Ms edges are quoted. The usefulness of the absorption edges also (on average)

increaases with increasing Z. However the difficulty in collecting accurate data at long wavelengths (low
energies) should be borne in mind when preferring, for example the Xe L3 edge to the K edge. Certain elements

give “white lines” (for example Se) which “amplifies” the signal available. Where “white lines” occur for a K
edge, they should also be present for L;. When they occur for L4 they should also be present for L,.

Key to table 2:-

11.111 - Accessible for MAD on most beamlines

11.111 - Accessible for MAD on some beamlines

11.111 - Not accessible for MAD

*11.111 * - Already successfully used for MAD

* 11.111 * - Of potential future interest for MAD

Energies are given in KeV
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Periodic Table Showing Absorption Edges

Element K Lj Ms
H 0.016

He 0.025

Li 0.055

Be 0.112

B 0.188

C 0.284

N 0.410

O 0.543

F 0.697

Ne 0.870

Na 1.071

Mg 1.303

Al 1.559

Si 1.839

P *2, 149%*

S *2.472%

Cl 2.833

Ar 3.206

K 3.608

Ca *4,039*

Sc 4.492

Ti 4.966

\'/ 5.465

Cr 5.989

Mn 6.539

Fe *7.112%

Co 7.709

Ni 8.333

Cu *8.979*

Zn *9.659*

Ga 10.367

Ge 11.103

As 11.867

Se *12.658*

Br *13.474*

Kr 14.326

Rb 15.200

Sr 16.105

Y 17.038

Zr 17.998 2.233
Nb 18.986 2.371
Mo 20.000 2.520
Tc 21.044 2.677
Ru 22,117 2.838
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Rh

23.220

3.004

Pd

24.350

3/173

Periodic Table Showing Absorption Edges

Element K L3 Ms
Ag 25.514 3.351
Cd 26.711 3.538
In 27.940 3.730
Sn 29.200 3.929
Sb 30.491 4.132
Te *31.814* *4.341%
1 *33,169* *4, 557*
Xe *34.561* *4 782*
1 Cs 35.985 5.012
Ba 5.247
La 5.483
Ce 5.723
Pr 5.964
Nd 6.208
Pm 6.459
Sm *6.716*
Eu 6.977
Gd *7.243*
Th 7.514
Dy 7.790
Ho *8.071*
Er 8.358
Tm 8.648
Yb *8.944*
Lu 9.244
Hf 9.561
Ta 9.881
W *10.207*
Re 10.535
Os *10.871%
Ir 11.215
Pt *11.564*
Au *11.919*
Hg 12.284 2.295
Ti 12.658 2.485
Pb *13.055* 2.586
Bi 13.419 2.580
Po 13.814 2.683
At 14.214 2.787
Rn 14.619 2.892
Fr 15.031 3.000
Ra 15.444 3.105
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Ac 15.871 3.219
Th 16.300 3.332
Pa 16.733 3.442-
U *17.166* 3.552
Table 3
Beam Size and Convergence of ESRF Straight Sections
Horiz size | Horiz Div | Horiz Conv | Vert Size | Vert Div
Low B Position
0.97 |37.6 | 243 | 0.23 |13.9
High B Position
0.1 [ 197 [ 145 [ 0.47 [15.5
All sizes in mm, divergences in urad, FWHM.
Table 4
Power emitted by “typical’” insertion devices
at the ESRF, 100mA stored current
Source Power Density 30m Percentage Power Used
Bending Magnet 1.1 0.0013
Undulator (high B) 20 0.01
Wiggler 20 2x 106
Table 5
Key to table 5:-

Energy of edge in KeV, width of absorption edge in eV, “WL” width is the”white line width” in eV.

Theoretical Natural widths and measured values

of several absorption edges

Edge

Element Width Ratio “WL” width
Fe 7.112 1.25 1.76 x 10

Se 12.658 2.33 1.84 x 104

Hg 14.209 5.5 3.87x 104

Pt 13.273 5.86 4.41x 104 5.2x 104
Yb 8.944 5.14 4.6 x 10 4.5x 104
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Multiwavelength Anomalous Diffraction in Macromolecular Crystallography

Janet L. Smith
Department of Biological Sciences
Purdue University
West Lafayette, Indiana 47907
USA

Introduction

Multiwavelength anomalous diffraction (MAD) is the fastest growing method of
structure determination in macromolecular crystallography. At least twenty-five new
structures solved with MAD were published in the past year. Many factors contribute to
the growth of MAD, and its future is extremely bright. The experience gained over the
past several years is now being generalized to make MAD more accessible. This paper
aims to present a practical overview of MAD. I first review the observational equation for
MAD and describe the basis of the phasing signal and how it is estimated for specific
problems. This is followed by a discussion of the design of a MAD experiment, schemes
for data analysis and phasing, and considerations in solving the anomalous-scatterer partial
structure. Finally, there is a discussion of selenomethionine as a phasing vehicle. More
comprehensive reviews of MAD have been published by W. A. Hendrickson, who
pioneered its development and application in macromolecular crystallography
(Hendrickson, 1991; Hendrickson & Ogata, 1997).

Theoretical Basis

Electrons bound in atomic orbitals have specific resonant frequencies
corresponding to allowed transitions. Anomalous scattering is the manifestation in X-ray
diffraction of these resonance effects. The resonant frequencies of most chemical elements
in biological macromolecules are far below the energies used for diffraction experiments,
and their anomalous scattering is thus negligible. However, elements of atomic number
24 through 92 have resonant frequencies between 6 keV (A = 2A) and 40 keV (A = 0.3A),
which give rise to detectable effects in X-ray scattering from macromolecular specimens
labeled with these elements. Information about the phase of the scattered X-rays can be
derived from the resonance effects, or anomalous scattering. Anomalous scattering is an
atomic property and thus enters the equations for X-ray diffraction in the expression for the
atomic scattering factor (f), which is the sum of “normal” atomic scattering factor f° and a
complex “anomalous” correction having real (f') and imaginary (f") components:

f=1f +f +if".
The breakdown of Friedel’s law caused by the imaginary component of anomalous

scattering (f") has been used for many years as a source of phase information in
macromolecular crystallography. Wavelength-tunable synchrotron radiation allows the real
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component (f') to be used as well, providing the opportunity for direct phasing through
combination of the orthogonal effects of f' and f". MAD exploits differences in the
observed diffraction intensities caused by differential f' and £" values at different X-ray
wavelengths to achieve such direct phasing.

The formulation of the MAD observational equation used here is based on that of
Karle (1980) as modified by Hendrickson et al. (1985).

PR, = P + a,lF,F
+ b,IFIF,lcos(¢,-0,)

+ c,IF,IIF,lsin(¢;-0,), [1]
where a, = (", +f LHIEYY,
b, = 2/
and c, = 20" /°.

This formulation is distinguished from many others relating phases to anomalous
scattering by Karle’s insight that the real (*F,'l) and imaginary (*F,"l) structure
amplitudes, due to f' and ", respectively, can be expressed as products of scattering factor
ratios and normal structure amplitudes, due to f°:

PF,1 = (F,/fIF,]
and PF,"l = (" /E)IF,L

Wavelength-dependence and structure-dependence are thus separated into different
quantities. All wavelength dependence is in the anomalous scattering factors, f', and f",,
which do not depend on atomic positions, and all structure dependence is in the normal
structure factors F, and F,, which do not depend on wavelength. The structure factor F;
represents normal scattering from the total structure, and F, represents normal scattering
from the partial structure of anomalous scatterers. An Argand diagram showing the
relationships of these structure factors has been published (Smith, 1991). Eq. 1 describes
the case for one type of anomalous scatterer. In general, Eqg. 1 will relate experimental
observations to unknown quantities whose number equals twice the number of anomalous-
scatterer types plus one, here IFl, IF,| and (¢,-¢,) for one anomalous-scatterer type.

The MAD observational equation (Eq. 1) involves no approximations, and the
accuracy of MAD phases is limited only by the precision of the diffraction data. This is in
contrast to isomorphous replacement where phase accuracy is limited most severely by
breakdown of the assumption of isomorphism of native and derivative crystals. The new
prominence of MAD is due primarily to a significant improvement in the quality of
diffraction data in general. This comes from the ability to measure better data faster thanks
to widespread adoption of cryocooling techniques and to improvements in synchrotron
sources and X-ray detectors.

26



Anomalous scattering factors

Anomalous scattering factors in the region of an absorption edge are sensitive to the
chemical environment of the absorbing atom, and are significantly enhanced by sharp
spectral features in many cases. Therefore, f" and f' for anomalous scatterers in
macromolecules cannot be calculated as free-atom anomalous scattering factors (Cromer &
Liberman, 1970a,1970b), which are accurate estimates for all chemistries at energies away
from absorption edges. Several laboratories have schemes for extracting anomalous
scattering factors f' and " from X-ray spectra, none of which has been published in
rigorous detail. However, all exploit the fact that the imaginary component of anomalous
scattering f" is proportional to the atomic absorption coefficient p,, which can be obtained
easily from raw X-ray fluorescence or transmission data. The scheme of Hendrickson
et al. (1988) is described briefly here and illustrated in Fig. 1. The X-ray spectrum of the
labeled macromolecule, typically a macromolecule single crystal, is measured as
fluorescence through the edge of interest (Fig. 1a). Regions of the experimental spectrum
slightly away from the edge are fit to theoretical values using the program XASFIT in
order to place the experimental spectrum on an absolute scale (Fig. 1b). Theoretical values
are obtained from a program by Don Cromer, modified by Wayne Hendrickson to
produce spectra rather than f' and f" at single energies and variously called FPRIME,
SPECTRUM or CROMER. Care must be taken to measure enough edge-remote points
for reliable fit of the experimental spectrum, which may be quite noisy. A narrow region
around the absorption edge is then cut from the scaled experimental spectrum and spliced
into the theoretical spectrum. From the hybrid spectrum of f" values thus obtained,

f' values are calculated by Kramers-Kronig transformation:

26w Ef.
fE)=—) =5 [2]
7 S E°-E;
7000 8000
6000+ 7000t
som__ 6000'-
1A, Ha
3000+ 4000+
20004 3000+ #
10004 20001
0 + + + 1000 + 4 - +
1125 15 11.75 12 12.25 114 115 116 11,7 118 119
Energy (keV) Energy (keV)
Figure 1

A. Fluorescence spectrum (I/l, on an arbitrary scale) through the Pt L, absorption edge from
a single crystal of B-hydroxydecanoyl thiolester dehydrase (Leesong et al., 1996). A single
methionine amino acid of the crystalline protein was labeled with Pt by soaking in a solution
of K,PtCl,.

B. Scaling of fluorescence data to theoretical atomic absorption coefficients (i,). The raw
fluorescence spectrum was fit to the theoretical spectrum for the Pt L, edge using the
program XASFIT. The scaled experimental spectrum is shown superimposed on the
theoretical free-atom spectrum.
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C. Hybrid f* and f' spectra for the Pt
L, edge. Using the program
KRAMIG, the edge region has been
cut from the experimental spectrum
in B and spliced into the theoretical
spectrum, u, converted to f*, and f
calculated from f* by Kramers-Kronig
transformation (Eq. 2).

where E is energy in eV and 4 is the
energy increment of the f" spectrum
being transformed. In practice, the point
of singularity for each f' (E; = E) is not
included in the summation, and a
transformation range of ~500 eV beyond
the f' being computed is sufficient to
eliminate truncation effects. Splicing and
f' calculation (Fig. 1c) are done with the
program KRAMIG.

Typical anomalous scattering

factors, f" ;.x and f' i, estimated from
X-ray spectra of protein crystals taken at
MAD experimental stations, are given in
Table 1 for several elements. In addition
to the electronic environment of the
anomalous scatterer, the energy
dispersion of the incident X-ray beam
also influences the values of anomalous
scattering factors in the edge region.

Table 1. Typical anomalous scattering factors

Element | f° | Edge A . A ... | Reference
(€) A | @© A | @

Fe 26 K 1.7402 -9 1.7380 5 Hendrickson et al., 1988
1.7425 -8 1.7390 | 4 | Smithezal., 1994

Cu 29| K | 13790 8 | 13771 | 4 |Gusseral, 1988

Zn 30| K | 12826 | -9 | 12818 | 4 |Zhangetal, 1995

Se 34| K | 09793 | -11 | 09792 | 6 |Wuetal, 1994

Br 35 ] K | 09207 | -7 | 09196 | 4 | Ogataeral, 1989

Sm 62 | 1, | 1.6959 | -16 | 1.6952 | 17 | Tomchick et al., 1996

Ho 67 | L, | 15363 | -28 | 1.5356 | 20 | Weis eral., 1991

Yb 70 | Lp | 13857 | -33 | 1.3853 | 35 | Shapiro etal., 1995

W 74 | Lp | 12136 | -24 | 12123 | 19 | Egloff et al., 1995

Os 76 | Lp | 11402 | -23 | 1.1397 | 20 | Cateetal., 1996

Pt 78 | Ly | 10720 | -21 | 10714 | 13 |Fg. Ic

Hg 80 Ly 1.0094 | -18 1.0057 | 10 | Tesmer etal., 1994
1.0095 | -25 | 1.0063 | 12 | Krishna et al., 1994

U 92 | 1, | 07213 | -21 | 07208 | 12 | Glovereral., 1995

Energy (keV) = 12.39854/A (A)
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Estimation of the Magnitude of the MAD signal

Knowledge of anomalous scattering factors allows estimation of the MAD signal
for a specific anomalous scatterer in a specific macromolecule. The orthogonal
components of the phasing signal, due to the real and imaginary anomalous scattering
factors f' and f", are estimated separately because both are required for phase
determination. The maximum MAD Bijvoet signal is due to Bijvoet differences at the
energy of peak absorption, or f* .., and is proportional to 2f" ., of Table 1. The
maximum MAD dispersive signal is due to wavelength differences between structure
amplitudes at the energy of the inflection point of the edge (f'y;,) and at a remote
energy(f' emote)> and is proportional to If’ ;' remotel-

The magnitude of the MAD phasing signal is estimated as the ratio of expected
Bijvoet or dispersive difference to expected total scattering of the macromolecule. This is

based on calculation of expected structure amplitudes <IFI>, where <IFI> = 4/ Y f7 and
<IFI> = /Nf for N atoms of identical f (Crick & Magdoff, 1956). The diffraction ratios
of interest to MAD (Hendrickson, 1985) are, for the dispersive signal,

(“FMI IFM \/_ S f ul [3]

R ()

for N anomalous-scatterer sites with A1 chosen at ', and A2 chosen for If', -, )l max
and, for the Bijvoet signal,

lesl-Fd) 2
F) \E(IFTI) “

with A chosen at f" .. These diffraction ratios are analogous to the usual calculation of
isomorphous signal from experimental data in which

(||F,,H|—|F,,||> _ N f°
) B 2 ) ol

where f° is for the heavy atom. Values for f°, f'; and f" . are those in Table 1. The
denominator of all diffraction ratios is the expected total scattering of the macromolecule,
which can be estimated for 20 = 0 with the expressions in Table 2.

Table 2. Estimates of scattering strength for macromolecules, <IF;I>

Macromolecule = NA =# atoms NR = #residues MW = molecular weight

(¢) (€) (e)
Protein 6.70 (NA)'? (346 NR)'2 (3.14 MW)'?
DNA 7.20 (NA)2 (1128 NR)'” (3.87 MW)}2
RNA 7.26 (NA)'" (1183 NR)*" (3.89 MW)!2
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A hypothetical example illustrates the issue of signal size in MAD vs. isomorphous
replacement. Consider a 500-residue protein and the MAD signal generated by 10 Se
anomalous scatterers. If f" . =6¢,f' p, =-11¢ and f' o = -4 €', then by Eq. 4 the
maximum Bijvoet signal will be ~6% of IF ¢! and by Eq. 3 the maximum dispersive
signal will be ~4% of IF,,|. By comparison, the isomorphous replacement signal
generated by one fully occupied Hg site (f° = 80 ¢) in the same protein will be ~14% of
IF,,! by Eq. 5. For many typical examples the MAD signal is near the noise level of
moderate-quality diffraction data sets, whereas the isomorphous replacement signal is
easily detectable in data of moderate quality. On the other hand, detection of the MAD
signal is limited only by data quality whereas lack of isomorphism will pollute the
isomorphous replacement signal with systematic error that cannot be removed. It is clear
from the large number of successful MAD experiments that a relatively weak phasing
signal is by no means an insurmountable problem.

MAD experimental design

Three important considerations distinguish the design and execution of a MAD
experiment from more familiar monochromatic experiments in macromolecular
crystallography. These are wavelength selection, data completeness and data quality.

A discussion of the design of beamline components for MAD experiments is presented
in another paper in this volume by A. W. Thompson.

The largest MAD phasing signal is obtained at energies with the most extreme
values of ' and f", which correspond to the sharpest features of the absorption edge.
Therefore, it is critical to determine the position of the absorption edge experimentally from
the labeled macromolecule at the time of a MAD experiment. Even when the position of
the edge is well known, small unanticipated chemical changes in the sample or energy
changes in the X-ray beam can reduce the MAD signal very significantly if the sharp edge
features are missed in selecting energies for data collection. Energies are selected at the
peak of sample absorption just above the edge (“Eeq” for £" ) to optimize the Bijvoet
signal and at the inflection point of the edge (“Eg;p” for f' ) to optimize the orthogonal
dispersive signal. The dispersive signal is further optimized if a third energy remote from
the edge (“Eemore ) is chosen. The choice of E ;. is experiment dependent, although it
is typically above rather than below the edge due to the larger Bijvoet signal. E ;. may
also be chosen to avoid complications from other edges or to obtain data at a wavelength
optimal for model refinement.

There has been much debate about the optimal number of data-collection energies
for successful phase determination by MAD. In the commonest MAD experiment [F*|
and [F'| are measured at each of Ep, Epeq and Epepe. If the difference in f' is large
enough to produce a detectable signal, then one could in principle obtain phases from three
measurements: [F*l and IF at Epeak and either [F*l or [F] at Edl (Peterson et al., 1996).
However, redundancy is one of the best ways to minimize the effects of measurement
error in macromolecular crystallography. In the full three-energy experiment, the Bijvoet
signal is redundant because the remote energy is above the edge. The orthogonal
dispersive signal is redundant because two measurements are taken at each of Egp and
E emote- There are several examples of even more redundant four- or five- wavelength
MAD experiments. While greater redundancy is desirable, it should not be gained at the
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cost of good counting statistics. Unfortunately, considerations of available beam time
frequently preclude MAD experiments with more than three energies.

The MAD phasing signal is derived from intensity differences that may be similar
in magnitude to measurement errors. Thus a general philosophy in the design of a MAD
experiment is to equalize systematic errors among the measurements whose differences
will contribute to each phase determination. This is achieved for each single reflection by
recording Bijvoet measurements at all wavelengths from the same asymmetric unit of the
same crystal at nearly the same time. Bijvoet mates can be recorded simultaneously by
alignment of the crystal with a mirror plane perpendicular to the rotation axis, or Friedel
images can be recorded in an “inverse beam” experiment. (Friedel images are related by
180° rotation of the crystal about any axis perpendicular to the incident beam, usually the
data-collection axis). If crystal decay is a problem, small blocks of Bijvoet data can be
recorded at each of the selected wavelengths before moving to another block of reciprocal
space. When such a data collection strategy is followed, the resulting MAD data set will
be complete with respect to recording all multiwavelength, Bijvoet measurements for all
regions of the reciprocal lattice that are covered in the experiment. Coverage of reciprocal
space can be monitored during the experiment by a strategy program, if available, or by
reduction of diffraction images to integrated intensities for data from at least one
wavelength. Completeness of the MAD data set is at least as important as for any
diffraction experiment that will be used for phasing. If data, and hence phase information,
are incomplete, it may be difficult to reproduce the same beam and sample conditions

during a subsequent experiment, which is likely to occur only after some weeks or months.

Measurement errors are of major importance in all areas of macromolecular
crystallography, but are the limiting factor in phase determination by MAD. MAD data
should be of high quality by the usual measures (R, redundancy, completeness),
especially in experiments where the phasing signal is weak. In the hypothetical
500-residue protein with 10 Se anomalous scatterers, a 5% MAD signal will become
undetectable as it is exceeded by Ry, “noise”. Thus data with good counting statistics are
of paramount importance. In a carefully designed experiment, the effect of increasing Ry,
with increasing 0 is mitigated somewhat by equalizing systematic errors. Nevertheless,
if Rsym (D is 30% for the outer shells of data, there will be virtually no detectable MAD
phasing signal for these reflections in the hypothetical example. Disappearance of the
phasing signal into R,;, noise is the major reason that useful MAD phases generally are
not obtained to the diffraction limit of crystals even though anomalous scattering does not
fall off with increasing 6.

Data processing and scaling

Concerns about signal size dominate special schemes for handling MAD data.
Scaling strategies for MAD are discussed in detail elsewhere in this volume by P. R.
Evans. Special computer programs for scaling MAD data have been developed
(Hendrickson et al., 1988; Friedman et al., 1994). Two general approaches to data
handling for MAD have been employed.

31

e e ey



The approach originally proposed by Hendrickson, known as “phase first, merge
later,” represents the extreme interpretation of the scheme for equalizing systematic errors
— the individual observations constituting a multiwavelength Bijvoet set, as determined by
the data-collection strategy, are grouped together and scaled as usual, but are merged with
redundant measurements only after phases are determined. Error estimates from the
phasing or the agreement of redundant phase determinations can be incorporated into
weights for averaging, or can be used to reject outliers. This approach involves
complicated, experiment-dependent bookkeeping to assemble exactly the correct
observations for each unmerged set. '

A second approach, “merge first, phase later,” is to scale and merge data at each
wavelength, keeping Bijvoet pairs separate, and then to scale data at all wavelengths to one
another. This is most easily and reliably done by scaling all data against a common
standard data set, which can be the unique data from one wavelength with Bijvoet mates
averaged. If the data collection followed one of the strategies outlined above, then
measurements for each unique reflection are identically redundant, which itself minimizes
systematic errors in the amplitude differences used for phasing. The second approach is
computationally simpler than the first because it is experiment independent. However,
unanticipated, minor experimental disasters may be more difficult to overcome in the
“merge first, phase later” approach to data handling.

Approaches to MAD phasing

There are two general approaches to MAD phasing. One is to treat the problem
explicitly and solve the MAD observational equation (Eq. 1). This explicit approach is
embodied in the MADSYS package from the Hendrickson laboratory (Wu &
Hendrickson, 1996), in particular in the phasing program MADLSQ. The other approach
is to treat MAD phasing as a special case of multiple isomorphous replacement (MIR).
The pseudo-MIR approach is discussed elsewhere in this volume by V. Biou and in two
recent publications (Ramakrishnan & Biou, 1997; Terwilliger, 1997). Both approaches
have been quite successful, and there are no hard-and-fast rules for which sorts of
problems are more amenable to which approach, rumors in the community
notwithstanding. There are advantages and disadvantages to both approaches.

The explicit approach provides the quantities [F,l, IF, | and (¢,-¢,). Estimates of
the anomalous scattering factors at the wavelengths of data collection are required to fit the
observations to the MAD phase equation. These estimates can be refined within
MADLSQ, so they need not be highly accurate. A second calculation is required to obtain
¢, from the phase differences (¢-¢,). There are two advantages to the explicit approach.
First, it is amenable to the “phase first, merge later” scheme of data handling because
refinement of the anomalous-scatterer partial structure is entirely separate from phase
calculation. In this case redundancies are merged to produce a unique data set at the level
of the derived quantities IF,l, IF, |, (¢-¢, ) and their error estimates. These error estimates
or the agreement of redundant phase determinations can be used to weight terms in a
Fourier synthesis from IF,l and ¢,. Phase probability coefficients (ABCDs) have been
derived from the MAD phase equation (P4hler et al., 1990). The second principle
advantage of the explicit approach is calculation of an experimentally derived estimate of
the normal structure amplitude IF, | for the anomalous scatterer. This is the quantity with
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which the partial structure of anomalous scatterers is most directly solved and refined, and
therefore should be highly sought. However, while MADLSQ is quite successful in the
least-squares fit of the MAD phase equation to IF | for high-quality data, it is poorly
conditioned to extracting IF, | from noisy data and requires careful pruning of outliers from
the IF, | values produced. A Bayesian method of IF,| estimation (Terwilliger, 1994) should
be more robust than the least-squares procedure.

In the pseudo-MIR approach data at one wavelength are designated as “native”
data, which include anomalous scattering, and data at the other wavelengths as “derivative”
data. This approach has the advantage that nothing need be known about the anomalous
scattering factors prior to phasing. These quantities are incorporated into heavy-atom
atomic “occupancies” and refined along with other parameters. Of course, the partial
structure of anomalous scatterers must be known, and refinement of the partial structure is
concurrent with phasing. In refinement of the “heavy atom” parameters, greater weight is
given to the data set selected as “native.” This bias should be removed by the new
maximum-likelihood refinement of de La Fortelle and Bricogne (1997), which treats data
at all wavelengths as statistically equivalent. The amplitudes [F, | are not determined in the
pseudo-MIR approach, and the partial structure is solved from Bijvoet differences between
IF*1 and IF'| or dispersive differences between [F, ;! and IF, |, with wavelengths selected to
optimize the signal. The pseudo-MIR approach is used more frequently than the explicit
approach due to the greater familiarity of crystallographers with software for isomorphous
replacement.

Determination of the anomalous-scatterer partial structure

A prerequisite for MAD-phased electron density, regardless of the phasing
technique, is determination of the partial structure of anomalous scatterers. As described
above, the optimal quantities for solving and refining the partial structure of anomalous
scatterers are the normal scattering amplitudes IF,|. Frequently [F, | values are not extracted
from the MAD measurements, and the largest Bijvoet or dispersive differences are used
instead. This involves the usual approximation of representing structure amplitudes (IF )
as the subset of larger differences (IF*I-F1l or IIF,,-IF,,ll). The approximation is accurate
for only a small fraction of reflections because there is no correlation between the phase of
F;, and the phase of F,. However, it suffices for a suitably strong signal and a suitably
small number of sites. For virtually all structures determined by MAD, the anomalous-
scatterer sites have been located by Patterson methods. However, the problem quickly
becomes intractable by Patterson methods when there are more than a handful of sites.
This is a current challenge for MAD, where the aim is to solve the macromolecule
structure from one MAD data set using any number of anomalous scatterer sites.
Statistical direct methods clearly hold the answer to this problem. Recent results are
promising in this regard. Bertrand et al. (1997) have solved a 12-atom Se partial structure
ina 437-residue protein by direct methods using IF, s, and S. Doublié (personal
communication) has solved a 15-atom Se partial structure in an asymmetric unit of
108 kDa using dispersive differences, also by direct methods. These results open the door
for routine MAD determination of quite large structures with many anomalous scatterer
sites. New direct methods techniques, such as described in this volume in papers by G. M.
Sheldrick, by C. M. Weeks and by G. Bricogne, hold great promise for a major expansion
in the complexity of anomalous-scatterer partial structure that can be solved.
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The correct enantiomorph for the anomalous-scatterer partial structure must be
determined (¢, vs. -9,) in order to obtain an electron-density image of the macromolecule.
However, it cannot be determined directly from MAD data. The correct hand is chosen by
comparison of electron density maps based on both enantiomorphs of the partial structure.
Unlike the situation for MIR, the density based on the incorrect hand of the anomalous-
scatterer partial structure is not the mirror image of that based on the correct hand and
contains no image of the macromolecule. The correct map is distinguished by features
such as a clear solvent boundary, positive correlation of redundant densities, and a
macromolecule-like density histogram. If the anomalous scattering centers form a centric
array, then the two enantiomorphs are identical and both maps are correct.

Selenomethionine

The most successful MAD phasing vehicle to date has been selenium in the form
of selenomethionine (SeMet). This particularly clever experiment was devised by Wayne
Hendrickson (1985), who also pioneered its use (Yang et al., 1990; Hendrickson et al.,
1990). Briefly, proteins are labeled with Se by biological substitution of SeMet for
methionine amino acids. This is achieved by blocking methionine biosynthesis in the cells
in which the protein is produced and substitution of SeMet for Met in the growth medium.
The generality of the labeling scheme for proteins is the root of its success. SeMet labeling
technology is discussed in a recent review by Doublié (1997).

SeMet incorporation has been done most frequently for proteins expressed in
E. coli strains that are auxotrophic for Met (strain DL41, Hendrickson et al., 1990; strain
B834, Leahy et al., 1994 and Doherty et al., 1995; strain LE392, Ceska et al., 1996; strain
MICS88, Shamoo et al., 1995). Nearly complete incorporation has also been reported in
nonauxotrophic bacterial strains (E. coli strain BL21, Harrison et al., 1994; E. coli strain
XA90, Labahn et al., 1996), in a mammalian cell line (Lustbader et al., 1995) and in
baculovirus-infected insect cells (Chen & Bahl, 1991). Special precautions must be taken
to prevent oxidation of SeMet proteins. In almost all cases, somewhat higher-than-normal
concentrations of disulfide reducing agents, such as dithiothreitol or f-mercaptoethanol, are
sufficient to protect SeMet from air oxidation to the selenoxide (Brot et al., 1984). In a few
cases, crystallization in an inert atmosphere has been necessary (Dyda et al., 1994; Wu
etal, 1994). Because Se is a light element, the position of the K absorption edge moves to
slightly higher energy upon oxidation, and a mixture of oxidation states in a sample crystal
is predicted to obliterate the MAD signal.

Methionine is a particularly attractive target for anomalous scatterer labeling. The
hydrophobic side chain of methionine, which carries the sulfur atom to be substituted by
selenium, is usually buried in the hydrophobic core of globular proteins and is therefore
relatively better ordered than are surface side chains. Evidence for isostructuralism of Met
and SeMet proteins comes from the labeling experiment itself. All proteins in the
biological expression system have SeMet substituted for Met at levels approaching 100%.
The cells are viable, therefore the proteins are functional and isostructural with their
unlabelled counterparts to the extent required by function.
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The natural abundance of methionine in soluble proteins is approximately one in
fifty amino acid residues. The N-terminal Met is not included in this estimate because,
if present, it is usually disordered. Using Egs. 3 and 4, this provides a maximal MAD
phasing signal of 4-6% of IF|, easily detectable in strongly diffracting protein crystals and
detectable with careful data collection from crystals of moderate quality. To improve the
phasing signal, in a few cases Met has been substituted for other amino acids by site-
directed mutagenesis (Leahy et al., 1994, 1996; Skinner et al., 1994; Tong et al., 1996).

SeMet labeling is now part of the repertoire of protein crystallography, and has
broader applicability than for MAD phasing alone. This comes from the relative ease of
incorporation of the SeMet label, from the remarkable structural similarity of SeMet and
wild type proteins, and from the uniformity and completeness of labeling. Crystals of
SeMet proteins are usually isomorphous with those of the wild type, and consequently can
be used as isomorphous derivatives. The isomorphous signal comes from the excess of
18 electrons in Se relative to S, making the SeMet isomorphous phasing signal (~10% of
IFl, Eq. 5) about twice as strong as the SeMet MAD phasing signal (4-6% of IFl). In most
cases SeMet derivatives are more isomorphous, and certainly more rationally produced,
than are heavy-atom derivatives produced by the usual soaking procedures. Prior
knowledge of exactly how Se labels the protein is itself a powerful tool. For example, the
SeMet mutation is an extremely useful amino acid label for fitting a protein sequence to
electron density. Also, noncrystallographic symmetry operators usually can be defined
more reliably from Se positions in SeMet protein than by heavy-atom positions in
conventional derivatives due to the uniformity and completeness of labeling (Tesmer ez al.,
1996).

An analogous label is available for nucleic acids in the form of brominated bases,
particularly 5-bromouridine, which is isostructural with thymidine. Iodinated bases are
commonly used as isomorphous derivatives (f° = 53 ¢) for nucleic acids, but the X-ray
edgesof I (A = 0.38A for K, A = 2.56-2.72A for L) occur at energies less favorable for
accurate macromolecular data collection than does the K edge of Br (A = 0.92A).

Conclusion

Why is the enthusiasm for MAD so high today? There are three primary reasons.
First, cryocrystallography has improved data quality to the point that the precision required
for MAD is usual rather than exceptional. Second, new synchrotron sources and new
beamlines provide intense, reliably tunable X-ray beams and the instruments to exploit
them. Third, MAD works extremely well and very quickly. For many problems, the
experimentally phased electron density is of stellar quality. Crystallographers are only
beginning to appreciate the value of nearly error-free, model-independent phases (Burling
et al., 1996). The remaining challenges are in two areas. The greatest impediment to
growth of MAD today is access to suitable experimental facilities. This non-technical
problem may be solved only be a concerted effort of the community. The greatest
technical challenge is to develop methods for solving large partial structures of anomalous
scatterers. Here recent results with statistical direct methods are very promising, and MAD
applied to large macromolecules no longer seems such a heroic undertaking. MAD has at
last taken its place as a standard tool of macromolecular crystallography.
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Introduction

Many structures have been solved using MAD data during the last few years, and their
number is increasing exponentially. The aim of this paper is to give a practical approach to MAD,
and in particular to the use of MIR programs to phase MAD data, and to discuss the limitations and
advantages of the method.

In the presence of anomalously scattering atoms in the protein crystal, one can use two
types of signal to calculate phases from a diffraction data set : (i) dispersive difference signal : due
to the contribution of F'a to the structure factor, the intensity of a given reflection changes with the
wavelength. (ii) anomalous signal : the intensity of symmetry related reflections is different due to
the contribution of F"a (fig 1).

These signals can be used in a multiple wavelength dispersion (MAD) experiment with
tuneable synchrotron radiation, so that both the dispersive and anomalous differences are
maximised. This takes at least 3 wavelengths, which we shall define as follows : A1 is measured at
the minimum of f, i.e., the inflection point of the fluorescence spectrum ; A2 is taken at the
maximum of f" (and of the fluorescence spectrum) ; A3 is taken on the high energy side of the
spectrum. Thus, that A1 and A3 maximise the dispersive difference signal, and A2 maximises the
anomalous signal. A fourth wavelength, remote on the low energy side of the edge, can also be
useful.

The advantages and disadvantages of MAD have been explained elsewhere (see for example
Reid, 1996). Briefly, it is obvious that one overcomes anisomorphism problems between native
and derivative by using MAD. One can collect three data sets on a single, flash frozen crystal
containing an appropriate element. On the other hand, the anomalous signal is generally much less
intense than the isomorphous signal for the same element. Just consider the example of the
replacement of sulphur by selenium in selenomethionine. The K edge of selenium contributes 10
electrons at the maximum dispersive difference, whereas it gives 18 electrons isomorphous signal
compared to sulphur. Even for such a light atom as selenium, the isomorphous difference will be
roughly twice as large as the dispersive difference. In the case of mercury, the difference between
the anomalous and the isomorphous contributions is even larger.

Therefore, the problem is to measure small differences between large figures. This has been
said before, but it should be stressed : it is vital for a MAD experiment to get accurate
measurements. Synchrotron beamlines have been developed that allow to do this in a shorter and
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shorter time, and in the next few months there should be less shortage of beam time for MAD (see
A.W. Thompson's paper in this issue).

Data collection and its preliminaries
feasibility assessment before going to the synchrotron

In order to properly plan an experiment, it is important to evaluate the theoretical
signal one can expect to obtain from a given heavy atom derivative: these are the dispersive ratio,
and the anomalous ratio, which give the proportion of the maximum anomalous or dispersive
signals vs. the total scattering power of the macromolecule. Dispersive ratio = q X |f,'11 - f;3|

) . Na
Anomalous ratio = g X2 f,, where q = 1’ 2—Np- X Z

atoms in the unit cell, Np = number of protein atoms, and Zgr= 6.7 electrons for a protein crystal
(mean effective normal scattering on protein atoms), A1, A2 and A3 are defined as in the

. Na = number of anomalously diffracting

introduction. In practice, a signal of 2.5% with very good data may be enough for phasing. 3.5 to
4% gives a good signal.

It is just as essential to have good knowledge of your crystals : mosaicity, resolution,
diffracting power. Too high a mosaicity will make the data harder to integrate, and reduce the
signal to noise ratio. MAD structures have been solved with mosaic crystals (up to 1° as defined in
DENZO), but 0.4° or less gives better signal. If the crystal diffracts to high resolution, it is worth
spending more time to collect high resolution at three wavelengths, to get accurate experimental
phases at higher resolution. This can be achieved if the crystal diffracts strongly : the anomalous
signal does not decay with resolution, but if the spot intensities become too low, the measurements
will be more noisy, hindering the extraction of the anomalous signal.

data collection practice

It is essential to measure a fluorescence spectrum on your crystal (or 2 with 2
perpendicular crystal orientations). The absorption edge can shift due to anisotropy of the heavy
atom chemical environment. This will determine the strength and position of the fluorescence
spectrum and will allow you to decide at which wavelengths to collect. In case of a beam
reinjection during the course of the measurements, it is wise to collect a fluorescence spectrum
again.

The second step is to collect one image to determine the crystal orientation. From this, one
can run a data collection strategy program in order to plan how much data needs to be
collected. We routinely use Andrew Leslie's STRATEGY option in MOSFLM (Leslie, 1996).
From a given crystal orientation, it gives the most convenient rotation range to run and predicts the
expected completeness, both for individual reflections and for Bijvoet mates. If the crystal can be
oriented so that it rotates around a mirror axis, it is better to do so, as it allows to collect Bijvoet
mates in the same image. In the case where it is necessary to collect data from an additional crystal,
the program gives the best rotation range to complete the datasets. Once you have set up the
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strategy and the best exposure time, start the actual data collection, and measure 3 wavelengths,
four if possible. '

Finally, it is important to integrate and scale data carefully. A first run can be done on the
first wavelength, while it is being collected. It will give information about the data quality and the
anomalous signal to be expected from the whole data set. Several integration and scaling runs are
usually necessary in order to get the best out of the data set (see P.R. Evans's contribution in this
issue).

Phasing methods

Both phasing systems imply the location of heavy atoms positions in the unit cell.
This can be done using Patterson maps or direct methods. Three types of Patterson maps can be
used : dispersive difference Pattersons between two wavelengths, or anomalous difference
Patterson for one wavelength, or a Patterson map calculated using the Fa's derived from the
algebraic method (see below). This last method seems to be the one that gives the least noisy
Pattersons, because systematic errors have been removed before. Similarly, the same types of
differences can be used in direct methods to solve the heavy atom structure when the number of
heavy atoms is too high (Bertrand et al., 1997). This is probably going to be common practice in
the near future, as it will allow to phase larger and larger structures with MAD. Starting from the
location of heavy atoms, the next step is then to refine those and calculate phases. Two types of

methods are available for phasing MAD data.
Algebraic method

The first method used to phase a novel structure using MAD data (Guss et al., 1988), is
based on the algebraic derivation of phases using a set of linear equations (Karle, 1980). This
method allows to derive accurate values for the heavy atom structure factors (Fa), and gives an
elegant solution of the phase problem. However, though it is being made more user friendly (Wu
and Hendrickson, 1996), it has long been difficult to use, in particular because it required a careful
bookkeeping for equivalent reflections. It works on unmerged, scaled individual reflections.

43



Figure 1 Vectorial representation of structure factors
in the presence of anomalous scatterers.
Subscripts 1 and 2 refer to two different
wavelengths. Ft = total structure factor for reflection
hkl.; Fr = contribution from the non anomalously
scattering atoms;
F’a = contribution from the real part of anomalously
scattering atoms;
F’a = contribution from the imaginary part of

p Realanomalously scattering atoms; Ft=Fr+F a+iFa.

MIR-like
From fig 1, it is visible that the different

wavelengths can be considered as different heavy
atom derivatives, and that multiple isomorphous
replacement phasing methods should be usable in this
context. Ramakrishnan et al. (1993) were the first to
use an MIR program to solve a new structure using
MAD data. Last year, about half the structures solved using MAD data were phased using an MIR
program. It is more familiar to most protein crystallographers, and it allows to easily bring together

all sorts of phasing information. A number of different programs can be used to do this, the most
popular being probably MLPHARE (Otwinowski, 1991).

All of those programs refine the heavy atom positions and temperature factors, and refine
phases against the lack of closure error. Most of the programs available (see Table I and
Ramakrishnan and Biou (1997)) rely on a reference wavelength data set as the "native”, and use
the dispersive differences between this reference wavelength and the others, as well as the
anomalous differences for all data. The differences lie in the statistical description of the phase and
amplitude spaces. MLPHARE and the maximum likelihood option of PHASES use a maximum
likelihood description of the phase space, thereby implying that most of the error comes from the
phases and not from the amplitudes. On the other hand, SHARP uses a maximum likelihood
description of the whole complex space, both amplitudes and phases. For a better description, see
Eric de la Fortelle's paper in this issue. X-PLOR also offers a MAD phasing option (Burling et al.,
1996).

distribution

program author usage principle
MLPHARE Z.0Ottwinovski ccp4 suite , 1 reflection file, choose one wavelength as "native"
(Otwinowski, Daresbury 1 list of atomic ; refines heavy atom parameters
1991) scattering factors (different occupancy for real and
anomalous parts), based on
maximum likelihood on the
‘ phase circle.
PHASIT W. Furey phases suite, several reflection files ; |choose one wavelength as "native”
(Furey and author atomic scattering factors | ; refines heavy atom parameters
Swaminathan, are entered as parameters | against origin-removed patterson,
1997) or using maximum likelihood,
similarly to mlphare,




MADMRG + |T. Terwillinger | author madmrg merges all | choose one wavelength as "native”
HEAVY MAD reflections into a | ; refines heavy atom parameters
(Terwillinger, "SIRAS"-like data set. | against origin-removed patterson;
1994b; freavy refines heavy atom one single occupancy.
Terwillinger, parameters and calculates
1994a) phases.
SHARP (de la { E. de la Fortelle, |author http interface with user | no reference wavelength ; refines
Fortelle and G. Bricogne friendly data input. heavy atom parameters using
Bricogne, 1997) One reflection file. anisotropic B factors and
maximum likelihood in the
whole complex space.
X-PLOR A. Brunger x-plor package, distributed template still under development. choose
V 3.8.5 Yale university macros, merged one wavelength as "native"
(Burling et al., reflection file
1996)

Table I Some of the programs which can be used for both MIR and MAD phasing.

Table II gives a list of some structures solved using MAD data. This represents about a half

of all structures solved this way. Besides the exponential increase with time, several striking points

can be derived from this table. The molecular weights are increasing with time. Selenium from

selenomethionine is by far the most used anomalous scatterer. Iron and mercury are next. This

reflects the ease of introduction or the natural occurrence of those three elements in protein

crystals. There is also a tendency towards measuring MAD data to higher resolution, rather than

getting medium resolution phases and extending them with a native data set. The last column

shows it is common use to mix MAD and MIR, and that about half of the recent year structures

have been phased using an MIR program.
A number of practical points have been addressed in Ramakrishnan and Biou (1997). 1
would like to go back to one point which seems to be difficult to grasp in the beginning, namely

the parallel use of f' and f" values and heavy atom occupancies. The structure factor for reflection

h in the presence of anomalously scattering atoms of the same sort, can be written as the sum of a

normal, F}:’ and a wavelength-dependent anomalous,

A

}f structure factors ; Fh = F, "+}'Fa‘

h h

-0 Apa _ A A pn . = A aa_ Apn . .
with Fh —§0j( fj+z fj)cxp(th.rj) Z( 0; f'j+ oji J.)exp(th.rj),wherc 0j

J

is the occupancy of atom j, and *o ; and A0 ; are the real and anomalous occupancies,

respectively. If one sets both ' and f" to an arbitrary value, the refinement of anomalous and

dispersive occupancy factors will adjust the relative values of A F: . Thus, it does not make a

difference whether one inputs reasonable values for f' and ", or if one inputs fake ones and lets
the program refine occupancies. However, I feel more comfortable with inputting reasonable

values of the anomalous scattering factors, because one gets occupancy values which "make
sense" : in this case, they should be the same for a given heavy atom position throughout the data
sets and then reflect the physical occupancy of the site. In the other case, the occupancy will vary
according to the values of Af' or f", and it should do so in a similar way for all sites at a given

wavelength. Therefore, the anomalous occupancy should be highest at the maximum f" value, and

45




the dispersive occupancy should be highest for the difference between the minimum f' and the

remote wavelength.

Quality criteria for phasing evaluation _ _ o
It is important to include as much data as possible in the phasing process. The following criteria

Y |y (obs)| £|F, (obs)| - |F (caic)]
Y [Fen(obs)|Fobs)]

can be used to keep or select data : Reu =

> ||FPH (obs)|- |FPH(calc)“

Ry, = e z‘ “FPH(obs)“ (isomorphous case)
S |Fon (0BS)| = |Foy, (calc)| +| Foy_ (0BS)] = | Foy_(calc)]
Ryrau = 5 ||pr+(01?s)|+|Fpn_(0bs)|| (anomalous case). R-Kraut
acentrics

should be as low as possible, and R-Cullis should ideally be close to 0.5, and "typical" values are
between 0.8 and 0.6.

The figure of merit is the weighted mean of the cosine of the phase angle deviation from

%P(¢)Fw(¢)
%P(lﬁ)

... It is calculated as ,, = IF""’wl with F, =

. The phasing power is defined as
Bl

2

X|Fy
"z 7 with S|Ef = 3(|Foy(0bs)| - |Foy (calc)l)2 = rms lack of closure error. Both figure of

merit and phasing power are plotted as a function of resolution, and a given data set should ideally
be cut-off at a resolution where its phasing power drops below 1.

When MAD is not enough : how to incorporate everything you can in
order to calculate phases

When the MAD phases are not sufficient to give an interpretable map, it is straightforward
to introduce other phasing information. A “native” data set must be defined for all programs,
except SHARP. All other data sets should be scaled with respect to this native. Derivatives should
be screened for phasing power in order to keep only the useful data. Annex I shows an input and
excerpts of an output file from PHASES, illustrating the introduction of a native, a mercury MAD
data set and a single wavelength selenomethionine.

when is SAD enough

Several structures have been solved using a single heavy atom derivative anomalous signal
(e.g., Biou et al., 1995), and Eric de la Fortelle showed that SHARP was quite able to solve
structures this way. It takes cases where a single heavy atom derivative (Pb in the mentioned case)
gave a strong anomalous signal. The phase ambiguity can then be resolved using solvent flattening
alone or solvent flattening and non crystallographic symmetry when applicable. It is of course
more difficult and more risky, but it may work when one has no other choice.
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Summary: MAD works if ...

You measure, process and scale data carefully on as good crystals as you can.

You try and minimize mosaic spread (work hard on cryoprotectants, use smaller crystals).

All modern phasing methods work, it is more important to use one you're familiar with, or
you can get help with.

Then you can have an excellent experimental map to trace your chain automatically, and
excellent phases to refine your model against.

T apologise to all of the authors whose structures were omitted from the list in Table 1. For

lack of space I could not possibly include all of the relevant references.
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pdb entry - protein reference | asymm. heavy res. data used -
(a) unit atom (b) (c) phasing
content method (d)
1CBP - blue copper protein (Guss et al., 10 kDa Cul 2.5A MAD 41- madsys
1988)
7 - streptavidin (Hendrickson et | 126 aa Se2 3.1A MAD 31- madsys
al., 1989)
1RNH - RNase H (Yang et al., 156 aa Se 4 (6, 13, 2.2A (2.0) | MAD 31- madsys
1990) 37,36/ 16)
IMSB - lectin domain from (Weis et al., 110 aa Ho 4 2.5A MAD 31- madsys
rat mannose-binding protein 1991)
1TEN - fibronectin type Il | (Leahy eral, |91aa Sel 3A(1.8) | MAD 41- madsys
domain 1992) (53,39/21)
1ITH - homotetrameric (Kolatkar ez al., | 2x141aa | Fe 1 5A(2.5) |MAD4]l+MIR -
hemoglobin 1992) madsys
1HST - histone H5 globular | (Ramakrishnan | 2x90 aa Se2 2.6A MAD 31 - mipbare
domain et al., 1993) (14,15/21)
1HCN - HCG (Wu et al, 200 aa Se 4 2.6A MAD 41- madsys
1994) (61, 55, 56,
80/42)
1BGH - gene V protein (Skinner et al., |87 aa Se1(37/21) |2.5A MAD 31 - heavy
1994) &2
1IRK - insulin receptor tyr (Hubbard et al., | 306 aa Hg2 2.5A (2.1) | MAD 31 - madsys
kinase domain 1994)
1GPH - PRPP purine (Smith et al., |4x350aa |Fe 4 5 then 3A | MAD 31 - madsys
synthase 1994)
10LA - OppA (Gloveretal, |58.8kDa |US8 2.3A MAD 4I- mlphare
1995)
1CNT - ciliary neutrophic (McDonaldet | 185aa Yb1 2.4A MAD 4I- madsys
factor al., 1995)
? - protein phosphatase 1 (Egloff et al., W + Hg 2.5A MAD 31 + MIR + 2-
1995) fold NCS- phases
1ASU - avian sarcoma virus | (Bujacz et al., 155 aa Se 4 (23,46, |2.2A (1.7) | MAD 3I- phases
integrase 1995) 41, 16/ 33)
1TIG - IF3 C-terminal domain | (Biou et al,, 94 aa Se2(40,22 |2A MAD 31 - phases
1995) 120)
1GEO* - sulfite reductase (Crane et al., 456 aa Fe 5 2.5A (1.6) | MAD 31 + MIRAS -
1995) madsys
1VHH - sonic hedgehog N- (Tanaka Hall er | 200 aa Se 3(19,43, |1.7A MAD 41 - madlsq
terminal domain al., 1995) 47/11)
1IDO - integrin CR3 A (Leeetal, 192 aa Se3(17,17, |2A(1.7) | MAD 31 - mlphare
domain 1995) 8/15)
1SVC - NFkB p50 (Miiller er al., |364aa+ 19| Se 5 (98, 58, |3.4A (2.6) | MAD 31 + MIR +
homodimer with DNA 1995) bp 49, 59, 66/ crystal averaging -
70)+ 1 miphare + madlsq
INCG - cadherin (Shapiro et al., | 110aa Yb 1 2.1A MAD 41 - madlsq
1995)
7 - mannose-binding protein (Burling ez al., | 230 aa Yb 1 1.8A MAD 4] - xplor
1996)
IRIE - rieske Fe-S protein (Iwata et al., 120 aa Fe 2 2.8A (1.5) | MAD 31 - miphare
| fragment 1996) :
1TBG* - G protein By dimer | (Sondek ef al., |4x139 Gdo 2.8A (2.1) |[ MAD 31 - miphare
1996)
1FBT* - fructose-2,6- (Lee et al., 220 aa Se 4 2.8A (2.5) | MAD 41 - mlphare
biphosphatase 1996)
1GSS - glutathione S- (Reinemer et 2x211 aa Se4 (16,22, {|3A(22) |MAD 21+ MR +2-
transferase al., 1996) 28,22/26) + fold NCS- mlphare
I
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7- TFIIA/ TBP/ DNA (Geigeretal., |300aa+ 18] Se/Br5 3A MAD 51 + MR -
complex 1996) bpDNA mlphare
1WHI - ribosomal protein (Davies et al., 124 aa Se?2 2A (1.5 |MAD3l+MIR-
L14 1996) (32,21/14) phases
1DKX - DnaK chaperone + (Zhu et al., 218+ 7aa |Se6 2.3A MAD 41 - madsys
peptide 1996)
1UMU - UmuD' protein (Peat et al., 2x116 aa Se 4 (26,48, [2.5A MAD 41 - madsys +
1996) 25,31/24) muitan
1TEN - fibronectin type III (Leahy etal., |90aa Sel(53/) 1.8A MAD 41 - madsys
repeat 1996)
1ZEN - class II aldolase (Cooper et al., |39 kDa Se 6 (15,33, |2.5A MAD 31 + MIR -
1996) 26, 31, 44, miphare
23/ 36)

Table II Non exhaustive list of MAD structures to date.
(a) Pdb entry code followed by *: coordinates release still pending at time of writing. When
replaced with ? : entry not found in pdb; (b) heavy atom : type, number and temperature factors

(A2) of the corresponding SD or SE atoms in the released pdb entry for selenomethionine protein,
followed with the mean overall temperature factor. (c) second figure between parentheses gives
resolution used for refinement when different from the MAD experiment resolution.

(d) References for phasing programs : Heavy (Terwillinger, 1994a &b), Mlphare (Otwinowski,
1991), Madsys (Hendrickson et al., 1988; Hendrickson, 1991), Phases (Furey and Swaminathan,
1997), Xplor version 3.8x (Burling et al., 1996).
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Annex 1

Example for an input file to PHASES where the MAD data has been scaled to a native data set, and an additional

mercury derivative collected elsewhere with a higher occupancy was also used.

hgmad.pam
0
29.564100
1.211520
-14.40000
29.564100
1.211520
-23.00000
29.564100
1.211520
-10.87000
29.564100
1.211520
-4.99000
6 1
hgmad5.hkl

18.059999
7.056390

18.059999
7.056390

18.059999
7.056390

18.059999
7.056390

hgmad 11 anomalous

natll_ano.hkl

4.00 5.00 2
2

Hg -.11140

Hg -.36478

. 9957 .0

-.18788
-.16421

hgmad 12 anomalous

natl2_ano.hkl

4.00 5.00 2 1.0027 .0

2
Hg -.11616
Hg -.36362

-.18952
-.16569

madc 11 isomorphous

natll_iso.hkl

4.00 5.00 0 1.0046 .0

2
Hg -.11017
Hg -.36553

-.18803
-.16387

madc 12 isomorphous

natl2_iso.hkl

4.00 5.00 0 1.0000 .0

2
Hg -.10891
Hg -.36537

-.18749
-.16366

madc 13 isomorphous

natl3_iso.hkl

4.00 5.00 0 1.0000 .0

2
Hg -.10885
Hg -.36536

-.18771
-.16375

madc hg hamburg isomorphous
nathgderiv_iso.hkl
4.00 5.00 0 1.0000 .0

2
Hg -.11096
Hg -.36646
2 .20 18
1 SET
0001
0000
00
2 SET
0001
0000
00
...... etc

-.18758
-.16443
0 1 0

12.837400
.284738 20.748199
12.837400
.284738 20.748199
12.837400
.284738 20.748199
12.837400
.284738 20.748199
2.9489 .5462E-01 -.1775E+03
-.08980 20.00000 1.51119 21
-.52978 20.00000 1.20566 21
2.2748 .6032E-01 -.2386E+03
-.09076 20.00000 1.43557 22
-.52917 20.00000 1.12660 22
4.3930 .7547E-01 -.1094E+03
-.09007 20.00000 1.23379 21
-.53047 20.00000 1.00647 21
4.6351 .5751E-01 .1684E+03
-.08981 20.00000 1.20896 22
-.53040 20.00000 1.00433 22
4.0734 .5735E-01 .2727E+03
-.08972 20.00000 1.22450 23
-.53036 20.00000 1.00473 23
6.9056 .7391E-01 -.1897E+03
-.08918 20.00000 1.18599 24
-.52977 20.00000 .96625
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.1063E+07

.1642E+07

.1181E+07

.7555E+06

.5969E+06

.7521E+07

.5844E+06

.1047E+07

.9751E+06

.1108E+07

-1344E+07

.6809E+07



Excerpts from the PHASIT log file from the above input file.
The breakdown of phasing power vs resolution is given only for one dataset.

STATISTICS FOR SET 1 AFTER REFINEMENT

R KRAUT = .045 FOR 12662 ACENTRIC REFLECTIONS
STATISTICS FOR SET 2 AFTER REFINEMENT
R KRAUT = .056 FOR 10920 ACENTRIC REFLECTIONS

STATISTICS FOR SET 3 AFTER REFINEMENT

R CULLIS = .558 FOR 319 CENTRIC REFLECTIONS
R KRAUT = .038 FOR 3764 ACENTRIC REFLECTIONS
STATISTICS FOR SET 4 AFTER REFINEMENT
R CULLIS = .620 FOR 834 CENTRIC REFLECTIONS
R KRAUT = .045 FOR 5958 ACENTRIC REFLECTIONS

STATISTICS FOR SET 5 AFTER REFINEMENT

R CULLIS = .623 FOR 770 CENTRIC REFLECTIONS
R KRAUT = .049 FOR 5793 ACENTRIC REFLECTIONS
STATISTICS FOR SET 6 AFTER REFINEMENT
R CULLIS = .513 FOR 648 CENTRIC REFLECTIONS
R KRAUT = .110 FOR 5315 ACENTRIC REFLECTIONS

INDIVIDUAL DATA SET RESULTS BASED ON UPDATED HEAVY ATOM AND E VALUES

SET 1 madhg 11 anomalous
MEAN FIGURE OF MERIT = .389 FOR 6331 REFLECTIONS
SET 2 madhg 12 anomalous
MEAN FIGURE OF MERIT = .148 FOR 5460 REFLECTIONS
SET 3 madc 11 isomorphous
MEAN FIGURE OF MERIT = .508 FOR 4083 REFLECTIONS
MEAN FIGURE OF MERIT = .733 FOR 319 CENTRIC REFLECTIONS
MEAN FIGURE OF MERIT = .488 FOR 3764 ACENTRIC REFLECTIONS
SET 4 madc 12 isomorphous

MEAN FIGURE OF MERIT
MEAN FIGURE OF MERIT

.474 FOR 6792 REFLECTIONS
.677 FOR 834 CENTRIC REFLECTIONS

MEAN FIGURE OF MERIT = .446 FOR 5958 ACENTRIC REFLECTIONS
SET 5 madc 13 isomorphous
MEAN FIGURE OF MERIT = .468 FOR 6563 REFLECTIONS

MEAN FIGURE OF MERIT .654 FOR 770 CENTRIC REFLECTIONS

MEAN FIGURE OF MERIT .443 FOR 5793 ACENTRIC REFLECTIONS
SET 6 madc hg hamburg isomorphous

MEAN FIGURE OF MERIT .396 FOR 5963 REFLECTIONS

MEAN FIGURE OF MERIT .569 FOR 648 CENTRIC REFLECTIONS

MEAN FIGURE OF MERIT = .375 FOR 5315 ACENTRIC REFLECTIONS

*rx*xxx*xx RESULTS FROM COMBINED PROBABILITY DISTRIBUTIONS ******x*¥x
ACENTRIC REFLECTIONS INCLUDED IF 1 OR MORE DATA SETS CONTRIBUTED IN PHASE CALCULATION

MEAN FIGURE OF MERIT = .716 FOR 7538 PHASED REFLECTIONS
MEAN PHASE SHIFT FROM PREVIOUS CYCLE = 1.22 DEGREES
MEAN FIGURES OF MERIT AS FUNCTION OF FP MAGNITUDE

MEAN FOM = .585 MEAN FP = 1558.76 NUM REFL = 753
MEAN FOM = .702 MEAN FP = 2395.57 NUM REFL = 753
MEAN FOM = .747 MEAN FP = 3105.68 NUM REFL = 753
MEAN FOM = .731 MEAN FP = 3784.38 NUM REFL = 753
MEAN FOM = .752 MEAN FP = 4456 .45 NUM REFL = 753
MEAN FOM = .744 MEAN FP = 5162.72 NUM REFL = 753
MEAN FOM = .735 MEAN FP = 6018.64 NUM REFL = 753
MEAN FOM = .723 MEAN FP = 7012.22 NUM REFL = 753
MEAN FOM = .732 MEAN FP = 8504.27 NUM REFL = 753
MEAN FOM = .708 MEAN FP = 11671.32 NUM REFL = 753

MEAN FIGURES OF MERIT AS FUNCTION OF RESOLUTION

MEAN FOM .723 MEAN D 4.07 NUM REFL 753
MEAN FOM = .694 MEAN D = 4.24 NUM REFL = 753
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MEAN FOM = .699 MEAN D = 4.42 NUM REFL = 753
MEAN FOM = .705 MEAN D = 4.64 NUM REFL = 753
MEAN FOM = .705 MEAN D = 4.90 NUM REFL = 753
MEAN FOM = .718 MEAN D = 5.24 NUM REFL = 752
MEAN FOM = .716 MEAN D = 5.71 NUM REFL = 753
MEAN FOM = .714 MEAN D = 6.40 NUM REFL = 753
MEAN FOM = .750 MEAN D = 7.60 NUM REFL = 753
MEAN FOM = .734 MEAN D = 11.87 NUM REFL = 753

PHASING POWER BREAKDOWN BASED ON CURRENT PROTEIN PHASES

SET 1 madhg 11 anomalous
MEAN D = 8.63 PHASING POWER = 2.00 MEAN BIAS = 91.4 REFL= 633
MEAN D = 6.20 PHASING POWER = 2.93 MEAN BIAS = 91.9 REFL= 633
MEAN D = 5.52 PHASING POWER = 3.06 MEAN BIAS = 86.9 REFL= 633
MEAN D = 5.13 PHASING POWER = 2.64 MEAN BIAS = 88.6 REFL= 633
MEAN D = 4.85 PHASING POWER = 2.38 MEAN BIAS = 85.7 REFL= 633
MEAN D = 4 .63 PHASING POWER = 2.06 MEAN BIAS = 93.8 REFL= 633
MEAN D = 4.45 PHASING POWER = 2.24 MEAN BIAS = 89.6 REFL= 633
MEAN D = 4.30 PHASING POWER = 2.06 MEAN BIAS = 91.4 REFL= 633
MEAN D = 4.17 PHASING POWER = 2.15 MEAN BIAS = 93.6 REFL= 633
MEAN D = 4.05 PHASING POWER = 1.86 MEAN BIAS = 93.3 REFL= 633
MEAN D = 4.00 PHASING POWER = .98 MEAN BIAS = 62.0 REFL= 1

OVERALL MEAN D= 5.19 PHASING POWER = 2.29 M.R.E. = .73 MEAN BIAS = 90.6 REFL= 6331

UPDATED E VALUES BASED ON NEW PROTEIN PHASES

NRFL <F> RMS E E FIT DEL E
316 1433.3 586459.1 953553.1 -367094.1
316 1927.6 1238142.4 915128.3 323014.1
316 2296.8 700552.8 905066.5 -204513.8
316 2650.5 744915.5 910378.9 -165463.4
316 2940.9 920513.4 925675.9 -5162.6
316 3221.9 1935495.5 949859.1 985636.4
316 3504.3 912075.1 983473.8 ~71398.6
316 3803.2 904681.1 1029200.4 -124519.3
316 4102.3 1017892.9 1085436.8 ~67543.9
316 4436.8 1125683.5 1160689.8 ~35006.3
316 4739.0 1246982.5 1239951.1 7031.4
316 5026.7 1377596.4 1325317.4 52279.0
316 5372.2 1303630.9 1440618.3 -136987.4
316 5731.4 1461523.4 1575311.5 -113788.1
316 6210.0 1776409.8 1778172.0 -1762.3
316 6661.4 1947772.3 1994115.0 ~46342.8
316 7304.2 2016219.8 2342693.0 -326473.3
316 8054.2 2656859.8 2810452.8 -153593.0
316 9120.4 4160179.3 3588630.8 571548.5
316 11456.4 5638618.0 5758275.0 -119657.0

(...)
SET 3 madc 11 isomorphous

OVERALL MEAN D= 5.59 PHASING POWER = 3.20 M.R.E. = .52 MEAN BIAS = 87.7 REFL= 4083

UPDATED E VALUES BASED ON NEW PROTEIN PHASES

SET 4 madc 12 isomorphous
OVERALL MEAN D= 5.68 PHASING POWER = 2.36 M.R.E. = .53 MEAN BIAS = 88.3 REFL= 6792
SET 5 madc 13 isomorphous
OVERALL MEAN D= 5.69 PHASING POWER = 2.35 M.R.E. = .51 MEAN BIAS = 88.0 REFL= 6563
SET 6 madc hg hamburg isomorphous
OVERALL MEAN D= 6.12 PHASING POWER = 1.63 M.R.E. = .64 MEAN BIAS = B4.6 REFL= 5963
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Abstract

The problem of estimating heavy-atom parameters (esp. occupancies) from acentric reflexions in the
MIR method has a long history of difficulties, and a conceptually satisfactory solution allowing bias-free
refinement of all parameters (including the lack of isomorphism) has only recently been obtained by a
recourse to the method of maximum-likelihood estimation. The situation is essentially identical in the
case of MAD phasing. The maximum-likelihood method needs to be invoked to exploit incomplete phase
information in a heavy-atom parameter refinement while preventing that information from biasing the
results.

We have designed and written from scratch a computer program - SHARP (Statistical Heavy-Atom
Refinement and Phasing) - that fully implements the maximum-likelihood approach. It can refine
simultaneously scale, a model for the lack of isomorphism and all heavy-atom parameters from MIR and
MAD data, or any mixture of them. The program has been systematically tested, both on synthetic and
on measured data, and compared to MLPHARE. The results show the superiority of our approach,
especially in cases of low signal-to-noise ratio. The likelihood function has also been used as a detection
tool to plot residual Fourier maps and probe for minor sites, and for the calculation of phase probabiliry
distributions encoded in Hendrickson-Lattman coefficients.

1. Introduction

Bias-free refinement of heavy-atom parameters in the MIR and MAD methods, which is an essential
step towards obtaining the best possible electron-density maps given the available data, has remained for
a long time a troublesome issue in macromolecular crystallography. The conventional approach to this
problem was originally conceived [1],[2] as a straightforward adaptation of the least-squares method
previously used on centric data by Hart [3] : the "most probable” or the "best" estimates of the phases, as
defined by Blow & Crick [4], were simply made to play a réle analogous to that of the signs of centric
reflexions. Dickerson, Weinzierl & Palmer [5] pointed out that more than two derivatives were needed
for this type of refinement, and Blow & Matthews [6] found this method to have poor convergence
properties unless steps were taken to ensure that the acentric phase estimates used in the refinement were
independent of the parameters that were being refined. With hindsight, these difficulties are easily
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rationalised : this 'phased’ least-squares refinement was, in effect, violating the first cardinal rule of the
least-squares method, namely that any quantity involved in the observational equations should be either
a model parameter or an observation. Treating the native phase as a known constant within each cycle,
but recalculating it after each refinement step, introduces bias on the parameters, especially in the case
of mostly bimodal phase distributions.

At the same time as the first attempts were being made to use phase estimates, an alternative refinement
scheme was devised by Rossmann [7], based on a difference-Patterson correlation criterion, and evolved
towards the "FHLE method" [8],[9], and finally the "origin-removed Patterson-correlation function”
[10]. Here the use of acentric phase estimates is avoided altogether, but at the price of impoverishing the
available information in the sense that multiple derivatives are not allowed to assist each other’s
refinement through the generation of phase information.

Sygusch [11] recognized that a middle-ground could perhaps be found if the acentric phases were no
longer deemed to be "estimates”, but were instead treated as extra parameters and refined along with the
others. Unfortunately, the enormous increase in the number of variables dictated the use of a diagonal
approximation, which rather defeated the original purpose of accommodating the correlations between
phases and parameters. Bricogne [12], [13] proposed a solution that partially overcame these difficulties.
The main idea was that structure-factor estimates for acentric reflexions are implicit functions of the
parameters that are being refined. This dependence was shown to result (via the chain rule) in a
correction to the partial derivatives from which the normal equations of the least-squares method are to
be formed. Many previously observed pathologies, such as the rapid divergence of the site occupancies
of good derivatives, were cured by this analysis, but slower-moving instabilities were observed that
resulted in divergent behaviour of the estimates for the lack of isomorphism of the various derivatives.
Moreover, the problem of bimodality remained.

At this point, compliance with the first cardinal rule of the least-squares method had been essentially
restored, but attention was drawn to the violation of a second cardinal rule : the inverse-variance
"weights’ in the expression for the least-squares residual should be kept fixed as if they were part of the
observed data. Since the method of least-squares is a special case of the maximum-likelihood method
when errors are normally distributed with fixed (co)variances, it is clear that the problem of properly
estimating the lack-of-isomorphism parameters demanded a fully-fledged maximum-likelihood
treatment rather than least-squares.

Perusal of the literature shows that two-dimensional statistical 'phasing’ (probability distribution on the
phase and on the modulus of the native structure factor) had been considered as early as 1970 [14],
leading to the first mention of likelihood in this context by Einsein [15]. The first mention of parameter
estimation by maximum-likelihood, in a very limited context, is found in Green [16].
Maximum-likelihood (ML) refinement for heavy-atom parameters was then advocated by Bricogne
[17],[18],[19], Read [20], and an approximation to it was implemented by Otwinowski [21] in the
program MLPHARE. This program is only a partial implementation of ML refinement - best described
as “phase-integrated least-squares’ - in the sense that (i) it integrates the exponential of the least-squares
residual and its partial derivatives only over the phase of the native structure factor (not over its
modulus) ; and that (ii) the lack of isomorphism is still re-estimated at the end of each refinement cycle
rather than being refined, and may often converge to non-optimal values. Nevertheless, this approach
has been shown in numerous cases to yield better results than earlier refinements, drawing attention to
the potential of maximum-likelihood methods.
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The maximum-likelihood formalism outlined in Bricogne [22] for the MIR and SIR cases forms the
basis of the present work. We will describe here its extension to probability distributions incorporating
anomalous diffraction effects as well as measurement error and non-isomorphism. Integrating these
distributions in the whole complex plane leads to likelihood functions that can be used for heavy-atom
detection and refinement, and for producing phase probability distributions. We will also describe the
current implementation of this formalism in a computer program, named SHARP (for Statistical
Heavy-Atom Refinement and Phasing) [23].

2 Likelihood functions for parameter refinement

2.1. Outline

Generally speaking, bias is introduced in a model incorporating some degree of randomness whenever a
distribution for a random quantity is replaced by a value for that quantity. The likelihood formalism
avoids this pitfall by consistently emphasizing that distributions are involved.

More specifically, a least-squares (LS) model is always formulated as a prescription for turning given
values of model parameters into ’calculated’ (error-free) values to be compared with the observables.
Error estimates are obtained a posteriori, by examining the residual discrepancy between the
’calculated’ and the "observed’ quantities. By contrast, a likelihood-based model casts its predictions
directly in the form of probability distributions for the observables, the quantities called ’calculated’ in
the LS formalism usually appearing as parameters in these distributions.

2.2. The native structure factor

The most important thing to bear in mind when building up the likelihood function for heavy-atom

refinement is that the complex value of the native structure factor FP(h) is not known. The measurement
of a native amplitude for an acentric reflexion h, if present, gives rise to a two-dimensional probability

distribution p( FF(h) ). A measurement for the structure factor of a derivative crystal will also give rise

to a two-dimensional probability distribution p( FE(h) | {g} ) for the native structure factor, conditional
to the values {g} of the set of global parameters for the heavy-atom model, for the scaling model and for
the lack-of-isomorphism model.

For a centric reflexion, the probablity distribution becomes one-dimensional, but the theory is essentially
similar.

2.3. The likelihood function

For a given reflexion h, the probability distribution of the native complex-valued structure factor,

conditional to all the information available, is obtained by multiplying the probability distributions of
FF(h) for independent measurements.

This probability distribution is then transformed into a likelihood distribution for that reflexion, via the
simple rule (in the absence of prior phase information) :
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A ({g},FP.m))=p(Fr.(h) 1 {g})

Note that this equation is valid at each trial point FP,.,(h) in the Harker plane. In order to have a
likelihood function that is independent of assumptions on the native complex structure factor, we must
now integrate the likelihood function over all possible values of F P,.,(h) :

A qgh= I 2 ({g),FPuh))d’FP)

In the case of a centric reflexion, the integration is one-dimensional only, along the axis defined by the
centric phase.

3. Parametrisation

3.1. Heavy-atom structure factors

This parametrisation amounts to a physical description of diffraction properties , involving heavy-atom
coordinates, occupancies, isotropic and (if need be) anisotropic temperature factors, as well as normal
and anomalous scattering factors. This was prefered to *isomorphous’ and ’anomalous’ occupancies,
because the physical parameters f” and f’ are either known precisely from physical tables (MIR
experiment off an absorption adge) or can be measured from fluorescence scans (MAD experiment).
Our implementation uses a hierarchical organisation for these parameters, that enables common
attributes to be shared appropriately (Fig. 2). A list of site coordinates is determined that contains all
known sites in all derivatives, and for each level of the hierarchy, these sites are ’qualified’ (by a
chemical identity, by an occupancy etc.). In this way, the long-standing problem of the same site being
refined independently at each wavelength of a MAD experiment cannot occur, and common sites in a
MIR experiment are parametrised correctly.

Future developments will incorporate a parametrisation of the anisotropy of anomalous scattering
[24],[25] and will allow a refinement of the corresponding parameters from unmerged data carrying
suitable goniometric information for each measurement.

3.2. Scale factors

Currently, scale factors are parametrised by a constant scale K5¢ pan isotropic relative temperature factor

B%¢ 7 and six anisotropic increments bP-4 ;10 BS¢ i
k(h) = K exp[-1/4 B(*° j)(d*)2) expl-(z bP9hPhY)]

3.3. Lack-of-isomorphism variance

Differences between native and derivative structure factors are explained by a heavy-atom model, and
by an error model. In the 'null hypothesis’ where we know nothing about the heavy-atom structure, all
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the differences are on average attributed to the error, and this error will be refined to smaller values as
the heavy-atom model becomes more accurate.

This error can be broken down in three main components :
* The measurement error, that is part of the crystallographic data and not refined.

* The physical lack-of-isomorphism error.

In the absence of structural evidence for "localised’ lack-of-isomorphism, our assumption will be that of
Luzzati [26] that there is a random isotropic positional perturbation, with spatially uniform mean
amplitude and normal distribution, over the whole asymmetric unit. Based on this hypothesis, following
the work of Read [27] and Dumas [28], we used a one-parameter model for the physical
lack-of-isomorphism variance, increasing with resolution.

* The model error.

This error has the same effect on the statistical distribution of the native structure factor as the previous
one, but its variance is approximately decreasing with resolution as the mean intensity of remaining
heavy atoms. We used a two-parameter model (a constant and a temperature factor) for this error.

A similar parametrisation is used for the error on the anomalous differences. Although there is no
physical basis for adopting the same model, it was thought flexible enough as a function of resolution to
fit to more diverse functions of resolution.

4. Other uses for the likelihood function

4.1. Residual maps for model updates

The likelihood formalism also provides the opportunity of checking for significant systematic
disagreement betweeen the data and the substitution model. For each reflexion h, we calculate the
gradients of the log-likelihood function with respect to the real and imaginary parts of the various

heavy-atom structure factors FH j(h). These numbers are then used in Fourier syntheses to produce
residual maps, that have the symmetry of the crystal. Similarly, in the case where there is significant
anomalous diffraction, the gradients with respect to (FH i+t FH j-) become coefficients for isomorphous

residual maps, and those with respect to (FH e FH j-) for anomalous residual maps.

These maps enable the detection of minor sites, and perform this task in an optimal fashion because they
take into account the full unbiased phase information available from the data at the current stage of
refinement. They are essentially Fourier syntheses calculated from inverse-variance weighted difference
coefficients between the derivative and native data. Their enhanced sensitivity to any departure from the
current heavy-atom model (when the data are accurate enough, and to high enough resolution) makes
them the instrument of choice to detect more subtle features, such as anisotropy in the heavy-atom
temperature factors or structural disorder at certain sites.
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4.2. Final phasing and calculation of Hendrickson-Lattman
coefficients

Once the global parameters have been refined to convergence, the likelihood function & (FP..{g})

considered as a function of the trial native structure factor FP* only, becomes (after suitable
normalisation) the probability distribution function of the modulus and phase of the native structure
factor (this is a simple application of Bayes’s theorem). The two-dimensional centroids FPbes[(h), used

as Fourier coefficients of the electron-density map, and the Hendrickson-Lattman *ABCD’ coefficients
[29] of the marginal phase distribution can be easily derived from this likelihood function.

4.3. Future developments and perspectives

A natural extension of the quantitative use of residual maps based on log-likelihood gradients is the
refinement of heavy-atom clusters of known geometry by real-space techniques of the Agarwal-Lifchitz
type (e.g. as implemented in the TNT package). This is currently underway.

In order to offer ab initio detection capability, another type of map will be added to the existing
program. Its coefficients will initially involve second-order derivatives of the log-likelihood function
associated to the null hypothesis defined by "all intensity differences between data sets are caused by
lack of isomorphism". This map will have the character of a Buerger sum function over a weighted
difference-Patterson function [30]. As major sites are detected and included in the substitution model,
the log-likelihood function will develop first-order derivatives giving rise to a difference-Fourier
component in the residual map, while the revised second-order derivatives will keep contributing a
component with the character of a sum function over a residual difference-Patterson.

The whole process of detecting sites and of assessing their significance quantitatively can thus be
automated, using the log-likelihood gain referred to the null hypothesis as a scoring criterion for the
peak-search. The procedure will stop when the highest remaining peak in the residual maps is essentially
at the level of the noise.

Once all heavy atoms have been detected and refined, the remaining features in the *isomorphous’
residual maps, if they are significant, can provide the basis for a systematic study of lack of
isomorphism. This could improve the rather crude way in which ’global’ and ’local’ lack of
isomorphism have hitherto been described.

S. The Graphical User Interface

Because the program can accomodate data from many different experimental procedures (MIR, with or
without anomalous scattering, MAD, or a blend of the two), it was necessary to guide the user during the
buildup of a hierarchical parameters file describing this experiment. This was achieved by means of an
HTML browser-based Graphical User Interface. The same system was used to facilitate inspection of
the output of the program.
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5.1. Choice of tools

Our approach was based on a client-server philosophy, in order to make best use of the World Wide
Web as a communication tool. As a result, once SHARP is installed on a server (a powerful computer,
workstation or other, that will actually do the calculations), any authorised user can run the program
from any terminal connected to the Internet. This has proved invaluable during the beta-testing stage.
and provides high flexibility for all users. On the other hand, if this ’universal access’ becomes a
security issue, it can be reduced to an Internet subdomain, or to a single machine.

The result is a forms-based interface, written in HTML language and processed by Perl scripts, that
exactly mirrors the hierarchy of parameters during the buildup of the parameters file, and that connects
automatically to Graphical Helper Applications to facilitate inspection of the output.

5.2. Input

The input pages consist in a series of embedded forms, that guide the user through our parametrisation
of the experiment (list of sites, compounds, crystals, wavelengths, batches). Because the options taken in
the higher levels condition the structure of the lower levels, the setting of the parameter tree is
unidirectional (i.e. coming back up the tree erases what has been set further down).

5.3. Output

Maximum advantage is derived, in the output, from the hyper-link facility of the HTML language. A
mouse-click on a hyper-link opens another file, accessible from the Internet. In practice, the information
created by the program, instead of being stored in a single massive log-file, consists in a large number of
small files stored in an ’output directory’. All these small ’explanatory’ files can be accessed from a
master file, called 'SHARP output’, by means of specific hyperlinks. The master file contains the
minimal information needed to follow the progress of the refinement, and all details are accessed
through hyperlinks.

In the same way, the documentation can be accessed in a context-sensitive manner by clicking on
hyperlinks called ’explanation’, scattered at all points of interest in the master file and in secondary
details files.

Graphical applications are triggered through a Unix "mailcap” mechanism, that relies on the extension
of a file name to determine what program to use for visualising the contents. All statistics relative to the
data (histograms of intensity, of isomorphous and anomalous differences) and to the phasing (lack of
isomorphism statistics, phasing power and Rcullis) can be visualised that way, and maps can be plotted
in programs npo [31] or O [32] by pressing a button in the interface, without having to program specific
instructions for these graphical tools.

6. Applications
6.1. MAD dataset : IF3-C
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One of the first experimental (as opposed to synthetic) datasets that we processed using SHARP was the
IF3-C [33],[34] (C-terminal part of translational initiation factor 3). The two methionine residues of this
94-residue protein were substituted for selenomethionines and a three-wavelength anomalous diffraction
experiment was performed at the Selenium K edge.

The starting heavy-atom model consisted in two selenium atoms with isotropic thermal motion.
Refinement of this model showed that, consistently with the results of other refinement procedures, the
second selenium atom had a high temperature factor (around 60). Once the refinement was completed,
the residual maps showed strong anisotropic features for the first selenium site and weaker anisotropy
for the second. We consequently updated the heavy-atom model by allowing an anisotropic temperature
factor for both seleniums atoms. The resulting residual map showed much less features above the noise
level, except for a 10a peak at 1.8 A distance from the first selenium site. The second update of the
heavy-atom model allowed for a third selenium atom with an isotropic temperature factor, that refined to
a low occupancy (0.2). The remarkable result was that the added occupancies of site 1 and site 3 were
equal to the the occupancy of site 2 within the standard deviation of this parameter. This observation,
added to the small distance between site 1 and site 3, shows that this methionine residue has a double
conformation.

We then used the density modification program SOLOMON [35] to improve the phases, assuming that it
would yield better results when the input phase probability distributions (encoded as
Hendrickson-Lattman coefficients) are statistically more accurate. The density modification prodedure
for both SHARP and MLPHARE was exactly similar. The results are summarized in Table 1.

6.3. SIRAS dataset : U2

This dataset had just been collected at the Trieste synchrotron source, at a wavelength that optimised the
anomalous signal of the mercury atoms. The protein is a ternary complex of two proteins (U2A’/U2B"’")
and an RNA hairpin (U2snRNA hairpin IV) involved in the spliceosome [36]. The total molecular
weight is S50kD. There are two molecules in the asymmetric unit, but the non-crystallographic symmetry
was not used in the model-building stage, due to the very high quality of the maps.

The starting heavy-atom model consisted of two mercury sites, for which coordinates, occupancy and
temperature factor were determined in a first round of refinement. The residual map plotted at the end of
this refinement showed strong anisotropy features for both sites, and a suspicion of a double position for
site 1. The anisotropy was refined first, and the subsequent residual map clearly showed that the cysteine
residue to which the first mercury was bound had a double conformation. Once this was taken into
account in the heavy-atom model in a third round of refinement, the residual map showed no more
significant features, thus proving that the refinement was complete. The resulting map, after density
modification in SOLOMON, was of high quality (see Table 2).

Interestingly, in this case the anomalous residual map yielded a much clearer information that the
isomorphous redsidual map. This was confirmed by the phasing power statistics, which showed that, due
to significant lack of isomorphism, the anomalous signal contributed far more to the phasing than the
isomorphous signal. The whole procedure of refinement and phasing was then started again from the
same initial assumptions, but without using the native data. Heavy-atom refinement yielded the same
results, and the residual maps allowed unambiguous detection of both the anisotropic thermal motion
and the double conformation. Phasing of this "Single-Wavelength Anomalous" dataset, followed by the
same solvent-flattening procedure, yielded an interpretable electron-density map, although of a lesser
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quality than the SIRAS map (see Table 2).

7. Conclusion

The maximum-likelihood refinement in SHARP, coupled with the very sensitive log-likelihood gradient
maps used to detect residual features of the heavy-atom model, produces phase probability distributions
for all measured reflexions that are an optimal starting point for density-modification procedures.

The test of using the anomalous scattering of a derivative by itself, in the second example, is of special
interest. It was not useful for the determination of the structure in that particular case because the
isomorphism was relatively good between the native and mercury derivative crystals. It shows
nonetheless that, in cases of very strong non-isomorphism, a well-substituted derivative can be used by
itself to provide phase information, if the anomalous signal is strong. In such a case of complete
bimodality in the phase distribution of acentric reflexions, the main purpose of the density modification
procedure is to select the right mode. SOLOMON seems to perform this task for most reflexions thanks
to the envelope constraints.
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TABLES

Glossary :

FOM is the mean figure of merit in that resolution bin.

DELTAPHI is the mean phase difference, weighted by amplitude and FOM, in that resolution bin.
CORREL is a reciprocal-space correlation coefficient between complex structure factors. By Parseval’s
theorem it is equivalent to a real-space correlation coefficient in that resolution bin.

Resolution  ALL 50.0 5.25 3.73 3.05 2.64 2.36 2.16 2.00 1.87
(&)

SHARP refinement and phasing, density modification with SOLOMON

FOM 0.90 0.84 0.91 0.91 0.90 0.90 0.90 0.90 0.89
<DELTAPHI> 30.5 39.1 25.3 29.5 32.0 30.6 29.3 30.9 32.2
CORREL 0.80 0.70 0.86 0.81 0.77 0.80 0.82 0.80 0.78

MLPHARE refinement and phasing, density modification with SOLOMON

FOM 0.90 0.84 0.91 0.91 0.90 0.90 0.90 0.90 0.89
<DELTAPHI> 30.5 39.1 25.3 29.5 32.0 30.6 29.3 30.9 32.2
CORREL 0.80 0.70 0.86 0.81 0.77 0.80 0.82 0.80 0.78

Table 1 : Quality of IF3-C MAD phasing, in comparison with the refined model

Resolution ALL 50.0 7.83 5.57 4.56 3.95 3.54 3.23 2.99 2.80
(&)

SHARP refinement and phasing, density modification with SOLOMON - SIRAS data

FOM 0.90 0.89 0.95 0.96 0.96 0.95 0.92 0.89 0.78
<DELTAPHI> 43.3 38.9 35.9 32.6 36.8 42.6 50.8 57.8 64.6

CORREL 0.66 0.64 0.74 0.78 0.73 0.66 0.55 0.46 0.37
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SHARP refinement and phasing, density modification with SOLOMON - SAD data

FOM 0.90 0.86 0.93 0.95 0.94 0.95 0.92 0.88 0.82
<DELTAPHI> 57.0 58.2 50.0 48.2 50.7 55.8 62.9 68.0 72.2
CORREL 0.49 0.45 0.57 0.60 0.56 0.49 0.39 0.32 0.26

Table 2 : Quality of U2 SIRAS phasing and SAD (Single-Wavelength Anomalous Diffraction) phasing,
with SHARP
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Multiwavelength anomalous dispersion phasing strategies
investigated with a brominated oligonucleotide.

* Mark R. Peterson

Structural Chemistry Section, Department of Chemistry, University of
Manchester, Oxford Road, Manchester, M13 9PL, England, U.K.

Abstract

Multiwavelength anomalous dispersion methods were used to analyse the crystal structure of
d(CGCGBrCG) in extension of the work presented in Peterson, Harrop, McSweeney,
Leonard, Thompson, Hunter and Helliwell (1996) J. Synch. Rad. 3, 24-34. The brominated
oligonucleotide d(CGCGB'CG) of chemical formula C; 14N48068P10Br7 crystallises in space
group P2;2,2; with unit cell dimensions a=17.97, b=30.98, c¢=44. 85A, o=P=y=900. It was
chosen as a test crystal to evaluate the MAD method itself and to commission station PX9.5 for
several reasons; it was radiation insensitive; it had a very good concentration of anomalous
scatterers, i.e. two bromines in two hundred and forty light atoms; and the bromine K edge
was very near to the critical wavelength flux output of the SRS wiggler. It also diffracted
strongly, due to the relatively small unit cell, in spite of the rather small crystal volume. Data to
a resolution of 1.65A were collected at four wavelengths about the bromine atom K absorption
edge using synchrotron radiation at Station PX9.5, SRS, Daresbury.Traditionally, the
maximum of f " is not coincident with the minimum in f ', however, in this case both are
observed on the same data set, A,. Hence Agpom and Af ' could be maximised using only two
wavelengths. Various wavelength combinations phasing strategies were then studied, ranging
from 4 to 2 wavelengths. DM phase improvement procedures were also employed on these
combinations giving highly interpretable maps even for unoptimised 2 wavelength cases.

Data Collection

Data collection was conducted at Station PX9.5 at the Synchrotron Radiation Source (SRS) in
Daresbury, England. The single crystal selected for the data collection had a pseudo-hexagonal
plate morphology of dimensions 0.2 X 0.1 X 0.01 mm. As the anomalous scattering factors
are derived from the atomic absorption coefficient, a XANES (X-ray absorption near edge
structure) experiment was also carried out on station PX9.5 to decide upon the precise
wavelengths to be used in the data collection. The 6A/A for the beam was set at 4.4 x 104, by
restricting the vertical divergence of the beam by a factor of two with the use of slits upstream
of the focussing mirror.

Upon inspection of a test diffraction image, it could be seen that the crystal was relatively well
aligned, i.e. the Bijvoet mates could be measured on the same or adjacent images. No further
crystal alignment was undertaken. The wavelengths for the diffraction measurements were
chosen to optimise the phasing power by (a) maximising the f " effect and (b) Af ' for different
wavelengths for each hkl. Hence, four wavelengths were chosen: (1) a reference on the long
wavelength side of the edge (A1=0.9323 A); (2) at the absorption edge inflection point
(A2=0.9192 A); (3) at the "white line" absorption maximum (A3=0.9185 A); (4) a reference on

* Current Address: Wellcome Sciences Institute, Department of Biochemistry, University of
Dundee, Dundee, DD1 4HN, Scotland, U.K.
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the short wavelength side of the edge (A4=0.8983 A). The choices of A> and A3 follow what
are known as f ' dip and f " max respectively.

For each wavelength the crystallographic data were collected, each involving a 49 rotation of
the crystal. For each 4° sweep the total exposure time was 60 seconds. In total 120° of data
were collected for each of the four wavelengths. Another 120° a fifth data set was then
collected on the same crystal, immediately after the MAD data, at the "white line” (i.e. A3 ) but
with the crystal misaligned by offsetting one of the goniometer head arcs by approximately
300, This allowed reflections previously in the blind region to be measured and combined with

the A3 data set.

Merging statistics from the five data sets are displayed in Table 1.

Analysis Vs. Intensity A Ao Az A Shs
Rmerce 2.3% 2.7% 2.9% 2.5% 2.9%
Rano‘r'n 2.0% 8.6% 7.2% 5.8% 6.3%
Total No. of Reflections 11372 11598 11573 11655 11506
No. of Ind. Reflections 3028 3052 3054 3065 2988
Completeness 93.1% 93.7% 93.8% 93.6% 94.5%
Multiplicity 3.8 3.8 3.8 3.8 3.9

Table 1. Merging statistics for the five data sets from AGROVATA (CCP4 (1994)).

The weak and negative intensities were made consistent with a Wilson distribution of structure
factor amplitudes using TRUNCATE (CCP4). The computer programs CAD and SCALEIT
(CCP4 ) were employed to combine the five data sets into one file and to put them on an overall
common scale. This was done with respect to A, it was treated as the 'native'. It was indeed
found that A, had the largest MFID between all other data sets.

MFID MFAD. kemp Ktheor
Al 5.7 3.3)% 2.7% 3.67 11.71
Ao 0(3.5% 11.5% 0 0
A3 3.5 ()% 9.8% 0.64 0.84
Aa 6.9 (5.00% 7.8% 1.48 1.89
Sh3 6.1 (5.3)% 9.3% 1.04 0.84

Table 2. SCALEIT (CCP4) statistics between wavelengths treating Ay as the ‘native’,
bracketed values are statistics treating Az as the 'native'.

SCALEIT provides useful estimates of the largest acceptable dispersive and absorptive
differences between and within the different A data sets. Due to the sensitivity of Patterson
methods to spurious, large, differences it was important to reject any unacceptably large
differences as outliers. The final SCALEIT statistics are shown in Table 2.

Dispersive and absorptive Patterson maps were then generated with FFT. Identification of the
bromine sites could be readily found using both the anomalous (i.e. A2F+ - A2F-) and
dispersive (i.e. FA4 - FA;) Patterson maps. From the three Harker sections in both maps, two
consistent bromine sites could be easily found. The quality of these Patterson maps can be seen
in Figures 1. and 2. The positions of the two bromine sites were 0.3241, 0.2009, 0.0100 (Site
A) and 0.5010, 0.1807, 0.2310 (Site B) respectively.
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Figure 1. Harker sections (U=1/2, V=1/2,
W=1/2) of the Patterson map (shown from
0 to 172 in each section for U, V and W as
appropriate) calculated with Patterson
coefficients based upon anomalous
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Figure 2. Harker sections (U=1/2, V=1/2,
W=1/2) of the Patterson map (shown from
0 to 172 in each section for U, V and W as
appropriate) calculated with Patterson
coefficients based upon dispersive

differences between data sets A; and Ay,
i.e. the f ' dip and the short wavelength
reference data set.

differences recorded at A3 (0.91 924).

Phase calculations

Each bromine atom had its co-ordinates, temperature factors and occupancies (both real and
anomalous) refined in MLPHARE (CCP4)for ten cycles. The refined positions of the two
bromine atoms were used in MLPHARE on both hands (i.e. x y z and x y z ). MLPHARE also
treats the data sets collected at different wavelengths as isomorphous derivatives with one data
set being chosen as the 'native’. To maintain a consistent positive dispersive difference
between the other data sets, the f ' dip data set (A;) was chosen as the native. Dispersive
differences between A, and the other data sets give rise to isomorphous differences, especially
A1 and A4, with respect to A; which were treated as apparent real occupancies of the anomalous
scatterers. For the 'native' data set (A;), the real occupancies of the anomalous scatterers were
fixed to zero initially. The figures of merit of the MAD phases, using all four wavelengths
(excluding the 53 data set), were 0.86/0.82 to 1.65A resolution for the acentric/centric data
respectively for both hands. The f ' and f " anomalous scattering factors were added to the
form factor list, both being arbitrarily set equal to one electron so that the real and anomalous
occupancies corresponded to the number of electrons involved in the dispersive and absorptive
differences respectively, as the data sets were on a common absolute scale previously via
SCALEIT and TRUNCATE. Table 3 gives the relevant phasing statistics for each derivative
against the native (A;), and also compares the theoretical values of the anomalous coefficients f
"and f " (Sasaki, 1989) at each wavelength with the coefficients extracted at each wavelength
via the occupancies in MLPHARE.

The phases from MLPHARE were then combined with the structure factor amplitudes from the
A2 native data set, enabling a MAD electron density map was calculated via FFT (CCP4). The
MAD maps were calculated on both hands (Figs. 3 (a) and (b)) at 1.65 A resolution. The
figures of merit for both sets of phases do not distinguish between correct and incorrect
enantiomers. The problem is only resolved upon inspection of the MAD electron density maps
for "chemical sense". That is the map calculated on the correct hand (Fig. 3(a)) showed the
bases clearly and building of the model with O (Jones et al (1989)) could be easily started from
the known heavy atom positions. The map calculated on the wrong hand was totally
uninterpretable (Fig. 3 (b)).
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Figure 3. A portion of the MAD electron density map (shown from 0 to 1 in x and y for a 2.84
thick slab in z) calculated at 1.65A resolution contoured at 0.5 rms intervals and commencing at
0.5 rms (a) calculated on the correct hand (b) calculated on the wrong hand.

Theory (SASAKI (1989)) Experimental MLPHARE)

A A f' f Af' Af'a  Af'm f'a f's

A1 0.93230.9332 -3.83 0.515 6.12 5.64 5.5 0.45 0.45
Ao 0.9192 | 0.9201 -9.95 3.823 0 0 0 5.68 3.55
A3 0.9185{0.9194 -6.76  3.817  3.19 3.05 2.31 3.83 3.17
A4 0.8983 {0.8992 -3.08 3.644 6.87 6.58 6.37 2.99 2.72
54 0.918510.9194 -6.06 3.817 _ 3.19 1.96 2.70 2.55 2.40

Table 3. The theoretical values of the anomalous scattering factors at the wavelengths (A) used
(from Sasaki (1989) corrected for a shift of 11 €V (A') due to the absolute setting of
monochromator being incorrect) and also those experimentally derived from MLPHARE.
MLPHARE has anomalous scattering factors for both bromine sites A and B.

Key observations on the MAD Work.

In the variation of f ' and f " with wavelength, only two wavelengths need to be measured to
yield a Azpom at one wavelength and a change via Af ' of Fpy; between the two wavelengths
(Okaya and Pepinsky (1956); Hoppe and Jakubowski (1975); and Helliwell (1979)). The
choice of wavelengths to maximise Azpom and Af ' was made with reference to the fluorescence
spectrum. A key objective is to make the centres of the phasing circles in the Harker phasing
diagram well separated and non-collinear; which is a necessary and sufficient condition for
phasing (Helliwell (1984)). Traditionally, the maximum of f " is not coincident with the
minimum in f '. Hence, three wavelengths would be needed in such a situation for fully
moving the centres of the phasing circles apart. In this study however, although A3 was
expected to have the largest Friedel anomalous difference, in fact that was the case for the A, (f
' dip) data set (e.g. see Ranom values in Table 1). In light of A, being the f " maximum, A3 was
taken as 'native’ to comfirm if A, was indeed at the f ' dip. This was done by comparing
MFID's between data sets where A, then A3 are taken as the 'native’ data sets. It was indeed
found that A, had the largest MFID between all other data sets (see Table 2). In such a case
then, where both the f " maximum and the f ' minimum case are both observed on the same
data set, i.e. A2, one data set becomes essentially redundant i.e. A3 in making the biggest
anomalous differences. Hence, various alternative strategies of A combinations were
investigated.

Phase Information and Electron Density Map Quality from Various Wavelength Combinations.
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The following analysis can essentially be split up into three categories involving data sets
recorded at: respectively four, three, and two wavelengths in a variety of combinations to
explore both experimental strategies for phasing and theoretical/computational strategies of
phase improvement (See Figure 4 and Table 4 for respective map quality and FOM's). The
experimental straregies were published in Peterson et al. (1996).

Case 1: Ay, Aa, A3, Ag

This combination of wavelengths is the case described previously where the f " anomalous
effects of each wavelength are all utilised along with the isomorphous effects between A> and
each of the other three wavelengths. The map was of excellent quality and structural moieties

could be easily characterised.

Case 2: A, Ay, A3

This three wavelength case, and the next, is to compare the two possible choices of reference
wavelength. Sometimes, due to lack of SR beam time and/or prolonged exposure times, it may
be only feasible to collect data at three wavelengths. The reference wavelength, A;, has no
anomalous signal as it is situated on the long wavelength side of the Br K edge. The map,
however, was of excellent quality and could be easily characterised.

Case 3: Ay, A3, A4

The reference wavelength, A4, has a good anomalous signal as it is situated on the short
wavelength side of the absorption edge, unlike A;. The overall figure of merit was certainly
improved compared with case 2. The map was again of excellent quality and could be easily
characterised.

Case 4: 7\.2, }\.4

The theoretical minimum case for unique phase determination involves two wavelengths. This
is akin to the 'two-short-wavelength-method' of Hoppe and Jakubowski (1975). It is required
that the centres of the phasing circles be well separated and non-collinear and this is achieved
well here (Helliwell (1984)). The A,, A4 pairing has the largest dispersive difference, whilst,
A, also has the maximum Friedel difference. The electron density map was of high quality and
totally interpretable.

Case 5: Ay, A3

This combination of wavelengths stimulated by the correspondence from D. H. Templeton,
was used to see if the map could be phased with two extremely close wavelengths (i.e. only
0.0007A apart!) that might be adversely affected by dichroism effects. Also the A,, A3 pairing
has half the dispersive signal compared to the theoretical minimum, case 4, A,, A4. However,
A, has the largest anomalous difference whereas A3 has the next largest anomalous difference..

Density Modification Procedures for Improvement of Phase Quality.

The principle of density modification (DM) is to improve the experimental phases by imposing
restrictions on the density in real space and then using the phases of the modified map to alter
or replace the experimental phases. In protein crystallography these are important methods for
phase improvement. Moreover they may be applied so as to reduce the number of wavelengths
needed in a MAD phase determination experiment and/or use wavelengths very close in value,
but with reduced (less optimal) values of f " or Af'. The map modification process embroided
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in the program DM (Cowtan (1994)) was used on the various wavelength phasing
combinations.

Case 1: Density Modified A, A2, A3, Ag
The quality of the original map was very good, however, DM improved the map quality around
all the bases. All bases now had well defined, complete electron density apart from base 7

which still had a lack of connectivity at one bond. :

Case 2: Density Modified A, A2, A3

Seven bases (1, 3, 8,9, 10, 11 and 12) that had incomplete density (side chains missing or
lack of connectivity) originally, sufficiently improved to now show well resolved connected
density. The remainder of the bases, which had previously suffered from a lack of

connectivity, were still not significantly altered.

Case 3: Density Modified Ay, A3, A4

Eight bases (1, 3,4, 8,9, 10, 11, and 12) that had incomplete density (side chains missing or
lack of connectivity) originally, sufficiently improved via to now show well resolved connected
density. The remainder of the bases which suffered from a lack of connectivity were not

significantly altered.

Case 4: Density Modified A, A4

Eight bases (3, 4, 6, 8, 9, 10, 11 and 12) which were defined by density with a lack of
connectivity at a least one bond now showed well defined connected density after DM. The
remaining four bases showed a clear improvement in density quality, e.g. base 1 now has the
nitrogenous side chain defined.

Case 5: Density Modified A; , A3

The original map had most structural moieties in the correct position. DM further increased the
map quality considerably, so much so that all the bases are easily characterised. Bases 3, 4, 5,
10 and 11 now had well defined connected density compared to the lack of connectivity
experienced in the original map at these positions. Bases 1, 6, 9 and 12 showed improved
density, whereas bases 7, § were still interpretable, but were slightly better defined in the
original map. Base 2 showed no significant change in density. As might be expected this
modified map was not of a high quality as compared to modified case 4.

Figure 4. Electron density maps contoured at 0.5 rms intervals commencing at 0.5 rms shown
from 0 to 1 in x and y for a 2.8 A thick slab in z. The final refined molecular model is
superimposed so as to compare the maps for.a) Case 4: Ay, Ay.b) Case 5: Ay, A3
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Figure 5. Density modified electron density maps contoured at 0.5 rms intervals commencing
at 0.5 rms shown from 0 to 1 in x and y for a 2.8 A thick slab in z. The final refined molecular
model is superimposed so as to compare maps corresponding to a) Case 4; Density Modified
Az, A4 b) Case 5; Density Modified A3, A3

Case Description Mean FoM_a Mean FoM_c Overall FoM  FOM (DM) <AO>

1 A1, A2, A3, Ag 0.857 (2399) 0.825 (636) 0.850 (3035) 0.905 (3034) 9.36
2 A1, A2, A3 0.778 (2399) 0.722 (636) 0.766 (3035) 0.863 (3034) 15.66
3 A2, A3, Aa 0.826 (2399) 0.770 (636) 0.814 (3035) 0.887 (3034) 11.23
4 Ao, Ag 0.771 (2399) 0.700 (636) 0.756 (3035) 0.862 (3034) 14.60
6 A2, Ag 0.629 (2399) 0.460 (636) 0.593 (3035) 0.787 (3034) 31.07

Table 4. Figures of merit for the various wavelength combinations described in this section for
acentric (a), centric (c) and overall cases (number of reflections in brackets) where the figure of
merit (m) = cos (mean phase error).!

Discussion and Concluding Remarks.

A, alone yields the largest f " value, as expected from theory, if not the Kronig-Kramers
transform curve. Hence, the choice of two wavelengths, a reference wavelength, A; or A4 with
A2, whilst being the theoretical minimum number of wavelengths, also yielded the biggest Af '
and f " differences in the diffraction data. The use of 2-A's may be of interest when the
concentration of anomalous scatterers is high in the system, and when a three or four
wavelength data set collection strategy is not favourable (e.g. due to restricted beam time, and
long exposure times per diffraction image are needed).

Density modification was then considered for the various wavelength scenarios. There is a
special interest in the two wavelength cases which simplify the experimental and beamline
needs. Key points are further discussed now. The already good map quality in the A3, Ay
phasing combination was reinforced further after the DM procedure and structure solution
became even easier. The isomorphous difference between data sets A, and A3 is half that of the
previous two cases mentioned above, 3.68 electrons, but this is generated by a change in
wavelength of only 0.0007A! The advantage of this is that beam position incident onto the
sample would be essentially identical for the two wavelengths. The original A, A3 phases and

I Compared with Peterson et al. 1996 the total number of reflections are now 2399, 636, and
3035 throughout. In the previous publication a coding error in CCP4 MLPHARE had lead to

the rejection of some especially large -ve Agyoms. This coding error has been rectified in a new
release of the program. There was no visible impact of this error on the map quality and
comparisons no impact on the figures of merit values of the reflections that were phased, and
which also constituted a large fraction of the total available in any case.

75



map were of only reasonable quality before DM procedures. The DM phases produced a highly
interpretable map in which the structure could be easily solved. Structure solution can then
even be obtained when the isomorphous signal was not optimised, due to these modification
procedures. Overall, DM could perhaps be further enhanced if the electron density 'data bank'
used for histogram matching actually consisted of nucleic acid density instead of protein
density (which had to be used here). In essence, a key result, cases | to 4 become equally
comparable in terms of FOM's of the phases after DM.

In Peterson et al. (1996), it was reasoned that dichroism effects were not evident in the f ' and f
" values, in essence because the maximum induced f " and Af ' differences were induced with
respect to A, in agreement with theory but somewhat unexpected. However, it was pointed out
by David Templeton (pers comm), that for the two independent Br sites (A and B) in the
crystallographic asymmetric unit, there did appear to be a variation between the two sites f ',
and f " values which had a maximum at A,. Hence, at A, the effect of different atomic
environments of the A and B sites might explain this, in a similar way to the previously
reported bromide example of Templeton and Templeton (1995), in which there was a very
marked edge shift, on edge, for the parallel and perpendicular polarisation components of
0.00031A (estimated from figure 3 of that paper). Therefore, the A, A3, pair in the analysis
would be the most to suffer if dichroism were present to a large degree. Since Figure 5 (b)
shows good quality phasing and electron density map quality, it can be concluded that
dichroism was not a major factor in the f ', f " values that we have encountered. Nevertheless
further experiments are planned to explore the values of f ', and f " at finer A sampling and
for dichroism which must be present to some degree.

In summary, this work successfully evaluated and compared a variety of MAD experimental
and computational procedures for phase improvement. It provides guidance in planning future
experiments and/or new instruments, and is therefore a significant contribution to the methods
of protein crystal structure determination. Aspects of the work are published in Peterson et al.
(1996).
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Case Study: MAD phasing of desulphoredoxin, an Fe metalloprotein.

Ian D. Glover and Don Nguti. _
Physics Department, Keele University, Keele, Staffs. ST5 5BG.

Introduction.

Desulphoredoxln is a small iron containing metalloprotein,
con31st1ng of a dimer of 36 residue chains each coordinating an
iron atom. Data collected about the Fe absorbtion edge of 1.744,
wavelengths being set with reference to XANES spectra recorded
from a single crystal, were used to determine the p051tlons of
the anomalously scattering Fe atom and hence, using MLPHARE
calculate an electron density map.

Desulphoredox1n is an Fe-S protein isolated from Desulphovibrio
gigas, (Mouri et al., 1977, Bruschi et al., 1979) comprised of two
36 residue monomers, each coordinating an iron atom, which form
a dimers with an M, of 7740. Each of the monomers has four Cys
residues expected to coordinate the iron atom. Most biochemical
and spectroscoplc evidence p01nts to a similar coordination of
iron but in relation to rubredoxin, higher symmetry in Fe binding
is anticipated.

Good quality crystals of desulphoredoxin were first reported in
1980 (Seiker et al., 1980), but no suitable derivatives have been
prepared. As a small metalloprotein it presented a good case for
structure determination using MAD methods. With two Fe atoms in
a small protein significant anomalous scattering contributions
are expected, the maximal anomalous diffraction ratios
(Hendrickson, 1991) of 5% and 4.8% for the absorptive and
dispersive contributions respectively.

Data Collection.

Desulphoredoxin crystallises in space group P3,21 (or its
enantiomer) with cell dimensions a = b = 42.28A, c = 72.46A, and
Y = 120°. The crystals grow to approximately 0.3mm in the largest
dimensions and are relatively radiation stable. All data were
collected on station 9.5 (Thompson et al., 1992) at the Daresbury
SRS using an 18cm diameter MAR image plate detector and a channel
cut Si(111) double crystal monochromator. MAD data were collected
at four wavelengths, three close to the Fe-K edge, determined
from XANES scans from a crystal and a fourth, higher resolution,
dataset recorded at a remote wavelength. As the data were
collected at room temperature all measurements contributing to
a particular phase determination were collected as close together
in time as possible. Initial calibration of the incident X-ray
wavelengths was performed using the iron edge in a piece of
magnetic tape, and thereafter x-ray wavelengths calculated using
the monochromator angle. Due to the goniometer geometry the
closest possible approach of the detector limited data collected
at the longer wavelengths to approximately 3A resolution.

Wavelength selection

The XANES spectrum were recorded from a single crystal of
desulphoredoxin is shown in figure 1. The spectrum was
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Figure 1.a) The fluoresence XANES spectrum recorded from a single
crystal of desulphoredoxin using a single wire proportional

counter on station 9.5 at Datesbury.
b) The transformed spectrum showing the values of £’ and
f’’ in electrons as a function of incident x-ray wavelength
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transformed using the Kramers-Kronig (Kronig & Kramers, 1928)
transform, to obtain experimental values of £’ and f£" (table 1).
The values of the anomalous scattering coefficients were used to
select the nominal wavelengths, A, at 1. 7444, the first point of
inflection on the f" curve, and therefore the minimum or most
negative value on the f’ curve. The second wavelength, A, was
selected at 1.740A, the maximum on the f" curve, this data set
will yield the greatest Bijvoet or Friedel differences. The third
wavelength, XA,, was selected at 1. 72854, remote from the edge.
The fourth wavelength was collected at 0. 9A, where the incident
flux on station 9.5 is significantly higher and with the same
data collection geometry allowed much higher resolution data
(1.83) to be collected. During data collection at the longer
wavelengths the monochromator second crystal was detuned to
avoid harmonic contamination of the incident beam.

Dataset Wavelength (&) £/ £
A, 1.7444 -8.091 1.993
A, 1.7405 -6.096 4.337
A3 1.7284 -4.054 3.975
A, 0.9000 -1.100 2.900

Table 1. The anomalous scattering factors for iron in
desulphoredoxin at the wavelengths selected for data collection,
the first three are derived from the Kramers-Kronig transform of
the recorded XANES spectrum shown in figure 1.

One crystal was used in the collection of the three near edge
data sets, A A, and X,, and a second crystal used to record the
fourth, 0 9A wavelength A, data set. The crystals were
accurately aligned with the c* axis parallel to the spindle axis.
In this orientation there were no mirror related reflection
recorded on the same image, all mirror related reflections were
recorded by inverting the crystal, i.e. recording data at ¢ and
¢ + 180°. A total of 94° (A¢ = 3 or 4°)of data were collected at
wavelengths 1,2, and 3 and 70° (A¢ = 2°) at the fourth wavelength

Scaling and merging of the data.

Initial data reduction was carried out using the MOSFLM (Leslie,
1992) suite of programs after the determination of the initial
orientation matrix using REFIX. Regardless of the phasing
approach to be used, MADSYS or MLPHARE, once collected the data
must be scaled, both within datasets and for the MAD analysis,
between datasets to reduce differences due to crystal decay,
absorbtion and any variation in detector response. Scale factors
were calculated initially using ROTAVATA (CCP4, 1994) which
calculated a single scale factor (Fox & Holmes, 1966) that is
applied to all reflections in a particular batch, usually a
single image. This means that symmetry related reflection falling
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on consecutive batches can have very different scale factors.
Since the scaling is based on all symmetry related reflections
within a dataset whose intensities are expected to be equal a
continuously varying scale factor may be more appropriate, such
as the approach used in SCALA (P.R. Evans, this volume) where the
scale factor is a continuous function of rotation angle and
detector position. »

1) ROTAVATA

Scale and temperature factors between batches within each dataset
were initially calculated using ROTAVATA and applied using
AGROVATA. The results are set out in detail in tables 2 and 3.
Taking the three datasets collected at wavelengths close to the
iron edge, the overall Ry, values are 14.6%, 15.2% and 13.8%
respectively for the X\;, A, and A\, datasests which compare very
unfavourably with the dataset recorded at 0.9A wavelength. This
poor scaling is clearly seen in the tables of batch scale and
temperature factors calculated by ROTAVATA which show a large
variation in scale factors and very significant variation in
temperature factors. This poor scaling contributes to the
mediocre quality of the merged data. Few batches had low Rgyyy
values and the signal to noise, as judged by the value of I/¢(I)
was poor, averaging 3.5. Contrasting with this is the A\, dataset
where the scale factors follow a regular progression, the biggest
variations occurring either side of a beam refill and the
temperature factors vary only slightly. The Rg,, values are
significantly lower and the signal to noise better with an
average I/o(I) of 17.5.

This wvariation is seen despite the fact that the data were
collected from similar sized crystals of the same shape.
Furthermore it should be noted that the Ry, value of the A, data
at 3.05A resolution is only 1.8%. The only difference between the
data is that the X,, A, and A, data were collected at longer
wavelengths and that higher absorbtion at these wavelengths is
having a significant effect on the internal consistency. Data of
this quality is clearly going to present problems for the
subsequent MAD analysis when the expected values for the largest
anomalous and dispersive diffraction ratios are 5% and 4.8%
respectively.

Dataset Wavelength (A) Tuean/ 0 Reymm N...
Ay 1.7444 3.54 0.146 6857
A, 1.7405 3.29 0.152 6889
As 1.7284 3.95 0.138 6766
Ay 0.9000 17.46 0.034 20308

Table 2. Summary of the overall batch symmetry R-factors for the
four MAD datasets. Note that the fourth wavelength extends to
1.8A resolution.
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DATASET A. DATASET A,

BATCH SCALE B SCALE B
1 1.000 0.0 1.000 0.0
2 1.445 5.0 0.965 -0.2
3 1.970 -0.7 1.007 -0.1
4 1.499 6.0 0.937 -0.6
5 1.957 7.9 0.951 -0.6
6 2.345 -2.9 0.988 -0.7
7 2.520 3.6 0.992 -0.8
8 2.201 1.4 1.032 -0.8
9 2.505 0.3 1.060 -0.8
10 2.113 4.6 1.114 -0.9
11 2.827 5.0 1.077 -0.9
12 3.504 4.0 1.099 -1.0
13 2.134 4.4 1.092 -1.1
14 2.574 5.7 1.156 -1.4
15 2.833 6.5 1.185 -0.7
16 2.883 4.3 1.235 -1.0
17 2.925 4.1 1.222 -1.3
18 3.081 3.3 1.263 -1.1
19 3.193 1.1 1.248 -1.3
20 3.385 -0.6 1.268 -1.2
21 3.758 0.3 1.298 -1.4
22 ' 4.021 -1.2 1.305 -1.4
23 4.434 -2.6 1.412 -1.5
24 4.811 -4.1 1.380 -1.5
25 2.453 -2.8 1.404 -1.6
26 2.918 -2.6 1.423 -1.4
27 3.153 3.6 1.445 -1.9
28 1.053 -1.6
29 1.061 -1.6
30 1.069 -2.2
31 1.066 -2.0
32 1.082 -2.3
33 1.076 -2.2
34 1.073 -2.3
a5 1.089 -2.2

Table 3. a)The scale and temperature factor (B) for the datasets
A, and \,, recorded at 1.7444A and 0.900A wavelengths calculated
using the program ROTAVATA. The abrupt change in scale factors
in the short wavelength data at batch 28 is due to a beam refill.
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b) Values for the )\, dataset after scaling using SCALA.

BATCH SCALE B

1 0.279 0.0

2 0.334 -0.47
3 0.416 -1.16
4 0.534 -3.72
5 0.333 -1.95
6 0.414 -1.45
7 0.594 -3.298
8 0.5624 -4.62
9 0.652 -5.37
10 0.504 -2.65
11 0.657 ~-2.87
12 0.878 -2.61
13 0.535 -1.61
14 0.583 -2.30
15 0.644 -2.87
16 0.705 -2.32
17 0.711 -3.09
18 0.771 . -4.31
19 0.872 -4.69
20 0.970 -5.93
21 1.014 -7.12
22 1.149 -7.91
23 1.334 -9.61
24 1.506 -11.00
25 0.7614 -8.83
26 0.873 -10.21
27 0.940 -10.68

2) SCALA.

The program SCALA was used to calculate scale and temperature
factors for each dataset prior to merging in AGROVATA. SCALA
differs in methodology in that it calculates a three dimensional
scale factor for each reflection taking into account rotation
angle and its position on the detector. This methodology has
significant benefits when applied to this case where sample
absorbtion is anticipated to have a large effect on the internal
consistency of the data. The results from scaling and merging
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with SCALA/AGROVATA (tables 3 and 4) show a very significant
improvement for the data collected at long wavelengths. The
signal to noise ratios have increased considerably and the
consistency, typically from approx 12% to 3%. The short
wavelength data, however, shows very little improvement.

Table 4. a) Summary of the overall batch symmetry R-factors for
the four MAD datasets scaled using SCALA (data compared to 3.05A
resolution) and b) the merging statistics and multiplicity
(Mult.) from AGROVATA.

a)
Dataset Wavelength (&) I R N,
A 1.7444 9.44 0.033 | 5820
A, 1.7405 10.51 0.034 5723
A 1.7284 11.14 0.034 | 5446
A, 0.9000 21.20 0.029 4447
b)
Dataset Rygrar Dyin Nunrgue % coMPLETE Mult.
A 0.045 3.05 1510 96.3 4.4
A, 0.048 3.04 1519 96.1 4.4
A, 0.036 3.03 1524 95.6 4.1
A 0.029 1.78 7155 95.5 3.1

Phasing using MLPHARE.

The program MLPHARE (CCP4, 1994) is now a widely used option in
the approach to the phase determination in MAD methods. Although
designed for MIR phasing it can be viewed intuitively as taking
one dataset as a native (with anomalous scattering) and the other
datasest as derivatives, all conveniently isomorphous. In the
process the real and anomalous occupancies may be refined either
as relative values or as scattering factors by supplying unitary
scattering factors to the 1lookup table, for data on an
approximately absolute scale. One dataset, \,, was chosen as the
native, it has the least significant anomalous scattering
contributions, and the other three datasets scaled to this
native wusing SCALEIT. Date were previously put on an
approximately absolute scale wusing Wilson statistics as
implemented in TRUNCATE. In common with MIR phasing the heavy
atom, or in this case anomalous scattering, partial structure
must first be located using Patterson maps or direct methods. In
the MAD case Patterson maps may be calculated with a wide variety
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of coefficients, the most important being the anolaous difference
Pattersons, usually calculated exploiting the dataset with the
maximum expected f" signal and the dispersive difference
Patterson calculated using the differences between datasests with
the largest and least f’ contribution.

Patterson maps calculated using anomalous differences and
dispersive differences are shown in £fig. 2. The anomalous
scattering partial structure was interpreted in terms of two
independent Fe sites. A calculated Patterson is also shown,
confirming the interpretation of the anomalous scattering partial
structure.

Phasing.

MLPHARE was used to refine each of the two Fe sites independently
and then used together in phasing and site refinement. Initial
real occupancies were estimated in the ratios of the real, f’
components of the anomalous scattering and refined against
centric data before anomalous occupancies were estimated and
refined. The two sites were then refined using real and anomalous
occupancies simultaneously against all data to 3.05A resolution.
The overall figures of merit were 0.82 and 0.74 for centric and
acentric reflections respectively.

a)
Parameter ' AL A, As
Phasing power (acentric) 2.6 2.2 2.2
(centric) 1.6 1.3 1.3
Reurrts (acentric) 0.53 0.59 0.59
(centric) 0.53 0.63 0.63
(anomalous) 0.70 0.70 0.80
b)
A, A, A A,
SITE 1
Real Occupancy 0.404 0.313 0.301 0.0
Anom. Occupancy 0.909 1.197 1.051 0.339
SITE 2
Real Occupancy 0.441 0.340 0.330 0.0
Anom. Occupancy 0.862 1.086 0.962 0.327

Table 5. a)Summary of the statistics for the refinement of the
two Fe sites in MLPHARE and b) real and anomalous occupancies for
the two sites after refinement.

The anomalous scattering partial structure had been solved using
Patterson methods and the ambiguity in the hand of the partial
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Figure 2. a) Anomalous difference Patterson map calculated using
the X, (maximised £’’) dataset, b) Dispersive difference
Patterson calculated using the difference in tructure factors
between A, and A\, c¢) Calculated Patterson map using refined Fe
site positioms.

Figure 3. The calculetd electron density map, showing 1/6th of
the unit cell in c the section direction, two unit cells in each
other direction.




structure was resolved by calculating the two alternate maps, in
this case by calculating the maps in the alternate space groups
P3,21 and P3,21. The former showed clear molecular boundaries and
the iron sites could be readily located along with clear density
for the iron ligands. Away from the iron sites however no clear
contiguous density was observed so the map was subjected to
iterative cycles of density modification, solvent flattening and
histogram matching using the program DM. Map improvement was
monitored using the free R flag as shown in table n, and the
increase in the overall figure of merit from 0.69 to 0.81 for all
data accomplished with a mean change in phase angle of 15.5°. The
calculated electron density map had improved significantly with
evidence of contiguous density, showing the iron site to be in
a distorted tetrahedral geometry coordinated through four
cysteinyl sulphurs and clear strands of density including the
short loop between Cys 9 and 12, figure 3.

Interwavelength scaling and scattering factors.

Although the MLPHARE approach to phasing has been used in this
case the MADSYS suite of programs may alternatively be used. In
this case the datasets , scaled using SCALA as before, were
merged to give one '+’ and one ’'-’ reflection for each hkl. After
local scaling (ANOSCL) the datasets recorded at each wavelength
were put on the same relative, quasi-absolute scale using WVLSCL.
In the course of the program the anomalous scattering factors f’
and f" are refined from the crystallographic data, giving what
should be analogous results to the refinement of occupancies
(both real and imaginary) from MLPHARE. The results are shown
in table 6, and it is clear that the refinement of the scattering
factors from WVLSCL is more satisfactory than that from MLPHARE,
apparently preserving the variation in the anomalous scattering
contributions at values closer to those obtained from the
Kramers-Kronig transform of the observed XANES spectrum from the
crystal, suggesting that the inter-wavelength scaling using in
this program maintains a more consistent representation of the
anomalous scattering contributions in the scaled data.

Dataset & wavelength £’ £
Ay -0.31 1.11
Ay -8.03 2.92
A, -5.47 4.03
A -5.40 3.34.

Table 6. The values of the refined £’ and f" contributions at the
four wavelengths from WVLSCL.
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MAD-DM At Elettra; A Case Study
Harold R. Powell, University of Cambridge

Introduction

MAD is an extremely demanding technique which can yield good phases from high quality
crystals and data. However, in combination with DM, usable maps can be obtained from
datasets which are little better than average. The present work is intended to show that provided
some care is taken in the early stages of the process, it is a straightforward technique which is
of particular applicability to oligonucleotide crystallography.

Here I concentrate on the aspects of the technique as I have applied it, treating the problem
as a variation on MIR using MLPHARE for heavy atom refinement.

The data for the three structures discussed here were all collected at the new synchrotron in
Trieste, Italy, on the protein crystallography beamline 5.2R on visits in February and May
1996; they were the first three MAD datasets that I collected, and among the first to be collected
at Elettra.

The beamline at Trieste is well suited to MAD because of the easily tunable X-ray source

from ~0.62A to ~3.1A [11. It supplies 10" to 10" monochromatic photons per second;
although the X-rays are not quite as well focussed as at the ESREF, it is still an extremely bright
source, and the reliability and stability are very high.

It is necessary to process the diffraction data as well as possible; small errors can lead to
failure of MAD-DM as it uses extremely small differences between Bijvoet pairs, which are
expected to be only slightly larger than the errors in the data themselves. Without concentrating
on the data processing here, it should nevertheless be remembered that any outliers flagged in
the output from scaling should be noted and if the deviations are particularly large, these
reflections should be omitted manually from further processing, at least until the heavy atoms
have been located; Patterson maps in particular are very sensitive to the presence of rogue
reflections. The SCALEIT statistics for the merging R factors of and between datasets should
also be examined; if the differences between the datasets are all about the same, then location
of heavy atoms is unlikely to be successful by any means.

The majority of the calculations performed in these analyses were carried out with standard
CCP4 [2] programs; the data for the first example have been made available as part of a worked
example on the CCP4 server. Data reduction from raw images was carried out with Denzo and
Scalepack [3]; processing with other programs (e.g. MOSFLM and SCALA) will yield data of
similar quality. The general scheme followed is outlined in Table 1.

Determination of the X-ray Absorption Edge

Oligonucleotides are often available in much lower quantities than proteins, and this is
egspecially true of those species containing anomalous scatterers; also, crystallization is often
difficult and thus few crystals are available. However, the monomer nucleotides or even
nucleosides are available pure in large quantities, so in these experiments the XRF spectra were
obtained for 5-bromo-2'-deoxyuridine and used to determine the appropriate wavelengths for
data collection. The chemical environment of the bromine in 5-bromo-2'-deoxyuridine (the
nucleoside) is very similar to that in S-bromo-uracil (the free base) or even in an
oligonucleotide containing 5-bromo-2'-deoxyuridine-5'-phosphate, hence XRF spectra
obtained from these species are all extremely similar, and in general similar to that in Mark
Peterson’s in this Report.
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Spectrum
[}
Data collection and
processing
sheixpro scalepack_to_ccp4
)
[}
shelxs-96 trunjate
f2mtz unique
] [}
cad freerflag
[}
scaleit
MLPHARE: centric data
— (XY, Z, OCC,
derivatives only)
[}
MLPHARE: all data
(OCC, AOCC,
derivatives, AOCC
‘native’)
[}
MLPHARE: all data
(AX,AY, AZ, AB, all four
datasets)
[}
DM
[}
fft
[}
O
Table 1: Flowchart of general procedure
Data Collection

The most important point is that the crystals containing the anomalous scatterer must be of
high quality. Small crystals help avoid problems due to absorption; as the AFs are very small,
a poor absorption correction could mask completely any effect being exploited.

At the synchrotron, the quality of the optics is paramount; it is essential that not only is the
wavelength what you think it is, but also that it can be reliably and repeatedly reselected. The
X-rays must be stable for extended periods, both in terms of intensity and wavelength. Small
variations can easily accumulate into significant errors.

The advent of cryo-cooling of macromolecular crystals is one of the features that has made
MAD-DM data collection reasonably straightforward recently. The ability to collect several
complete datasets on a single crystal has increased the chance of success of this method
considerably.

Many crystallographers make life more difficult for themselves by not trying the 'oil drop’
technique, but instead search for cryoprotectants that may well contribute to increased
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mosaicity and reduction in data quality. Much of the degradation in crystal quality on freezing
is due to surface moisture freezing rather than ice formation in the solvent channels inside the
crystal [4]. The oil drop method, because it removes this surface moisture, will in many cases
prevent crystal damage; it has never failed for me on either DNA or protein crystals. It has the
added advantage that the crystal is coated in a hydrophobic layer, so it does not dry out and can
be handled for some minutes outside its sitting or hanging drop.

I prefer to mount the crystal in a random orientation; this is advantageous in that the
completeness of the datasets is increased over that obtainable from an aligned crystal. With a
stable crystal and stable X-rays, there is little to be gained from the careful alignment of the
crystal on an axis. The advantage of measuring Bijvoet pairs close together in time seems to be
relatively unimportant, in DNA crystallography at least.

Location of Heavy Atoms

Atomic coordinates for the anomalous scatterers in each example were determined using the

direct methods option in SHELXS-96 [5] (F2 data from Scalepack were processed with
SHELX-PRO [6] to yield anomalous AF values). An example of the results of this strategy for
the first sample is in Table 2; it can be seen that this route should be considered as the first
choice for heavy atom determination. Direct Methods seem to be more ‘robust’, and resistant to
the presence of outliers in the data than the Patterson method, and give answers in negligible
time.

The reliability of direct methods can be judged from several criteria; chief amongst these in

dataset X y z CPU (s)

Direct methods inflexion 0.1908 | 0.0150 | 0.1676 15.3
0.1877 | 0.1562 | 0.1896

white-line 0.8088 | 0.4842 | 0.1673 17.0
0.8105 | 0.3441 | 0.1892

high E offset | 0.6912 | 0.0155 | 0.1678 13.9
0.6887 | 0.1572 | 0.1903

Patterson inflexion 0.6895 [ 0.5170 | 0.6679 347.0
0.6859 | 0.6551 | 0.6897

white-line 0.8094 | 0.9809 | 0.8324 224.7
0.8160 | 0.8456 { 0.8101:

high E offset ’ - l - ! - -

Table 2: SHELXS-96 anomalous AF results. Crystal 1; Space group 1222, so the positions
found in each solution are equivalent by space group symmetry.Times are for an SG Indigo2,
R4K, 150MHz.

my view is that if the same results are obtained from each of the datasets with an anomalous
contribution but not from the long wavelength offset, the answer is probably correct. Once (if!)
they have failed it may be necessary to calculate Patterson maps, plot Harker sections and
interpret these, but in the general case this will not be necessary. In my eagerness to look at
electron density, I tend to glance over the SCALEIT statistics while the program output is
scrolling past on screen, and only return to it later if difficulties have arisen.

MAD by itself will rarely provide enough phase information to be able to produce
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interpretable electron density maps; some kind of additional phase extension is usually
required in addition. We have used the CCP4 program DM, which applies solvent flattening
and histogram matching to the data, and this leads to maps which can be of very high quality.

Structure Solutions

Sample 1

A crystal of the cyclic DNA octamer CAT-BrU-CAT-BrU, which has the 5' and 3' ends
joined, was used in this study.

Four datasets were collected , one each at a long wavelength offset, at the inflexion point,
the white-line maximum and a short wavelength offset (Table 3). Processing of these data
showed that they were reasonably complete, and using Scalepack’s 'linear R-factor' and 'square
R-factor' as guides, they were of reasonable but not exceptional quality.

Sequence [CATBrUCATBrU
Crystal System orthorhombic Space Group 1222
Cell dimensions Ja = 22.627 ﬁ) = 26.002 c = 70.045 |

[Crystal to detector 120mm Frames 60 x 3.0°
Max. resolution ~1.5A
Dataset (A) 0.8993 0.9198 0.92054 0.9334
Total data 36470 36152 36277 36223
Unique data 3552 3530 3529 3527
Rmerg (1) 0.066 0.071 0.060 0.040
Rmerg (2) 0.058 0.074 0.067 0.048
Completeness (%): 99.2 98.6 98.5 98.6

Table 3: Data collection statistics for Sample 1.

Direct methods gave two possible bromine positions (see Table2), which was expected from
the unit cell dimensions and space group.

Heavy atom refinement according to the scheme in Table 1 gave the results in Table 4. It is
worth spending a little time looking at the various figure of quality produced. For the Figures
of Merit, values greater than 0.6 can be considered encouraging, and if > 0.8, the problem can
be considered well on the way to being solved. The Cullis R-factors, which are calculated for
each derivative should become smaller for a correct answer; final values of RCyli(cen) < 0.9

and RCyji(acen) < 0.6 for the white-line maximum and short wavelength offset datasets should
be seen as encouraging, and an Reyll(ano) < 0.5 for the datasets with an anomalous
contribution seems a good indicator that the correct answer is being approached

Another measure of the correctness of the refinement process can be found by inspection of
the refined values of Occ and AOcc (the real and anomalous occupancies), as they should be
proportional to Af and f" respectively; even in the best collected datasets, there will be
deviations from these relationships which reflect the fact that datasets have not been collected
exactly at the inflexion point and whiteline maximum (Table 5). However, as long as the
proportions are roughly correct, it is important not to worry too much

The main thing to be remembered about the various measures of quality associated with
heavy atom refinement is that they are only guides; the best, and only sure way of knowing that
the MAD-DM process has been successful is when calculated electron density is studied and

model fitting can begin.
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(+X, +Y, +2) (-x, -y, -2)

-ML-PHARE otals FoM (ace) 0.8521 0.8524
FoM (cen) 0.6646 0.6717
FoM (all) 0.8164 0.8179
Deriv #1 Culiis R (ace) 0.58 0.57
Cullis R (cen) 0.61 0.60
Cullis R (ano) 0.89 0.89
Deriv #2 Cullis R (ace) 0.85 0.85
Cullis R (cen) - 0.87 0.86
Cullis R (ano) 0.30 0.30
Deriv #3 Cullis R (ace) 0.51 0.50
Cullis R (cen) 0.54 0.54
Cullis R (ano) 0.36 0.36
"Native" Cullis R (ace) 1.46 1.46
Culiis R {(cen) 1.00 1.00
Cuilis R (ano) 0.35 ' 0.34
DM FoM-DM 0.881 0.886
free 0.557 0.502
Real Space Rirge 0.349 0.202

Table 4: Selected MLPHARE and DM statistics for Sample 1.

DM was run in a more-or-less default mode of solvent flattening with histogram matching;
the only required information from the crystallographer is a reasonable estimate of the solvent
fraction of the unit cell. The figure that seems most informative from DM is the Real Space
Free R; this can give good information on the correct hand of the structure (which cannot be
obtained from MLPHARE), and is also a further indication that the whole process has worked.
Note that it is only after processing with DM that there is a significant difference between the
two hands, and it is apparent in this case that originally the wrong hand was chosen. Phases are
also calculated for many reflections unphased in previous steps, and this phase extension is
important in being able to calculate electron density. .

A (A) 0.8993 0.91980 0.92054" 0.9331

Al (exp) ' 2.372 1.279 0 4.489

Br(1) 0.154 0.043 0 0.129

Occ Br(2) 0.186 0.058 0 0.158
" (exp) 3.6041 3.826 2.167 ~0.5

Br(1) 3.028 3.098 2.998 0.461

AOcc Br2) 3.306 3.670 3.240 0.491

Table 5: Refined occupancies for bromine atoms: Crystal 1:(Occ «<Af', AOcc o< )
* inflexion point dataset (reference)

The phases calculated by DM can be used directly by FFT to produce an F(obs) map which
can be viewed on a graphics workstation after suitable translation.Electron density showing
obvious base stacking and in the region of an A-T base pair can be seen in Figure 1
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Sample 2

The second sample was isomorphous with the native structure solved elsewhere. In this
case, instead of four datasets, seven were collected; the extra three were collected with
wavelengths at-1eV (#5), +1eV (#6) and +2eV (#7) from the measured inflexion point of the
nucleotide. This experiment was intended to ensure that we had a dataset as close as possible
to the true inflexion point of the oligonucleotide. As it turned out, the real value was between
the measured IP and #5.

Sequence cyclic CATBrUCATBrU
Crystal System orthorhombic Space Group P212124
Cell dmensions (A) |a= 22.80 b=27.86 Cc=55.06

[Crystal to detector | 120mm Frames | 35 @ 3° (long A offset 27 @ 3°)
Max. resolution <15A
Dataset (A) 0.92155 | 0.92079 | 0.9003 | 0.9334 | 0.92162 | 0.92148 | 0.92141
Total data 23555 | 23707 | 23409 | 18392 | 23170 | 23809 | 23846
Unique data 9753 9789 9597 8834 9610 9837 9865
Rmerg (1) 0.070 0.069 | 0.072 | 0.059 | 0.064 0.085 0.091
Rmerg (2) 0.083 0.082 0.098 0.073 0.079 0.096 0.108
Completeness (%) 85.0 85.1 83.6 76.8 83.7 85.7 85.7

Table 6:Data collection statistics for Sample 2.

The data collected were not of the same quality as for Crystal 1 (Table 2), but Direct
Methods revealed the presence of four heavy atoms in the asymmetric unit, with roughly the
same coordinates as those for the four non-base-paired thymine methyl groups in the native.

DM FoM-DM 0.924 0.922
free 0.434 0.440
gal Space Rree 0.269 0.255

Table 7: Selected DM statistics for Sample 2.

Examination of an F(obs) map in the region of an A-T base pair (Figure 2) reveals that the
electron density is interpretable, but less easily than for sample 1. However, with some work
the molecule could be successfully fitted even without prior knowledge of the correct
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structure.

Figure 2: Electron Density in the region of an A-T base pair showing the lower quality of this
solution compared to Sample 1.

Sample 3

This work is part of an ongoing project led by Dr Christine Cardin of Reading University,
and I was in the fortunate position of helping her in this study. The crystal used was grown by
Dr Adrienne Adams of Trinity College, Dublin.

The whole analysis from raw images to first electron density map took about one and a half
working days, and only took that long because we took our time over it!.

The data collected appeared comparable at all stages of the processing to those from sample
1.

Direct methods found one heavy atom in the asymmetric unit. Heavy atom refinement
proceeded smoothly, and examination of the measures of quality from DM show that there is
little to choose between the correct and incorrect hand for this structure. However, note that the
Real Space Ry, values for both hands are far worse than for the previous two samples; this
should emphasize the point that all the numbers output by the programs should only be taken
as guides!. .

Sequence ACGTACG-BrU

Crystal System tetragonal Space Group |P2L3212
Cell dimensions a=41.991 c=25.301 |

Crystal to detector I 120mm L FramesTao @ 3°(*15 @ 3°

Max. resolution ~ 1.6A

Dataset 0.9344* 0.9216 0.9208 0.9003

Total data 12171 25725 26727 28390

Unique data ' 4276 5672 5867 6301

Rmerg (1) 0.051 0.071 0.058 0.061

Rmerg () 0.074 0.105 0.100 0.096

Completeness (%): 74.3 98.7 98.6 98.2

Table 8: Data Collection Statistics for Sample 3.
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Electron density in an F(obs) map revealed that the solution from DM with the worse
statistics was actually correct. Figure 4(i) shows the spectactularly good density for the
oligonucleotide revealed in the first map calculated; it is not necessary to include a model of
the structure to see in Figure 4(ii) the positions of the Br in a BrU-A base pair and most of the
base atoms as well

Conclusions
(+x, 4y, +2) (-x, -y, -2)
FoM-DM 0.871 0.868
Ffree 0.526 0.541

Table 9: Selected DM statistics for Sample3.

The take-home message from this work is that the facilities to collect data for a MAD-DM
experiment and the programs to process these data are available now. MAD-DM is
straightforward provided that data are collected carefully from the best available crystals; it is
capable of giving excellent electron density which allows rapid and relatively easy structure
building. The comparison of F(obs) maps for crystals 1 and 3 shows that it is necessary to
examine the electron density rather than rely on the statistics; there can be a marked difference
even between apparently similar data.

O

Figure 3: Electron density for Sample 3 (i) showing obvious base stacking and (ii) in the region of
a BrU-A base pair.
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SCALING OF MAD DATA

Philip R. Evans, MRC Laboratory of Molecular Biology, Hills Road, Cambridge
CB2 2QH

The integrated intensities from any data collection experiment are not all on the same
scale, because of various systematic differences in the collection procedure. It is the task of
the "data reduction” protocol to place all observations on a common scale, to detect and
reject outliers (reflections for which the data collection has gone badly wrong), and to

produce a list of IFl and o(IFl) for the structure determination. There are some special
considerations in the optimum treatment of data intended for MAD phasing, in that we want

very accurate differences between amplitudes, for the anomalous differences AF+ and the

dispersive differences AF), rather than the most accurate absolute values. This means a
difference both in data collection strategy, designing the experiment to minimize the
systematic errors in the differences, and in the scaling strategy, in which relative scaling
can reduce, though probably not eliminate, the systematic errors. In the MAD phasing
method, we need accurate differences because the small signal is easily swamped by
systematic errors, and we also need to be careful about eliminating outliers, since a small
number of spurious large differences can confuse both Patterson and direct methods of
locating the anomalous diffracting centres.

To aid designing data collection and scaling strategies, it is helpful to enumerate the
reasons for the observed intensities not being on the same scale. These factors can be
roughly divided into those that can be in principle calculated, and those that must be
determined empirically from the data.

(1) Calculable scale factors

* Lorentz factor — this is uncertain close to the rotation axis, but is not normally a problem
» Polarization — this may be uncertain for synchrotron radiation, but the error is small

» Corrections arising from deficiencies in the integration program — if the geometrical
parameters used by the integration program are inaccurate, the prediction of which spots are
partially recorded will also be inaccurate. The estimated partiality may be improved by post-
refinement (eg in Scalepack or Mosflm)

» Different truncation of the tails of reflections caused by diffuse scattering — partially
recorded reflections are measured over at least twice the rotation range of fully recorded
reflections, so if the spots have long tails in the rotation direction, more of the tails will be
included in partials than in fulls (the TAILS correction in Scala is an attempt to correct for
this, see appendix below).

(2) Empirical scale factors
These are usually subsumed into general scaling.
+ Change of incident beam intensity — mainly on synchrotrons
+ Change of detector sensitivity — the variation of sensitivity across the detector is best
determined in a separate calibration (flood-field correction), but the overall “sensitivity”

may be taken up in the scaling, particularly for film or off-line image plates

» Different crystals
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« Nluminated volume — if the crystal is larger than the beam. This is indistinguishable from
absorption in the incident beam

» Absorption — less of a problem at short wavelengths, but hard to correct for satisfactorily
» Radiation damage — serious on unfrozen crystals
» Wavelength-dependent factors — mainly for the Laue method

It is possible to design the data collection strategy for MAD data collection such that
many of these systematic errors can be made equal, so that they cancel out in the dispersive
and anomalous differences. Note that this is the opposite of the optimum collection strategy
for data intended for structure refinement, when ideally we should try to maximize the
systematic differences between observations, so that the scaling procedure can determine
the different corrections for different parts of the data, or least can average out the
systematic errors.

(a) Dispersive differences (ie between different wavelengths) — measurements of the same
reflection at different wavelengths will normally be made in the same way, so that the
systematic arrors should be the same. The main difference is that they are necessarily
measured at different times: radiation damage is the only difficult time-dependent scale,
hence the great advantage of using frozen crystals. On unfrozen crystals, the strategy must
be to collect different wavelengths close together in time (eg as images interleaved at each
wavelength).

(b) Anomalous differences — it is not possible to collect I; and L. in exactly the same way,
on the same area of the detector. The most difficult correction is absorption, other
corrections are likely to be the same. Absorption is a serious problem at the longer-
wavelength edges (eg Fe), less of a problem for Se or Br edges.

There are two ways of minimizing the absorption differences, though neither will
eliminate the problem:-

(1) inverse beam method — measure reflections at ¢ and ¢+180°. This inverts the direction of
the incident and diffracted beams. The absorption will only be the same if the crystal and its
mount have a centre of symmetry

@ (ii)

(ii) rotate the crystal about a two-fold axis, and collect Bijvoet pairs (eg hkl, hk-1 for a
crystal rotating around the ¢ axis) on the same image. This requires the crystal to be aligned
about an axis, at least approximately. The absorption is only the same if the crystal and its
mount have a plane of symmetry perpendicular to the rotation axis.

To correct for absorption differences between Bijvoet pairs, the scaling model must
be able to apply a different scale to I, and to I, so the scaling model must be anisotropic
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and non-centrosymmetric. Suitable functions are 3-dimensional smoothed scales (local
scales) and 3D functions such as spherical harmonics. The functions must not vary too
much locally, otherwise the real differences will be scaled out.

How well are scale factors determined?

The problem with 3-dimensional scale functions is that they are typically ill-
determined by the observed data. The empirical correction factors listed above may be
divided into two categories:-

1) functions of the incident beam direction (illuminated volume, absorption in the
incident beam) or of time,which is equivalent (beam intensity, radiation damage). With any
area detector, these functions are well-determined, since many reflections are measured at
the same time for each direction.

2) functions of the diffracted beam direction (absorption, radial dependence of
radiation damage). These functions are poorly determined, since there are relatively few
observations in each direction. The corrections are well-determined only:-

(a) with high symmetry (thus high redundancy of measurements made under different
conditions)

(b) collection by rotation about more than one axis (to measure equivalent reflections with
different beam paths in the crystals)

(c) scaling relative to a reference set — this gives relative rather than absolute scales, but is
useful to reduce systematic errors in differences, as is required for MAD data.

A relative-scaling protocol

The following suggested protocol for scaling MAD data uses a reference data set,
which provides a an anchor for the scaling parameters. Note that in the reference, 1, and L.
are averaged, so that in the real datasets, systematic bias in the anomalous difference will be

reduced (the mean Al+ should be zero). A similar protocol is also useful for scaling heavy-
atom derivatives using the native dataset as reference, in the MIR method.

1. Choose reference set: this should be (in order of importance)
(a) the most complete
(b) the most accurate
(c) remote from the anomalous edge

2. Scale and merge the reference set, merging I, and L, to get a unique set of merged
intensities Iref

3. Sort the reference set together with all unmerged data, for all wavelengths (including the
set used as reference, if this is to be used in phasing).

4. scale all data together, perhaps in two passes

(a) batch scaling (scale k & B-factor for each image ("batch")) to remove
discontinuities between images. If all images are reliably on a similar scale with no
discontinuities between images (stable source, collected by dose etc), this step may be
omitted.

(b) smooth scaling using a 3-dimensional anisotropic or local scaling model. This

may be parameterized in camera space (X,y,9 or beam directions) or in crystal space (h,k,]).
An example in Scala would be SCALES ROTATION SPACING 10 DETECTOR 3 3.
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5. split out each wavelength, either averaging repeated and symmetry-related observations,
or keeping them separate (depending on whether the phasing strategy uses merged or
unmerged data)

Various programs allow scaling of this type, eg the XDS package (Kabsch 1988)),
the CCP4 program SCALA (which took some inspiration from the Kabsch method), and
X-GEN (Howard)

Results

Trials with a Se-methionine data set (thanks to Richard Pauptit) and a Br-uridine
DNA set (thanks to Harry Powell and Christine Cardin) showed a small but significant
improvement using this protocol, compared to scaling each dataset separately. The
improvement is presumably only small because absorption, which causes the most serious
systematic errors is small at the Se and Br edges. Absorption is much more serious at
longer wavelength, so for MAD measurements on for example the Fe edge this scaling
method would produce a much larger gain. However, since the MAD signal is so small,
even a small improvement can make the difference between success and failure, and a small
reduction in the difference between observations (as measured by reduced dispesive and
anomalous differences) may make a substantial difference in phasing.

Appendix

A simple correction for the bias between fully-recorded and partially-
recorded reflections caused by diffuse scattering

Many protein crystals show marked diffuse scattering, which is seen as long tails
on spots in the "phi" direction, so that reflections often appear on the image before they are
predicted. If the mosaicity is increased to include these tails, too many reflections may be
rejected as overlaps. Fully-recorded reflections are integrated over a smaller phi width than
partials, so more of the tails are chopped off for fulls than for partials. This leads to the
typical negative partial bias, with partials systematically larger than equivalent fulls.

A correction has been introduced into SCALA which attempts to correct for the
different truncation of diffuse scattering tails, using a simple model of thermal diffuse
scattering, expressed as 2 or 3 parameters over the whole data set. This implementation
does not attempt to correct for diffuse scattering itself, only for the different effect on fulls
and partials. This correction reduces the partial bias substantially, and seems to improve the
data generally, though sometimes the parameter refinement can be a little unstable.

The method

This algorithm was inspired by the correction described by Blessing (1987), but in his case
full profiles of the diffraction spots were analysed to determine the diffuse scattering
contribution. Data collected with relatively coarse rotation slices do not provide enough
information to do this, and the typical crowded diffraction patterns of macromolecule
crystals make it harder to extract full profiles, since the spots may overlap.

1. The thermal diffuse scattering contribution to the integrated intensity is proportional to
the Bragg intensity J. If the complete profile is measured, the measured intensity I,
including diffuse scatter is given by

I=](+o)
where a is a proportionality constant

2. The proportionality constant o varies with resolution, and may be anisotropic. At
present an isotropic model is implemented in Scala
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o = ap+s2a
where s2 = (sin 6/ 1), and 0 is normally = 0. 09 and o1 are refinable parameters.

3. The width of the thermal diffuse scattering peak is assumed to be constant in reciprocal
space, = v, a refinable parameter. The distance in reciprocal space travelled by a reflection

rotated by an angle A¢ at a radius & from the rotation axis is given by

q=&EAd

4. The profile of the diffuse scattering peak is modelled as a triangle, with width v (in the
reciprocal space coordinate q), and height h, where h is a function of a., since the area of

the triangleis I-J=hv=Ja,henceh=Ja/v

5. If the scan width of an observation, including all parts of a partially recorded reflection,
is less than 2v, the tails of the diffuse scattering peak may be truncated, clipping off areas
Ci and C; (= 0) (see figure). These areas may be calculated from the rotation angles at the
start of the scan (the beginning of the first image contributing to the observation), the centre
of the reflection (the predicted angle), and the end of the scan (the end of the last image
contributing to the observation).

6. The correction factor for diffuse scattering if the full profile were measured would be
given by
J=1/(1+w
For the truncated profile
I=1/(0+a(1-C;-Cy)
where C; and C; are expressed as fractions of the complete area of the triangle (h v)

Since I do not trust this simple formulation to correct properly for diffuse scattering, the
correction used is

J=I(+0)/ (1+a(1-C;-Cp)

This corrects for the different truncation of the peak for different spots, particularly the
difference between observations made over 1, 2 ,3 etc images, but not for the diffuse
scattering itself.

The parameters refined are o, &tj and v (note that Cy and Cj are functions of v), though
normally ay is fixed at 0.0.
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Results

Application of the Tails correction to to datasets with visible diffuse scattering typically has
a dramatic improvement on the partial bias, ie the systematic difference between fully
recorded and partially recorded reflections (see figure), and often a significant improvement
in Rmerge. The correction is not well-determined if the diffuse scattering is small, nor if the
mosaicity is badly underestimated in the integration process: in these cases, the parameters
can take on unrealistic (eg negative) values.
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Example of the improvement in partial bias (lower curves) and Rmerge (upper
curves), plotted against resolution. Solid lines: with Tails correction, dashed

lines: without correction. The partial bias is Zh(<Igul1> - Ipartial) / Zh <Ifun>,
where the summations are over all reflections for which there are both fulls and
partials, <Ifyi> is the mean of all the fully recorded observations of the
reflection, and Iparial is a summed partial observation
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MASC:
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1. Introduction

Contrast variation methods have primarily been applied and developed in low angle
scattering studies as a means of extracting information on the shape of a particle dispersed in a
solvent medium (for a review see Williams et al., 1994). This method deals with the changes
invoked in the scattered intensities of a small angle scattering experiment when the density of
the particle is varied relative to its solvent medium. The difference between the particle and
solvent densities is defined as the “contrast” (Stuhrmann & Kirste, 1965; Ibel & Stuhrmann,
1975). The term “density” in this context refers to the electronic density in an X-ray scattering
experiment, the isotopic substitution ratio (H/D) in a neutron scattering experiment, or any
other physical density which scatters the incident beam.

Contrast variation techniques can be extended to macromolecular crystal systems since such
crystals typically consist of 30-70% solvent, which is a phase of rapidly interchanging
molecules. Bragg & Perutz (1952) applied such methods to a haemoglobin crystal and
observed changes in the intensites of low resolution X-ray reflections after altering the
electronic density of the mother liquor. In particular, they related these changes to the Fourier
transform of the solvent accessible regions of the crystal. In other words, the data from a
contrast variation series provides information on the macromolecular envelope.

Others have since applied contrast variation techniques in either X-ray or neutron diffraction
experiments to glean low resolution structures from macromolecular crystals (Harrison, 1969;
Jack, Harrison & Crowther, 1975; Moras et al., 1983; Roth et al., 1984; Bentley et al., 1984;
Podjarny et al., 1987). In particular, Carter et al. (1990) used a formalism which separated the
diffraction effects of the molecular envelope and the internal fluctuations (Bricogne,
unpublished) in the direct phase determination of the molecular envelope of tryptophanyl-tRNA
synthetase.

Anomalous dispersion has also been employed in small angle scattering experiments to
produce contrast variation. Examples on biological systems are the harnessing of the iron K-
edge in ferritin (Stuhrman, 1980) and the phosphorous K-edge in ribosomes (Hiitsch, 1993).
In crystallography, the use of anomalous scattering effects from the solvent has been suggested
by Wyckoff and others where it could be used as a supplement to a standard contrast variation
series (Dumas, 1988; Crumley, 1989; and Carter et al., 1990). However, in these cases, the

anomalous scattering was still restricted at a single wavelength. The possibility of exploiting the
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full potential of anomalous scattering at several wavelengths was orginally put forward by

Bricogne (1993).

2. Theoretical principles of contrast variation

Here only an outline of the theoretical principles will be given. Readers wishing for a fuller
account are referred to Fourme et al. (1995). The starting point of what we call MASC
(Multiple-wavelength Anomalous Solvent Contrast) is the basic principles of contrast variation.
where the macromolecular crystal lattice is assumed to be biphasic: one region of the unit cell is
occupied by the macromolecule, domain U (Figure la), and the other, domain V-U (Figure
1b), is occupied by the solvent which is in a liquid-like state of rapid exchange. The domain
containing the macromolecule is presumed to be ordered, whereas the solvent regions are
presumed to be completely disordered.

We define ps as the electronic density of the solvent volume, which is constant since this
region is flat and featureless. Gy(h) is the Fourier transform of the indicator function yy(r),

defined as equal to | inside the volume U and O elsewhere (Bricogne, 1974). It should be noted
that -Gy(h) = Gv.y(h) when h#0, such that Gy_.y(h) is the Fourier transform of the
complementary indicator function ¥ v.y(r) which corresponds to the region occupied by the

solvent. The total structure factor, F(h), can be written as the sum of two components: one
from the ordered regions of the crystal, Fp(h), and the other from the solvent, psGvy.y(h).

These two components are related since the volume occupied by either the marcomolecule or

the solvent are by definition mutually exclusive.
F(h) = Fp(h) - ps Gu(h)

Fp(h) is also the Fourier transform of the macromolecule in a vacuum (Figure 1c), and it can be
expressed as the sum of the (pp) Gu(h) and A(h), the latter which is the Fourier transform of
the internal density fluctuations from the mean density inside the domain U (i.e. {pp) - pp(r),

see figure le).
Fp(h) = {pp) Gu(h) + A(h).
Substituting in this expression for Fy(h) gives
F(h) = ((pp) - ps) Gu(h) + A(h).

The term ({pp) - ps) is defined as the contrast (Stuhrmann & Kirste, 1965), and when it is
equal to zero the system is said to be at the constrast matching point (see figure 1d), whereby
only the internal electronic density fluctuations contribute to the overall structure factor. A
demonstration of this expression can be found in Carter et al. (1990).
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Figure 1. The 1-dimensional slices of different components in contrast variation theory: a)
Indicator function of the ordered domain, U, containing the protein. b) Indicator function of the
disordered domain, V-U, containing the solvent. ¢) The electronic density of only the ordered
domain, U. This corresponds to the macromolecule in a vacuum. d) The electronic density for both
the macromolecule and solvent regions. Three different electronic densities of the solvent are
represented by the three shades of grey. The contrast is shown for one of these. e) The internal
electronic density fluctuations inside the macromolecule. f) The anomalous electronic density for
both the MAD and MASC cases.
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Figure 2. On the left, anomalous R-factors for MASC data of HEW lysozyme in 0.5M YbCls.
Four wavelengths at the Yb Lyjj-edge plus the R-factor for true symmetry related reflections (i.e.

respecting the differences between I+ and I-). On the right, ordered sites of Yb3* ions in HEW
lysozyme crystals. A phased anomalous Fourier map is superimposed on to a map of the protein
envelope. Dark spots show Yb3+ positions in crevices and near the surface of the protein.
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Table 1.

Protein HEW Lvsozvme P64k Xvlose isomerase
MW 14.3kDa 64kDa 173.2kDa
unit cell & space || a=b=78.48A =b=78.68A a=b=78.18A | a=b=140.62A | a=b=14191A a=b=142A
aroup c=37.65A c=37.05A c=37.60A c=77.02A c=227.48A c=227A
P432,2 P43242 P432;2 P432,2 P3521 P3-21
Anomalous 0.8M 0.5M 1.5M 3.5M 2.0M 1.35M
Scatterer [A] YbCl, YbCl, NaBr (NH,).Se0, (NH,),Se0, Rb,SO,
Absorption edge Yb Lyj-edge Yb Ljjj-edge BrK-edge Se K-edge Se K-edge Rb K-edge
wavelengths A (A)
long-A remote - 1,39294 0,9222 0.99188 0.99188 0.8222
edge [.38809A 1,38593 0.9202 0.97954 0.97954 0.8178
peak 1.38751A 1,38531 0,9195 0,97935 0,97935 0.8172
short-A remote 1.38084A 1,37762 0,9155 - 0.97912 0.8139
beamline station D23 DW21 DW21 TROIKA TROIKA DW?21
detector MWPC 18cm IPS 18cm IPS 30cm IPS 30cm IPS 18cm IPS
Resolution limits 18.3-3.34A 34.0-3.90A 56.0-3.97A 100.0-4.18A | 106.0-4.11A | 120.0-4.61A

Table 2. Results obtained from MADLSQ and GFROMF. R-Factors quoted are based upon
[Fobs(h)l & [Fcaic(h)l, where [Fobs(h)l is from MADLSQ or GFROMF and [Fcalc(h)i is calculated

from the known model.

Protein P64k Xylose isomerase Lysozyme
dmin 20A 20A 20A
Nmeas/Nposs 73773 215/233 7712
R-MADLSQ 32.5% 26.3% 32.1%
R-GFROMF 33.6% 29.7% 37.2%
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Extension to the case where anomalous scatterers are present in the solvent can be done
using the seminal idea of Karle (1980) where the structure factors are separated into wavelength

independent (f°) and dependent parts (;‘f + ikf'),
Moo Mgt

For our discussion here, we assume that there is only one anomalous scatterer which 1s
randomly dispersed in the solvent domain V-U such that it has a uniform distribution and no
ordered sites bound to the surface of the macromolecule. For simplicity, we also assume that
any scattering factor at low resolution is constant with respect to scattering angle to within a
first order approximation. The density of the anomalous scatterers in the solvent can be treated
as a complex quantity, kps A, wWhich is dependent upon wavelength,

Ao = °psa (1 + "/ + i),

and where °ps4 is the normal electronic density of the anomalous scatterer. The total electonic
density of the solvent, }”ps, becomes a function of the wavelength, and can be separated into

wavelength independent and dependent parts,
kps = °ps + °PsA (}”f‘/f0 + i}‘f"/f").

Note that the term 0ps includes the normal scattering part of the anomalous scatterer. Thus one

obtains,
“E(h) = ((pp) - *ps) Gu(h) + A(h)

ME(h) = { ((pp) - °ps) Guth) + Ah) } - { °psa (T = /%) Gyh) )

The terms in between the first set of brackets represent the wavelength independent part of the
overall structure factor, denoted °F(h). It includes the envelope, constrast and fluctuation terms.
The second set of brackets 1s wavelength dependent, and incorporates the envelope and the
anomalous structure factors of A, *f' and *f". Note that the wavelength dependent contribution
is substracted from the normal scattering part indicating that the anomalous and dispersive
structure factors of A are applied to the Fourier transform of the indicator function of the
solvent accessible domain, -Gy(h).

By defining T'(h) = -°psAGu(h) one generates a expression of the overall structure factor
similar to the starting point used for the algebraic MAD method (Hendrickson, 1985), where
I'(h) replaces the normal scattering component of the of the partial structure A, °F(h).

*F(th) = °F(h) + *f/f° £ /%) °Fa(h) “MAD”
*F(zh) = °F(h) + (\f/f° + /%) T(h) “MASC”
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The substitution of T'(h) for °F4(h) has an obvious physical meaning. The anomalous partial
structure. A. which is a set of a few punctual and ordered scatterers in a MAD experiment is
exchanged for an extended uniform electron density in a MASC experiment (see figure 1f). The
separation of the effects of the anomalous partial structure A (and hence the Fourier transform
of the solvent accessible volume) from the overall diffraction effects can be applied using a set
of equations analogous to the MADLSQ equations, where they are solved for I°Fr(h)l, IT'(h)i
and phase difference between °Fr(h) and I'(h), Ad = (¢r - ¢p), Le.

PEh)E = IPEp(h)P + a(d) ITh)P + b(A) I°Fr(h)! IT(h)l cos(Ad)  c(A)I°Fr(h)!l IT(h)i sin(Ad)

where, a(L) = (7 + )2, b(L) = 22X/, c() = 2/,

A MASC experiment has an advantage over other contrast variation methods, since the
contrast variation is generated by inducing a physical change. This eliminates the possibility of
changes in the crystal lattice due to varying ionic strength, pH, precipitant concentration, etc...

which can arise in a chemical contrast series, and thus enforces strict isomorphism.

3. Strength of the anomalous signal in MASC

The strength of the signal in an anomalous contrast variation series can be quantified in a
similar way to those in the MAD method, i.e. by measuring differences between Bijvoet pairs
(anomalous or “f" contribution) and wavelengths (dispersive or *f contribution). Intuitively,
the magnitude of the anomalous signal in a MASC experiment is expected to vary considerably
with resolution, being very large in the lowest resolution shells and then diminishing rapidly
with increasing resolution. One also expects the anomalous signal to be directly proportional to
the concentration of the anomalous scatterer in the solvent accessible volume. Furthermore, the
signal will be maximised at the point of contrast matching. By making a certain number of
approximations, it is possible to derive expressions for and calculate the expected anomalous
and dispersive ratios (Fourme et al., 1995), but for the purpose of succintness only the final

expressions will be given here. Thus for anomalous and dispersive differences one gets®,

(PAFh)) / (PFh)I) = 3.44 x 1074 [A] 2M"/fotr) (Mw!/12 5)2 exp(-Bs2/4)
and
(P AF(R)I) / (PF(h)I) = 3.44 X 104 [A] (Af/fots) (M 1712 5)2 exp(-Bs2/4).

Clearly, the anomalous signal is dependent on a number of factors, such as the molar
concentration of the anomalous scatterers, [A] and the magnitudes of f" and Af'. However, the
resolution, s, has the strongest effect on the anomalous signal which drops away as a function

of 1/s> and exp(-Bs2/4). The term exp(-Bs2/4) represents a Gaussian smoothing of the

Where s = 25in6/\, | 7LAF(+h)I =1l F(+h)| | F(xh)l {1 CFahy, (MFh)y = 1P EG+h) + PEC-h) 172, and
S AR = 1TER) - PSR { (PRl + R ) /72 ).
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envelope boundary. where B is pseudo-temperature factor which defines the thickness of the
interface rather than the temperature factor of the macromolecule or solvent. The signals are
also somewhat dependent upon the molecular weight, but a 100kDa protein will still produce
68% of the signal of a 10kDa protein. For a hypothetical case of a 50kDa protein in 3.5M
(NH4)>SeQ4, where "= 7.0e-, Af=8.6e~ and B=100A2, expected anomalous and dispersive
ratios (respectively) are 0.441 and 0.274 at 33A resolution, 0.156 and 0.097 at 20A resolution.
and 0.032 and 0.020 at 10A resolution. Hence one expects in the lowest resolution shells very
large signals. which will decrease sharply with increasing resolution. If one wishes to obtain a
measurable anomalous signal out to 10A resolution, then one requires either multimolar

quantities of a K-edge scatterer or molar quantities of a L-edge scatterer.

4. Experimental

As a MASC experiment utilises the variation of ' and f", data collection should ideally be
carried out at X-ray wavelengths near absorption edges of the anomalous scatterer. Thus the
requirements are very similar to a MAD experiment - i.e. tuneable X-rays with a narrow band
pass (A?L/)L:IO-4), a X-ray fluorescence detector to determine precisely the wavelengths of
" max and Iflnax. the recording of Bijvoet mates or Friedel pairs close in time, etc... - but with
the additional requirement that the experimental setup is designed to collect reflections at the
lowest possible resolution. This often requires the mounting of a small beamstop just in front
of the detector entrance window. Other practical considerations are to use an area detector with
a large dynamic range to accomodate the accurate measurement of the most intense low
resolution reflections with those weaker reflections at more moderate resolution.

A variety of anomalous scatterers may be used in a MASC experiment, and the most
suitable ones will depend on the crystallisation conditions of the macromolecule. Analogues of
the precipitating agent are good choices since such compounds are less likely to perturb the
crystalline lattice (e.g. selenate for sulphate, bromide for chloride, tribromoacetate for acetate,
etc...). To date, MASC data have been collected on crystals of three proteins of differing
molecular weights and with a variety of different anomalous scatterers (see Table 1). In order to
develop the MASC method, all of the cases are known crystal structures, which allows the
experimental results to be compared with the correct envelope transform moduli and phases. In
each of the experiments described below, the X-ray diffraction data were recorded at the
wavelengths corresponding to the If'l,,,, and the f",,x which were determined from the X-ray
fluorescence spectra from a solution of the anomalous scatterer, as well as for at least one
wavelength remote of the absorption edge. A small beamstop (=2-3mm) was mounted and
aligned just in front of the entrance window of the detector. Where possible, the
crystallographic axes were aligned so that Bijvoet pairs could be measured on the same image.
Below, we describe in detail the experiments and the results for only two anomalous scatterers.
4.1 Hen egg white lysozyme co-crystallised in YbCl;

The very first MASC experiment was conducted on single crystals of lysozyme directly

crystallised from solutions of 0.3-0.5M YbCls. This combination was chosen because of the
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case of obtaining crystals and their robustness, as well as for the white line structure of the Yb
Ly-edge. The Yb** ion concentration could be increased to 0.8M using vapour diffusion
techniques before the crystal quality would deteriorate. X-ray diffraction data were collected at
three wavelengths including one remote on the high energy side of the Yb Ly;-edge on the D23
station (Kahn et al.. 1986) at LURE-DCI (Orsay, France). Bijvoet ratios are shown in Figure
2. The results confirmed the large anomalous signal at low resolution as expected by theory. At
the wavelength corresponding to the maximum of f", the Bijvoet ratio reaches =50% for the
lowest resolution shell and then diminishes sharply with increasing resolution. The internal
agreement between true equivalent reflections is within =1-3%, implying that the anomalous
signal is real. reproduceable and not artifact of either the data processing or the beamstop
shadow. The anomalous signal however extends well beyond 10A resolution indicating that
some Yb'* ions have bound to the protein. Anomalous difference Patterson maps did not
reveal the positions of three bound Yb>* ions, which were eventually found in a phased
anomalous difference Fourier map (Fig. 2). The reason for this might be because the diffraction
data is only =60% complete. This experiment has recently been repeated with 0.5M YbCl3 on
the DW21b station at LURE-DCI to obtain a complete MASC data set and also to investigate
the possibility of using the ordered sites of the anomalous scatterer in an overall phasing and
phase extention strategy.

4.2 P64k and xvlose isomerase in (NHy)>,SeOy4

P64k is a 64kDa outer membrane protein from Neisseria meningitidis currently under study in
our lab (Li de la Sierra et al., 1994; Li de la Sierra et al., 1997), and it crystallises from
ammonium sulphate solutions. Xylose isomerase also crystallises from ammonium sulphate
solutions but as a tetramer (173.2kDa) in the asymmetric unit (Rey et al., 1988). Both of these
proteins represent large macromolecular structures on the scale of those typically solved by the
MAD method. Ammonium sulphate in the mother liquor of the crystals could be substituted
with multimolar concentrations of ammonium selenate via simple soaking techniques. Crystals
of both proteins could withstand 3.5M (NHy),SeOy4, which brings the solvent electronic
density equal to the average protein electronic density, i.e. the contrast matching point. This
allowed us to collect MASC data at the Se K-edge of selenate which features a white-line
structure at a wavelength near =1A. In the first series of these experiments done on the
TROIKA station at the ESRF (Grenoble, France), the diffracting power of the P64k crystals
deteriorated rapidly under the intense radiation of the undulator beam despite cooling the sample
at 4°C. In order to collect a complete MASC data set off of one crystal, the experiments were
later repeated using flash cooling and cryogenic techniques. Images recorded at the Se K-edge
showed a marked decrease in the diffraction intensities as well as a substantial increase in the
overall background. Although such absorption and fluorescence effects have been previously
noted, they were never so severe (see Figure 3). This could be understood once it was realised
that selenate has an exceptionally large whiteline resonance (see Figure 4) which could only be
revealed when using the finer energy resolution of the monochromated X-rays from the Si(333)

crystal instead of the diamond C(111) crystal used in the previous run. To circumvent and
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Figure 6. Ordered sites of selenate ions in P64k (left) and XI (right). In each case, a phased
anomalous Fourier map is superimposed on to a map of the protein envelope. Dark spots on each
map show selenate positions in crevices and near the surface of the protein.
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Figure 7. Agreement as a function of resolution of IGy(h)l values of xylose isomerase in 2.0M
(NH4)2Se0y4 calculated from MADLSQ, GFROMEF and its model.
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minimise the absorption and fluorescence effects, a number of precautions were taken: 1)
Crvstals were rapidly rinsed or washed in an analogous sulphate solution just prior to freezing.
thus removing mother liquor containing any excess selenate surrounding the crystal. ii) smaller
crystals were used to reduce the amount of absorption relative to the crystal volume. and iii)
finer oscillation angles were recorded for the wavelength corresponding to the maximum of "
to improve the signal to background ratio. There are other tactics which could be emploved to
minimise fluorescence effects. For X-ray energies used in typical crystallography experiments
(0.5A - 2.0A). the fluorescence yield after absorbing an incident photon is 2-3 times higher for
the K-edges than for the L-edges (Kortright, 1986). For example, the fluorescence yield is
~60% for Se at its K-edge, whereas the fluorescence yield is only =20% for Yb at one of its L-
edges. Another method to reduce fluorescence effects is simply to increase the sample-to-
detector (D) distance since fluorescence which is radiated isotropically will fall off as l/Dz,
while the diffracted beams being quasi-parallel will remain essentially constant with D.

The anomalous signal for both proteins follows the expected trend, being very large for the
Bijvoet pairs at lowest resolution and decreasing rapidly with increasing resolution (see Figure
S). At higher resolution, the Bijvoet ratios for both proteins are of the order of the internal
agreement, but despite this low anomalous signal, up to 12 possible selenate ion sites have
been located from phased anomalous difference Fourier maps in the P64k crystals (see Figure
6). Similarily, several selenate ion sites have been found in the crystals of xylose isomerase.
All sites are at or near the macromolecular boundary, often in crevices, and their relative
occupancies vary considerably. The existence of ordered anomalous sites appears to be more
general than expected, but it opens up a potential of phasing to higher resolution once a model

for envelope 1s determined.

5. Extracting |Gy(h)l from MASC data

Two methods have been utilised to extract the moduli of Gy(h) from multiple-wavelength
diffraction data. One uses the algebraic equations in the MAD method as implemented in the
program MADLSQ (Hendrickson, 1985), and the other uses the program GFROMF (Carter &
Bricogne. 1987), which is designed to extract the IGy(h)l from the IiFyp(h)l of a chemical
contrast variation series. Both methods give satisfactory results up to at least 20A resolution.

Prior to using either method of extracting the IGy(h)l, the X-ray data were set on a common
scale using the program SCALA (Evans, 1993). The data were scaled in two steps: i) an
internal scaling for each wavelength to correct for incident beam fluctuations and sample decay,
and 11) a pseudo-local scaling between a reference wavelength (low f") and the other
wavelengths to minimise absorption effects.
5.1 MADLSQ

As mentioned above, the program MADLSQ, which was originally designed for multiple-
wavelength diffraction data, solves the set of equations by non-linear least-squares for [°Frl,
I°Fal and the phase difference A¢T.A. For MASC data, IT(h)! (or psalGy(h)l) replaces I°Fa(h),
and the phase difference becomes A¢T.r. The program also has the ability to refine or fix the
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values of f and f" of the different wavelengths. Results are shown in Figure 7 for the data
collected on xylose isomerase crystals soaked in (NH4)2SeO4 and as compared to the IGu(h)l
calculated from the coordinates of the 3D structure deposited in the Protein Data Bank (Rey et
al., 1988). Note the sharp asymptotic decrease in IGy(h)l with increasing resolution. The
agreement between model and experiment deteriorates beyond 10-20 A resolution for several
reasons: 1) the relative magnitudes of IGy(h)l are small, ii) the absorption effects are more
pronounced at higher diffracting angles, and iii) the possibility of ordered anomalous scattering
sites contributes to the partial structure extracted from the MADLSQ equations (i.e. IT'(h)i is
more precisely defined as IT'(h)+°F (h)l).
5.2 GFROMF |

In chemical contrast variation studies, the program GFROMF (Carter & Bricogne, 1987)
extracts the IG(h)! from the diffraction data iFps(h)l for i=1,...,N where i corresponds to to a
different solvent density, ips. To extend this to multiple wavelength cases, we simply substitute
in for the contrast series IMFobS(h)I where Aj = Aq,..., AN and the solvent density becomes }‘ips.
The same formalism is used to describe the overall structure factor in terms of the Fourier
transforms of the envelope (Gy(h)) and the internal denity fluctuations (A(h)). If X(h) and
Y(h) are the real and imaginary components of A(h) relative to Gy(h), one has,

iFcaic(h)l = K { [ X(h) + (pp) - ips) IGu(h)I 12 + Y(h)? }172

The GFROMF scheme carries out the non-linear least-squares refinement of IGy(h)l, X(h) and

Y (h) from scaled data summed over all contrasts, and minimises the function,
XiXnki 0'obs(h)'2 (liFobs(h)I - |tialc(h)|)2,

where Gobs(h) is standard deviation of Fgps(h)l. Note that X(h) and Y(h) represent both the
magnitude and the phase difference between Gy(h) and A(h). In practice, 'K, a scale factor
between the different data sets, should be refined for all but one contrast or wavelength.

The original program was modified to incorporate anomalous scattering contributions such
that,

MEeaie@h)l = MK { [ X(h) + (py)-ps-CiF/)°psa) IGu() 12 + [Y(h) £ (-MF/°)°psa) IGu(h)! ]2 } 172

Tests executed on simulated MASC data of kallikreen (52kDa), at three different contrasts of
selenate and three wavelengths per contrast, returned exact values of IGy(h)l, X(h) and Y(h) of
the simulated observed data. With experimental data, the results gave R-factors of =30-35% for
P64k and xylose isomerase crystals (see Table 2). This level of agreement is satisfactory
considering that many of the parameters are unrefined. In particular, the values of Mf and Mf"
employed were derived from previous runs of MADLSQ, and theoretical values of the contrast

were used rather than allowing them to refine. The scale factors between different wavelengths
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(K were set to unity since the data were already set on a common scale. In principle. all of
these parameters should be refineable in the GFROMF scheme, even though the number of
observations in the lower resolution shells is not overly large. What is certain is that prior
precise knowledge of the values of the contrasts, e and M s important to extract IGy(h)l

values of satisfactory quality.

6. Phasing G-moduli

Previous methods of phasing IGy(h)l from either X-ray contrast variation series (e.g.
Carter. et al ) or H/D substitution contrast variation series (Moras et al., 1983; Roth et al..
1984: Bentley et al., 1984; Podjarny et al., 1987; Roth, 1991) employed the assumptions that
the set of IGy(h)l behave much in the same way as the structure factors of small molecule
crystal structures. Hence such attempts have used the programs of traditional direct methods of
small molecule crystallography. As a starting point, we have also examined this strategy in
preliminary trials for phasing a set of IGy(h)| from MASC data, but it is clear that the limited
success with these methods necessitates a re-examination of the phasing methods used up to
now.

Using 1664 calculated IGy(h)l up to 10A resolution from a model of xylose isomerase,
phase sets for the IGy(h)l were generated using the program MITHRIL (Gilmore, 1984).
Normalisation was carried out empirically, by dividing the entire set of IGy(h)l by a constant
which set the 397 largest IGy(h)! to greater than 1.3. Of the phase sets generated, using triplets,
magic integers and statistically weighted tangent refinement, the best solutions gave correlation
coeffients of =0.74 for 20A resolution maps. However, none of the conventional figure-of-
merits were capable of distinguishing a correct phase set.

The limited success obtained from the use of traditional direct methods is not surprising |
considering that such methods are based on a variety of assumptions which are not valid for a
set of IG(h)l. For example, envelopes are not point scatterers, as can be assumed for atoms.
Also an envelope also does not represent a random distribution of scatterers; quite the contrary,
by definition of the biphasic model, the scatterers are confined inside the volume of the solvent.
Consequently, a set of IG(h)! does not follow Wilson statistics. In addition, normalisation of
IG(h)! can not be accomplished as in traditional methods because of the relatively few
reflections at low resolution and their very large dynamic range. Despite these differences with
small molecules, a set of IG(h)l has the advantage in being complete with relatively few
reflections (i.e. there are only a total of 73 unique reflections to 20A resolution for P64k).

The problem of phasing a set of IGy(h)l clearly needs to be readdressed. We are currently
considering other methods towards phasing IGy(h)l, and the use of Maximum Entropy and
Likelihood ranking to test envelope hypotheses. The literature shows an increasing interest in
the field of low resolution phasing. Some of these methods approximate globular proteins as
spheres or a few large Gaussian spheres (Andersson & Hovméller, 1996; Harris, 1995; Lunin
et al., 1995; Urzhumtsev et al., 1996), or as a gas of hard sphere point scatterers (Subbiah,
1991: Subbiah, 1993).
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7. Conclusions & Perspectives

It has been demonstrated that contrast variation in macromolecular crystallography can be
generated using anomalous dispersion techniques in a MAD-like experiment. The method
benefits from the strict isomorphism imposed by the external physical change of the wavelength
of the X-rays applied to a single sample. This is clearly advantageous over a chemical contrast
series experiment which typically requires several samples soaked in different media. and
which risks destroying any isomorphism.

From the studies presented here, large anomalous signals are observed in the lowest
resolution shells. In all of the cases studied to date, the anomalous signal extends to higher
resolution indicating the presence of ordered anomalous scattering sites. Such sites have little
effect at low resolution, and they are a bonus in a MASC experiment because they may provide
a path for phasing the 3D structure to higher resolution once the envelope is known. Extracting
the set of IGy(h)l from MASC data can be accomplished using two different procedures; one
based on the algebraic equations of multiple-wavelength diffraction data (MADLSQ) and the
other based on the equations derived from a chemical contrast variation series (GFROMF).

The process of phasing a set of IGy(h)! needs further attention. Traditional direct methods,
which are intended for small molecule structures, are not suitable for this type of phase
problem. If the phasing step of a set of IGy(h)! can be dealt with, then the combination of
anomalous dispersion and contrast variation techniques can lead to a general method for low
resolution phasing of very large macromolecules including those beyond the scope of MIR and
MAD methods. Finally, knowledge of the macromolecular envelope will help phase the

structure to higher resolution.
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1 Introduction

The knowledge of the three-dimensional structure of a molecule is for many questions in
science extremely important since nearly all properties do not depend only on the chemical
composition but also on the arrangement of the atoms. For the determination of the three-
dimensional structure of such molecules X-ray crystallography plays an important role.
However, other methods like NMR (Wiithrich, 1995) gained more importance recently.

The electron density p(r) of a crystal is periodic in three dimensions. Therefore, the
Fourier transform of p(r) of the whole crystal is discrete if the crystal is assumed to be
infinite. Owing to this fact it is sufficient to restrict all considerations to one unit cell.
The coefficients of the Fourier transform of p(r) of the unit cell are called structure factors
and are given by:

F(h) — Z (/ p(r)e21rihrdr3)e27rihramm (1)

atomn
atom

Hereby, h denotes a reciprocal space vector and r are vectors in direct space. The integral
in brackets represents the Fourier transform of the electron density of an atom which is
commonly called atomic scattering factor f;(h). F(h) is a complex number which can
be separated in modulus and phase F(h) = |F(h)|exp(i¢(h)). The phase ¢(h) of F(h)
depends on the origin of the unit cell that was chosen. For an origin shift of As the phase
é(h) will change by —27rhAs. The intensity of the reflections measured during X-ray
experiments is given by I(h) o« F(h)F*(h) ~ F(h)F(h). The latter term is only valid
if absorption is small. This means, an X-ray experiment with a single reflection delivers
only the modulus but not the phase of the structure factors. Therefore, no simple Fourier

back transformation 1

p() = o= 3 F(h)e72mr (2)

UC h

to reveal the electron density of the unit cell is possible. This is well-known as the phase
problem of X-ray crystallography. Since the discovery of X-rays many methods have
been worked out to surmount the phase problem for both small and macromolecular
structures. For small molecules in general more structure amplitudes |F'(h)] are available
than unknown parameters that are necessary to describe the basic structure, taking also
into account that it consists of atoms with a positive electron density everywhere. This
is true if reflections up to atomic resolution can be measured. For that case, powerful
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computer programs are available to solve the structures directly from the measured struc-
ture amplitudes by statistical methods called 'Direct Methods’ (Debaerdemaeker. Tate &
Woolfson, 1988; Sheldrick. 1990; Altomare et al., 1994; Miller, Gallo, Khalak & Weeks.
1994). For structures where no information up to atomic resolution is available additional
information has to be provided for a successful solution of the structure. This can be the
position of one or more heavy atoms with or without anomalous dispersion contributions
(SIR, MIR and MAD) or a significant part of the molecule (molecular replacement). All
relevant methods have been reviewed in a recent text book (Woolfson and Fan, 1995)
and are the object of continuous improvement.

It is the purpose of this contribution to show that under certain circumstances also
phase information besides the amplitudes can be obtained directly in a X-ray diffraction
experiment. As explained before the phase of a single structure factor has no physical
meaning since it depends on the choice of the origin. However, the phase of the product of
structure factors whose corresponding reciprocal lattice vectors join to a closed polygon
is independent of the origin. Such a quantity is called invariant. The simplest invariant
(besides F(h)F(h)) is a three-structure factor invariant like

F(h)F(g)F(h —g) = [F(h)F(g)F(h - g)le’" 3)

\;vith the triplet phase _
@1 = ¢(h) + ¢(g) + ¢(h — g). (4)

Triplet phases play a key role in ’Direct Methods’ and it will be shown that they are
physically measurable quantities. They consist of a sum of three structure-factor phases.
In some cases, however, it is even possible to measure the phase of a single reflection if
one reflection is a seminvariant reflection and if the other two are correlated by symmetry.
Seminvariant reflections do not change their phase if one of the symmetrically equivalent
origins of the unit cell is chosen. Let (R,t) be the rotational and translational part of a
space-group symmetry operation. If triplets of the kind

o7 = ¢(hs) + ¢(g) + #(—gR) ' (5)

can be found the phase of the g reflection cancels since ¢(gR) = ¢(g) — 2rth. If ®7 is
known, the calculation of ¢(hs) is straightforward. In 'Direct Methods’ triplets like (5)
are called ¥; relationships.

The direct measurement of phase relationships between X-ray reflections is only pos-
sible by means of an interference experiment. Hereby, it is necessary to superpose two
waves with exactly the same wave vector K. If two waves A e and B e*® with amplitudes
A, B and phases a, § interfere the resulting intensity is given by!

I=A*+ B?+ 2 AB cos(+(a — B)). (6)

Equation (6) shows that the intensity depends on the phase difference of the two waves.
The idea how this can be achieved in a diffraction experiment by means of a three-beam
case was born already in 1949 by Lipscomb.

11t has been assumed that they have the same K vectors, so the K r term in the complex exponential
functions has already been omitted.
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2 Three-beam interference

In a three-beam case there are besides the origin two other reciprocal lattice nodes on
the Ewald sphere. This can for example be achieved by the so-called ¥-scan technique.
Hereby, one reciprocal lattice vector h is brought to its diffraction position. This reflection
is considered to be the primary one. By means of a rotation around h a secondary
reciprocal lattice node G is turned on to the Ewald sphere. This situation is depicted in
Fig. 1. The secondary wavefield with K(g) can in part be diffracted by the reciprocal

Figure 1: Three-beam case: schematical representation in crystal and reciprocal space with primary
reflection h and secondary reflection g; for simplicity all three K vectors are drawn co-planar.

lattice vector h-g into K(h) direction?. Therefore, two wavefields are propagated in
K(h) direction, the primary one scattered from the h net planes which has a phase shift
#(h) and the so-called Umweg wave (detour wave) scattered from g and h-g with the
corresponding phase shift ¢(g) + #(h — g). According to (6) the intensity in direction
K (h) should depend on +(¢(g)+ #(h — g) — #(h)) and on the amplitudes of the primary
and the Umweg wave. This qualitative interpretation already proposed by Lipscomb
(1949) is however not sufficient to describe the intensities during a three-beam case.
For an exact description the dynamical theory of diffraction has to be applied (Colella,
1974; Pinsker, 1978; Himmer & Billy, 1982; Chang, 1984; Chang, 1987; Weckert &
Himmer, 1990; Weckert & Himmer, 1997). It is beyond the scope of this article to give
a full treatment of this theory for the three- or multi-beam case. For further reading
please consult the cited literature. Here only the basic results for understanding the
principles of three-beam diffraction will be summarized. In a perturbational approach
(Bethe approximation (Bethe, 1928)) the amplitude in K (h) direction can be written as
(Weckert & Himmer, 1997)

%% = N7'R(h) (sl F(h) + R(g)ao,an, [*F(g)F(h — g)) = N"'R(h)F.y;  (7)

hereby N =1 — of (I'F(h — g))*R(g)R(h), D denote the amplitudes of the wave fields,
aij are coupling scalar products, I' = r,A?/7V,, is a constant characterizing the coupling

>The same holds for the wavefield with K(h) via g-h into K(g) direction.
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between the crystals electrons and X-rays, re = 2.81 - 10~1® m is the classical electron
radius and the resonance terms R(h,,) are given by

K(h,)? & |R(6)Iemd’(6). (8)

Riho) ~ —eBm)”
(hm) ~ 2R (0 )

The angle § represents either w for h,,=h or ¥ for h,, =g, Ko is the wave vector of
the incident radiation inside the crystal. Since K(h _) = Ko + hy holds from (8) it is
obvious that if absorption is taken into account the resonance terms R(h,,) behave like
Lorentzians with a phase shift from 0 to = if a reciprocal lattice vector moves from the
inside (JK(h,)| < |Ko|) to the outside (|K(h,,)| > |Kol|) of the Ewald sphere. For the
further discussion we assume that N = 1 holds in (7). Comparing (7) with (6) the total
phase difference for the interference of the two waves can be deduced: '

®,,4(V) = £((6(g) + d(h — g) + AJ(¥) — ¢(h)) ~ &7 + Ag(¥). (9)

In Fig. 2 a schematical drawing of amplitude and phase of the resonance term are shown.
Suppose the triplet phase of a three-beam case 0/h/g is zero: ®r = 0°. Then, at the
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Figure 2: Schematical drawing of amplitude Figure 3: Interference-profiles for different
(magnitude) and phase of the resonance term triplet phases

R(g) close to the three-beam position.

beginning of the WU-scan A¢(¥) =0 and ®,.:(V) is zero as well. The amplitude of the
Umweg wave is small and the two-beam intensity for h is observed. Scanning towards the
three-beam position the amplitude of the Umweg wave increases. The primary wave and
the Umweg wave interfere in a constructive way which leads to an increase in the resultant
amplitude of D(h). Near to the three-beam position A¢(¥) shifts rapidly from 0 to 180°,
then ®,,;(¥) = 180°. That means that the interference becomes destructive and the two-
beam intensity is decreased. At the end of the U-scan when the amplitude of the Umweg
wave decreases, the two-beam intensity is observed again. A calculated profile of this
type is shown in Fig. 3a. It reflects the fact that cos[®,,:(¥)] changes its sign as ®,:(¥)
varies from 0 to 180°. The profile forms for other triplet phases ® also shown in Fig.
3 can be explained analogously. In Fig. 3 the ratios of the structure factor moduli have
been chosen appropriately that for example the destructive interference for ®7 = 90° is
comparable to the constructive interference for #7 = —90°. However, in general this is not
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the case since additional svmmetric effects which do not depend on the sign of the triplet
phase occur which superpose the pure interference effects shown in Fig. 3 (Weckert &
Hiimmer, 1990: Weckert, Schwegle & Hiimmer. 1993). By comparison of the profiles for
two centrosvmmetrically related three-beam cases h, g, h-g and h,g, g — h shown in
the left and right column of Fig. 3, respectively, these Umweganregung (increase) or
Aufhellung (decrease) effects can be recognized and eliminated.

3 Experimental

The measured triplet-phase sensitive signal is the change of the intensity of a reflection due
to the interference with a second additionally excited one. This means that the rotation
around the primary reciprocal lattice vector h has to be very accurate as otherwise
spurious intensity modulations will occur and spoil any interference pattern. For this
purpose a special U-circle diffractometer has been constructed which is able to perform a
W-scan by the rotation of a single axis only. The angular resolution of this diffractometer
for those circles that move the crystal is 0.0002 — 0.00005°. In Fig. 4 a schematical
drawing of the diffractometer is shown. As the detector is mounted on two perpendicular
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Figure 4: y-circle diffractometer Figure 5: Three-beam positions in dependence
on ¥ and A for tetragonal lysozyme with V, =
238000A°. Only three-beam cases with ¢ > 0.25
(see text) for the primary reflection 470 are
shown. The thick line shows the position of the
three-beam case 470/251/221.

circles it can be moved to any direction in the upper half sphere. Thus, also the diffracted
intensity of the secondary reflection g during the ¥-scan can be measured which is very
important for large structures to obtain the accurate three-beam position.

In Fig. 1 only one secondary reciprocal lattice vector is shown. In reality the number
of secondary vectors can be very large. For the crystal structure of a small amino acid
at A = 1.5405 A for a full turn in ¥ about 6000 three-beam cases occur. This means on
average one three-beam case for a AW of 0.05° which is too narrow so that the interfer-
ence profiles of neighbouring three-beam cases would overlap. However, it is possible to
find larger gaps for some three-beam cases since the ¥ positions are not equally spaced
to measure an undisturbed interference profile. The ¥ positions of different three-beam
cases to one particular primary reflection depend very sensitively on the wavelength.
Hence, by searching for a suitable wavelength a three-beam case of interest can be sepa-
rated from neighbours for small and medium size structures. In case of macromolecular
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structures even by changing the wavelength overlap of different interference profiles can
not be avoided. Owing to the fact that the number of weak reflections in macromolecular
structures is large the wavelength for a given three-beam case with large structure factor
moduli can be selected properly that all neighbouring three-beam cases have significant
smaller structure factors. Assuming the interesting three-beam case is h, g, h-g with
structure factors F(h), F(g) and F(h-g) then it has been shown experimentally as well
as theoretically (Weckert, Schwegle & Hiimmer, 1993; Weckert & Himmer, 1997) that
the interference effect of neighbouring case h, g’, h-g’ can be neglected if

_ F'(g)F'(h—¢g')
= o) P g < 0.25. (10)

The F’ are structure factor moduli corrected for polarization. In these cases it is adequate
to search for a suitable wavelength that all three-beam cases with ¢ > 0.25 are sufficiently
far away from the interesting one. In Fig. 5 an example for a particular triplet of tetrag-
onal lysozyme is given. Due to the necessity to change the wavelength this experiments
require synchrotron radiation which helps also due to its high brilliance to measure the
comparable small interference effects.

The crystals used for experimental-phase determination by three-beam interferences
are of normal size (0.05 - 1 mm). Protein crystals have been sealed in capillaries together
with some mother liquid. The mosaic spread should be as small as possible. However, the
crystals do not have to be perfect. As long as a crystal consists out of a few larger mosaic
blocks whose reflection profile can be separated by the incident radiation® three-beam
interference experiments with single mosaic blocks are possible. Difficulties arise if the
mosaic distribution is smooth and wide.

In order to calculate the influence of possible neighbouring triplets and to search for
suitable three-beam case an intensity data set as complete as possible is required. For
protein crystals also all reflections at low resolution have to be measured.

4 Three-beam experiments with protein crystals

In the past years three-beam interference experiments with various proteins have been
carried out (Himmer, Schwegle & Weckert, 1991; Chang, King, Huang & Gao, 1991;
Weckert, Schwegle & Hiummer, 1993; Weckert & Himmer, 1997). The first interference
experiments were observed with crystals from sperm whale myoglobine. Later other
proteins were investigated like a Fab - fragment (space group: P 2,2, 2,,V =~ 280000A3),
triclinic and tetragonal hen-egg white lysozyme, proteinase K (space group: P432,2,V =
500000A3) and trypsin. All experiments were carried out with synchrotron radiation
either at beam line C of HASYLAB in Hamburg or from an ESRF bending magnet
(Swiss-Norwegian beamline, Grenoble).

In the very beginning wavelengths around 1.54A were used. In this wavelength range
radiation damage is severe. For this reason higher energies (= 1-1.1A) were selected for
more recent experiments. Three-beam interference effects could be observed up to a unit
cell size of 1.2 - 10843 (catalase oxidoreductase). For triclinic lysozyme it was possible
to measure triplet phases where reflections up to a resolution of 2A were involved (2.5A
for tetragonal lysozyme). With the present set-up at an ESRF bending magnet about 6

3Using radiation from an ESRF bending magnet, mosaic blocks which are not more than = 0.003°
inclined towards each other can already be separated.
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triplet phases per hour can be measured with a 600 um crvstal of tetragonal lysozyme in
the resolution range of 3-6 A. For a 150 um crystal of proteinase K in the same resolution
range about three triplet phases per hour are still possible. This number can be increased
if a more brilliant source is available. The maximum number of triplet phases that could
be measured from a single protein crystals of tetragonal lysozyme was about 150. before
the radiation damage was too strong. If crystals of very small mosaicity are available
the intensity changes owing to the interference effects are in the order of 5 to 15%. An
example for three-beam interference profiles of tetragonal lysozyme is given in Fig. 6.
In Fig. 7 the influence of the radiation damage on a three-beam interference profile is
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Figure 6: Measured three-beam ¥-scan pro-
files with an estimated triplet phase of F90° from
tetragonal lysozyme at A = 1.3047A; a: three-
beam case: 8 118/142, ®5%'¢ = —107° (entry
llse of PDB), b: three-beam case: 8 11 8/142;
|F(8 11 8)| = 727,|F(142)| = 1319,|F(778)| =
1157, exp. conditions: ESRF, Si 111 monochro-
mator, 7-polarization.

Figure 7: Measured three-beam W¥-scan pro-
files with an estimated triplet phase of 180° and
Umweganregung from tetragonal lysozyme at A
= 1.3302A. a: three-beam case: 740/521/22T,
®g2lc = 173.3° (entry llse of PDB), b: same
three-beam case as in (a) after 36h expo-
sure to X-rays; |F(740)] = 1065,|F(521)] =
2027, |F(221)| = 2902; exp. conditions: ESRF,

Si 111 monochromator, m-polarization.

demonstrated. After 36 h of exposure the interference effect is only half as pronounced
as for the undamaged crystal.

The mean error for the measured triplet phases of all investigated compounds com-
pared to the known structure models was about 20°. In order to test the feasibility of
triplet-phase data collection and also to develop a suitable strategy it was attempted to
measure a larger number of triplet phases from tetragonal lysozyme. Meanwhile, more
then 700 triplet-phases have been measured which contain about 630 different single
phases. The distribution of the resolution of these phases is shown in Fig. 8. The
maximum of this distribution is at about 4A.
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5 Structure determination using experimental phases

In order to apply (2) to calculate an electron-density map single-structure factor phases
are needed. which require the choice of an origin. From the 630 reflections two reflections
which occur most frequently in different triplets were selected to fix the origin. The
phases of this two reflections were taken from the known structure model for comparison.
Among the 710 triplet phases were 24 X; relationships according to (5) which provide
single phases. These 26 single phases can now be connected by other measured triplets
to give further new single phases. To keep error propagation small no single phase should
depend on a maximum number of measurements. For important reflections more than one
phasing branch can be used to fix the phase. Since there are more than 700 triplet phases
available for 630 reflections the dataset shows some redundancy. Nevertheless, not all
reflections could be assigned with a phase. The phase of these reflections were treated as
- symbols which had to be permuted by a magic integer algorithm (Main, 1977). For each
permutation a maximum entropy map and the corresponding likelihood was calculated
(Bricogne & Gilmore, 1990). In Fig. 9 the likelihood as function of the mean-weighted
phase error for each permutation is drawn. It is obvious that likelihood seems to be a
suitable criteria to discriminate permutation with lower phase errors. An electron-density
map calculated with the phases from one of the permutations with smaller phase error
shows already large portions of the molecule despite the fact of some main chain breaks.

There should be a number of other possibilities to take advantage of experimental
phase information. One of them is certainly in ’Direct Methods’ where estimated triplet
phases can be substituted by measured ones.

6 Conclusion

It has been shown that the direct determination of triplet phases even from crystals
of small proteins is possible provided a stable tune able synchrotron-radiation source
is available. The accuracy for the phases that can be achieved seems to be sufficient.
Introducing the experimental measured triplets into a maximum entropy based approach
is capable to provide single phase which can be used to calculate a map. Compared to
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other experimental phasing methods like MAD the three-beam interference method is
slower and crystals of very low mosaic spread have to be used. On the other hand the
phase information provided by the three-beam interference method can be obtained from
a native protein crystal without introducing heavy atoms. Protein crystals very often
show a very small mosaic spread, however, the radiation damage can be quite severe.
This seems to be the main problem since the shock freezing method which is successfully
applied for intensity data collections produces in general a mosaic spread which is too
wide for the application of the three-beam interference method.
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Direct methods - overview for macrocrystallographers

Zbigniew Dauter and Peter Main

Depts. of Chemistry and Physics, University of York, YO1 SDD

The term “direct methods” is used in small molecule crystallography to describe methods
of structure solution, that is to say methods for phase derivation, by purely mathematical
means utilising the measured structure amplitudes only. In a diffraction experiment it is only
the structure factor amplitudes |Fpy| that are measured (IFpg! = \/Ihk])- We can see that if we

express the electron density as a Fourier transform of the structure factors:

p(xyz) = 2 |Frua | exp(ionu) exp 2mi(hx+ky+lz)

then the only unknowns are the phases of the structure factors, ¢pk1. The knowledge of the
phases is much more important than that of the amplitudes, as can be seen from the following
relationship, based on the principle, that the Fourier transform of the product of two functions

is equal to the convolution of individual transforms:

|Frul X exp(1Qnki) = Fru

FT FT FT
amplitude * phase = p(xyz)
synthesis synthesis

(=Patterson)

The Fourier transform of the amplitudes gives a function very similar to the Patterson, which
has a huge peak at the origin and does not correspond to the actual electron density p (xyz).
Most of the information about positions of the atoms in the crystal, or peaks in p(xyz), must
be contained in the phases of the structure factors. Therefore the fundamental problem in the

crystallographic diffraction analysis is the phase problem.
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Several methods of solving the phase problem exist, starting from trial and error
modelling for the simplest of the structures, through interpretation of Patterson function with
unknown or known (Molecular Replacement) structural models, to rather tedious methods
utilising the signal from the heavy atoms either already present in the structure (e.g., MAD) or
substituted into the structure (MIR). The term direct methods traditionally refer to methods of
phase calculation which utilise analytical mathematical (probabilistic) equations based only

on the observed structure factor amplitudes.

The structure factors, i.e. their amplitudes and phases, in general, depend on the

distribution of atoms in the unit cell of the crystal:
Fia = [Fral exp(iona) = X fj exp(B/ag?) exp -2mifhx;+ky j+1z))

The atomic coordinates, Xj ,yj and zj are expressed as fractions of the cell edges and relate to a
common reference point, the origin of the cell. It is convenient to fix the origin at symmetry
positions such as a center of symmetry if it exists. In other space groups, such as P2y, it may
lie on the screw axis anywhere along b direction. Moreover in most space groups there are
several special positions of the same symmetry and any of them can be selected as the origin
of the cell. Change of the origin will not change the amplitude but in general may change the
individual phases. The table shows how the phases (or in this case, signs) of reflections with
different parity of their indices change when the origin is shifted between eight possible
centres of symmetry in space group P-1.

origin shift 000 175,00 01,0 001, 0l 150, U100 WLV,
parity

eee + + + + + + + +
€eo + + + - - - + -
coe + + - + - + - -
oee + - + + + - - -
€00 + + - - + - - +
0€o + - + - - + - +
ooe + - - + - - + +
000 + - - - + + + -
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In this case only reflections with all three indices even do not change their phase when
the origin is shifted. In the process of ab initio phase estimation it is necessary to ensure that
all phases form a consistent set and refer to a common origin. Analysis of phase dependence
on the selection of different origins, permissible in given space group, leads to the concept of
structure seminvariants. They are the structure factors or their linear combinations, whose
phase does not depend on the choice of the origin, under the condition that it is allowed for
the particular space group. One of the simplest seminvariants is formed by a so-called X

triplet of three structure factors Ep, Ex and E .h.k, for which the sum of indices is zero.

The selection of one of the several possible origins can be done by a free choice of phases
for three (or less, for centered or higher symmetry cells) reflections, which do not form

seminvariants.

The equation for the electron density does not provide a direct relationship between
structure factor amplitudes and phases. If the electron density was completely unknown, the
amplitudes and‘ phases would need to be treated as completely independent. Fortunately, we
have some expectations about the electron density which indirectly constrain the terms in the
right hand side of the electron density equation. Since the amplitudes are known, those
constraints can be utilised to formulate some phase restrictions. Many analytical or
probabilistic relationships of different strength and usefulness have been proposed. For the
pioneering work in this field, setting out the basis of the direct methods, Jerome Karle and

Herbert Hauptman were awarded Nobel Prize in Chemistry in1985.

The features of the electron density which can be expressed mathematically and used in

structure determination are set out here:

1. atomicity of p(x) normalised structure factors
2. positivity of p(x) inequalities and determinants
3. equal atoms Sayre’s equation

4. 3(x) dV = max. tangent formula

5. -f p(x) In p(x) dV = max. maximum entropy methods
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6.  partial structure modification of probability equations

7.  multiple motifs molecular replacement
8.  p(x)=const. solvent flattening and density modification

It is known from the principles of chemistry that the atoms cannot lie closer together than
a certain distance. The electrons are concentrated to a certain volume around the atoms and
the thermal vibration smears out the electron density to some extent around the average
atomic positions, but in general the electron clouds of separate atoms do not overlap
considerably. This can be utilised to remove the effect of the atomic or, rather, electron cloud
shape (represented by the term f; exp(-B/442)) from the structure factor. Removal of the term
§ exp(B/442) from the structure factors Fpyj , substituting them by the normalised structure
factors, Epk] leads to the deconvolution of the point atom structure, as can be seen from the

following relationship:

Enh X fj exp(B/4q?) = Fhii
FT FT FT
point atom  * real = p(xyz)

structure atom

This can be done by dividing the structure amplitudes by their average value in the

resolution ranges:
|Enii |12 = Tnia / <I>

and can be represented by the Wilson plot (1942) which in average is horizontal. This
procedure weights up the high resolution intensities, intrinsically small due to the atomic
shape and its vibration and allows the selection of the relatively largest structure factors in all
resolution ranges. Direct methods anyway usually utilise only a subset of the largest

amplitudes in the process of phase estimation.

The electron density must not be negative, otherwise it has no physical meaning. This

constraint leads to the formulation of inequality relations, which were the first of the
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mathematical expressions connecting the phases and amplitudes of the structure factors, given
by Harker and Kasper (1948). An example of such inequality in terms of unitary structure

factors (Unk] = Fria / Fooo):
UZpg < 1 (1 + Uznokan)

is valid in P-1. If both Uy and Uppoio) are sufficiently large, the inequality relationship can
prove that the sign of Uapox21 must be positive. Such relationships were generalised by Karle
and Hauptman (1950) and also expressed in the form of determinants. However, inequalities

are not powerful enough and are not used in practice any more.

If we neglect the hydrogens, the assumption that the crystals of organic compounds
consists of equal atoms is a good approximation. The diffracting power of carbon, nitrogen
and oxygen with 6, 7 and 8 electrons are similar. If we also take into account atomicity of the
electron density, it leads to so-called Sayre’s equation. This was formulated in three papers

published in 1952 by Sayre, Cochran and Zachariasen in the same volume of Acta Cryst.

If the electron density within the crystal consisting of equal atoms is squared, the
resulting “squared” density is almost proportional to the original, except that the atomic peaks
have a somewhat different shape. We can introduce the structure factors of the squared

structure,

Gria = g 2 exp 2mi (hxj+kyj+1zj) = &/ f 2 exp 2mi (hxj+ky+1z)) = 8¢ Fpyg

On the other hand, from the following convolution

p() X p() = pr)
FT FT FT
Fn * Fn = Gh

it can be shown that G, = l/y Fp, * Fp, = Iy Zk Fx Fh-k , and we obtain the Sayre’s equation:

Fn= 1y f/g Zk Fx Frx
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which gives exact relationship among the structure factors. It is the most important equation

in direct methods and forms the basis of phase propagation and refinement.

Closely related to the Sayre’s equation is the tangent formula, given by Cochran (1956),

which can be expressed as follows:

2 |Ex End sin (@x + @)

tan @p =
2y |Ex Enxl cos (9k + ¢n)

The tangent formula is based on the probability considerations for the distribution for the

unknown phase @}, with the other phases known. The reliability of the formula depends on the

value of:

O = 2/\/N |Exl | Zk Ex Enhx I

A simplified conclusion from the tangent formula and Sayre’s equation is that

for non-centrosymmetric crystals Ep, has phase of { 2k En Ex Epx }

and for centrosymmetric crystals Ep has sign of { 2k En Ex Eh.x }

If the values of all three normalised structure factors of the X, triplet are large, there is a
high probability that even for a single triplet their phases sum to zero, or (for centrosymmetric
crystals) the product of their signs is positive. This is the basis of the symbolic addition
procedure, introduced in the early 1960’s by Isabella Karle. Symbolic addition was widely

used in the era before automatic programs and fast computers became available.

In this method the phases of some reflections were represented by letter symbols, and
together with the origin fixing reflections constitute the starting set. In non-centrosymmetric
space groups the phase of one more reflections can be chosen to fix the enantiomorph. The

symbols are then propagated through a number of X, relations, so that a number reflections

have phases represented by symbols. Some reflections may have several different estimations
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expressed by different symbols, which provides additional relations between symbols or

allows to assign specific phase to a symbol. The example below illustrates the procedure for

P-1 symmetry.

origin fixing reflections: 3 0 2 +
2 3 2 +
1 -1 -
symbols 0 3 3 a
3 4 b

phase propagation:
3 0 2 + 3 0 2 +
2 3 2 + -1 2 -
5 3 4 + 2 2 3 -
1 -1 - 2 3 2 +
0 3 3 a 3 2 4 b
1 -a 1 5 2 b

From the last two relations it is evident that b = -a, and the number of symbols can be
reduced. This procedure finally leads to a single combination of phases which hopefully

provides an interpretable E-map.

In the multisolution approach, introduced in 1970’s in York in the program MULTAN
(Germain, Main & Woolfson, 1970), the phases of the reflections in the starting set are
permuted and those combinations then propagated and refined, thus producing a number of
potential solutions. The starting phases can be permﬁted in a simple way, with
centrosymmetric reflections having 0 or 180° and -non-centrosymmetric ones 45, 135, 225 or
335°, giving either 2" or 4" combinations. Another method of sampling the phase space more
effectively with less permutations is based on the idea of magic integers (White & Woolfson,
1975). The phases of the starting set reflections are expressed as a function of a single

variable:
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¢ =m; Xx mod(2m)
for a sequence of mutually prime integer numbers m;.

A variation of the multisolution method, which gained more popularity with the increased
availability of faster and larger computers, is the random approach. The random phases can
be assigned to the limited phase set, as in the multisolution approach, and then propagated and
refined as in the program RANTAN (Yao, 1981), or all phases given the random values and
then refined to consistency as in SHELXS (Sheldrick, 1990). The last approach is gaining
more popularity lately and is implemented in most of the contemporary direct methods

programs.

The multisolution and random methods create a large number of phase sets, some of
which are correct, leading to interpretable E-maps, and some incorrect. The identification of
the correct set(s) is not easy and requires the use of reliable figures of merit, which test the
quality of phases. Several different FOM’s have been proposed and used in different

programs.

ABSFOM checks the internal consistency of triplets, its value should be 1 for correct set
and O for random phases. Rt checks the deviations from the expected values of o, ¥ makes
use of the triplets with Ej, small. Obviously such reflections do not take part in the phase
refinement and therefore provide an independent check of phase correctness. NQEST is based
on negative quartets, for which Ey, Ey, Ek, Ep4k4] are large but Epyx , Ex4 and E 4y, are small.
The phase of such seminvariant @4 = @ + @k + @ + Qh+k+] is expected to be 180°, therefore
NQEST should have a negative value for good phases. In practice often the direct methods
programs use a combination of several figures of merit and select the best phase set according

to combined figure of merit.
The structure determination by direct methods consists of the following steps:

1. Calculation of normalised structure factors from F,; and selection of a set of large E’s
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2. Setting up 2, phase relationships, En Ex En-k
3. Phase assignment to the starting set, including origin fixing
Phase propagation and refinement

Calculation of figures of merit

AN U

Computation and interpretation of the E-map.

In contemporary direct methods programs all these steps can be performed automatically,
without manual intervention. Indeed, most of small structures with up to about 100 atoms can
be solved using the default program options. This is not the case for larger molecules,
including small proteins, for which the process of solving the structure by direct methods is
far from routine and requires diffraction data to extend beyond 1.2 A, involves generation of
an enormous number of phase sets and the use of efficient figures of merit. Largest structures
solved so far by direct methods have 400 - 500 atoms (Dauter, Lamzin & Wilson, 1995,
Sheldrick et al., 1993). Hovever, recently Herbert Hauptman (1996) formulated an optimistic
opinion that within 10 years we should be able to solve structures with up to 1000 atoms at

somewhat lower resolution.
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Macromolecular Phasing by Shake-and-Bake
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Abstract. Shake-and-Bake is a direct methods procedure which has provided ab initio
solutions for protein structures containing as many as 600 independent non-H atoms,
provided that good-quality diffraction data are available to 1.1A resolution. Its ultimate
potential is unknown. The Shake-and-Bake algorithm extends the range of conventional direct
methods by repetitively, unconditionally, and automatically alternating reciprocal-space phase
refinement with filtering in real space to impose constraints. An extensive web site for SnB, a
computer program implementing Shake-and-Bake, can be found at URL
http://www.hwi.buffalo.edu/SnB.

1 Introduction

The majority of small-molecule organic crystal structures having fewer than 100 independent
non-H atoms are solved using reciprocal-space direct methods. Conventional direct methods
begin to fail in the 100-200 atom range because the accuracy of the underlying probabilistic
phase relationships decreases as the size of the structure increases. Fortunately, however, the
size of molecular structures amenable to phasing by direct methods can be increased
significantly if these methods are augmented by the imposition of physically-meaningful
constraints in real space. Real-space phase-improvement methods, commonly known as
density-modification methods, are widely used in macromolecular crystallography (see review
by Podjarny et al., 1987). The potential for real-space constraints to improve phases in the
context of small-molecule direct methods was recognized by Jerome Karle (1968) who found
that even a relatively small, chemically-sensible fragment extracted by manual interpretation of
an electron density map could be parlayed into a complete solution by transformation back to
reciprocal space and then performing additional iterations of phase refinement. The
tremendous increases in computer speed in recent years have made it feasible to consider
repeatedly cycling many trial structures back-and-forth between real and reciprocal space,
while performing optimization alternately in each space. This compute-intensive process,
which requires the use of two Fourier transforms during each cycle, forms the basis of the
synergistic Shake (phase refinement) and Bake (density modification) procedure in which the
power of reciprocal-space phase refinement is automatically augmented by filtering to impose
the phase constraints implicit in real space (Weeks et al., 1994).

Getting Started. Practitioners of conventional direct methods handle the problem of
beginning a structure determination when no atomic positions are known by adopting a
'multisolution’ approach in which multiple sets of trial phases are evaluated either
symbolically (Karle & Karle, 1966) or numerically (Germain & Woolfson, 1968), with
probable correct set(s) determined by ranking according to a suitable figure-of-merit. Since
solving very large structures requires a large initial set of presumed-known phases, it has been
found advantageous to generate trial phase sets by using a random-number generator to assign
values to many or all of the required phases (Baggio et al., 1978: Yao, 1981). In the Shake-
and-Bake procedure, phases are assigned initial values by generating trial structures consisting
of randomly positioned atoms (thereby imposing an atomicity constraint from the outset) and
then computing structure factors.

Foundations of Phase Refinement. Direct methods are based on the fact that there

exist linear combinations of phases, called structure invariants, whose values, in principle,
depend only on the magnitudes of the normalized structure factors,
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N
Ey =|Enlexp(ioy) =1/ N“Z)ZeXp(2m'H-rj) (1
j=1

where rj is the position vector of one of the N atoms, assumed identical, in the unit cell. The
conditional probability distributions of the structure invariants permit individual invariant
values to be estimated as first proposed by Hauptman and Karle (1953). The most useful
phase relationships are the three-phase or triplet invariants,

Ty =Qu + Pk +P_p-k- ()
which have the associated parameters (or weights),
Ang =(2/ N"?)|EqExEq.x| 3)

Ab initio phase determination involves the derivation of individual phase values from a set of
triplets having a sufficiently large triplet:phase ratio (e.g., 10:1). The tangent formula,

%IEKEH-KISin(q)K +On-k)
- %IEKEH—chos(q)K +0y_k) ’

tan(¢g ) 4)

(Karle & Hauptman, 1956) provides a simple, but highly effective means for extracting phase
values from the triplets. If several pairs of phases, ¢k and ¢g.K, and their associated [EK],
|IEg.k! are known, equation (4) can be used to determine the most probable value for ¢g.
Phase expansion and/or refinement in reciprocal space is accomplished through successive
applications of this relationship. The tangent formula, in either its original or a weighted
form, is at the heart of widely-used conventional multisolution phasing programs, including
MULTAN (Main et al., 1980) and SHELXS (Sheldrick, 1984), which refine multiple sets of
trial phases by making many iterations or passes through the phase list.

Minimal Function. Minimization of an objective function like the minimal function,

2
R(®)= Y, Agk|cosTyy "i(éﬂ)‘ 2 Apx &)
HK I(Agk)]| / 8k

(Debaerdemaeker & Woolfson, 1983; Hauptman, 1991; DeTitta et al., 1994) provides an
alternative approach to phase refinement. R(¢) is a measure of the mean-square difference
between the values of the triplets calculated using a particular set of phases and their expected
values as given by the ratio of modified Bessel functions, and it is expected to have a
constrained global minimum when the phases are equal to their correct values for some choice
of origin and enantiomorph (the minimal principle). Equation (5) can also be written to
include contributions from higher-order (quartet) invariants, but this option has not been
shown, within the context of SnB, to be computationally efficient. Experimentation has thus
far confirmed that, when the minimal function is used actively in the phasing process and
solutions are produced, the final trial structure corresponding to the smallest value of R(¢) is a
solution. Therefore, R(¢) is also an extremely useful figure-of-merit. _

Parameter Shift. Parameter shift (Bhuiya & Stanley, 1963) is a seemingly simple
search technique that has proven to be quite powerful as an optimization method when used to
reduce the value of the minimal function, provided that appropriate choices of parameter
values are made. The phases are considered in decreasing order with respect to the values of
the associated |El's. When considering a given phase ¢; , the value of the minimal function
(Eq. (5)) is initially evaluated three times. First, with the given set of phase assignments,
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second with phase &; modified by the addition of the predetermined phase shift, and third
with ¢; modified by the subtraction of the predetermined phase shift. If the first evaluation
yields the minimum of these three values of the minimal function, then consideration of &; is
complete, and parameter shift proceeds to ¢; +]. Otherwise, the direction of search is
determined by the modification that yields the minimum value, and the phase is updated to
reflect that modification. In this case, phase ¢&; continues to be updated by the predetermined
phase shift in the direction just determined so long as the value of the minimal function is
reduced, though there is a user-defined predetermined maximum number of times tha; the shift
is attempted. Based on extensive experimentation with these and related parameters, involving
a variety of structures in several space groups, it has been determined that in terms of running
time and percentage of trial structures that produce a solution, an excellent choice of
parameters consists of the following: (i) perform a small number of passes through the phase
set, (i) evaluate the phases in order by decreasing |El-values, and (iii) for each phase, perform
a maximum of two 90° phase shifts. When the parameter-shift phase refinement is applied in
centrosymmetric space groups, only a single shift of 180° is required for each phase.
Surprisingly, higher success rates have been obtained if restricted phases in acentric space
groups are treated as general phases (Weeks et al., 1994).

Real-Space Constraints. Automatic real-space electron-density map interpretation in
the Shake-and-Bake procedure consists of selecting an appropriate humber of the largest peaks
(typically equal to or less than the expected number of atoms) to be used as an updated trial
structure without regard to chemical constraints other than a minimum allowed distance
between atoms. If markedly unequal atoms are present, appropriate numbers of peaks (atoms)
can be weighted by the proper atomic numbers during transformation back to reciprocal space.
Thus, a priori knowledge concerning the chemical composition of the crystal is utilized, but no
knowledge of constitution is required or used during peak selection. It is useful to think of
peak picking in this context as simply an extreme form of density modification appropriate
when atomic-resolution data are available. The entire dual-space refinement procedure is
repeated for an appropriate number of cycles which have been determined empirically by
experimentation with known datasets (Weeks et al., 1994).

2 Methods

The Shake-and-Bake procedure has been implemented in an efficient and easy-to-use
program, SnB (Miller et al, 1994). Pertinent information concerning SnB including the
complete User's Manual may be accessed from the home page on the World Wide Web at
URL:http://www.hwi.buffalo.edw/SnB. Stand-alone UNIX executables for SGI, SUN,
IBM, and DEC alpha workstations as well as PC/Linux versions may be downloaded without
cost to academic users. SnB has also been incorporated into Molecular Structure
Corporation's teXsan package of crystallographic programs, and supercomputer versions
have been installed on the Cray T3D and Cray C90 at the Pittsburgh Supercomputing Center,
the CM-5 at NCSA, and the SP2 at the Cornell Theory Center.

Overview of the SnB Program. The main menu of SnB gives the user the options
of (i) generating and processing trial structures to determine a structure, (ii) producing a
histogram of R(d) values for completed trial structures of a previously submitted structure-
determination process, and (iii) displaying the best current trial structure (i.e., lowest R(d)).
A typical application of SnB consists of submitting a structure-determination process,
monitoring the progress of the trial structures by occasionally viewing a histogram of final
minimal-function values and, when a potential solution is identified, examining the geometry
of this structure. The running time of the structure-determination procedure for large, difficuit
structures requiring many trials is substantial, and the ability to follow conveniently the course
of such jobs is essential.

The flow chart presented in Figure 1 illustrates the basic operation of the Shake-and-Bake
process as implemented in SnB. Triplet and (optionally) negative-quartet structure invariants,
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Figure 1. A flow chart for the Shake-and-Bake algorithm. Solid lines represent
flow of control; double lines show movement of data. ‘Start A’
represents the beginning of a structure-determination process, and
‘Start B’ indicates the beginning of a session in which the R(¢)
histogram and molecular geometry are checked.
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as well as the initial coordinates for the trial structures, are generated. Once this information is
available, every trial structure is subjected to the following Shake-and-Bake procedure.
Initially, a structure-factor calculation is performed which yields phases corresponding to the
trial structure. The associated value of the minimal function, R(®), is then computed. At this
point, the cyclical Shake-and-Bake phasing procedure is initiated, as follows. The phases are
refined via the tangent formula or by parameter shift so as to reduce the value of R(d). These
phases are then passed to a Fourier routine which produces an electron-density map, but no
graphical output is produced. Instead, the map is examined by a peak-picking routine which
typically finds the n largest peaks (where n is the number of independent non-H atoms in the
asymmetric unit) subject to the constraint that no two peaks are closer than a specified
distance. These peaks are then considered to be atoms, and the process of structure-factor
calculation, phase refinement, and density modification via peak selection is repeated for the

predetermined number of Shake-and-Bake cycles.

For each completed trial structure, the final value of the minimal function is stored in a file,
and the histogram routine can be run to determine whether or not a solution appears to be
present in the set of completed trial structures. A bimodal distribution with significant
separation is a typical indication that solutions are present (as shown in Figure 2), while a
unimodal, bell-shaped distribution (e.g., Figure 2 with the ‘0.467 to 0.470’ row omitted)
typically indicates a set of nonsolutions. Two options permit the user to view the current best
structure. The first requires only a character-based terminal and produces a text plot suitable
for printing on a line printer. The user can then manually ‘connect the dots.” This routine also
produces a list of the interpeak distances and angles. The second option makes use of
GeomView, a graphical routine developed by the Geometry Center (Center for the
Computation and Visualization of Geometric Structures at the University of Minnesota) and
suitable for an X-Windows environment. These options are included to assist the user in
deciding whether a solution has, in fact, been obtained. They are not intended to provide
complete visualization, especially for larger structures. It is expected that the coordinates will
be input into other graphical programs for more extensive display.

SnB Parameters. The SnB user must supply (i) basic crystal data including space
group, cell constants, and the contents of the asymmetric unit and (ii) an input reflection file
consisting of A, k, [ and the normalized structure-factor magnitudes, |IEl. The program will
automatically sort this data into descending order by IEl, eliminate systematic absences, and
eliminate duplicate reflections. No selection based on a(F) or F/o(F) is performed. It is often
critical that |El values be calculated extremely carefully, and Blessing's programs (Blessing et
al., 1996) are recommended. Cost-effective default values for the control parameters
(displayed following each query) are based on experience with several known test structures
and are summarized in Table 1. Several parameters depend on structure size and can be
expressed as a function of n. The user is free to override these recommendations, if desired.

A few comments concerning the parameters affecting the trial structures are in order. In
practice, it is not necessary to use more than 100 randomly positioned atoms as an initial trial
structure. During later cycles, choosing n peaks to recycle through the procedure gives
optimum success rates for smaller structures. However, for large structures containing a
significant number of atoms with low occupancy or high thermal motion, trial structures
composed of less than n peaks (e.g., 0.8*n) give better performance. The geometry of trials
that are solutions can be improved by E-Fourier recycling (Sheldrick, 1985), and the user can
select the number of such Fourier refinement cycles (i.e., SnB cycles with no phase
refinement) and the number of peaks. Also, it is often useful to build, over the course of
several cycles, from the number of peaks used during the Shake-and-Bake stage to the
approximate total number of atoms expected in the structure. When atoms with atomic
numbers greater than 10 are present, the user has the option of weighting the appropriate
number of largest peaks in the structure-factor calculations. Unequal weighting has resulted in
accelerated convergence to solution in cases where a small number of sulfur, iron, or chlorine
atoms is present.
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Table 1. Default parameter values for the Figure 2. A 20-bucket histogram of the

SnB structure-determination procedure. final minimal function values after 255
cycles for the 624-atom Tox II structure.
Parameter Default 5000 phases and 50,000 triplet invariants
were used. The separation between the
Non-H atoms in ASU n single solution and the 1618 non-solutions
is clearly shown.
Invariant generation: o
Number of phases 10n R(d) Range Trials in Range
Number of triples 100n
Number of negative 0 0.467-0.470 1*
quartets 0.471-0474 O
0.475-0478 O
Starting atoms/random trial min (r,100) 0.479-0.482 O
0.483-0.486 O
Number of SnB cycles: - 0.487-0.490 0
Parameter shift (PS) n/2 0.491-0494 O
refinement or Tangent  n/4 0.495-0.498 0
formula refinement 0.499-0.502 O
0.503-0.506 O
PS phase refinement: 0.507-0.510 25*
Size of phase shift 90° 0.511-0.514 135%**
Max. number of shifts 2 0.515-0.518 38GH*Hakkkokkx
Number of iterations 1 0.519-0.522  639%*kkkkakskkkokskoksk e ok
Exploit restricted phases? No 0.523-0.526 390 kkkkkkkk
0.527-0.530 41*
Number of peaks to select [0.8n,n] 0.531-0.534 2%
Exploit heavy atoms? Yes 0.535-0.538 O
Number E-Fourier steps 0 0.539-0.542 O

The relative efficiency of tangent-formula and parameter-shift phase refinement in Shake-
and-Bake has been compared using known atomic-resolution datasets (Weeks et al., 1997).
In the case of tangent refinement the minimal function is also computed, but used only as a
figure-of-merit. Regardless of which refinement method is used, optimization proceeds most
rapidly when there is immediate feedback of each refined phase value. In general, the tangent
formula solves small structures (<100 atoms) more cost-effectively, but the two phase-
refinement methods are equally efficient for solving most of the tested structures with more
than 100 independent atoms, including crambin. However, only parameter shift has produced
recognizable solutions for gramicidin A although another figure-of-merit might be more
reliable for tangent refinement. In addition, tangent-formula cost-effectiveness is highly
dependent on the number of phase-refinement iterations (i.e., the number of passes through
the list of phases) per complete Shake-and-Bake cycle whereas parameter shift does not
exhibit such strong dependency. The number of iterations per cycle must be chosen
judiciously if high efficiency is, in fact, to be achieved. This is especially true for structures in
space group P1 where it is never advisable to perform more than one iteration of tangent
refinement per cycle. Given a fixed number of machine cycles, it is important to consider the
trade-off between the number of trial structures processed and the number of cycles processed
per trial structure. Experimentation has shown that, with a phase-refinement technique
consisting of a single-iteration, two-step parameter shift of 90°, the point of diminishing
returns is at approximately n/2 cycles. Therefore, the program defaults the number of cycles
per trial to approximately this value. Overall recommendations for phase-refinement are given
in Table 2.

After the dialogue is complete, the user is asked to review the information supplied and
make any necessary changes. This information is then stored for use at a later time and for
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Table 2. Phase-Refinement Recommendations.

Recommendation Method Cycles SnB lterations/Cycle)

n < 100 atoms Tangent Formula n/4 4orl1 (P
n > 100 atoms Parameter Shift n2 1
Always Safe Parameter Shift n 1

use by the histogram routine. Once a user decides that the parameters are satisfactory, the
program automatically initiates the structure-determination procedure by spawning a batch job.

3 Applications

A list of successful SnB applications to protein structures is given in Table 3. Gramicidin A,
crambin, and rubredoxin were previously known test structures re-solved at the Hauptman-
Woodward Institute. The 64-residue scorpion toxin (Tox II) had been previously solved, but
the number of residues and the amino acid sequence were deliberately withheld from the
Buffalo group. The only information supplied was that the protein was composed of
approximately 500 atoms and contained four disulfide bonds. The remaining structures
(vancomycin, Er-1 pheromone, and alpha-1 peptide) were previously unknown, and these
applications were made in other laboratories without direct involvement by the authors of
SnB. All were solved routinely and automatically using essentially default parameters.
Success rate (percentage of trial structures going to solution) depends on size and complexity
of the structure, resolution and quality of data, the presence of heavier atoms (e.g., S, Cl, Fe),
and the space group as well as the number of refinement cycles. Success rate typically
decreases as the size of the structure increases or the resolution or data quality decreases.
Success rates for structures in P1 are significantly higher than for other space groups, a result
which may be related to the fact that the origin position can be chosen arbitrarily in P1.

The application to Tox II was made on a network of SGI R4000 Indigo Workstations with
SnB running as a background job for approximately six weeks. One morning, the histogram
reproduced in Figure 2 was found during the daily progress check. After detecting that the
histogram was now bimodal, the single trial in the 0.467 to 0.470 range was examined, and a
conservative model consisting of five fragments and a total of 241 atoms was constructed.
Following multiple cycles of Xplor refinement, the residual was 0.16 for 624 non-H atoms
(Smith et al., 1996).

It has been known for some time that conventional direct methods can be a valuable tool
for locating the positions of heavy atoms using isomorphous AE's (Wilson, 1978) and
anomalous scatterers using anomalous AE's (Mukherjee et al., 1989). Thus, it is no surprise
that the Shake-and-Bake algorithm can be fruitfully applied in this arena as well. The first
application of this type was to native and Se-Met data for avian sarcoma virus integrase
(Bujacz et al., 1995). The four Se atoms were found using 189 AE values (>1.76) in the
resolution range 20 to 3.7A. The investigators report that the isomorphous difference
Patterson map was impossible to deconvolute without the aid of direct methods.

4 Concluding Remarks

The ultimate potential of the Shake-and-Bake approach to the ab initio structure determination
of macromolecules is unknown. The combination of this technique with increasingly more-
powerful computers has recently permitted direct-method solutions in situations regarded as
impossible only a few years ago. The combination of Shake-and-Bake methodology with
alternative density-modification methods and supplemental phasing information from
isomorphous replacement and single or multiple-wavelength anomalous dispersion may allow
equally spectacular advances in the near future.
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Table 3. Protein structures solved ab initio by SnB

Non-H Space Success
Structure Atoms/ASU  Group luti Rate  References
Vancomycin 255 P43212 0.9 1/4200 P. Loll, pers. comm.
Gramicidin A 317 P21212; 0.86 0.25% Hauptman, 1995
Er-1 Pheromone 328 C2 1.0 0.25% Anderson et al., 1996
Crambin ~400 P2 0.83 2-3% Weeks et al., 1995
Alpha-1 Peptide 471 Pl 0.92 5%  Prive et al., 1995
Rubredoxin 497 P2 1.0 2.7% Hauptman, 1995
Tox II 624 P21212] 0.96 1/1619 Smith et al., 1996

Acknowledgments. The Shake-and-Bake algorithm and the SnB program have been made
possible by the financial support of grants GM-46733 from NIH and IRI-9412415 from NSF.
The authors would like to acknowledge the guidance and inspiration provided by Prof.
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Direct Methods based on real / reciprocal space iteration

By George M. Sheldrick

Institut fiir Anorganische Chemie, D37077 Gottingen, Germany

Abstract

It appears that direct methods inspired by Shake & Bake involving iteration
between real and reciprocal space are able to solve structures with several
hundred independent atoms, but still require data to atomic resolution (say
1.2A). Applications to the ab initio phasing of proteins (given very high
resolution data) and to the location of anomalous scatterers from lower
resolution AF or MAD F data are discussed.

1. Introduction

A feature that probably contributed significantly to the rapid acceptance of the
conventional direct methods program SHELXS-86 was the E-Fourier
recycling (Sheldrick, 1982, 1990) shown in Fig. 1 that was used to complete
the structure obtained from direct methods.

Phases from Tangent expansion
direct methods of partial structure
forE,>1.2 to Eg>1.2

Calculate E-map and
search for top 1.3N peaks

M cycles

Eliminate peaks
one by one to
minimize Rg

Calculate new
phases for E, > 1.2

A 4
Display picture
of molecule

Fig. 1. E-Fourier recycling as used in SHELXS-86 to improve phases from
direct methods.
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Usually a couple of cycles were sufficient. Since the E-Fourier
recycling was only applied to the 'best' solution, and only E-values greater
than (say) 1.2 were employed, the computing requirements were modest.
Very often this procedure was able to find every atom (except perhaps
disordered solvent molecules), which users found very convenient. On a few
occasions the E-Fourier recycling succeeded in extracting the solution from a
rather dubious set of direct methods phases, but despite this strong hint, it
did not occur to me that it could itself be effective as a 'direct method'. This
required the development of the Shake & Bake philosophy by Weeks, Miller
& Hauptman at Buffalo (Miller, DeTitta, Jones, Langs, Weeks & Hauptman,
1993; Miller, Gallo, Khalak & Weeks, 1994), which inspired much of the work
reported here.

2. Peaklist optimisation
Fine tuning of the E-Fourier recycling method since SHELXS-86 was
distributed included Sigma-A weighted difference Fourier maps (Read, 1986)

and the use of the correlation coefficient (Fujinaga & Read, 1987) between
Ec and EO to decide which atoms to delete:

CC = [ XWE 2E 22w — ZWE 2 2ZwE 2] |/
{ [ 2wEq* Zw — (XWED?] + [ZwEs* 2w - (ZwE2?]

The correlation coefficient is more sensitive in the important early stages, and
appears to give a very good indication of the true phase error (e.g. Fig. 2).

12 L

R EEEEENERE
Squared Correlation Coefficient % :
Fig. 2. E-weighted mean phase error (MPE) from direct methods attempts as

a function of the square of the correlation coefficient between E and E for
crambin (0.92A data kindly provided by Hakon Hope).
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Tests on rubredoxin by Sheldrick & Gould (1995) showed that the
elimination of atoms to improve the correlation coefficient (peaklist
optimisation) was very effective at expanding the structure from the iron and
four sulfur atoms to all ca. 400 atoms, provided that the resolution was better
than 1.3A.

5B 120 158 28 52 322 350
Peok quont:ies

Fig. 3. Histogram showing the percentage of correct peaks (within 0.3A of the
true atomic positions) before (grey) and after (black) iterative peaklist
optimisation for rubredoxin with the data truncated to 1.2A. There are 50
peaks in each quantile, so the first pair of columns are for peaks 1-50 sorted
on peak height, the second pair for peaks 51-100, etc.

3. Application to the solution of an unknown protein

Provided that a few heavier atoms can be located by for example Patterson
interpretation, peaklist optimisation can be used to complete the structure and
so - in the exceptionally favourable case of a small macromolecule that
diffracts to atomic resolution and contains a few heavier atoms - provides a
method of ab initio structure solution. Frazao et al. (1995) were able to solve
the structure of an unknown cytochrome cg in this way. The best sequence
identity with a protein of known structure was only about 24%, so molecular
replacement would have been difficult, but undoubtedly the structure couid
also have been solved - albeit at a higher cost in synchrotron beam-time - by
MAD phasing. The iron and three sulfurs were located by automated
Patterson interpretation (Sheldrick ef al., 1993) and the full structure was
expanded from them by peaklist optimisation using synchrotron data collected
to 1.1A (although the 1.2 to 1.1A shell was extremely weak) at the EMBL
outstation in Hamburg. Fig. 4 shows the same region of the structure at
different stages of the structure determination.
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Fig. 4. (a) Sim-weighted E-map for a
cytochrome cg (Frazéo et. al, 1995)
with phases from the iron and three
sulfur atoms; the E-weighted mean
phase error is 57°; (b) after peaklist
optimisation (E-weighted mean phase
error 38°); (c) the final 3F,-2F . map
after refinement of the structure.

Iterative application of peaklist optimisation enables about 90% of the protein
atoms to be identified from the peaklist alone without the need to examine
any maps; this was however required to find the remaining atoms, which had
high thermal displacement parameters or were disordered.

4. A reallreciprocal space recycling method for structure determination

Inspired by the Shake & Bake Philosophy described in the preceding Iecture,'

Sheldrick & Gould (1995) turned the peaklist optimisation procedure into a full
ab initio method for structure determination by the addition of the tangent
formula in the reciprocal space stage. Their algorithm (Fig. 5) could start
from random phases for a number of trials, or the initial phases could be
generated by (a) a rotation search (to maximise ZECZ(E02—1) for the largest
E-values) for a known small fragment (a small piece of a-helix proved very
effective) or (b) threefold Patterson superposition from vector triangles
identified in the sharpened Patterson peaklist (to exploit the presence of
heavier atoms such as sulfur or phosphorus). Since these two methods of
generating slightly better than random starting phases are not able to position
the origin of the space group, all calculations were performed on data
expanded to the effective space group P1. Expansion to P1 may in any case
increase the chances of this approach converging to the correct solution, but
increases the computer time required.
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Random phases

Rotation search Threefold Patterson
using known vector superposition
fragment minimum function

M|

Calculate P1 E-map and
search for top 1.3N peaks

Eliminate peaks

Tangent expansion
one by one to
@cycles) toEgy > 1.2 maximize CC

Display picture
of molecule

Fig. 5. Real/reciprocal space recycling starting from random or almost
random phases as proposed by Sheldrick & Gould (1995). The correlation
coefficient CC was calculated for all data expanded to the space group P1.

Tests showed that the peaklist optimisation was much more effective
than simply accepting the top N peaks, but that it takes about the same CPU
time as three structure factor calculations, and so is slower. Starting with
slightly better than random phases from the rotation search or Patterson
superposition map considerably increased the success rate of this approach.
The method was successful in solving several structures with more than 200
atoms in the asymmetric unit, but proved very expensive in consumption of
computer resources. The computer time required could be reduced
considerably by calculating the correlation coefficient for only the largest E-
values, for which structure factors were required anyway to provide initial
phases for the tangent refinement. However the correlation coefficient
proved much less effective when not applied to the full range of E-values.
The solution was to divide the procedure into an internal loop, in which a
specified number of peaks were eliminated so that ZECZ(E02—1) remained as,
large as possible, alternating with tangent phase refinement, and an external
loop, applied only for solutions with good values of CC (for all data), in which
peaklist optimisation as described above was applied using all data so that
the final structure was as complete as possible. The new procedure (which
has somehow acquired the name half-baked ) is illustrated in Fig. 6.
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Random
starting
atoms

E-map and
peaksearch

Internal loop

5-20 cycles | Tangent exp.
E>E ., from largest E

Eliminate atoms
to maximize

Sumi[E2 (E3-1)]

E. and phases for
remaining atoms

Calculate CC
for all data
If CC good
E-map and
peaksearch
Calculate External loop
new phases 2-5 cycles
all data Eliminate atoms
\ to maximize CC

Write atoms to file
for best CC so far

Fig. 6. The half-baked approach, as incorporated in SHELXD-97. It is
repeated indefinitely, restarting from random atoms, until interrupted! It may
be performed either applying the symmetry of the space group or after
expanding all data to the effective space group P1 (in which case the starting
phases may be generated by a rotation search). Usually not more than two
tangent cycles are applied per internal loop cycle. E,,, is normally chosen to
be in the range 1.2 to 1.6.

In general, it appears to be computationally more efficient to expand
the data to an effective space group of P1 for monoclinic structures; a larger
percentage of trials lead to a solution, more than compensating for the
increased cycle time. For higher symmetry it may be better to impose the full
space group symmetry. It should also be possible to include twinning in the
external loop; sometimes it is easier to guess the twin law than the space
group, in which case the data could be expanded to P1.

The procedure described above is philosophically similar to Shake &
Bake, but relative to Shake & Bake it does more of the work in real than in
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reciprocal space. It appears to be roughly comparable in its ability to solve
difficult structures. One structure solved at about the same time by both
programs, but using two different synchrotron data-sets, is vancomycin, a
glycopeptide antibiotic of crucial medical importance in the struggle against
the evolution of antibiotic resistant bacteria. The unexpurgated solution
obtained by Schéfer, Schneider & Sheldrick (1996) using the half-baked
procedure is shown in Fig. 7. The data were 99.3% complete to 1.09A, the
edge of the image plate used for synchrotron data collection. Including
solvent there are 313 atoms in the asymmetric unit in P43242. 2000 trials
with 8 cycles in the internal loop gave one solution; the CC of 75.5% was well
separated from the rest (the next largest CC was 57.9%, for an incorrect
solution). The CPU time used corresponded to a mere 4 VAX-years.

Fig. 7. Stereo view of the unedited ab initio solution of the structure of
vancomycin. The two antibiotic molecules are aimost complete, and form a
tight unsymmetrical dimer.

6. The location of anomalous scatterers

In the implementation of the MAD method, a problem has arisen involving the
location of the anomalous scatterers from anomalous AF or MAD F, values.
Patterson methods work well if there are only a few such atoms, but the
complexity increases as the square of the number of atoms and becomes
prohibitive, even for automated computer interpretation (Sheldrick ef al.,
1993) when the number of anomalous scatterers is more than about 12. One
would have expected that classical direct methods should be able to solve
this problem, since they are capable of finding at least 100 equal atoms, and
the anomalous scatterers are usually separated from one another by
distances much greater than the limiting resolution of the reflection data, but
in practice they invariably fail to locate say 20 independent selenium atoms.
There seem to be several possible reasons for this unexpected problem.

(a) Both Patterson and direct methods work best with complete data. Missing
centric and other reflections cause problems.
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(b) The AF values represent lower limits on Fy (MAD Fp values should be
better, at least in theory), so small AF values cannot be used in probability
formulae such as those involving negative quartets.

(c) It is difficult to take o(AF) or o(F ) into account in conventional direct and
Patterson methods, so the signal may get lost in the noise.

(d) The selenomethionines may be conformationally disordered.

Table 1. Crossword table for the second best solution from the Cu-Ka
anomalous AF values for a HiPIP protein with two Fe,S, clusters in the
asymmetric unit (1.5A data kindly donated by Hazel Holden & Gary
Wesenberg, truncated to 2A to make the test more difficult). The upper row
gives the minimum distance between the atom defining the row and the atom
defining the column, the lower row gives the corresponding Patterson
superposition minimum function.

Try 89, CC(HA)=35.74%, PATFOM=39.67

Peak x y z self cross-vectors
99.9 0.389 0.736 0.176 29.2
41.0

98.4 0.432 0.746 0.249 30.1 2.6
90.7 0.399 0.696 0.194 29.4 2.2 3.3
89.9 0.914 0.187 0.126 27.9 14.0 16.6 14.4

88.1 0.354 0.742 0.255 31.4 2.6 2.9 3.4 14.6
45.7 69.3 73.2 56.5 57.4

82.3 0.960 0.160 0.043 26.6 14.6 17.0 14.8 3.2 14.7
67.6 42.5 37.9 54.7 27.5 37.8

71.1 0.901 0.125 0.082 27.7 14.0 16.5 13.8 3.5 14.5 3.0
22.2 27.9 32.6 34.9 25.3 32.8 47.8

67.4 0.973 0.342 0.132 27.4 16.6 18.8 18.0

-------------------------------------------------------------------

46.8 0.966 0.143 0.145 27.6 16.4 18.9 16.5 3.1 16.8 3.0 3.1 10.4
8 0.0

41.3 0.500 0.749 0.286 28.
0
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Direct methods based on real/reciprocal space recycling have some
advantages to offer that may help to overcome these problems. The number
of anomalous scatterers N}, is usually known precisely; this information can
be used in a very direct way. The elimination of atoms in turn to optimise the
correlation coefficient CC, until exactly Ny atoms remain, does not require
complete data. In addition CC incorporates weights based on the
experimental sigmas. Finally, the Patterson function can still be used as an
independent check, as shown in Table 1. The second best solution is
illustrated; the Patterson superposition minimum function values clearly show
that the atoms 1-7 and 9 correspond to the eight expected iron atoms. They
form two Fe, clusters with FeessFe distances of about 3A. The PATFOM
figure of merit is simply the mean of the Patterson superposition minimum
function values for the top Ny atoms. The solution with the best PATFOM,
but the second best CC, gave atoms 1-8 as the correct iron atoms.

Table 2. Crambin test, internal loop searching for 3 disulfide bonds, external
loop expanding to full structure. The 0.92A low-temperature data were
collected and provided by Hakon Hope.

1625 E-sig(E) > 1.500 used to generate 77607 unique TPR
Try 19, CC(HAR) = 19.03%, PATFOM = 13.80

Peak x Yy z self cross-vectors.
99.9 0.3019 0.1253 0.1020 19.2
15.6

96.7 0.2571 0.0783 0.1028 22.4 2.0

96.7 0.3914 0.1707 0.4511 13.0 8.6 9.6

93.7 0.4373 0.1292 0.4262 11.1 9.1 10.3 2.1

90.7 0.0794 0.2353 0.0483 11.5 9.4 7.9 15.5 16.9

0.9 17.0 15.6 10.4 12.9

85.7 0.1098 0.3147 0.0591 13.1 8.6 7.5 14.6 16.0 1.
13.2 11.5 10.3 16.1 7.7 O

Peaklist optimization cycle 1 CC=30.05% for 41 atoms
Peaks: 99 97 97 93 92 88 15 15 -14 14 -13 -12 -12 -12 -12

Peaklist optimization cycle 2 CC=47.75% for 108 atoms
Peaks: 99 95 93 92 85 81 34 -34 34 34 34 -33 33 33 33 33

Peaklist optimization cycle 3 CC=70.62% for 240 atoms
Peaks: 99 95 91 90 80 77 36 36 36 35 35 35 34 34 34 33 33

Peaklist optimization cycle 4 CC=81.57% for 354 atoms

Peaks: 99 96 92 88 74 73 37 37 37 36 36 35 35 35 35 35 34
Fragments: 310 2 11111111111111111111
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It is possible to combine the search for a specific number of heavier
atoms from the native data in the internal loop with expansion to the full
structure in the outer loop, as illustrated by the crambin test in Table 2. In
this case the three disulfide bridges can be identified by their distances of
about 2A; only solutions containing three disulfide bonds were expanded
further by the program. The external loop of peaklist optimisation leads to the
essentially full structure in 4 cycles with a convincing CC (values greater than
70% are invariably correct). A minus sign in the list of peak heights indicates
that that peak was rejected in the elimination procedure. The final line shows
that there is a connected fragment of 310 atoms, plus a number of well-
defined water molecules that do not bond to other atoms.

7. Conclusions and future prospects

In reciprocal space, the phase refinement algorithm enables the structure to
escape from local minima in search of a global minimum, and shows some
similarities to simulated annealing. This is achieved by the correlation
between reflection phases and intensities, and the dominant role of
reflections with large E-values. In real space, the powerful constraint of an
atomic model (the key to the success of Shake & Bake ?) provides detail that
may have been lost in the reciprocal space stage, and forces convergence
towards a physically reasonable solution.

To extend the method to fower resolution, density modification may not
prove sufficiently incisive as a replacement for peak-picking. More promising
is the method used in ARP (Lamzin & Wilson, 1993) to fill density with atoms.
Alternatively, instead of using individual atoms, typical groups of 3-5 atoms
(e.g. peptide units) could be fitted to the density (given a fast computer !).

it looks as though real/reciprocal space recycling has the potential to
overcome the current difficulties in the location of a large number of
anomalous scatterers from noisy MAD data, but this needs further testing on
real data.

| am grateful to the Fonds der Chemischen Industrie for support. Figs.
1, 2 and 5 are reproduced from Sheldrick & Gould (1995), Fig. 4 from Frazao
et al. (1995) and Fig. 7 from Schéafer et al. (1996), with permission of the
respective publishers.
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0. Introduction.

The success of direct methods programs at providing a quasi-automatic solution to the phase
problem for small molecules has over the years dimmed the perception of the basic inference
processes involved in such crystal structure determinations. Greater awareness of this sequence of
inference steps has persisted in the macromolecular field, where the dialogue between numerical
computation and human decision is still part of the daily experience of most crystallographers. The
final step of turning the determination of macromolecular crystal structures itself into a purely
computational and automatic process is therefore likely to involve — and even require — that a
common basis be found for all phase determination methods used in these two fields. The purpose of
this article is to present an overview of one such unifying scheme, the Bayesian programme
formulated some years ago by the writer [1,2,3], partial implementations of which have given
several encouraging results [4-14] along the way to a full implementation. Special attention is paid
here to those areas where this viewpoint is having a practical impact on real applications in
macromolecular crystallography. Its application to ab initio phasing at typical macromolecular
resolutions will require in addition the incorporation of stereochemical information into structure
factor statistics [15].

1. Motivation.

Bayesian concepts and methods are ideally suited to the "management” of crystal structure
determination from diffraction data [16]. Indeed, the latter is fundamentally a sequence of steps
aimed at gradually reducing the ambiguity created by the loss of phase information. Each step
involves the formulation of a range of hypotheses designed to "fill in" the missing information in
one way or another, followed by the testing of these hypotheses against the available diffraction data
and also against prior chemical knowledge — either as such or after it has been converted into
statistical correlations between structure factors.

The work published in [1] was a first step towards this goal, within the restricted context of
direct phase determination. Its purpose was to urge a return to the fundamental problem of
calculating joint probability distributions of structure factors and to find methods better suited to the
macromolecular field which would increase the accuracy and the sensitivity of probabilistic phase
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indications. Shortcomings of conventional direct methods were identified and shown to be related to
the use of uniform distributions of random atomic positions, and of the associated Edgeworth series
as an approximation to the joint distribution of structure factors. They were overcome by using
instead maximum-entropy distributions [17] for the unknown positions of random atoms, and the
associated saddlepoint approximation to the joint probability distribution of structure factors.

The scope of the Bayesian analysis was then enlarged to include other crystallographic methods,
particularly those used in the macromolecular field (isomorphous substitution, anomalous scattering,
molecular replacement, non-crystallographic symmetry averaging and solvent flattening) whose
conventional formulations all involve some form of statistical treatment when they have to deal with
the representation of incomplete knowledge — e.g. non-isomorphism in heavy-atom derivatives, or
missing atoms in a partial model. These statistical treatments are as a rule rather simplistic in
comparison with those on which direct methods are based, and yet it is through the resulting "phase
probability densities” that these methods pool their abilities to determine phases. It is therefore no
exaggeration to say that macromolecular phasing techniques have so far communicated with each
other through their weakest component. These shortcomings were addressed by extending the initial
framework into a "multichannel formalism" [2] which made possible the effective construction of a
wide range of flexible statistical models involving mixtures of randomly positioned scatterers
distributed with varying degrees of non-uniformity. Such models were precisely the hitherto missing

"devices for optimally describing any kind of phase uncertainty, and it was proposed that the
corresponding likelihood functions should be used as a universal tool for consulting data in all
conventional macromolecular phasing and refinement methods.

Finally, numerous other classes of situations occur in macromolecular crystallography where the
existence of ambiguities is inadequately handled, either by taking centroids of multimodal
distributions (as in the Blow & Crick {18] treatment of strongly bimodal phase indications), or by
trying to apply iterative map improvement techniques from a single choice of starting point —
irrespective of how uncertain that starting point may be (as in solvent flattening from a single choice
of molecular boundaries) — creating the risk of potentially disastrous biases. Here again the Bayesian
view point leads to a much needed general mechanism for dealing appropriately with ambiguities,
which was missing in conventional methods.

2. The Bayesian viewpoint.

The key concept in the Bayesian view of crystal structure determination is the notion of missing
information, or ambiguity, in the current situation. Typical instances of missing information
encountered in macromolecular crystallography include uncertain' molecular boundaries,
inconclusive rotation or translation searches, strong bimodality in SIR phase probability indications,
and of course the lack of any phase indications whatsoever for some reflexions.
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The techniques of Bayesian inference can then be brought into action whenever an item of
missing phase information can be shown to influence the expected joint probability distribution of
structure factor amplitudes. In every such case, some of the missing information can be retrieved
from structure factor amplitudes by the following procedure:

(1) generating an ensemble of hypotheses {ﬂ-g}j cs forming a "representative sample” S of all

possibilities left open by the current state of ambiguity (to avoid any bias), and assigning to each of
them a prior probability Ppmr(.’l-[J) from knowledge available outside the diffraction measurements;

(2) constructing the jpd P (F | ) of the observable structure factors F conditional on each
hypothesis .‘7-4 ; then integrating the phases out to get the marginal cpd of amplitudes P ( IFi| .‘7-[J );
(3) forming the likelihood of each ; from the observed data as A (-'7'§| IFOPSy =
P ( IFI°> l #{), and using Bayes's theorem to obtain the posterior probability of each hypothesis as
Pprior(j_[J) A ( 5'4' IFIobs)
2 Ppﬁm(ﬂ;()A(ﬂ'q(| IFIObS)
K
The basic computational mechanism in Bayesian crystal structure determination is therefore :
(H) > P(F| H) - > P(IFI| H) —> AF=P(IF®| 3) 2

i.e. the conversion of a hypothesis % into a likelihood function (via a jpd of structure factors) for

PPt (54| IFI°P) = @.1).

testing that hypothesis against the available structure factor amplitude data. It is this mechanism
which was analysed in [2] for a class of hypotheses wide enough to accommodate all conventional

phasing and refinement techniques.

3. Basic computational processes.

The techniques involved in implementing the scheme just described fall naturally into three main
categories. The first is concerned with the design of efficient sampling strategies for the generation
of diverse hypotheses and with the book-keeping of that diversity (§3.1). The second deals with the
analytical and numerical aspects of deriving joint probability distributions of structure factors (§3.2),
then conditional distribution of amplitudes and likelihood functions (§3.3); these methods are
mathematically intensive and can only be outlined here. The third and last category addresses the
problem of assessing how much of the initially missing phase information can actually be retrieved
from the statistical scores obtained after evaluating all hypotheses in the sample (§3.4).

3.1. Generation Of Diversity: factor permutation.

The generation of a "representative sample” of hypotheses to specify some of the currently
missing information may involve a variety of "factors" for which multiple choices remain possible:
the unrestricted assignment of trial phase values to totally unphased structure factor amplitudes, or
the trial selection of modes if bimodal SIR phase indications pre-exist; choices of plausible
molecular boundaries, or of possible redefinitions of an existing boundary; trial placements (i.e.
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orientations and positions) of plausible molecular substructures; trial definitions of non-
crystallographic symmetry elements and/or of the geometric transformations relating multiple crystal
forms; and so on. All these factors have in common an ability to influence the expected distribution
of the structure factor amplitudes attached to the crystal structure(s) under investigation, and thus a
testability against observations of these amplitudes.

Because of the very large number of unknown factors, any scheme for factor permutation has to
be hierarchical, which leads unavoidably to a sequential strategy similar to the exploration of moves
in a computer chess-playing program. This can be represented by means of a phasing tree, each level
of which corresponds to a ply in a chess game. Each node of the tree is a "factor hypothesis”, and the
early ruling out of some of these hypotheses is reflected by the pruning of the tree.

Call basis set at level ¢, denoted Hy, the set of unique reflexions h to which trial phases will be
assigned. The hierarchical structure of the search implies that these are nested, i.e. that the basis set
grows by concatenating successive increments of new reflexions:

H; = { hy, hy, ..., hy, }
Hy = Hyu{ l"m1+l’ l"m1+2 sy hmz}

Hl = He1 v { hmél-g-l’ hm&1+2, eey hml }

The simplest way to generate phase hypotheses for the reflexions contained in an increment of
the basis set is to consider a regular grid of points around each phase circle, e.g. at 45+90k degrees
(k=0,...,3) giving a "quadrant permutation” long used in MULTAN [19], or a more general grid.
Much more powerful methods exist, based on error-correcting codes, for sampling several phases
simultaneously. They are described elsewhere in [3,20].

For mixed factors involving both phases and other factor types, well-known techniques for
designing optimal sampling schemes can be used [21,22]. Incomplete factorial designs, first
introduced into crystallography by Carter & Carter [23] for the design of crystallisation experiments,
were used successfully as general permutation designs for mixed factors involving phases and binary
choices of molecular envelope attributes [12,13,14].

3.2. Expression of a phase hypothesis.

This is the mechanism through which the viability of a phase hypothesis, i.e. its structural
realisability, is measured. According to the general scheme of §2 two main quantities need to be
evaluated, or at least approximated:

(a) the probability that given phased structure factor values { Fh;’ th, v Fhm } attached to a

basis set H={h,, hy,..h_ } belong to a chemically valid structure; this function of the F's is
called their joint probability distribution and is denoted P ( Fhl’ th, wees Fh ) or P(FH) for short;
m
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(b) the probability distribution of other structure factor values for a set K = { k. Ky K } of
non-basis reflexions over all possible valid structures compatible with the given phased structure
factor values in the basis set H ; this is called the conditional probability distribution (cpd) of FK

g Fg_ | FppFpyFp, ) oOf P(F, | F) for short,

All these probabilities can be calculated, to a consistent degree of accuracy in the whole range of
applications, by the maximum-entropy method. The main features of this calculation, described
elsewhere [1,2,24] in more detail, may be summarised as follows.

Let v be a node of the phasing tree at level ¢, where the basis set I-Il has m reflexions, and let

IR
F =(Fhl,Fh2,

given FH , denoted P ( Fkl’ Fk

.,F::) ) be the vector of phased structure factor values describing the
m

. . 9 . .
hypothesis attached to this node. F " has n real components, where n' is the number of centric
plus twice the number of acentric reflexions in H y

If N identical atoms are thrown at random, independently, with probability density m(x) in the

. - “) .
asymmetric unit D, then the saddlepoint approximation [1,2,24] to the prior probability of F ~ is

given by:
NS(v)
PPFY) = —E wih SV =5_5 (3.12)
 det 2nNQ ™)
where Sm(q) denotes the relative entropy functional
SH@ =- IL q(x) log [;qn%] dx (3.1b)

. . . . I L) L _ .
while q:[ E denotes the unique distribution compatible with the datain F = which maximises this

. . () . . . .
relative entropy. Matrix Q ° is the covariance matrix between the trigonometric structure factor

I ) - . . .
contributions to the components of F ~ when the random atoms are distributed with density (ﬂm ; it

is calculated by structure factor algebra [1,2,24].
3.3. Assay of phase hypotheses.

To measure the "strength of binding to the data” of a phase hypothesis, we will try and assess to
what extent that hypothesis is able to guess some characteristics of the distribution of data it has not
yet seen — an idea which bears some similarity to that of cross-validation.

For this purpose we rely on maximum-entropy extrapolation as a prediction mechanism for
structure factors: besides reproducing the amplitudes and phases F(v) attached to node v of the
phasing tree for reflexions in the basis set Ht , the maximum-entropy distribution qu also gives

rise to Fourier coefficients P\L:Ek with non-negligible amplitude for many non-basis reflexions, i.e.
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for k in the complement K, of H, . This phenomenon is known as maximum-entropy

extrapolation. It is the Bayesian equivalent of the tangent formula of conventional direct methods
(see §3.4 of [1] for a more detailed discussion). Intuitively, the maximum-entropy extrapolate Fv Kk

is that value of Fv Kk which can be fitted "for free" once the basis-set constraints F have been
fitted.

The conditional distribution 2 ( FK; | FH( = Fv,Hg) is affected by this extrapolation, since

we may write:

P (F | Fy) = 1 xp{— 2[F - FET [QXE] [FK-F’I‘(‘E]} (3.2)
2m/detQ"Ig§

and so will the (marginal) conditional distribution of amplitudes 2 ( |FKt| IF.. ) obtained by

integrating over the phases present in FK . We will therefore obtain a prediction of the distribution
of ]FKgI which depends on the phases attached to node v . The likelihood A of the trial phases

is the conditional probability of the observed values for the amplitudes IF jobs

®v)in F, Ky

Hy
. W)

; (V)
v) ™My obs obs obs l(phl obs
A 9y 9y ) = T(IFkll TRy O] e MRy | m) (3.3).

It is often convenient to consider the log-likelihood L =log A. Let (5{ o) be the null hypothesis
that the atoms are uniformly distributed, and (#{;) be the alternative hypothesis that they are
distributed according to qt,dE . These two hypotheses can be tested against each other by calculating
the log-likelihood gain:

2( ‘Fk‘ - IFk

2( ‘Fkl=’Fk

This quantity will be largest when the phase assumptions attached to node v lead one to expect

(\9)
° for keK I (Fh>=‘Fh|°bs exp(itpl:)forhel-l)

LLG(V) = log (3.4).

obs

for ke K | (Fh)=0forheH)

deviations from Wilson statistics for the unphased amplitudes ‘Fkl , ke K, that most closely match

those present in the distribution of the actual measurements ’Fk oS 1t is therefore a quantitative

measure of the degree of corroboration by the unphased data of the phase assumptions attached to v.

The most fundamental likelihood function is that of Rice[25], derived as the marginal
distribution for the amplitude R of an offset 2D Gaussian:

R 12+ R? R
R(LRZ) = = exp (- = ) 10(’;) (3.52)
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in which r is the offset length and X the variance parameter. Typically r is the modulus of an
Fcalc, R is the observed modulus| F|°bs, and the variance parameter X is derived e.g. by Wilson
statistics to represent the statistical dispersion of a contribution from random atoms.

It is straightforward, starting from a 1D rather than 2D Gaussian, to obtain the centric equivalent
of the Rice distribution as:

2 2
2 r+R

R, =—\/— exp (-
C(nR.2) nz XP( 2%

The derivation of both likelihood functions assumes that all phases or signs over which

R
) cosh 2) (3.5b).

integration is carried out have equal probability. In the acentric case it is further assumed that the
original 2D Gaussian is isotropic. The first assumption is invalid when prior phase information is
available from MIR or MAD, while the second is violated when the distribution of random atoms is
strongly non-uniform or obeys non-crystallographic symmetries. Fortunately both of these
generalisations can be carried out simultaneously by defining the elliptic Rice distribution (although
Rice never considered it) required for a "phased LLG", which was derived in [26].

As a decision criterion likelihood enjoys certain optimality properties both in conventional
statistics (Neyman-Pearson theorem) and of course in Bayesian statistics through its role in Bayes's
theorem (2.1). In both settings, likelihood evaluation or optimisation is the common mechanism
through which the Bayesian structure determination process interrogates the observed data for the
purpose of testing or refining hypotheses. The examples given in sections 4 to 7 provide an ample
illustration of the confluence of a wide range of hitherto distinct detection and refinement operations
into a single calculation, namely computing value and derivatives for a suitable likelihood function.

Whenever likelihood does not totally dominate prior knowledge, the full force of Bayes's
theorem should be invoked. Using Bayes's theorem in the form (2.1) together with expression
(3.1a,b) for the prior probability of a set of trial structure factor values, the a-posteriori probability
PPY(v) of the phase hypothesis attached to node v of the phasing tree may be evaluated by first
computing the Bayesian score:

B(v) = N S(v) — 5 log det 2nQ(v)) + LLG(V) (3.6)

(where N is the number of independent atoms in the asymmetric unit) and exponentiating it, then
normalising this collection of numbers over a suitable collection of nodes v .

3.4. Analysis of phase hypotheses.

In the course of the tree-directed search described above, a subpopulation of nodes with high
scores will progressively be selected. Rather than consider this list of instances as the end product of
the phasing process, we want to do some data reduction and relate the property of achieving these
high scores to the property of having the right values for some critical phases or cornbin'ations of
phases (or other factors).
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Since the initial sampling plan according to which the nodes were generated (§3.1) will normally
be based on some efficient sampling design, this is a typical setting in which to call upon standard
techniques for analysing the results of "designed experiments" [27-30].

Phases, however, are special factors because of their periodic character. As a result any phase-
dependent score function, for instance the Bayesian score B =B ((pl, cees (pm), is a periodic function,
with an m-dimensional period lattice generated by translations of 2% along the coordinate axis of

each of the m basis-set phases. It may therefore be written

m

1G,9,+ - +3, 0)
B (9, - ¢ =2 - > le--'-j € .
X! Im m

We are looking for those (J? which are significantly higher in the successful nodes that in the

1 ‘m

general population, i.e. higher than one would expect in the absence of any trends. The issues of
optimal sampling and of statistical analysis of node scores therefore belong to the realm of
multidimensional Fourier analysis [3,20] . For factors other than phases, which may not be periodic,
conventional techniques such as multiple linear regression [27] may be used.

Standard methods are available for assessing the level of significance of the results of a multiple
regression analysis of experimental scores [27]. The simplest of them, namely the application of
Student’s t-test to the determination of a single sign, was described in §2.2.4 of [3] and was used
[31] in the solution of a powder structure.

4. Overview of selected applications.

In the Bayesian picture, the privileged role played by the Rice likelihood functions in consulting
the experimental observations leads naturally to delineating three main "regimes” in the process of
structure determination, corresponding to three distinct approximation regimes for these functions: a
"Patterson correlation regime", a "transition regime” and a "Fourier correlation regime". A number
of examples pertaining to each regime will be worked out in some detail in the forthcoming sections.
It will be a recurring observation that the Bayesian analysis turns out to yield improvements of these
methods which had not (or had only just) arisen within their own theoretical framework, at the same
time as providing an automatic unification of these improvements within a common computational
mechanism.

4.0. Approximation regimes for the Rice log-likelihood functions.
We will begin with a few basic results on Wilson statistics and associated notation. For h
acentric, F(h) is distributed as a 2D Gaussian centred at (0,0) with variance
Z,0) = 7IG,| o, (h) : (4.0a)

along each component, while for h centric it is distributed as a 1D Gaussian centred at 0 with
variance
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Zc(h) = |Gh| oz(h) (4.0b)
where

2
o,(h) = zﬂ [fj(h)] . (4.0c)
C¢€.

It will also be recalled, for later use, that standard normalised structure factor amplitudes |E(h)| are
defined by

2
2 h
|E(h)| = |F( )I for h acentric (4.0d)
2z, (h)
2
2 h
and |[E)| = LOE for h centric (4.0¢)
X Z ()
so that ([Em)| ) =1 forall h 4.0f).

Define the acentric and centric Rice log-likelihood functions L a and L c 3 the logarithms of

(3.5a) and (3.5b) using variances X a and ZC. respectively, and introduce the following shorthand for

the Sim figures of merit:

, _IR .

a ’ c

2“a c

where I0 and I1 are the modified Bessel functions of order 0 and 1 respectively. It is then

Il(za)
, ma(za) = Io(za) , mc(zc) = tanh z, 4.1)

-
~

™|

straightforward to obtain the following partial derivatives:

oL
a _ 1
E— = > (ma(za) R - r) (423)
?°L 2 m (
a _ 1/'R°
o _}:_}:(1_ z, —m(Z)z)—l] (4.2b)
oL ?+ R*-2m_(z))rR
a _ 1 [ g\ - 1] 4.2¢)
oX T | 2%
and
oL
c 1
-c . =2 R - .
or z ( (z ) r) (4.32)
o’L 2
1| R
- ;:-[ (1-m@)) - 1] (4.3b)
aLc  + R? —2m(z)rR
= 2}: x - (.30)
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which will be used to build Taylor expansions of L, and L for small variations of r and X.
When the quantity z in (4.1) becomes large, the asymptotic formulae

z
e

I(z) =

0 \/27:2

give rise to the following approximations:

R(r,R,Z) = \/ 1/ (R r) (4.52)
C(r,R,Z) = »\/ ( (R r) (4.5b).

4.1. The Patterson correlation regime.
In detection problems the standard situation is that a null hypothesis with vanishing offsets r
and some initial variances I is to be compared to alternative hypotheses with non-zero offsets dr

and lower variances £ — 38X, where OZ is related to ((8r)2) through Wilson statistics.
For r=0 we have ma(za) = mc(z c) = 0 so that the first-order derivatives (4.2a) and (4.3a)

and coshz = %ez (4.4a,b)

m (z)
vanish. Using the limiting value a = % and the basic relations (4.0a-f) we get the
a za=0
local Taylor expansions :
- =L 2 152
5L, = LGrR Z,8L) - LOR L) = = (e - 1) (L @n?-sx,) (4.62)
a
1 2 1 2 1
8L, = LBrR E85) - LO.RI) = = (I - 1) (Len?-Lsz) (4.6b)
c

When summed over all reflexions these quantities will be shown to give rise to correlation functions
between the origin-removed |El2 -based Patterson function for the observed data and the origin-
removed Patterson for the partial structure whose presence is to be detected.

Once a partial structure has been detected, subsequent searches for more partial structures can be
carried out with the benefit of the phase information generated by the first: one has then entered the
"transition regime" (§4.2 below).

4.2. The transition regime.

The transition regime applies when the offsets r are no longer zero but the quantities z in (4.1)
are small (a few units at most). The first-order derivatives (4.2a) and (4.3a) no longer vanish and
hence create in the Taylor expansion of La or L, an incipient Fourier-like sensitivity to the

existing phase information. However the second-order terms remain substantial and continue

2
contributing Patterson-like features. The simple proportionality relations between ;—21' and oL for

oz
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r=0 which give rise to (4.6a,b) cease to hold: the |E|2 associated to these two types of partial
derivatives are renormalised differently under the available phase information.

This is the "middle game" situation, where phase information is beginning to emerge but remains
highly ambiguous. A large fraction of the observed intensities has to be accounted for through
variance rather than expectation, reflecting the large amount of missing phase information. A useful

.. . ) . . A 2 ) oL
measure of missing phase information at a reflexion h is the renormalised |E] associated to -a—i ,

which may be written

2
prenom - [r2 + R2-2 m, (z,) T R] /2%, (h) for h acentric (4.72)

h

- [+ R-2m@)rrR] /2 m) for h centric (4.7b).

This quantity was considered by Nixon & North [32]. Reflexions h for which it is the largest are
those where phase information is "most sorely missing”, and hence are the best candidates for phase
permutation (§3.1), or for the permutation of any other factor capable of leading to a lower
renormalised |E|2 This selection procedure was used successfully in the statistical phasing of
Tryptophanyl-tRNA synthetase [12,13,14].

4.3. The Fourier correlation regime.

This regime is reached when most of the quantities z in (4.1) have appreciable values (several
units). According to (4.5a,b) the likelihood function becomes approximately that of a least-squares
residual on amplitudes, but with the important feature that the variances may still come mostly from
the structure factor statistics rather than from the observational errors.

Current structure refinement protocols (PROLSQ [33], TNT [34] and XPLOR [35]) are still
based on a least-squares residual, hence ignore this extra source of variance. As a result, they suffer
from well-known problems of model bias. Maximum-likelihood structure refinement is proposed in
§7.2 as a superior alternative to least-squares refinement, and this claim is supported by encouraging
test results.

4.4. Introduction to the examples.

The selection of illustrations given in the forthcoming sections comprises a varied range of
applications taken from both macromolecular and direct methods techniques. In the latter, the
Bayesian viewpoint bi'ings simplicity and clarity to what has traditionally been a thicket of formulae,
and enlarges both their scope and their effectiveness. In the former, it also provides a thread of
continuity between hitherto distinct techniques and reveals numerous possibilities of substantial
improvements. Most importantly, this survey demonstrates the extent to which all existing
techniques are subsumed within a unique computational protocol which needs no longer be aware of
the multitude of specialisations through which it has so far been approximated.
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5. Application to detection problems.
5.1. Heavy-atom detection in a structure.

In the standard use of the method for small molecules the "heavy atom" is first detected by
examination of the Patterson, taking advantage of the fact that such an atom is localised and poses
no rotation problem. One then switches over to Sim's formula [36] which can be expected to hold
rather accurately since the 'light' atoms making up the rest of the structure are distributed uniformly
enough for Wilson's statistics to be obeyed (small-molecule crystals are usually close-packed — there
is no solvent — and the exclusion of light atoms by the heavy atom can be neglected in most caseS).

The statistical treatment of the same problem shows readily that the optimal detection function
under the “Patterson regime” approximation [26,37] has the form of a Patterson correlation (PC)

function [38] between the origin-removed |E| —based Patterson for the whole structure and the

heavy-atom origin-removed Patterson.

This approximation is valid only if the light atoms are distributed so as to give rise to Wilson
statistics; it may be known that this is not the case, e.g. in crystals of zeolites or other small
structures containing cavities, and of course in macromolecular crystals. A full LLG evaluation has
no difficulty in remaining an optimal detection criterion in this case, while the PC coefficient will
fail to do so. Furthermore the statistical variances used can be incremented so as to reflect
measurement errors, while there is no natural way of doing so when calculating the PC coefficient.

5.2. Heavy-atom detection in the MIR and MAD methods.

The statistical theory of heavy-atom parameter refinement, and the SHARP program
implementing it, are dealt with in [39]. However the problem of statistical heavy-atom detection is
best illustrated by reference to analytical formulae for SIR likelihood functions derived in [40].

Statistical detection begins with a maximum-likelihood estimation of scale factors and of non-

isomorphism o,;-iso under the null hypothesis that all discrepancies between |FP l and ,FPH, are

caused by non-isomorphism. The alternative hypotheses assume instead the presence of a "nascent”

heavy atom at x whose occupancy increases from 0 while c;"so decreases by the corresponding

amount as in §5.1.2. Approximating LLG (xH) by a second order Taylor expansion [26] yields a
detection criterion of the form of a Patterson correlation function involving quantities which can be
written as ((AE)izso - 1) and may be recognised as the normalised (sharpened) and origin-removed
versions of coefficients advocated by Kalyanaraman & Srinivasan [41] as being the best ones from
which to compute a difference-Patterson function for the determination of heavy-atom positions
using isomorphous data. Preliminary tests in SHARP have shown that this criterion is indeed very
promising for weak isomorphous signals, and a generalisation of the Rice distibution is being
developed for detecting anomalous scatterers from MAD data sets.
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5.3. Fragment detection in the molecular replacement method.
Instead of a heavy atom as in §5.1 we now have a known fragment described in a reference
position and orientation by a density pM with transform FY . If pM is rotated by R and

translated by t to give the copy of the fragment lying in the chosen asymmetric unit, then statistical
detection and placement of the fragment will proceed by calculating the log-likelihood gain

2( |F,| =|F, ™ foran h| (3R, 6))
2( |F,| = |F | foran b| (3 )

where (%) denotes the null hypothesis that all atoms (including those of the fragment) are
uniformly distributed in the asymmetric unit while (#{,[R, t]) denotes the alternative hypothesis

LLG (R, t) = log (5.1)

that a subset of atoms is assembled into the known fragment and placed in the asymmetric unit with
orientation R at position t, and the rest are distributed at random.

The methods used in §5.1 then carry over to the present situation and yield [26,42] a detection
criterion consisting of two terms. The first term depends only on the rotational placement R and is
a PC-based rotation function in which a sum of point-group symmetry-related copies of the origin-
removed self-Patterson of the rotated fragment is being correlated with the origin-removed
sharpened self-Patterson of the whole structure. The second term, considered for a fixed value of the
rotational component R of the placement, gives rise to a PC-based translation function, expressed
as a Fourier series. The fact that the log-likelihood gain (which is an optimal criterion by the
Neyman-Pearson theorem is based on E's provides a final explanation to the long-standing
observations by Ian Tickle [42] that E-based (sharpened) translation functions always give better
results than F-based (unsharpened) ones.

It is therefore clear in this case too that even the most approximate implementation of the
statistical detection approach yields better criteria than the most sophisticated ones available so far,
and suggests non-trivial improvements of the existing methodology which had not yet arisen within
this methodology itself.

5.4. Detection of non-uniformity from variance modulation.

In small-molecule direct methods the phase determination process is often primed by means of
so-called X, relations, which give immediate estimates of certain phases belonging to a subclass of
reflexions (see e.g. [43]). Giacovazzo [44,45] and Pavel¢ik [46,47] have found a connection between
these relations and Harker sections in Patterson functions.

It was shown in [26] that Z; relations are related to the sensitivity of the Rice log-likelihood to its
variance parameter and to the modulation of the latter by the non-uniformity of atomic distributions.
Thus X; relations are a purely variance-based method for detecting non-uniform distributiop of all
atoms, by the same statistical technique (likelihood-based hypothesis testing) which was used earlier
for detecting the non-uniform distribution of one heavy atom in a background of light-atoms.
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6. Application to completion problems.
6.1. Detection of further heavy atoms or fragments.

All detection problems in sections 5.1 to 5.3 were examined under the assumption that no phase
information existed (there is no basis set), so that the ordinary Rice likelihood functions (3.18a,b)
apply. If we now assume that some external phase information has become available, the elliptic
Rice likelihood function [26] should be used instead. If this phase information is strong and
unimodal, then the LLG is essentially an electron density correlation function (a *“phased
rotation/translation function”) as discussed in §4.3. If not, the LLG will possess features
intermediate between those of a Patterson correlation coefficient and of a density correlation
coefficient, giving rise to what might be called partially phased rotation and translation functions.

The log-likelihood gradient maps used in SHARP (§7.1 and [39]) are based on this idea. They
have proved highly successful in revealing fine details of heavy-atom substitution such as minor
sites, anisotropy of thermal disorder, and split sites caused by multiple conformations.

6.3. Maximum-entropy solvent flattening.

When a great deal of phase information is specified in H and the prior prejudice m(x) is non-
uniform, the expressions above are of little help but numerical computation can proceed unimpeded.
The first successful use of this phase extension procedure was reported in [11]. It showed on the
cytidine deaminase structure that maximum-entropy solvent flattening (MESF) using the solvent
mask as a non-uniform prior prejudice provided a better method of phase extension than did ordinary
solvent flattening [48]. An interesting aspect of this work lies in the protocol used to build the
maximum-entropy distribution when the basis-set phase information consists of MIR phases and is
therefore tainted with noise. The preferred way of fitting such constraints would be to aim for the
maximum Bayesian score (3.6), but this would require knowing the value N of the number of atoms
in the structure, a quantity which is difficult to define at non-atomic resolution [1]. Instead, the
fitting the noisy constraints was allowed to proceed only as long as the LLG outside the basis set
kept increasing, and was halted when the LLG reached a maximum. In this way, only that part of the
noisy constraints was fitted which contains the ‘signal’, i.e. which improves the predictive power of
the statistical model. This is the familiar idea of cross-validation, and in fact this procedure carries
out something akin to an estimation of the “effective N” by cross-validation, as well as cross-
validated density modification by exponential modelling.

6.4. Hypothesis permutation in the 'middle game' of structure determination.

The crystal structure determination of the tetragonal form of Bacillus Stearothermophilus
tryptophanyl-tRNA synthetase (TrpRS) provided the first application to the determination of an
unknown macromolecuar structure of the full Bayesian scheme (§2) for inferring missing phase
information.
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Unlike the case of cytidine deaminase on which the MESF procedure was first tested (§6.3), the
case of TrpRS was marred by serious non-isomorphism in the heavy-atom derivatives, resulting in
large starting-phase errors and hence in a poor definition of the molecular envelope. MESF proved
unable to produce better maps from such an unfavourable starting point: instead it led to a severe
deterioration of the maps, accompanied by a dramatic decrease of the LLG statistic as phases were
extended from about 5.0A resolution to the 2.9A limit of the diffraction data. It was therefore
necessary to somehow improve simultaneously the quality of the starting phases and the correctness
of the molecular envelope - a task whose circularity from the conventional standpoint made it at first
sight as impossible as lifting oneself by one’s bootstraps.

The deadlock was broken by a straightforward application of the exploratory process described
in §2. The "most sorely missing information" was found to be associated with strong reflexions
having large renormalised |E|2 values (§4.2) which were initially unphased and were inaccessible
by maximum-entropy extrapolation from the phased ones. Their phases were permuted, at first on
their own, then together with permuted hypotheses concerning possible modifications of the
molecular envelope. All permutations were carried out by using incomplete factorial designs [23].
For each such specification of the new phases and of the envelope the MESF process was applied,
the maximal value reached by the LLG statistic was noted, and these scores were subsequently
analysed by multiple-regression least-squares. Student t-tests were performed to assess significance,
and turned out to provide reliable indications for most of the phases of 28 strong reflexions and for
the six binary choices of envelope attributes involved in the permutations. The resulting phase
improvement made it possible to assign positions, hitherto unobtainable, for nine of the ten selenium
atoms in an isomorphous difference Fourier map for SeMet-substituted TrpRS. Further phase
permutation continued to produce improved maps from the pooled MIR phase information and
played a critical role in solving the structure [12]. This is the first practical demonstration of the
effectiveness of the Bayesian approach at a typical macromolecular resolution [14].

The use of the renormalised |E|2 value as a criterion for choosing candidates for phase
permutation bears an interesting relationship to the expression giving the mean-square noise level in

Erenorm 2
h

is the figure of merit [18], which

a centroid map as a function of the distribution of figures of merit [49,50,51]. Indeed is

closely analogous to the quantity thlzx (l—mlzl) , where m_

gives the contribution of h to the overall noise in the centroid map. Permuting the phases of

prenorm 2
h

reflexions having the largest is therefore the fastest way to “remove heat from the

system”. Acentric reflexions of this type fall into two distinct categories, according to the character
of their phase probability densities: (1) those for which it is flar , in which case phase permutation
has to proceed in the same way as in ab initio phasing; (2) those for which it is bimodal, for which it
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is preferable to use mode permutation which boils down to a simple binary choice. In the latter case
simultaneous choices of modes for several reflexions may be sampled efficiently by invoking the
combinatorial techniques described in [20] These multiple choices may then be evaluated by means
of the elliptic Rice likelihood [26] which measures the extent to which the phases extrapolated from
each combination of binary choices of modes in the basis set agree with one of the modes for each

second neighbourhood reflexion.

6.6 Outlook.

If the expected gains in sensitivity of detection (§5.3), in efficiency of recycling (§6.2) and in
effectiveness of completion (§6.4-5) brought about by the full implementation of the Bayesian
approach actually materialise, it would become conceivable to attack the ab initio determination of
protein structures by systematically searching for super-secondary fragments of 20 to 30 amino-
acids, for which it may be possible to compile a library similar to the library of short fragments used
for assisting map interpretation by Jones & Thirup [52]. If this does not work without some startup
phase information, then an initial round of phase permutation may afford a means of building up
enough phase information ab initio in order to increase the detection sensitivity for such fragments
above a critical threshold.

This line of development is connected to the more radical approach presented in [15] where the
stereochemical information pertaining to such libraries of fragments is incorporated directly into the
structure factor statistics from which joint probabilities are built.

7. Application to refinement problems.

7.1. Maximum-Likelihood heavy-atom refinement (SHARP).

This topic is treated in a separate contribution to this Volume. The main difference between
least-squares (L.S) and maximume-likelihood (ML) parameter refinement resides in the fact that one
integrates the partial derivatives around the native phase circle, just as one integrates the structure
factor in the Blow & Crick method [18]. This removes the bias previously introduced by phase
“"estimates” [53] which were particularly questionable in the SIR method. A more subtle difference is
that this integration is carried out also in the radial direction to deal with the measurement errors on
native amplitudes, and with the absence of a native measurement in the MAD method. Last but not
least, the ML method also allows the refinement of parameters describing the lack of isomorphism
and hence influencing the weighting of observations; such a refinement is impossible within the
least-squares method where weights are necessarily assumed to be fixed.

The rapidly growing list of SHARP successes and the remarkable sensitivity of its LLG gradient
maps demonstrate that the full implementation of the ML method for heavy-atom parameter
refinement was well worth the extra effort it required.
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7.2. Maximum-Likelihood structure refinement.

The Bayesian viewpoint has long suggested that structure refinement should be carried out by
maximising the LLG rather than by minimising the conventional least-squares residual [2,7,37].
Here again, only the ML method can take into account the uncertainty of the phases associated to
model incompleteness and imperfection by suitably downweighting the corresponding amplitude
constraints. It was predicted [37] that ML refinement would allow the refinement of an incomplete
model by using the structure factor statistics of randomly distributed scatterers to represent the
effects of the missing atoms, in such a way that the latter would not be wiped out; and that the final
LLG gradient map would then provide indications about the location of these missing atoms.

These predictions have now been confirmed by actual tests. Bricogne & Irwin have used
BUSTER and TNT on a test data set for crambin [54] suffering from both model imperfection and
model incompleteness, and compared the results of LS and ML refinements from these data [55]. In
these conditions ML refinement clearly outperformed LS refinement, giving a mean-square distance
to the correct positions of 0.176 (ML) instead of 0.415 (LS). Furthermore the final LLG gradient
map produced by the ML method showed highly significant, correct connected features for the
missing part (40%) of the molecule, while the final LS difference map showed no such features. This
enhances the possibilities of “bootstrapping” from an otherwise unpromising molecular replacement
starting point to a complete structure. Essentially the same behaviour was observed at 2.0A
resolution, and with experimental rather than calculated data.

Other prototypes for ML structure refinement have been built and tested by Read [56] (using
XPLOR and an intensity-based LLG) and by Morshudov [57] (using PROLSQ and the Rice LLG).
The BUSTER+TNT prototype has the advantage of being able to use external phase information by
means of the elliptic Rice function (see [26]), as well as prior information about non-uniformity in
the distribution of the missing atoms in incomplete models. It also allows the ML refinement of an
incomplete model to be carried out in conjunction with phase permutation or phase refinement for
those strong amplitudes which are most poorly phased by that model, i.e. have the largest
renormalised |E|'s ; or in conjunction with maximum-entropy updating of the distribution of random
atoms, initially taken as essentially featureless within the given envelope. Using the method of joint
quadratic models of entropy and LLG described in [1] before and after refinement of the incomplete
model produced updated ME distributions showing the missing structure in its entirety,
demonstrating clearly the advantage of carrying out ML refinement within the integrated statistical
framework provided by BUSTER. This ME “after-burner” establishes a seamless continuity between
the middle game of structure determination and the end game of structure refinement.

8. Conclusion.
As shown by the current applications, ranging from ab initio phasing through structure
completion to structure refinement, all aspects of the determination of crystal structures are
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inextricably linked to a common body of statistical methods and concepts. The goal of the “Bayesian
programme” is to invite a comprehensive implementation of these methods into an integrated
software system for users of crystallographic phasing techniques in the macromolecular field.

An appreciation of the benefits which can be expected to follow from this systematic approach
can be obtained by recalling that, a very short while ago, it would have seemed insane to even
consider using experimental heavy-atom phases in macromolecular structure refinement: heavy-
atom phasing still produced severely biased results, creating numerous carbuncles in electron-
density maps; and structure refinement suffered from the biases of the least-squares method which
would have further amplified the ugly effects of these phase errors. Today, ML heavy-atom
refinement with SHARP delivers safe experimental phase probability densities; and ML structure
refinement using for example BUSTER+TNT with the elliptic Rice likelihood function can now
safely exploit this phase information to widen the domain of convergence of the refinement.

Finally it should be clear that the statistical analysis at stage 0 of the basic procedure in §2,
which allows one to identify the “most sorely missing phase information” for the purpose of seeking
to obtain it computationally, could equally well be invoked dynamically for deciding how to obtain
it experimentally in the most effective way. Such a procedure of “Phasing on the beamline” would
extend the field of use of statistical methods into the realm of experimental strategy.
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Abstract

The holographic method for finding the electron density of macromolecules
is based on the expansion of the electron density into Gaussian basis functions. The
computer program searches for the optimum set of such basis functions in physical
space. Therefore it is capable of changing the phases of the structure factors in
reciprocal space. The technique makes consistent use of real and reciprocal space
information to produce electron density maps. It enforces positivity of the
recovered electron density and makes effective use of prior knowledge about the
electron density, such as that of a solvent region or of a partial structure. In this
paper we summarize the theory underlying the holographic method and describe
how we deal with multiple isomorphous replacement (MIR) data, multiple
anomalous dispersion (MAD) data and knowledge of non-crystallographic
symmetry. We discuss the convergence properties and the limiting accuracy of the
method. We illustrate its power for synthetic problems and we apply the method to
experimentally measured MIR data from kinesin, a recently solved motor protein
domain.

1. Introduction

The most important limitation on the power of X-ray crystallography is that,
as a consequence of Bragg's law, the electron density of a crystal cannot be fully
recovered from its diffraction pattern alone. This is the well known phase problem.
Many years ago the eminent mathematician Lanczos (1961) emphasized that no
mathematical trickery can remedy lack of information. The holographic method
does not attempt to circumvent Lanczos' dictum. Owur principal claim is that the
holographic method is a clear, simple and effective way of using all available
information simultaneously, consistently, explicitly and sometimes even optimally.

First, we have to explain why our method is called holographic. Let us start
from the analogy of an X-ray diffraction pattern and a hologram. We assume,
maybe artificially, that we know the electron density in part of the unit cell of a
crystal. This is the situation in molecular replacement and also during the solution
of crystal structures. The complex amplitude of the wave diffracted from the known
part can then be calculated and identified as a holographic reference wave.
Similarly, the wave diffracted from the unknown part of the unit cell is analogous
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to an object wave in holography. The pattern of intensities observed in X-ray
diffraction from a crystal is then analogous to a recorded hologram. It contains the
sum of the intensities of the waves scattered from the known and the unknown
parts of the electron density of the crystal and also their interference. The
interference term contains phase information that can in turn be used to find the
unknown part of the electron density. In the language of holography the unknown
wave can be reconstructed and its source can be found. We show below that the
reconstruction reduces to a standard inverse problem, similar to those encountered
in image processing. Our algorithm, built on the above observations, searches in
real space for an electron density that minimizes the deviation of the magnitudes of
the calculated structure factors from the measured ones. We have found that the
ubiquitous holographic "dual image" also appears in X-ray crystallography, in fact it
is equivalent to the phase problem of crystallography. Under favorable conditions,
additional information can eliminate the dual image.

A practical algorithm for X-ray crystallography was developed by recognizing
that the holographic method can use fast Fourier transforms and a conjugate
gradient optimizer, that is capable of incorporating various constraints. The result
was a suite of computer programs (EDEN, for Electron DENSsity) for the solution of
crystallographic problems of current interest. The main solver program runs in
PlogP time, where P is the total number of resolution elements in the unit cell.
Work stations (IBM 6000, HP 9000, SGI Iris, or equivalents) are adequate for treating
realistic problems. Our progress was documented in five published papers [Szdke
(1993, paper II), Maalouf et al., (1993, paper III) and Somoza et al. (1995, paper 1IV),
Szoke, Szoke & Somoza (1997, paper V) also Béran & Szoke (1995)]. EDEN is
available free of charge to qualified collaborators. Please contact H. S. by e-mail at
szoke2@llnl.gov.

2. Brief summary of the theory.

Unfortunately, our language is different from the standard one used by
crystallographers. Nevertheless, we attempt to use accepted crystallographic
notation wherever possible. More precise definitions can be found in paper II and
in Appendix A of paper V.

The electron density in the unit cell of a crystal is divided into a known and
an unknown part. The structure factors of the known part are denoted by R(h).
They are given by

R = |pknown(r) exp(nih-Fr) dr. 1)

unit cell
where pxnown(r) is the electron density of the known part and exp(2nih-7) is just a
fancy notation for exp [2ri(hx + ky + 1z)].

Now we do something new. We make a three dimensional grid by dividing
the unit cell into P,, Pp, Pc equal parts along the crystallographic axes a, b, c
respectively. The grid points are denoted by Ip;p=1,.. P where P=P;.Py.P.. The
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unknown part of the electron density is described as a sum of Gaussian blobs of
equal widths, centered on the grid points. Each Gaussian basis function is assumed
to contain an unknown number of electrons, n(p):

P -lrrp [2
Punknown(r) = ( 2)3/2 p§=1, n(p) exp [ nAr2 1, (2.2)

where Ar is the mean grid spacing and 1 determines the width of the Gaussians
relative to the grid spacing. If the grid spacing is sufficiently fine, the electron
density of the unknown part of the molecule can be well approximated by such a
superposition of Gaussians. When (2.2) is extended periodically over the repetitions
of the unit cell, the structure factors of the unknown part, O(h), can be expressed as

: P
O(h) = exp [-n(rAr| FTh1)2] 2 n(p) exp (2rih-Frp). (2.3)
p=1

The notation R(h) for the structure factors of the known part and O(h) for those of
the unknown part of the structure is adopted from holographic theory, where R(h)
and O(h) denote the reference and object wave, respectively. The squares of the
absolute magnitudes of the structure factors of the crystal, 1F(h)|2, then satisfy the
equations

|ECh) 12 = IR(h) + O(h) 2 = IR(h) |2 + R(h) O*h) +R*(h) O(h) + |O(h)12. (2.4)

As promised, the measured intensities, that are proportional to |F(h)|2, are the sum
of the diffracted intensity of the known part, IR(h) 12, the diffracted intensity of the
unknown part, 1O(h)!2 and the interference terms, R(h) O*(h) +R*(h) O(h).

When the representation of the unknown density is substituted from (2.3),
equation (2.4) becomes a set of quadratic equations in the unknowns, n(p). The
number of equations, Nj, is usually not equal to the number of unknowns, P. The
equations may contain inconsistent information, e.g. due to experimental errors, or
lack of isomorphism in MIR, or incomplete non-crystallographic symmetry. The
equations are also ill conditioned and therefore their solutions are extremely
sensitive to noise in the data. Under these conditions the equations may have
many solutions or no solution at all. One way mathematicians deal with these
problems is by minimizing a cost function that measures the discrepancy between
the two sides of (2.4). We define such a cost function as

feden=3 3, w'(h)2 [IR'(h) + O |- IF'(M) | 12, (25)
h

where R'(h) and F'(h) are smeared (apodized) versions of R(h) and F(h) and w'(h)2
are weights. Unless the structure factors are appropriately smeared (apodized), the
Gaussian basis functions in (2.3) are not able to fit the experimental data. This
shows up as a vicious(!) numerical instability in the solution. Let us be even more
blunt: such numerical instabilities are inherent to inverse problems, of which the
solution of crystal structures is an example; they do not depend on the
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representation chosen. They cause arbitrariness in the structures at the high
resolution end of the data. In other words, no matter how well you measure your
diffraction intensities, at some resolution your structure depends almost entirely on
the structure you postulate during refinement. We attempt to make such
arbitrariness explicit and eliminate it if possible.

The summation in the cost function (2.5) includes only available
experimental data, i.e. we do not include values of R(h) for which the corresponding
F(h) are missing. Thus the cost function (2.5) does not make unwarranted
assumptions about unobserved reflections: their values are indeterminate, as they
should be. Therefore truncation errors of Fourier inversions are absent.

The solution of equation (2.5) is not
unique; this is an expression of the well
known crystallographic phase problem.
A simple geometric representation of
this lack of uniqueness is shown in Fig.
1. R(h) is the vector representing the
structure factor of the known part of the

electron density. The circle around the
origin has the radius |F(h)|. Since the
phase of |F(h)! is unknown, any O(h)
that connects the tip of R(h) to any point
on the circle with radius 1F(h)| satisfies
equation (2.4). However, additional
information in the form of constraints
reduces the arbitrariness of the solution.

The unweighted difference Fourier _ ] _
solution is Os(h). If the "correct” Figure 1. Geometric representation of

solution is Op(h), the "dual image" is equatipn (2.4) .in the complex plane for
represented by O3(h). acentric reflections.

A second type of information on the crystal structure is (possibly imperfect)
knowledge of the electron density in parts of the unit cell. For example, part of the
molecule may be very similar to another molecule whose structure is known. As
another example, the solvent volume has a featureless electron density at a well
known value. Such knowledge can be incorporated into EDEN as a "target" density,
expressed in terms of the amplitudes of the basis functions used in the main
Frogram. They will be denoted by n(pPltarget- We introduce a corresponding cost
unction

P
1
fspace = 5 A.space P 2 VT’pz {n(p) - n(p)target}z. (2,6)
p=1

The overall relative weight, lspace, and the individual weights at each point, WPZSI,
express the "strength of our belief" in the correctness of the target density: the
weights may be used to emphasize or de-emphasize different regions of the unit cell,
while the overall weight determines the relative importance of deviations in space
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vs. deviations in reciprocal space. In the presence of a target density, the actual cost
function used in the computer program is the sum of feden (2.5) and fspace (2.6):

ftotal = feden + fspace- 2.7)

It can be seen from Eq. (2.3) that the structure factors of the unknown part can
be calculated by fast Fourier transforms followed by a scalar multiplication. The
gradients of the cost function can be calculated similarly. This leads to a fast (PlogP)
algorithm and to the ability to minimize Eq. (2.7) without ever calculating or saving
PxP matrices. In EDEN the cost function is minimized using a conjugate gradient
algorithm that is very efficient in the presence of non linear constraints.

A basic constraint, non-negativity of the electron density, is incorporated
directly into the conjugate gradient optimizer by stipulating that all elements of the
solution vector, n(p), be non-negative. The constraint can be used in two different
ways: in "correction mode" ni{p) is bounded from below by the negative of the
known initial electron density and in "completion mode" the added density itself is
non-negative everywhere. Additional information leads to additional terms in the

cost function (2.7).

The representation of the unknown density, presented in Eq. (2.2), uses an
overcomplete set of Gaussian basis functions that are not orthogonal to each other.
Mathematicians have done extensive research on such non-orthogonal, redundant
basis sets: they are called frames. Excellent discussions can be found in a book by
Daubechies (1992) and in a review by Heil & Walnut (1989). Some of their
important results are summarized below. The mathematicians assure us that
electron densities can be approximated well by such representations, if the electron
density does not vary too wildly. Restated in technical language, the requirements
are that the diffraction pattern and the basis set should have similar intrinsic
resolutions, and that the grid spacing should be about twice as fine as required by the
corresponding Nyquist criterion. In our algorithm this is achieved by the

appropriate choices of | and Ar in Eq. (2.2). Although a given electron density can be
represented by several different sets of coefficients, the algorithm used by EDEN is
mathematically stable.

We tested the accuracy of our representation by placing a single Gaussian blob
onto an arbitrary point on the grid and trying to represent it by our Gaussians on the
grid. We found that if we use a simple grid the maximum phase error was 47° and
the corresponding amplitude error was 28%. Using a body centered grid the
maximum phase error was 26° and the corresponding amplitude error was 20%.
The phase error for a complicated molecule that is uniformly distributed in the unit
cell is expected to be less.

In our next set of tests we recovered parts of a model of Thaumatin, a protein
with 207 residues, with no noise or solvent. Without a solvent mask 70 consecutive

residues could be recovered. We used the values Ar = 1.8A and 1 = 0.28 for this test.
When a hard solvent mask that covered half the unit cell was imposed, as many as
160 consecutive residues out of the 207 (or 77%) were found essentially perfectly.
The recovered electron density was within 10% of that of the original model and the

phases were accurate to 25°. In the next test we used Ar = 1.4A and 1 = 0.75 that
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corresponds to an input resolution of 2.0A. The phase accuracy of the recovery is
very good, better than 100. The convergence of the algorithm without a solvent
mask is also better: in fact 90 out of 207 residues (i.e. 43%) were recovered essentially
perfectly. With a solvent mask or a solvent target function we got perfect recovery
only up to 120 residues. This is a respectable 58%, but it is less good then using the

previous values of Ar and . We do not understand the reasons for the difference.

Some additional tests show the power of the positivity constraint in model
problems that have no noise or solvent. EDEN solved the model of Staphylococcal
Nuclease at 3A resolution using a low resolution (= 6A) solvent target that covered
61% of the unit cell and no other information. A similar result was reported by
Bricogne (1993) using a very sophisticated algorithm in reciprocal space. We recall
that Béran & Szoke (1995) found that the phases of the structure factors of a model
protein could be recovered completely when the electron density was given in a
little more than half the unit cell. The above results seem to contradict recent
conclusions of Millane (1996). We interpret Millane's conclusion as establishing an
upper limit to the additional information needed to solve the crystal structure. In
our opinion he does not exclude the possibility of solving the structure with less
information.

3. Multiple Isomorphous Replacement and Multiple Anomalous Dispersion.
3.1. Derivation of equations for MIR .

Crystal structures can be solved by multiple isomorphous replacement (MIR)
if the only change in crystal structure is the addition of heavy atoms. MIR methods
require that individual data sets be taken for each derivative and that the positions
of the heavy atoms and their occupancies be found by Patterson or direct methods.
Conventional MIR methods then proceed to find the phases of the native protein.
Very often the resulting phase set does not give electron density maps that are easily
interpretable. This is the stage where the holographic method can be of advantage.
In principle, the holographic method is equivalent to the conventional method of
finding the phases of the structure factors of the native protein. In practice, the
convergence of EDEN for ab initio phasing is worse than that of traditional
programs (PHASES or MLPHARE). On the other hand, we expect that a consistent
use all known constraints should improve the attainable accuracy of the solution.
In a test case using real data, EDEN resulted in a clear improvement over
conventional methods.

From a mathematical point of view, heavy atom derivatives (as well as
anomalous dispersion) increase the number of independent equations with respect
to the unknowns. With a sufficient number of derivatives the phase problem
should therefore be solvable. The relevant equations in EDEN are simple
generalizations of (2.1) - (2.5). The unknown density (2.2) is that of the native
protein. So is the structure factor, O(h), of equation (2.3). Suppose M + 1 sets of
diffraction amplitudes have been measured: one for the native and one each for the
M derivatives. Suppose also that the positions of the heavy atoms and their
occupancies were found, using Patterson or direct methods. The calculated structure
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factors for the heavy atoms then belong to the known part of the structures. For the
m'th derivative they will be designated Rm(h). The measured structure factors of
the m'th derivative will be denoted |Fp(h)|. Then equation (2.4) can be generalized
to the set

| F(h) 12 = IRp(h) + Oh) 12 = |Rm(h) |2 + Rm(h) O*(h) +Rm*(h) O(h) +10(h) 12,(3.1)

where m = 0, ... , M (m=0 designating the native protein). It can be demonstrated
that, Egs. (3.1) are equivalent to traditional MIR algorithms (the simple minded
ones, see e.g. Giacovazzo 1992). Equations (3.1) are solved by minimizing a cost
function that is analogous to (2.5)

M
foden =3 3 Am Y, w2 [ Fin(®) || Rip () + O) [ 2 (32)
m=0 h

In equation (3.2) we introduced weights, Am, that can express the reliability or quality
of the measurements of each derivative.

3.2. Equations for MAD.

Multiple anomalous dispersion (MAD) can be treated very similarly to MIR.
As MAD data sets are taken on a single crystal, the basic assumption of isomorphism
is correct; the main problem with the method is usually the low signal to noise
ratio. The fundamental assumption in EDEN's treatment of MAD is that the
structure amplitudes of the unknown part (that will be called the native) have no
anomalous dispersion, i.e. f* for all the unknown atoms is zero and their f' is
independent of X-ray energy. In other words, the anomalously scattering atoms are
always considered to be "heavy atoms". We will start from the point where the
anomalously scattering (heavy) atoms have been found by Patterson methods or by
direct methods and their structure factors, including the anomalous part, have been
calculated. In a P1 crystal the h > 0 data set can now be treated exactly as a derivative
in MIR. In P1 symmetry the h < 0 reflections are an independent data set. The
easiest way to use them in EDEN is to create a "flipped" data set by negating all the

indices of the reflections, h — -h, at the same time flipping the signs of the phases of
the heavy atoms and declaring this new data set to be a separate derivative.
Friedel's relations apply to the structure factors of the native because that part of the
structure has no anomalous dispersion. Therefore the unknowns in this "flipped"
data set are the same as those for the h > 0 data set. In higher symmetry similar
considerations apply. Equations analogous to (3.1) are now defined and solved by
minimizing the cost function that is analogous to (3.2). It is clear that such data sets
can be used together with MIR data. The only difficulty one might encounter in this
procedure is that the anomalous data sets are weighted too heavily. The procedure

is able to solve problems in which there is no native data set, by setting A, to zero.
3.3. MIR results using data from Kinesin.

To test the effectiveness of the MIR algorithms using real data, we studied the
protein kinesin. Kinesin is a microtubule "motor" protein that functions in
intracellular transport and chromosome movement. The data that were used for

185



our tests were collected from a 349-residue piece of the protein that encompasses the
motor head. The structure of the kinesin head domain was solved by Kull et al.
(1996). The original MIR maps were fairly poor, suggesting that they may be
improved using the holographic method. Native data to 1.8 A were available for
this protein, as well as data collected from two derivatives, one containing one
iodine atom and one containing three mercury atoms. The data for each derivative

extended to 2.5A.

The EDEN implementation of the MIR algorithm suffers from convergence
problems if the starting phases are too far from the correct solution. To circumvent
this problem, we started from the MLPHARE estimate of the phases. The native
data were placed on an absolute scale with a Wilson plot program from CCP4 using
data between 3.0 A and 1.8 A resolution. The derivatives were scaled to the native
dataset and the total number of electrons in the unit cell was estimated.

Our first step was to check the occupancies and positions of the heavy atoms.
To do this, we worked at a resolution of 3.0 A. The initial MIR phase set was used to
prepare a corresponding electron density map. EDEN was run at 3.0 A resolution in
correction mode, and the resulting electron density maps were visually inspected to
see if there were either peaks or holes at the heavy atom positions. Ideally, there
should be no evidence of the heavy atoms in the resulting native electron density.
If they do, either the occupancies of the heavy atoms or the scaling are wrong. By
repeatedly running EDEN and inspecting the results we adjusted the occupancies of
the heavy atoms and made slight adjustments to the relative scaling of the
derivative and the native datasets.

Preliminary EDEN runs were done at 3.0 A resolution. The results were quite
encouraging. At this point the isomorphism of the derivatives was checked. In
order to do that we started from the MIR map and ran it in correction mode against
the measured structure factors of the native alone. This way the program is not
constrained by any of the derivatives. The same procedure was done with each one
of the derivatives. Pairwise comparisons of the results should reveal lack of
isomorphism and local distortions around the heavy atoms. We found that, within
our ability to detect differences, the two derivatives of kinesin were isomorphous
with the native.

The next step was to obtain an estimate of the solvent envelope. This was
done by apodizing the output of the previous 3.0A MIR run to 7.0A. The
appropriate EDEN utility was used to select the 50% of the grid points with lowest
electron density. These were used as the solvent region, and assigned a target
electron density of 0.33 electrons/A3.

Two EDEN runs were done at 3.0 A resolution using the solvent target and

the two derivatives with Aspace = 0.003 and 0.01. The results were very encouraging,
and we used the same solvent target to do a full EDEN run at 2.0 A resolution. The
resulting electron density map was compared with that obtained from the original
phases derived from MLPHARE, and with a DM modified map (Cowtan & Main,
1993). The fully refined kinesin structure was used as a guide for comparing the
maps. The EDEN map was comparable to the DM map everywhere and in some
places it was clearly better.
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The reader may have noticed that the kinesin work involved a large number
of preliminary runs. This is typical of the holographic method; whereas a particular
EDEN run takes only 1-3 hours on a standard workstation, many such runs are

needed to establish optimal values of critical parameters (A's, smearing factors and
scaling factors). In particular, Eq. 2.4 shows that data and models must be carefully
scaled in order that the cost function minimization be meaningful.

4. Non crystallographic symmetry.

Non crystallographic symmetry (NCS) is treated in a manner similar to
previous sections. We use a real space cost function that "encourages" the
symmetry but does not enforce it. Although our method has similarities to well
established and successful methods of NCS there are also differences. Some of these
differences are advantageous, at least in theory. First, the exact knowledge of the
molecular envelope is not critical. Second, the non crystallographic constraint is
"soft" and its strength can be varied. Third, we do not interpolate in reciprocal
space; instead we use an expansion into basis functions in physical space. However,
this is not an important distinction from other methods. These properties of the
method allow the determination of the goodness of the symmetry from the data
alone. One should also be able to find out if there are differences in the monomers
that are related by non crystallographic symmetry. The main disadvantage of the
method is that it uses basis functions on a grid and therefore it has limited accuracy.
The mathematical derivation of the cost function has been reported in paper V. The
NCS option has not been tested on any realistic problem yet.

5. Summary and Discussion.

We would like to address the question: how similar and how different is the
holographic method from other, well established methods of X-ray crystallography?
In other words, why do we bother and should you bother?

Our approach can be described as a real space method, based on an expansion
of the electron density in basis functions and on a search for the number of electrons
in each one of the basis functions. It is one more step removed from reciprocal
space methods then other density modification methods. Note that we almost
never refer to the phases of the structure factors.

In its simplest form, the holographic method can be used to complete a partly
known structure. If there are no external constraints, the electron density maps
obtained using the holographic method are very similar to traditional Fo - Fc and
2Fo - Fc maps. Traditional Fourier maps are actually marginally more accurate,
because the holographic method is limited in its accuracy by the (incomplete) basis
function expansion. However, if there are known constraints that must be satisfied
by the electron density, the holographic method is able to use that information to
recover electrons more accurately than traditional Fourier methods.
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The fact that the electron density is always positive is an important constraint;
positivity is always enforced in EDEN. In addition, often the electron density is
known in part of the unit cell, either because the solvent region is known, or
because a partial structure has been placed in the unit cell. EDEN is able to use the
localized nature of the known electron density in real space: it can constrain it in
some part of the unit cell and not in other parts. It can also use the known electron
density as a mild constraint. Therefore errors in the "known" part can be both

detected and corrected.

We have shown that MIR, MAD, and NCS information can be incorporated
into the holographic method. Using simulated heavy atom data, we have explored
in some detail the convergence of our algorithm and the uniqueness of the solution
it supplies. These simulations show that the holographic method does not converge
as well as traditional reciprocal space methods, even though the equations are
mathematically equivalent. However, once the electron density is within the radius
of convergence of the correct minimum, the holographic method quickly and
accurately finds the correct structure. Given these findings, we propose that
conventional methods should be used to identify an initial MIR solution, and that
the holographic method should then be able to improve that solution. We have
made use of this strategy to determine the structure of the protein kinesin, using
experimental MIR data. An initial structure of kinesin was identified using the
program MLPHARE. Using EDEN to optimize this solution led to a clear
improvement in the resulting electron density maps.

On the theoretical side, we scrupulously differentiate between lack of
information and tacitly assumed information. For example we consistently avoid
the use of Fourier back transforms. In usual practice, unknown structure factors are
given zero value as opposed to keeping them unknown. Similarly, in the presence
of non crystallographic symmetry, some formulations implicitly assume that the
electron density is featureless outside the symmetry related regions. We try to live
by Lénczos' dictum: use all the available information and no more. In principle,
given a sufficient amount of information it is possible to recover the crystal
perfectly. However, different algorithms may have very different convergence
properties and may have very different sensitivity to imperfections in the data. In
our opinion, this last point alone is sufficiently important to justify the
development of new methods for crystallographic computations.

Finally, we want to give a preview of coming attractions. In the near future
we intend to extend the variety of real space target functions. We will then be able
to treat molecular replacement and resolution extension (usually called phase
extension) conveniently. Following David & Subbiah (1994), we will also try to
solve proteins ab initio at low resolution using our algorithm. We have already
found that the holographic method converges well in the presence of low
resolution information. At high resolution we will incorporate atomicity, i.e. our
own version of Sayre’s equation. Both the low resolution and the high resolution
information can be cast in a very transparent and clean form. In reciprocal space, we

will use 1/02 weights for the measured structure factors, in order to take into
account inaccuracies of measurements. We will also incorporate some statistical
information: The probability distribution of the measured structure factors can be
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estimated more accurately than given by the single number o2. Similarly, the
probability distribution of the unmeasured structure factors can be estimated. If the
number of missing atoms is known, the probability distribution of the missing part
O(h) can be estimated. The most exciting (and difficult) development is the
incorporation of some chemical knowledge into the holographic method. It has the
following ingredients: Kleywegt has shown how to fit small parts of proteins into
the electron density. We intend to use a variant of his method. Also Fortier has
shown how to find extremal points of the electron density and how to connect them
to find the protein backbone. We also intend to use a variant of her method.
Finally, we intend to put in a mock-electrostatic force in order to improve the
electron density and to impose chemical constraints on it. We hope that our efforts
will be a beginning of "automated" crystallographic refinement.
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Abstract

We have developed procedures for the improvement of crystallographic phases resulting
either from the position of a heavy atom within the native molecule, or from a multiple
isomorphous replacement experiment.

In the first case the position of a heavy atom as located from native Patterson maps is used as
a starting model for least squares or maximum likelihood refinement and iterative model
updating in an ARP procedure. Automatic update and completion of the model by ARP,
results to maps of excellent quality. Furthermore, the atomic positions of the final ARP model
are very accurate and can be used to initiate automatic model building techniques, currently
under development.

For the second case, the best initial map is used to construct a number of dummy free atom
models which are subjected to ARP refinement. Averaging of the phase sets calculated from
the refined models and weighting of structure factors by their similarity to an average vector,
results in a phase set that improves and extends the initial phases if the native data set has
sufficiently high resolution (beyond ~ 2.4 A). This procedure allows shortening of the time-
consuming step of model building in a lot of crystallographic structure solutions.

NOTE: The ARP program is freely available as part of the CCP4 package. C-shell scripts and the
actual averaging program, are available to run wARP. They perform the dummy model building,
ARP refinements and final averaging in an automated manner. They are also capable to split jobs in
a ‘parallel’ manner to different processors which can be located in different computers over a
network, thus minimizing the actual required run time to the one needed for a single ARP job -
provided that enough processors are available. The scripts are tested on several Irix 5.3 based
clusters, but should be straight-forward to adapt for usage with any Unix based system. A WWW
ARP/WARP home page is now available, at http://den.nki.nl/~perrakis/arp.html from where the
complete ARP/WARP package can be obtained. A mailing list is also open for questions and
discussion for ARP/WARP usage. To subscribe, simply do it through the WWW page or send a mail
with one line ‘subscribe arp-users’ to majordomo @ linde.nki.nl.
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Outline of the (w)ARP method

ARP from single heavy atom model

One single or a few heavy atoms located from the native Patterson synthesis are used as an
initial model. Starting from these atoms, a model consisting of only oxygen atoms is slowly
created by ARP. This model consists of free atoms that are not subjected to any kind of
restraint. One ARP refinement cycle has two parts: (1) unrestrained least-squares
minimization or maximum likelihood refinement in reciprocal space, to properly match
calculated to observed structure factor amplitudes and (2) substantial modification of the
current atomic dummy model in real space, using ARP [1,2]. For the unrestrained refinement
step, C-shell scripts have been constructed to employ most currently available programs in the
procedure. Standard protocols include PROLSQ [3] and REFMAC [4] from the CCP4 [5]
suite. ARP, after each reciprocal space refinement cycle, updates the model mimicking
human intervention between refinement cycles. It removes atoms based on the density in the
3F,-2F, Fourier synthesis and adds atoms in significant density in the Fo-F. Fourier synthesis,
provided that they are bonded to existing atoms. After several such cycles of ARP, the atoms
that are added gradually constitute a model that resembles the protein to a great extend.

From ARP to wARP

The procedure described above requires data to very high resolution to be available and a
heavy atom present in the native protein. In most crystallographic projects, however, this is
not the case. Since it is very hard if at all possible to provide an ab initio solution to the
phase problem in such cases, our effort has been concentrated on improving phases that are
available by experimental techniques. Such phase information can be very inaccurate and
means of improvement will speed up the efficiency and the quality of model building. ARP
needs high resolution data to converge to global minimum during refinement. If such data are
not available, the refinement will most likely not converge and inaccuracies are introduced to
the ‘final’ model. With wARP we try to overcome this problem by the weighted averaging of
structure factors from individual models.

ARP from MIR maps: wARP

The first step in the wARP procedure is the creation of moderately different free atom models
in the best available map. The procedure for building a ‘dummy model’ is then invoked as
described in the ARP manual. Briefly, starting from a small set of. dummy atoms placed
anywhere in the protein region, a model is slowly expanded by the stepwise addition of atoms
that are in bonding distances with existing atoms and in significant density in the electron
density map exists for their placement. Six such models are created, using slightly different
ARP building protocols, which are used for all subsequent steps. Next, these models are
subjected to ARP refinement. Due to the limited amount of diffraction data, they will
presumably at the end contain different errors, which by the averaging procedure will be
canceled out,

Structure factors are calculated for all models after refinement and scaled to observed
amplitudes. A vector average of the calculated structure factors from the different refined
models is then calculated. The phase of the vector average is remarkably better than those
calculated from any of the individual runs. Subsequently, a weighting scheme is applied to
enhance the overall quality of phases, depending on the variance of the individual structure
factors around the average.
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Examples

ARP from single heavy atom model

Rubredoxin

Rubredoxin is a small protein of 51 residues, the first protein to be refined to atomic
~ resolution [6]. It contains a Fe atom which is coordinated by 4 Cys residues. The position of
the Fe atom and the 4 sulfurs of the cysteines side chains can be located from the native
Patterson map, if data better than 1.5 A resolution are available. A high resolution data set of
rubredoxin (0.92 A) was used. In all cases that lower resolution is quoted, that means that the
data were simply truncated at that resolution limit.

The starting model for the ARP refinement procedure was initially the Fe atom with the
coordinates calculated from the native Patterson map. After 80 cycles of least squares
refinement, or 30 cycles of maximum likelihood refinement a complete model was available.
The map correlation coefficient [7] improved from only 26 % to more than 90 % in both
cases. The lowest resolution at which the method works, starting from the Fe atom alone, is
1.1 A. However, if the positions for the four sulfur atoms are included, the method can work
with 1.4 A data, in other words with less than one third of observed reflections at 0.92 A. In
that case, the correlation coefficient with the final map is 96%, because the correct atomic
types are used for the four sulfur atoms. If we try to use data to 1.5 A resolution, there is a
small increase in correlation coefficient to 45%, but after that no improvement could be
achieved. Protocols involving the use of E-maps and the wARP averaging described below
are being tested to extend the use of method to much lower maximal resolution. It is of
interest to note, that the atomic positions of atoms placed by ARP are these of atoms in the
final model, with slight variation, Figure 1. It would be thus feasible to use them to initiate
automatic model building techniques to minimize the amount of time spent in traditional
model building and the errors introduced by this procedure. Characteristic parts of the maps
before and after the ARP procedure are shown in Figures 2 and 3.

- A o A

Figure 1
Positions of the ARP atoms (left) and of the atoms in the final model (right), for a representative

l;.gi'on of the protein. You are welcome to try the ‘join the correct dots’ game in the left panel of the
~figure ...
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Figure 2

Stereo figures of the area of
the map around the starting
Fe atom. In the initial map
(top) resulting from the
phases calculating from Fe
atom position alone, a big
bolb of density s
representing  the ion.
Although there is density
for the four sulfurs of the
cysteines coordinating the
Fe ion, it is hardly
interpretable.  After ARP
the atomic positions are
clearly visible and the map
is of excellent quality.

Figure 3

Stereo figures of one area
of the map far from the
starting Fe atom. In the
initial map (top), although
density for some of the Tyr
atoms is present, the Tyr
residue is in practice not
recognizable.  After ARP
refinement the Tyr main
and side chains are clearly
recognizable.



ARP from MIR maps: wARP

Leishmanolysin

Leishmanolysin
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Figure 4

Phase improvement provided by DM, ARP and wARP in
resolution shells is shown for phase sets from MIR, optimal
solvent flattening, the best single ARP run and the wARP
phase combination, for leishmanolysin. Map correlation
coefficient for electron density maps resulting from these
datasets were 42.7 %, 66.6 %, 88.3 % and 92.0 % for MIR,
DM, ARP and wARP maps respectively.

The structure of the Leishmania virus
coat protein (Leishmanolysin, PSP) was
solved with a complicated protocol
involving the use of SIRAS phases for
two different crystal forms, averaging
between those, solvent flattening and
density skeletonization (unpublished data
were kindly provided by Dr. Peter
Metcalf). For the wARP test one set of
SIRAS phases was used, which extends to
a resolution of 3.0 A. These phases were
determined for the first crystal form for
which native data extending to 2.5 A
were used for solvent flattening and
phase extension with the DM program
[16], CCP4. This density modified map
was used to build the initial models with
ARP. The ARP unrestrained refinement
was performed against a higher resolution
native data set from a frozen crystal (2.0
A). REFMAC maximum likelihood
minimization was used with ARP. All of

these models gave maps of dramatically better quality than the solvent flattened map. Here the power
of ARP procedure itself is large because the resolution of the native data is good. The wARP
procedure resulted in a small but significant additional improvement. Statistics on phase
improvement are in Figure 4 and a representative part of the map at Figure 5.

Figure 5

Representative regions of
the solvent flattened (a,c)
and equivalent wARP
averaged maps (b,d) for
Leishmanolysin, shown in
stereo.
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Chitinase A

Chitinase
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Figure 6

Phase improvement provided by DM, ARP and wARP is
shown for phase sets from MIR, optimal solvent flattening, the
best single ARP run and the wARP phase combination, for
chitinase. The map correlation coefficient for electron density
maps resulting from these datasets were 42.7 %, 66.6 %, 88.3
% and 92.0 % for MIR, DM, ARP and wARP maps
respectively

The chitinase A structure from Serratia
marsescens (ChiA) was initially solved
by MIRAS [8); with one only derivative
contributing to better resolution than 5.0
A [ref]. The MIRAS map (2.5 A) was
solvent flattened with the procedures
implemented in the PHASES package
[15]. Model building was not
straightforward and much time was spent
in tracing the protein chain. In the wARP
procedure the solvent flattened map was
used to initiate building of dummy
models. PROLSQ least squares
minimization against the native 2.3 A
data was used with ARP. Refinement of
the models resulted in crystallographic R
factors ranging between 20.1 % and 22.4
%. All of the ARP refined models gave
phases same or worse than the phases
already available by solvent flattening,
due to the limited resolution of the native

data, Figure la. At that case, where limited resolution if the data prevent convergence of the
refinement, the wARP averaging procedure results in a much further improved map, comparable to
the improvement achievable with higher resolution data. The phase improvement in resolution shells,
for all phase sets, is analytically shown in Figure 6. A characteristic region of the map is shown in

Figure 7.
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Figure 7

Representative regions of
the solvent flattened (a.c)
and equivalent wARP
averaged maps (b,d) for
Chitinase A, shown in
stereo.




Applicability and requirements

ARP for ab initio structure solution: Capabilities and limitations

Ab initio methods in protein crystallography have only recently been successfully applied, the
most characteristic examples being the structure solution of crambin [9] by direct methods
and cytochrome c6 [10] by Patterson expansion methods. The limitation for succesful
application of ab initio methods is the resolution of the diffraction data. Allthouh our current
example, rubredoxin, can be solved easily by any relevant procedure if atomic resolution data
.are available, these methods fail if data worse than ~ 1.2 A are available. With ARP we
managed to produce an excellent map and an atomic model, with only 1.4 A data, ie W1th
essentially ~ 60 % of the reflections. Many more proteins diffract to resolution around 1.5 A
than 1.2 A, according to the data on projects recently collected at EMBL Hamburg
synchrotron X-rays facilities. Furthermore, we believe that we will be able to extend that limit
in the near future, possibly with the application of wARP averaging.

Resolution requirements and use of different refinement methods for wARP

In contrast to most density modification methods the wARP procedure is extremely sensitive
to the resolution of observed data in the native dataset. This is due to the limitations of the
unrestrained refinement step, which requires that the observations/parameters ratio is more
than 1.5 for convergence to a minimum. It is crucial to realise, that the real limitation can not
be expressed solely in resolution terms, but better as observations/parameters ratio, whrch 1s
largely dependent on solvent content. Thus, for a crystal with high solvent content 2.5 A data
will be sufficient while for a crystal with low solvent content data to 2.0 A resolution must be
available. Obviously the collected data must be of good quality, as can be judged by Rmerge.
Uo(), and completeness. The success of refinement can be easily assessed by the
crystallographic R factor.

Our experience shows that if the ratio of the number of reflections in the dataset to reﬁned
atomic parameters (four parameters per atom, x,y,z,B) is more than 2.0 (resolution ~ 2.0 A)
then use of maximum likelihood refinement as implemented in REFMAC can be used very
effectively, as shown in Leishmanolysin. If the observations to parameters ratio drops below
2.0 traditional least squares refinement as implemented in PROLSQ produce better results, as
shown for ChiA. When the observations to parameters ratio drops below 1.5 the method does
not work.

Applicability of the averaging method

The averaging method we describe has also been succesfully used in our laboratory to
combine maps obtained by different phasing techniques. We have used MIR phase sets
determined for ‘cold’ and ‘warm’ native datasets, different solvent flattening protocols and
partial model phase sets, to combine them with the wARP procedure. The resulting map
appears to be of substantially better quality. Unfortunately, this project is still under
refinement and we can not quote the exact phase improvement figures. Furtermore, it is not a
usual case to obtain many phase sets, with different sources of errors. Also, other more
standard and theoretically sound procedures are developed for standard phase combination.
Thus, we will not treat it as a test case, allthough potential users that think this procedure
might be applicable in their particular cases are encouraged to inquire after this possibility
with us.
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Experimental low resolution envelopes from solution scattering

D. I. Svergun

European Molecular Biology Laboratory, Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85,
D-22603 Hamburg, Germany, and Institute of Crystallography, Russian Academy of Sciences,
Leninsky pr. 59, 117333 Moscow, Russia. E-mail: Svergun@EMBL-Hamburg.DE

Introduction

Solution scattering is one of the most effective methods for investigating low resolution structure
of biopolymers and their complexes (Feigin & Svergun, 1987). The scattering intensity I(s) from a
dilute monodisperse solution is proportional to the scattering from a single particle averaged over all
orientations [here s denotes the modulus of the scattering vector s, s=(47/A)sin@, A is the
wavelength, and 20 the scattering angle]. Main advantage of solution scattering is the possibility to
study the structure and structural dynamics of native particles in physiological solutions; its main
disadvantage is the loss of information due to the chaotic orientation of particles.

Information content in solution scattering data is usually estimated with the Shannon sampling
theorem (Shannon & Weaver, 1949). A scattering curve I(s) is the Fourier image of the spherically
averaged Patterson function of the particle P(r)=<P(r)> which equals to zero beyond r=Dy,,, where
Dpax is the maximum particle size. I(s) is therefore an analytical function. The sampling theorem
states that the number of parameters (Shannon channels) required to represent an analytical function
on an interval [Smin, Smax] iS €qual to Ng= Dmax(Smax - Smin) /%. In practice, solution scattering curves
decay rapidly with s and they are normally recorded only at low (not better than 1 nm) resolution, so
that the typical number of the Shannon channels does not exceed 10 to 15.

In keeping with the low resolution of the solution scattering studies, the data interpretation is
usually performed in terms of homogeneous bodies. Homogeneous approximation reduees the
number of free parameters N, in the model and is well justified in X-ray studies of single
component particles (e.g. proteins) in water solutions. In conventional modelling, however, the
particle is represented by hundreds of spheres, so that Np»Ns thus making only trial and error
approach possible. Below an ab initio method is presented which utilizes spherical harmonics to
economically describe low resolution particle envelopes and to restore them from solution scattering
curves. Examples of the application of the method are given and possibilities of the joint use of
crystallographic and solution scattering data are discussed.

Theory
Granted that the information content in solution scattering is low, an ab initio shape
determination procedure should require as few parameters as possible. Let us represent the particle

envelope by a two dimensional angular function r=F(®) describing the particle boundary in
spherical coordinates (r, ). This function is conveniently parameterized as

L l
Fo)=F(0)=Y 2 fiuZim(®) (1)

=0 m=-I
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where Yin(®) are spherical harmonics, the multipole coefficients fi, are complex numbers and the
truncation value L defines the resolution of the representation. The particle density distribution in
homogeneous approximation can be written as

1 O0Lr<F(w)-A
pm)=\[F(w)-r]/A, F(o)-A<r<F(w) )
0, r>Fo)

where A is the width of the particle-solvent interface which for dissolved macromolecules can be
taken A=0.3 nm to account for the first hydration shell. The particle envelope is thus represented by
(L+1)2 numbers fi, at a spatial resolution ér=nRy/(L+1), where Ry is the radius of the equivalent
sphere.

Solution scattering intensity is I(s) = <I(s)>, = <{¥ [p(r)]}*>,, where § denotes the Fourier
transform, <> stands for the average over the solid angle Q in reciprocal space, and s=(s, £2) is the
scattering vector. Expanding p(r) in spherical harmonics

) I
p(r)= EO _Z lplm(rmm(w) 3)

the scattering intensity is expressed as (Stuhrmann, 1970a)

oo l
I(5)=2123 3 |Apu(sf @
I

=0 m=-

where the partial amplitudes Ajy(s) are the Hankel transforms from the radial functions

e )=i’\/7/; Iyl r)js( sr)r¥dr (5)
0

and j(sr) are the spherical Bessel functions.

Inserting (2-3) into (5) and using the power series expansion for ji(sr) a closed expression for the
partial amplitudes via the fi, coefficients is obtained allowing one to rapidly evaluate the scattering
intensity (4) from a given envelope (Stuhrmann, 1970b; Svergun & Stuhrmann, 1991; Svergun,
1997). Using this approach, an algorithm for ab initio determination of the low resolution envelopes
of biopolymers in solution from their experimental scattering curves is developed. Starting from a
spherical shape (for which all coefficients but fy are equal to zero), the fi, coefficients are obtained
which minimize the discrepancy between the experimental [Lexp(sk), k=1,...N] and calculated curves

x?= g{[lexp(sk)—l(sk)]W(sk )}2 /é Ferp(se W (s ®
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with the weighting factor W(sy)= skz[c(sk)/Iexp(sk)], where o(sy) is the standard deviation in the k-th
point. Details of the shape determination algorithm are presented elsewhere (Svergun ez al., 1996;
1997a).

Uniqueness

A natural question arises whether the low resolution shape determination is unique, in other
words, whether, in addition to the trivial case of an enantiomorphic envelope, different shapes exist
at the same level of resolution (i.e. at the same L) yielding identical scattering curves. This problem
was considered by Svergun et al. (1996) using computer simulations on model bodies described by
the envelope functions exactly represented by a finite series (1) on spherical harmonics. Given the
scattering intensity calculated from a model envelope, the particle shape was restored from this
intensity with the above algorithm. Both error-free curves and those containing statistical noise were
simulated in different angular intervals.

The results indicated that the shape restoration for error-free data is unique, even when using
very limited ranges in the simulated curves. In the presence of errors, ambiguity of the shape
determination depends on the relation between the number of model parameters N, and that of the
Shannon channels N;. The shape restoration was found to be practically independent of the initial
approximation and stable with respect to the random errors if Np= 1.5 N,

Experimental solution scattering curves cover usually about 10 to 15 Shannon channels thus
allowing to use 15 to 20 variables in the shape description. The number of independent parameters
in series (1) is equal to Np=(L+1)2-6 (here, the reduction by six variables is due to arbitrary rotations
and displacements of the particle which do not alter the scattering curve). It means that in practice
the multipole resolution up to L=4 can be used.

Practice

Practical implementation of the shape determination algorithm required several extensions to
account for the deviations from the ideal model:

(i) When using raw X-ray scattering data, homogeneous approximation may not be valid in the
outer parts of the scattering curves where the scattering from the inhomogeneities of the polypeptide
chain can no longer be neglected, especially for proteins of low (less than 20kDa) molecular mass.
This effect is taken into account as follows. From the inner part of the scattering curve (first three
Shannon channels), the best fit three-axial ellipsoid is found. Scattering from the internal
inhomogeneities Ii(s) inside the ellipsoidal envelope is evaluated using the method of Svergun
(1994), and this curve is subtracted from the experimental data so that the difference Lexp(s)- I(s) at
higher angles follows the asymptotic behavior s™ according to the Porod’s law for homogeneous
particles (Feigin & Svergun, 1987).

(ii) The model envelope is represented by a finite set of harmonics, whereas real particles would
require the infinite series. To reduce the truncation effect, the best fit ellipsoidal envelope is
developed into spherical harmonics, and its the shape representation (1) is truncated at the same L
value as that used in the shape determination (usually, L=4). The ratio w(s)=I (s)/I(s) is calculated
where I;(s) is the scattering curve from the ellipsoid, I;(s) from its truncated representation. The
experimental intensity is then multiplied by this “ellipsoidal filter” w(s) and the resulting curve
Jexp(8)= W(s)[Lexp(s)- Is(s)] enters the shape determination.
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(iii) When minimizing functional (6), the calculated intensity I(s) at each function evaluation is
multiplied by the scaling factor

N N 2
L= k§1 Jexp(sp )I(sp )W 3(sp) / k§1 HELED) )

which provides the currently best least squares fit to the experimental curve. The shape
determination can therefore be directly applied to raw experimental data on a relative scale.

The ab initio shape determination program with the above extensions runs on IBM-PC and on
major UNIX platforms (Svergun et al., 1997a). Its implementation on a SUN Sparc-20ZX
workstation is coupled with a three-dimensional rendering program ASSA allowing the user to
monitor the process of the shape determination (Kozin, Volkov & Svergun, 1997).

The program has been tested on several proteins with known atomic structures in the crystal (X-
ray solution scattering patterns were collected as parts of ongoing projects ‘at the EMBL Outstation
in Hamburg). Figs 1 and 2 present the shape determination of two proteins, monomeric hexokinase
and HIV-1 reverse transcriptase (molecular masses 52 and 105 kDa, respectively). In both cases,
particle envelopes up to L=4 (19 free parameters) were directly restored from the experimental data
starting from a spherical initial approximation. The envelopes are displayed in Fig. 2 along with the
atomic structures of the hexokinase (Bennett & Steitz, 1980), and of the reverse transcriptase (Wang
et al., 1994) deposited in the Protein Data Bank (Bernstein et al., 1977), entries 1HKG and 3HVT,
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respectively). As the orientation of the restored models is arbitrary, they and their enantiomorphs
were rotated so as to minimize the deviation

Ry = J[Fcryst(a)) - F(a))]zda) / JFgryst(a))da) (8)

where F.yq(m) is the envelope function evaluated for the atomic structure at the same L using the
program CRYSOL (Svergun, Barberato & Koch, 1995). As seen from the comparison, the ab initio
restoration provides an adequate low resolution description of the protein envelopes. The R, factors
are equal to 0.20 and 0.22 for the hexokinase and for the reverse transcriptase, respectively.

Figure 2. Comparison between the envelopes of the hexokinase (left) and
reverse transcriptase (right) restored from solution scattering data (transparent
solids) with corresponding crystallographic structures (dots). Bottom pictures
are rotated 90° clockwise around X.

The shape determination program was also used to restore the envelopes of other proteins with
known atomic structures (lysozyme, ribonucleotide reductase, pyruvate decarboxylase, enopyruvil
transferase, ezc.). In all these cases the restored shapes agreed well with the atomic structures, with
the R factors ranging frem 0.10 to 0.25. Of course, the program is aimed at the shape determination
of the proteins with unknown atomic structure; the above tests have been done to check the
reliability of the method in real experiment.
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Figure 3. Shape
determination of the
pyruvate oxidase.
Dots: experimental X-
ray scattering data,
solid curve: scattering
from the restored
shape.

Pyruvate oxidase

Symmetry

Particle symmetry imposes restrictions on the multipole coefficients fin in series (1) and the
information about the symmetry, if available, can improve the reliability of the ab initio shape
restoration by reducing the number of parameters to be determined. Consider, for example, a
homodimeric particle with a two fold symmetry axis along z. In this case, all fi, coefficients with
odd m vanish, and the particle shape at L=4 is described by 12 independent parameters instead of 19
for a non-symmetric case.

The higher the symmetry, the more multipole coefficients can be omitted, and this allows one to
enhance the resolution of the restoration. Figs 3 and 4 present the shape determination of the
homotetramer of pyruvate oxidase (molecular mass 260 kDa) assuming the 222 point symmetry.
The multipole expansion up to L=6 for this symmetry group requires only 13 free parameters. The
restored envelope displays a good agreement (R _=0.15) with the crystal structure (Muller & Schultz,
1993, PDB entry 1POW)

The quaternary structure of symmetric particles can also be restored in terms of the envelope
function of the asymmetric unit. Thus, scattering from a symmetric homodimer is readily expressed
via the shape of a monomer and the distance Ad between the monomers. The shape determination is
performed as described above with a single additional parameter Ad. This approach has already been
successfully used in practice (Schmidt et al., 1995; Svergun et al., 1997a).
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Figure 4. Comparison between the envelope of the tetrameric pyruvate oxidase restored
from the solution scattering data assuming the 222 symmetry (transparent solid) and the
crystallographic structure (dots). Right picture is rotated 90° clockwise around X.

Discussion

The first question to address is why is it at all possible to restore the three-dimensional envelope
from a one-dimensional curve using more parameters than predicted by the theory? The answer is
that the estimate of N; reflects only one (and most often quoted) part of the sampling theorem. The
other part says that full information about the entire analytical function is contained in any finite
contiguous portion of it. An oversampled scattering curve measured with the angular increment
much smaller than the sampling distance 7/Dy,x can be analytically extrapolated beyond the
experimental range (so-called superresolution). As experimental solution scattering curves are
always heavily oversampled, they are able to provide more parameters than N.

Limitations of the model (1) used to describe the particle envelope should be mentioned. First,
as F() is assumed to be single-valued, complicated (e.g. U-like) shapes or those containing internal
holes cannot be exactly represented. Second, omission of the higher harmonics with ISL is
compensated in the fitting procedure by the artificial enhancement of the lower ones. This effect is
partially corrected by the above described ellipsoidal filtering and thus produces only marginal
distortions for globular particles but can still be significant for anisometric structures because of a
slow convergence of series (1). Remaining deviations between the restored envelopes and the
crystal structures in Fig. 2 provide an idea on the magnitude of the truncation effect (it is worth
noting that both proteins are rather anisometric, with the axial ratios of the approximating ellipsoid
equal to 2.8 and 3.6 for the hexokinase and reverse transcriptase, respectively).

What is the relation between the solution scattering and crystallographic data? The latter clearly
contain more information and provide much higher resolution. However, test runs of the shape
determination using simulated reflections instead of solution scattering curves encountered
difficulties because of a high multimodality of the goal function. The reason for the multimodality
is that the crystallographic data, contrary to the solution scattering curves, are undersampled:
separation between the reflections is twice the sampling distance required to describe the three-
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dimensional scattering intensity as the Fourier image of the density in the unit cell (e.g. Baker,
Krukowski & Agard, 1993). Solution scattering data provide therefore complementary information
and their use can improve the efficiency of ab initio phasing procedures. Low resolution
experimental envelopes can be positioned in the crystal cell using molecular replacement and
further refined against both solution scattering and the crystallographic data.

Measurements in solution provide also a possibility to model the structure and structural
transitions of complex macromolecules in solution by rigid body movements of their
crystallographically known domains (subunits) so as to fit the experimental scattering from the
complex (Svergun, 1991; 1994; 1997). Thus, in solution scattering study of the classical allosteric
enzyme aspartate transcarbamylase (Svergun et al., 1997), the overall changes accompanying the
T—R transition in solution were found to be about 50% larger than those in the crystal (Kantrowitz
& Lipscomb, 1988). This approach is now being used in several ongoing projects at the EMBL
Outstation in Hamburg to study multidomain proteins in solution.
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LOW RESOLUTION CRYSTALLOGRAPHIC IMAGES
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1. Introduction.

The definition of «low resolution» depends on the traditions of a specific laboratory
and, first of all, on their typical subjects. In the case of small molecules it can be 3A. In the
case of typical proteins, it is rather about 6-8A. Another meaning of the term «low
resolution» is about 20-25A, the limit below which X-ray data are quite often not collected.

This paper deals with the analysis of macromolecules, and the resolution below 6-8A
will be referred to as «low resolution» and the one below 20-25A as «very low resolution»
(VLR in what follows). It should be noted that these two limits define the resolution zone
where the contribution of the bulk solvent is strong and uncorrelated to that from the
macromolecule itself. At higher resolutions the contribution is negligible, and at lower
resolutions it is strong but roughly proportional to the one of the macromolecule
(Urzhumtsev & Podjarny, 1995).

Measuring the very low resolution X-ray data is technically difficult, and many
research groups do not collect them. However, they carry information that can be useful.
This paper discuss their importance for improving the molecular images as well as the
possibilities of an independent use of these data.

2. Do very low resolution data have any information ?

The basic sources of a noise in macromolecular crystallographic images are
systematic errors. While in a real case the synthesis is usually worse than expected it is
much more difficult to obtain a noisy image in a test calculation. The mean value of
independent phase errors can reach about 60-70° and the synthesis will still be quite good
and close to the ideal image. However, it is easy to destroy an image by introducing
systematic errors, for example, by error in heavy atoms parameters. Another example is
missing of a part of the model, for example the solvent.

Fig. 1. Schematic presentation of different possibilities of systematic missing of X-ray amplitudes:
a) standard resolution cut-off; b) in plane; c) along one axis; d) very low resolution data
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The second possibility is systematically missing of reflections in the map
calculations. Some examples are schematically shown in Fig. 1. Fig la corresponds to the
usual high resolution cut-off. Fig 1b and lc corresponds to relatively rare cases which
nevertheless exist. Missing of a plane of reflections causes breaks in the density in the
conjugate direction in real space (Lunin, 1991). A systematic absence of reflections along an
axis can cause a complete loss of the molecular envelope (Urzhumtsev et al., 1989).

Fig. 1d corresponds to a usual situation when VLR data are excluded from the map
calculation. They can be either not measured or measured but not phased. Usually they are
only a small number of reflections but they are strong and removed systematically.

A phase extension procedure for phasing the VLR data applied by Podjarny et al.
(1981) in the case of tRNA demonstrated a drastic improvement of the image. For
calculated data (Urzhumtsev, 1991) it was clearly shown that the exclusion of only 1% of
the data (29 reflections out from 2500) completely destroy the molecular image at 6A
resolution. In the case, for example, of SIR phase errors, the molecular envelope keeps its
position but the electron density peaks are shifted. In the case of missing VLR reflections
the effect is inverted: the envelope is lost but the peaks are at their places. This is natural
because the exclusion of VLR terms should cause large scale modulations of the density in
the unit cell.

The fact that the peaks are at the right place has important consequences. Firstly,
when a map is calculated at high resolution, its peaks have a high contrast and such density
modulation does not «hide» them completely; this has allowed crystallographers to ignore
VLR data for a long period. Secondly, it gives a possibility of automatically determining the
molecular envelope from such synthesis.

The knowledge of the envelope can be used to improve the molecular image. The
phases of its structure factors can be used as a good approximation to the phase values of
VLR reflections. If their amplitudes are available, simple adding them to the Fourier
calculation can completely change the map (see Urzhumtsev, 1991, for an example of
dractic improvement of the SIR image of the Elongation Factor G). Calculated amplitudes
can be used to estimate the quality of the calculated phases and give corresponding weights
for the Fourier coefficients through the comparison with the experimental ones.

3. How to use the information from very low resolution data ?

Therefore, VLR data do carry important information, first of all, on the shape of
molecule. Such an information can be used in different cases (Podjarny & Urzhumtsev,
1997), for example:

- in density modification procedures for the image improvement;

- in the molecular replacement if the internal differences between two molecules are large;
- if diffraction data are not available at higher resolution;

- in the case of very large molecular complexes, like ribosome;

etc.

If VLR amplitudes have been measured, the determination of their phases by isomor-
phous replacement is difficult while not impossible (Podjarny & Urzhumtsev, 1997). In the
case of viruses where practically all VLR reflections are centrosymmetric, a good
approximation can be done by calculation of structure factors from a spherical shell. In the
general case, a searching procedure based on some a priori knowledge of the density can be
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applied to find these phases. For this procedure, it is needed to specify: a) the search model
(parameters); b) the search space; c) the sampling procedure; d) the availabie data; ¢) the
criteria of the search.

Sampling of the whole phase space

In the simplest case, the search is either systematic or random with a representative
sampling of the whole phase space. In practical terms it means that the space should not be
too large, i.e. a small number of reflections can be phased.

An information which can be used to identify the correct solution should be of
general type, for example, the knowledge of the correct electron density histogram (Lunin,
1988; 1993). For any generated phase set, a map of a given resolution can be calculated with
experimental amplitudes and these phases. A correlation of histograms, target and
calculated, can be use as a search criterion.

Table 1 shows the distribution (histogram correlation, CH, vs phase correlation, Cp)
of phase sets of a typical search done with calculated data. Most of the generated phase sets
have a poor value for both correlations. However, the converse is not true and the phase sets
with highest value of the histogram correlation are not necessarily correct. The phase
correlation distribution of these phase sets (columns with Cu=0.9 in Table 1) shows two
groups of phase sets. Some of them have a reasonable phase correlation value, while the
others are far from the correct solution. Note also that there are a number of sets with high
Cr but low histogram correlation value. The single phase set with the highest Cu value and
also the highest Cp value is not statistically significant.

--------------- ~> 1.0
0 0 0 0 A
0 0 0 0 1
0 0 0 0 |
I ° ° © 095
0 0 0 0 l
o 0 0o 0 0875
0 0 0 0 !
0 0 0 0 |
0 0 0 0 A
0 0 0 0 !
o 0 0o 0 0500
0 0 0 0 I
0 0 0 0 Cp

Table 1. Two-dimensional distribution of the generated variants of phase sets for the case of model data at 30A
resolution (29 reflections). The horizontal dimension corresponds to the histogram correlation, CH, and the
vertical one to the weighted phase correlation, CP. The correct solution should be in the top right corner.
Two major clusters are marked by a frame, the variants with highest Cp are indicated by inverted colours.

The behaviour of the Cp values for the sets with highest CH can be generalised. The
search criterion does not select for a single solution, but gives an indication of possible
solutions. This solutions are not uniformly distributed with respect to the Cp. Further
analysis shows that they appear in clusters (e.g., the two peaks in Table 1 correspond to two
clusters); one of these clusters is close to the correct solution.
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On the basis of these observations, the following procedure has been suggested to

obtain ab initio the phases of the VLR reflections (Lunin, Urzhumtsev, Skovoroda, 1990):

a) generation of a large number of phase sets (e.g., one million for 30 phases);

b) calculation of an electron density map for every phase set and calculation of its
histogram,;

c) selection of the phase sets with highest histogram correlation as admissible ones;

d) after a sufficient number (e.g., one thousand) phase sets are selected, analysis of the
distribution of these sets by some clustering procedure;

e) classification of the clusters according to their size in a ‘cluster tree’; for every major
cluster average the corresponding phase sets in order to obtain the mean phase values and
their figures of merits;

f) calculate the corresponding weighted maps and choose, if possible, the correct one.

For the step (d), a proper distance between two phase sets should be defined taking
into account different choices of the unit cell origin (Lunin & Lunina, 1996), density
flipping and enantiomer.

The procedure was found quite robust in several applications both to the calculated
and experimental data. In these cases about 30 reflections were successfully phased which
gave images of reasonable quality. The limiting point was the computing time. In order to
get finer details, it is necessary to go deeply in the cluster tree to smaller clusters and still
have large enough number of phase sets with a high enough value of the criterion.

Another problems is that, unfortunately, while for the middle resolution maps a
general method to obtain the corresponding histogram a priori has been suggested (Lunin &
Skovoroda, 1991), no similar method was found for the very low resolution.

It is important to note that a similar behaviour of the selected phase variants has been
observed when the criterion of the histogram closeness was replaced by the criterion of a
compact globular envelope.

Simplest parametrisation of the phase space

In order to increase the number of phased reflections for the same level of computing
power, the search model should be parametrised. A proper parametrisation should
automatically avoid sampling of the «empty» regions of the phase space and the correct
phase set should belong to the chosen subspace or, at least, be close enough to it. The
number of parameters of every model should be small enough (at least, less that the number
of data) in order to make the criterion of choice significant.

The simplest possible way of modelling a molecule is to replace it with a large
gaussian sphere, which involves only four parameters (position and radius). Systematic R-
factor search with such a model is a known approach to find the centre of the gravity of the
molecule. It has been successfully applied in several cases, for example, by Podjarny et al.
(1987). '

A search with several (N) spheres can be tried but for N>2 it is computationally
difficult. In this case, a random sampling can been applied, similarly to the one used for the
histogram criterion. A number of test calculations have been carried out using the
experimental data of the tRNAASP-RS complex (Giegé et al., 1980; Urzhumtsev et al.,
1994).
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First, several models of 5-7 large spheres were constructed manually which
reproduced the low resolution (30-50A) image of the complex with a high correlation
(0.75-0.80) with the exact one. Then a large number of models, each composed of a small
number (2-5) of spheres with randomly distributed centres was generated. Corresponding
structure factors were calculated and compared with the correct values, using the amplitude
correlation, Cr, as the search criterion. It was found that, similarly to the search with the
histogram criterion, the phase sets corresponding to the models with highest Cr are grouped
in a small number of clusters, one of which is quite close to the correct phase set. A typical
distribution is shown in Table 2 and is schematised in Fig. 2. To check whether this type of
the distribution of selected variants is related to the random sapling, two different 2-spheres
searches, a random one and a systematic one, have been carried out exactly at the same
conditions. The corresponding distribution were very similar.

CF —> we 03 wor oo coe 05 eme e e 0T eem Q8 e e e > 10
4} 0 [}] (1] 0 0 0 [\] 0 0 (] 0 [}] i} [{] ] (1] 0 A
0 V] { 0 0 0 0 0 0 0 [{] 1] 0 [{] [H 0 0 [{] 1
0 1] 0 [} 0 0 0 ] 0 [\] 0 [}] 0 0 0 [}] [{] 0 9

0 (1] [}] 0 |

[H] 0 [}] 0 |

(1] 0 [}] (1] |

0 0 0 H 0.7

0 0 0 [}
0 4] 0 0

i
I
0 [}] [1] ( ]
0 0 0 0 |
0 0 0 0 |

0 M) 0 0 0 4
0 0 0 4] |

0 0 0 0 {
[ [\ H] 0 \

[} 0 0 0 0.2

Table 2. Two-dimensional distribution of the FAM-generated variants of phase sets for the case of
experimental data of the AspRS complex at 50A resolution (31 reflections). The horizontal line
corresponds to the amplitude correlation, CF, and the vertical one to the weighted phase correlation, CP.
The correct solution should be in the top right corner. The major clusters are marked by a frame, the variant
with highest CP is indicated by inverted colours.

Several important observations should be noted:

1) the best phase set (Cp=0.9, Cr=0.7) does not correspond to the model with the highest
amplitude correlation (Cr=0.8);

2) some of the phase sets with high amplitude correlation (Cr=0.8) are close to the correct
phase set (Cp=0.7-0.8);

3) a phase set calculated from a model with high amplitude correlation (Cr=0.8) can belong
to a cluster quite far (Cp=0.0) from the correct point;

4) averaging of phase sets inside the correct cluster produces a new phase set which is
usually better that any individual solution.

A systematic procedure for this search, called FAM (Few Atoms Model), was
proposed (Lunin et al., 1995) consisting of the following steps:
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a) generation of a large number of simple pseudo-atomic models; every model consists of a
the same small (2-10) number of large gaussian spheres; the co-ordinates of the centre of
the spheres are distributed randomly in the unit cell;

b) structure factors calculation for every model;

c) comparison of the calculated amplitudes with the experimental ones and selection of the
models with the highest CF;

d) merging of the selected phase sets by a clustering procedure;

e) analysis of the cluster tree; averaging of the phase sets inside every major cluster;

f) calculation of corresponding maps and identification, if possible, of the correct one.

This procedure was applied to several calculated and experimental data sets, giving
good results. In particular, a 70A-resolution crystallographic image (about. 160 reflections)
has been obtained for the 50S ribosomal particle (Volkmann et al., 1990) from Thermus
thermophilus (T50S; Urzhumtsev et al., 1996). The FAM procedure is in the course of
further development.

o ¥ T
= Cfr*

Fig. 2. Schematic presentation of the distribution of the phase sets in the FAM method. Every phase set is
presented by a point in the phase space, ®. ®q is a subspace of phase sets, ¢(q), calculated from FAM
models. The length of an arrow is proportional to the corresponding amplitude correlation, CF(q). The
variants with CE>CF* are forming few clusters, one of them is close to the correct solution, ¢* (thick
point).

Further parametrisation of the phase space

In the case were precise information about the three-dimensional molecular structure
is available, the search space can be drastically reduced. This leads to the molecular
replacement procedure (Rossmann, 1972), which reduces the dimension of this space to six,
making possible a quasi-complete search. This procedure has been recently simplified
(Navaza, 1994) giving automatically a list of possible positions and orientations of the
model. In the case of good data and model, the correct solution corresponds to the
maximum amplitude correlation. Alternative (wrong) variants have much lower correlation
values, which allows to choose the solution easily. Otherwise, finding the answer is a
difficult problem.

Molecular replacement is a standard technique, carried out usually at middle
resolution (4-6A) with an atomic model. At the VLR end the search model becomes a
molecular envelope. If the search model is perfect, and the data are very accurate, a similar
procedure with some important modifications (Urzhumtsev & Podjarny, 1995) brings the
solution with reasonable contrast. In the case of less accurate data and an imperfect model
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the contrast is much lower, as it was the case for the TS0S particle (Urzhumtsev et al.,
1996).

At very low resolution the imperfections of the model envelope can be important.
For example, images reconstructed from electron microscopy can be compressed in one
direction. When working with such models, molecular replacement puts the envelope either
at its correct place (if possible) or into the solvent region but practically never at an
intermediate position. This confirms a clustering behaviour of selected variants also for this
case. ‘

4. General conclusions

Several different low resolution
phasing techniques which explore either
the whole phase space or some specific

A b_est vari.ant -
(impossible

to identify)

subspace have been analysed. In all cases,
the variants with best values of the search
criterion are grouped in a small number of
clusters which can be easily identified. One phase
of these clusters is usually very close to the
correct solution of the phase problem while
others can be very far from it. It is
important to note that the phase set with .
the best value of the criterion does not T— i, -
necessarily belong to this correct cluster. L e '
This observation explains, in particular, the
problems with searches selecting a single . R SRR
solution. In general, this typical ‘ ERRRE RS —
distribution of phase correlation vs search [
criterion has (by a peculiar coincidence)
schematically the shape of the Strasbourg
cathedral (Fig. 3; compare, for example,
with Table 2). The top corresponds to the
best variant which is impossible to identify
by the available criteria, the floors
correspond to the clusters, and the highest Fig. 3. Schematical profile of the Strasbourg
floor is the best cluster. cathedral.

& best cluster
«

search criterion

As it was observed, the character of this distribution does not depend on the
particular information and criterion used. For example, it can be noted in addition that the
LAPS method developed by Volkmann (Volkmann et al., 1995) based on the Bricogne’s
maximum likelihood criterion found the solution for the T50S case also through a cluster
oriented search.

All these observations indicate that at the very low resolution end the available

information and search criteria are weak in the sense that in general they cannot indicate
unambiguously the correct solution; additional information is necessary. At higher
resolution, the same information and criteria, e.g., an atomic model and the amplitude
correlation, can be strong enough to indicate a single solution. The particular low resolution
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cases where the information is very accurate and the same criteria can unambiguously
identify the right solution remain the exception rather than the rule.
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