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FOREWORD

The use of molecular replacement, for the determination of unknown protein structures which are homologous, or
related to proteins whose structure is established, is an increasingly important component in x-ray analysis.
It is an obvious tool to use for the elucidation of the structure of the modified proteins, which can be
expected from the protein engineering initiative. Many research groups have tangled with this computationally
simple but practically difficult technique, and one of the aims of this meeting was to analyse its unpredict-
able successes and failures. A theoretical introduction to the method and notation proved an essential pre-

liminary to the subsequent discussion of results.

The meeting was organised and supported financially by the SERC Collaborative Computing Project in Protein
Crystallography (CCP4) Daresbury Laboratory. The success that the meeting achieved was undoubtedly due to the
considerable efforts.of the invited speakers and our thanks are due to them for their talks and co-operation
in the preparation of these proceedings. Particular thanks go to Eleanor Dodson and the Working Group of CCP4
for the time and effort they invested in planning the meeting.

We thank the Daresbury Laboratory and its Director, Professor L.L. Green, for the provision of organisational
help and support, both for the meeting itself and for the publication of the proceedings. In particular we

thank Mrs. Shirley lowndes and Miss Karen Maunders and the Technical and Scientific Information Services

staff, for their considerable assistance with the organisation of the meeting.

PELLA MACHIN
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INTRODUCTION

Ge.

Dodson

Department of Chemistry, University of York, Heslington, York YOt 5DD

The achievements of crystallography in deter-
mining the structures of proteins rests on the re-
markable success of the isomorphous substitution by
heavy atoms in defining phases. There has always
been, however, a persistent interest in exploiting
the local symmetry that occurs fairly often in pro-
tein crystals (e.g., a-chymotrypsin and 2Zn insulin,
both worked on by David Blow and Michael Rossmann).
It is from these studies that many of the techniques
and ideas of molecular replacement originated. Be-
fore the three-dimensional structures were known,
these approaches were principally directed towards
defining subunit organisation and symmetry. There
was also the more distant prospect of using the
structural redundancy for determining the phase or
reducing the phase uncertainties. Gerard Bricogne
has developed and applied very successfully these
ideas in order to improve the electron density in an
asymmetric unit with multiple copies of the mole-

cule.

The character of the molecular replacement
method for structure determination is now quite dif-
ferent; it usually involves relating a model struc-
ture, derived from an already established crystal
structure, to the molecule (or molecules) in an un-
known crystal. This has been stimulated first by the
increasing and proper interest in related structures
which, through altered crystal contacts or sequence,
can reveal better such properties as ligand binding
and structural behaviour. Secondly, there prove to
be striking structural homologies between proteins
of unrelated functions - and sometimes of unrelated
sequences. The widespread appearance of the so-
called nucleotide binding domain, first described by
Michael Rossmann, the large families of trypsin-like
enzymes, globins, insulins and immunoglobulins, all
illustrate the variety and breadth of protein struc-
tural homologies. There has been some exploitation
of these homologies and there will clearly be more,
in spite of the complexities generated in these
calculations by structural varjation. The use of
fragments or domains as successful starting points
in structure determinat@ons is as yet only a possi-

bility; in favourable circumstances it does seem a

possible tactic.

There are two major developments in molecular
biology which are very relevant to protein crystal-
lography and to molecular replacement methods in
particular. The first of these is the technique of
site-directed mutagenesis through which amino acid
side chains can be specifically substituted in a
protein; this has already led to x-ray studies on
mutated proteins. There is an obvious partnership
between the genetic experiments, with their specific
variation of protein sequences, and protein crystal-
lography, which will provide the essential framework

for relating sequence, structure and function.

The second development is the monoclonal anti-
body. Already the crystal structure of lysozyme:-
monoclonal antibody Fab complex has been reported at
6A resolution. In addition to the obvious import-
ance in getting detailed descriptions of antigen-
antibody interactions, monoclonal antibody:protein
complexes offer a possible route for structural
determination through molecular replacement calcula-
tion on the known immunoglobulin moiety. More specu—
latively, this kind of camplex may enable previously
uncrystallisable proteins to be crystalliseé - with
a built-in and efficient pathway to the determina-
tion of the structure. Hence this technique also
could add greatly to the importance of molecular

replacement methods in protein structural research.

These developments are likely to present pro-
tein crystallographers, therefore, with the chal-
lenge of s3olving quickly a selected series of struc-~
turally altered proteins: thus, molecular replace-

ment methods now have new and immediate importance.

It is clear that a workshop concerned with the
techniques (and notationl) used in molecular replace -
ment and the problems and successes encountered in
their application, is excellently timed, and we can
expect new ideas and wider confidence will be gener-

ated by the papers and discussions.



INTRODUCTION TO ROTATION AND TRANSLATION FUNCTIONS
by

D.M. Blow
Blackett Laboratory, Imperial College, London SW7 2BZ

1. NON-CRYSTALLOGRAPHIC SYMMETRY

Suppose we have two identical objects in different
positions. To superimpose one on the other we must
rotate it and translate it. We can specify a rota-
tion about the origin by three variables, which can
be two to specify the direction of the rotation axis
by its latitude and longitude, and one for the
amount of rotation. Then we need another three
variables to specify the translation - for example

the amount of motion in the x, y and z directions.

There are many other ways the operation can be done,
but they will always require six variables to be
specified. For example, it is possible to choose
the position of the rotation axis in such a way that
the only subsequent translation which needs to be
done is parallel to the axis. We still need three
variables to specify the translation: now there

are two to give the position of the axis (in a plane
perpendicular to it) and one for the amount of trans-
lation parallel to the axis. There are also dif-

ferent ways of specifying the rotation.

This symposium relates to a range of crystallo--
graphic problems which arise when such a situation
exists in crystals. I shall use the word subunit to
represent a diffracting unit which is identical to
sufficient accuracy to another: whether it be a
different molecule, a different peptide chain in the
same molecule, or two parts of the same peptide
chain. The accuracy of the identity will define for
the crystallographer the resolution of data for

which he can assume the relationship will hold.

If there is more than one subunit in the crystal-
lographic asymmetric unit, the first problem is to
find the operation which superimposes one on the
other - to determine the six variables which speci-
fy the rotation and translation (Case 1). 1If, on
the other hand, the identical subunits are in dif-

ferent crystals, the problem is to find the

transformation of one coordinate system which con-
verts the coordinates of the subunit in that crystal
to the coordinates of the other subunit in the other

crystal (Case 2).

In either case, the problem is intricately entwined
with crystallographic symmetry. In Case 1, the
rotations and translations which are determined will
depend on an arbitrary choice of which particular
subunits are superimposed, out of the whole crystal
lattice. In Case 2, the same type of arbitrary
choice is involved, and in addition the choice of
the origin of coordinates is very often (not always)

dictated by crystallographic conventions.

There is a lattice symmetry about the. possible solu-
tions to the problem. If translation vectors x, y,
z give a solution in Case 1, then the addition of
any number of lattice translations to X, ¥ Z
generates another possible solution. Similarly, if
the angles defining the rotation operation are a, B,
Y an arbitrary number of 27 can be added to any of
them without affecting the solution. So there are
an infinite number of equivalent operations

a + 27A
+ 278
+ 2nC
+ Ui
+ Vb

+ Wg

¥ < ww

1<

|&

where A, B, C, U, V, W can be any integer and a, b,
c are crystal lattice translations parallel to Xx, y,

Z.

The possible solutions thus form a six-dimensional
lattice, and the existence of crystallographic
symmetry means that other solutions exist so that
this six-dimensional lattice is in general non-
primitive. I know nothing about the six-dimensional
space groups, but Rossmann and I considered the
three—d imensional lattices of the rotation opera-

tions in our original paperl. Tollin, Main and
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Rossmann extended this work, and D. Moss has
recently pointed out a further extension to it,

which seems previously to have been over looked.
2. EULERIAN ANGLES

In practice it is convenient to compute the rotation
function in terms. of Eulerian angles, now referred
to as (a, B, Y). I describe here the angular con-
ventions used in the program currently available
through CCP4Q, which is based on the mathematical
methods of Crowthers.

We define an orthogonal co-ordinate system (X, Y, 2)
and arrange the crystal cell so that the axis of
highest symmetry is along Z. In all symmetries
higher than monoclinic, the crystallographic ¢
direction coincides with Z, and the crystallographic
a direction is along X. In the monoclinic system,
the axes are permuted so that the crystallographic
b is along Z, and the crystallographic ¢ coincides
with X.

The Eulerian rotation operations are defined with

respect to the orthogonal system (X, Y, Z)(Fig. 1).

(i) A rotation a of the coordinate system about
Z;
(ii) A rotation B about the new direction of Y¥;

(iii) A rotation Yy about the new direction of Z.

Fig. 1 Eulerian angles a,8,Y.

This system is computationally convenient: in
particular it fits well with the symmetry properties
of the system. However, it has some disadvantages,
as the three rotations are often far from ortho-

gonal.

1. If B is zero the rptations a and Y have similar
effects: "all rotations with the same value of

(a+y) are identical.

2. If B is m, the rotations a and Y have opposite
effects: all rotations with the same value of

(a-y)are identical.

3. All possible rotations are included in the range

a=0,21r; B =0,m; ¥y = 0,2m.

Another well-known system is spherical polar rota-
tion (x, w, ¢) (Fig. 2). Here Z is the polar axis
and w and ¢ define the longitude and latitude
respectively of the rotation axis. The angle of
rotation about this axis is x. 1In this system, all
possible rotations are included in the range

X = 0,2m1; w = 0,7; ¢ = O,m.
3. SEARCH TECHNIQUES

The problem as presented so far has been a purely

geometric one. If we have a set of coordinates

A A A d B B B
X;» ¥i» 24 and x4, 2.,

x; for the two molecules,

Z.
=1

Fig. 2 Polar angles y,w,t.



the solution is straightforward armd can be solved

as a standard eigenvalue problem (e.g. ref. 6).

The practical problem arises in exper imental crys-

tallography when the structure is unknown (or, in

Case 2, one or both of the structures are unknown).

The questions are then:

1. How can one detect that non-crystallographic
symmetry exists?

2. How can one determine rotational and transla-
tional parameters which define the non-crystal-
logr aphic symmetry operations?

3. Is this knowledge any help in solving structures?

The usual constraints on the practical problem are:

(a) The amplitudes of the structure factors are
measurable by X-ray diffraction, but their
phases are not accessible experimentally ("the
phase problem").

(b) At the outset, no useful madel is available for
the structure or any part of it. (The usual
situation in protein crystallography, but not

in small molecule crystallography.)

In the absence of a direct solution to the practical
problem, all methods will involve some kind of
search. Searches in six variables easily become
very large. It is hard to define how many values of
each variable need to be tried in order to locate
the solution, but in practice it cannot be less than
10 or so, implying a million search points, in-
creasing to a billion if there are 30 search points
in each variable. Such searches are clearly un-
economic, even with the latest computational equip-

ment.

Small molecule crystallographers know well that the
angular orientation of a molecule or ring system can
often be determined long before the total structure
is known. One of very few significant structwres
solved by a search procedure was the structure of
hydroxyproline. 7The molecule was treated as having
a rigid five-memberedring with two dihedral angles
as variables. So the search was eight dimensional,
and it was carried out by a search procedure called
a "method of non-local search'". The search rapidly
discovered the angular orientation of the five-
membered ring, 1ater.the position of the molecule in
the unit cell, and finally the proper value of the

dihedral angles.

The key to the efficient solution of the problem is
to find a way of separating the rotational and trans-
lational variables. If this is done, the search
over millions of points can be reduced to two con-
secutive searches, each covering only a few thousand

points.

The Patterson function8 has certain characteristics
which are well suited to this problem. Patterson
pointed out that it contains all the information
from the intensities (it has none from the phases):
thus it includes all the experimental information,
without any interpretive data. As a consequence of
this, it is not dependent on any choice of origin:
as we all know, it represents the collection of

vectors between the elements of scattering density.
4. THE ROTATION FUNCTION

The basic idea of the rotation function is that the
Patter son function of a molecule, or a subunit, will
have a characteristic distribution of densities. In
crystals, we are always dealing with arrays of units.
If we think of the Patterson function as a collec~
tion of vectors, there will be some vector s between
scattering density in the same subunit, and some
vectors between one subunit and another. We can
call these two types of vectors self vectors (S)

and cross vectors (X). If we have two identical
subunits in different crystals the array S for each
will be the same, but the array X will be different.
In case 1, with two identical subunits in the same
crystal we will have two arrays SA and Sg which are
identical in shape, but in different orientationms.

A rotated coordinate system in Patterson space can
be described, in which Sy is just like S, in the
original system. Multiplying the rotated Patterson
function by the original will give a positive con-
tribution from the product of N and its idgntical
image SB. If (following the usual habit) F (000)
has been omitted from the Patter son function, the
other terms in the product will be negative as often

as positive.

This positive tendency will exist all over the re-
gion containing S,» so we can enhancé the positive
effect by looking simultaneously over the whole
volume of vector space which it fills. This may be
done by an integration which defines the rotation

function. If we calculate



R®) =f, P@. Plug)du

as a function of all pure rotation operations R, we
expect the function to have significantly positive
values when R r epresents the rotation of subunit B
to subunit A. In case 1, there will also be a peak
for the inverse rotation which rotates subunit A to

subunit B.
4,1 WHAT ARE THE LIMITS OF SUMMATION?

It is important to point out that there are two
types of summation (or integration) in the rotation
function. The Patterson function itself is a sum-
mation over all reflexions, and the rotation func-
tion is a summation over a range of Patterson space.
As we are in charge of the calculation, we can ma-
nipulate the limits of both these sums to our best

advantage.

In crystallography there is always a resolution
limit, beyond which it is impractical to extend our
summation over reflexions. If our two subunits were
precisely identical, it would be advantageou§ to
extend our summation to the highest resolution
available. In practice, subunits are not precisely
identical and' this would lead us to terminate the
summation at lower resolution: or to be sophisti-
cated, to weigh down high resolution terms. The
resolution limit should be at least two or three
times the expected mean co-ordinate difference be-
tween the two structures. In practice, with exist-
ing programs, computational limitations usually -

enforce a much restricted resolution.

It is also essential to omit very low resolution
terms. The reason for this can be understood by
considering what a low resolution structure actually
looks like. Especially in crystals grown from high
salt, the dominant features in a low resolution map
are the solvent boundaries. Since the solvent
regions are generally smaller in dimension than the
molecules, the shapes which you see in maps at 10A -
8A resolution are the shapes of the solvent regions.
Experience suggests that it is best to omit all

terms with Bragg spacings greater than 7 or 8A.

Turning to the integration in vector space, it is
obvious that no self-vector can exceed the largest
diameter of the molecule. If the molecule is

spherical, the density of its self-vectors foarms an

1-0

Fig.3 The Patterson function density for a uniform
solid sphere of radius R, when integrated
over a sphere of radius U about the origin,

contains an integrated density given by

72RS (U)3 U vy
_— - — ]+ J—
36 \x&/ | 7\ 2\

for 0 £ U £ 2R.

almost conical shape falling to zero at the diameter.
If the molecule has a.very elongated shape, the
longest vectors will be equal to the length of the
molecule, but there will be many more short vectors,

especially shorter than the cross—sectional diametcr,

In our summation we obviously want to include
regions of vector space where the self-vector den-
sity is high, and to omit those where it is zero,
but where cross-vector density is high. Just where
to make the cut-off is a matter which requires
detailed study, but for an approximately spherical
molecule I would suggest 75 - 807 of the diameter,
which would include about 907 of the integrated
Patterson density (Fig.3).

It is not necessary to integrate over a sphere, but
simply a matter of convenience. In principle, it
should be possible to obtain direct information
about molecular shape by finding how the value of
the peak in the rotation function varies as the

volume of integration changes. In the early days,



I tried to discover the shape of the insulin hexamer
(represented as a cylinder) by such'a method. 1In
those days the computations were too unwieldy and

no useful results were obtained.

An important feature of the Patterson function is
the origin peak, which is always the maximum value
of the function. It expresses the fact that every
bit of scattering demnsity has an equal bit of scat-
tering density exactly at a vector zero from it
(namely, itself). Because the Patterson function
is computed by a Fourier summation, the origin peak
has a width characteristic of the resolutiun of the
data, and it is normally spherical in shape. In
the rotation function the origin peak is being
compared to itself. The two spherical peaks simply
add a constant positive term to the rotation func-
tion, and cause no particular trouble. They can be

subtracted if desired.

There is one situation where origin peaks cause
trouble - this is when there is a very flattened or
elongated unit cell, and one of the lattice vectors
is comparable to the molecular diameter. An inte-
gration in Patterson space over the average dia-
meter of the molecule could possibly include an
origin peak one lattice translation from the origin.
It is essential to avoid including such an origin
peak in the calculation. Either the radius of
integration must be less than (the smallest lattice
translation minus twice the resolution limit) or

steps must be taken to subtract the origin peakse.
4.2 HOW TO DETECT NON-CRYSTALLOGRAPHIC SYMMETRY

When calculated, a rotation function usually looks
very disappointing at first glance. There are a
number of reasons for this. A self-rotation func-
tion (Case 1) has its own massive origin peak.

Zero rotation obviously superimposes the whole Pat-
terson function, and some other rotation which only
superimposes the self-vectors will be miniscule by
comparision. The Eulerian angles introduce an
inconvenience. As already mentioned, if B is zero,
the rotations a and Yy have the same effect, so that
all rotations with the same (a + Yy) are identical.
On the first page of your rotation function with

B8 = 0, there is a massive ridge representing

(a, 0, -a), which are a whole set of equivalent

zero rotations, and a series of other parallel

ridges. Suggestions for replotting the rotation
function in a different way to remove these prob-

17

lems have been made by Burdina®"’ and

1
Lattman B.

After we have realised we must ignore the origin
peak (in Case 1), it is still often necessary to do
some statistics to find whether another peak is
significant. I recommend calculating the mean and
standard deviation of all the computed values after
the origin peak has been removed: then find how
many standard deviations from the mean the highest
peak represents. In order to know how significant
the peak is, one other fact is needed: that is,
how many independent values the rotation function
can have. Let me stress, this number only needs to
be known very approximately. It is certainly no
greater than the number of reflexions included in
the Patterson function, to the appropriate resolu-
tion, so will often be a few thousand. In practice,
if a peak exceeds 5 standard deviations it means
something real; if the value is less than this it

must be treated with scepticism.

If one is dealing with a symmetrical molecule, such
as a dehydrogenase tetramer with 222 symmetry, there
must be a series of peaks which bear a particular
relationship to each other. Rossmann et gl.lo
devised a "locked rotation function" which compares
the values of the rotation function at different
positions. This method can be used to enhance the

significance level of a set of doubtful peaks.
4.3 FITTING A KNOWN STRUCTURE TO AN UNKNOWN ONE

An important use of the rotation function is to
find the orientation of a molecule of known struc-
ture in a new crystal form. The simplest way to
deal with this is to compute structure factors for
the isolated molecule in a defined orientation’.

The structure factors are those for a "model"
crystal in which isolated moiecules are spaced out
on a lattice (usually on orthogonal lattice, but
one in which the symmetry is P1). In the model
crystal, one can arrange that the molecules are so
far apart that none of the cross-vectors is as short
as the chosen radius of integration. Then there are
no cross-vectors in the model at this resolution.
Avoid making the model crystal larger than neces-
sary, as the number of structure factors to be

computed increases rapidly.



5. TRANSLATION FUNCTIONS

When the rotational relationship of two subunits has
been established, the other three variables to de-
termine their relative positions can be found. A
number of methods exist. When the two subunits are
in the same crystal structure, and are related by

a proper rotation (i.e. a rotation of 2m/n) Ross-
mann gg_gl.ll discovered a relationship between the
two sets of cross-vectors which produce peaks in a
correlation function based on Patterson functions.
This method is, however, difficult to use, and few
examples of its use have been published. It remains

the only available method for unknown structures.

When one of the structures is known (Case 2), a
;12 .
method due to Tollin can be cast into the form of

. . . 13
a Patterson—-like convolution function .

Nowadays, the computer power available allows the
use of a simpler method, which is to compute the
crystallographic R factor as a function of the
position of the subunit in the unit cell. This
method was used for small molecules in 19641k.

The molecular transform is computed for a single
molecule, and values are added appropriately as the
molecule and its symmetry-related copies range
through the cell. When coupled with the FFT-based
algorithm for structure factor calculation intro-
duced by Agarwalls, this method provides a com-
putationally efficient solution to the translation
problem for a molecule of known structure. It is-
available to the CCP through the program SEARCH,

written by E. Dodsonls.
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SYMMETRY AND THE ROTATION FUNCTION

by

D.S. Moss

Laboratory of Molecular Biology, Department of Crystallography,

Birkbeck College,

Malet Street, London WC1E 7HX.

1. ROTATION CONVENTIONS

The rotation function of Rossmann and Blow (1962)
expresses the rotational correlation of two functions
Py (x) and P3(x). Crowther's program (1972) para-
meterises the rotation function in terms of Eulerian
angles o, B and Y. The rotation function may be
written

F(a,B,Y) = JPo(x)P1(Rx)AV
where we may arbitrarily consider Py to be a station-
ary function and P; to be a function rotated by a
matrix R. The vélume of integration is a shell

which may be chosen by the user.

There are two ways in which the two functions can be
associated with the two relevant input channels of

the program. In the Daresbury convention (Crowther
and Dodson, 1981) the channel associated with the
rotating function is such that P1 is rotated by

Y about

In

B about y

Qa about z
in that order, clockwise looking away from the origin.
In the other convention which is widely used, P1_is
rotated by

Q about z

B about y

Y about z
in that order, anticlockwise looking away from the
origin. We shall follow the Darebury convention.
The Cartesian axes x, y and z must not be confused
with the crystal axes which may have different

orientations.

It should be noted that the above conventions for

the choice of rotation axes do not correspond to the
original Rossmann and Blow (1962) convention (z, %, y)
used by CORELS (Sussman, Holbrook, Church & Kim 1977).
The rotation of the co-ordinates can be accomplished
by premultiplication of a column matrix of co-ord-

inates x by a rotation matrix R.

X' = Rx
In the Daresbury convention the matrix R is given in

Table 1.

This operation may be necessary when wishing to
compare rotations by expressing them in Eulerian
angles. Assuming that R premultiplies the co-ord-
inates then in terms of Fortran functions the Eulerian

angles are given by

a = atan2(Rzs,R13) —n<a§n
< <

B = acos(Rss) 0=B=m
<

= atan2(Rs2,~Rs1) -<Yy=T

2. DETERMINATION OF ROTATION AXIS AND ANGLE

Every rotation (a,B,Y) may be described as a rotation

about a single axis by an angle X. X may be deter-

mined from the rotation matrix by
cosy = 3 (R11+R22+Rs3-1) O§X§ﬂ

The rotation axis may be expressed as a vector with

direction cosines 13, 12 andls where

11 = (R3z-Rz3)/2siny
12 = (R13-Rs1) /2siny
13 = (R21-R12)/2sin)

For plotting stereograms it is useful to express
the vector in terms of a spherical co-ordinates w and
¢ where

< <
O=w=7

€
1]

acos(13)

<
atan2(12/11) ~M<H=T

3

©
]

X
— 7%

x
=

Fig. 1 1Illustration of spherical co-ordinates



3. DEGENERATE SECTIONS

The sections of the rotation function at 8=0 and B=7
are shown in figures 2 and 3 below. These sections
are effectively one-dimensional and lines parallel

to the diagonals illustrated are contours of constant
density. The point (a,0,Y) represents a rotation of
Y+0 clockwise about z. The point (a,m,Y) represents
a rotation of T about an axis in the xy plane at

$—9'< ™ 2w

d=3% (T-a+Y) .

é

¥ 4 g,
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©
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Fig. 2 Section at 8=0
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Fig. 3 Section at B=m

Sections close to these degenerate sections are

highly distorted representations of rotation space.

4. DIADS IN THE SELF-~ROTATION FUNCTION

Surfaces of constant X in the Eulerian rotation
function are given by the egquation
cos(0 +Y ) = (2cosX + 1 - cosB) /(1 + cosB)
For diads (x=m) these surfaces are planes with
equations given by

B =m,3m, ... (2n+1)T ...

a=y=m,3T, ... (2041)7 ...

«

¢.ir’ T 2K

.4
o‘f Q¥ )
e /4
™
+’¥*
?ah4
an

Fig. 4 General B section showing diagonal lines
of intersection of planes corresponding to diad

axes.

5. SYMMETRY OF THE ROTATION FUNCTION

In the cross-rotation of two Patterson functions Po
and P1 the group of operations which leaves the
rotation function invariant is given by the direct
product of the rotation groups (Qo¢ and Qi) of the
functions.

D=Qo *U1

The elements of this direct product group D are pairs
of symmetry operations, each operation being performed

on its respective Patterson function.

In self-rotation, permutation of Pp and P1 leaves the
rotation function invariant hence in this case the
direct product group is

D=Q*Q*m
where Q is the relevant rotation group and T2 is the
permutation group of order two. Elements of D thus
consist of three operations. It should be noted that
the grop D is independent of both the relative initial
origin of the two functions and of the angular system

used to express the rotations.

The parameterisation of propér rotations in terms of
Eulerian angles gives rise a rotation function which
is left invariant by space group symmetry operations
performed on the co-ordinates (a,B,Y). This Eulerian
space groué G is related to D by a homomorphic mapping.
The identiﬁy operation in D always maps into G,

giving rise to general equivalent positions (o,8,Y)

and (m+ox,8,m+Y) which correspond to the same rotation.



The ability of the other elements of D to map into
G depends on the orientation of the rotation axes
in Pg and Py. In order that symmetgy axes of Py
and P) shall give rise to symmetry elements of G
these axes must by parallel to z except in the case
of diads which also give rise to symmetry when per-
pendicular to z. All axes of even order contain
diads and give rise to the same symmetry when
orientated perpendicular to z. It can be shown that
the parity of the
1985) .

will be denoted

the space group G depends only on
axes parallel or perpendicular to z (Moss,
The order of the axes parallel to z
by pe and p) and those perpendicular to z by Qo and
qy1. With this notation the Eulerian rotation

function space groups are shown in Tables 3 and 4.

6. SYMMETRY AND INTERPRETATION

We may summarise the relationship between the
Patterson function rotation symmetry and the rotation
function space group symmetry elements in the follow-
ing statements where po and p1 are the orders of the
axes parallel to z in the stationary and rotated

functions respectively.

1) The dimensions of the primitive Eulerian cell

are a=21/pob=21 and c=2m/p1.

2) A plane of symmetry always exists perpendicular
to b and passes through the origin. The nature dof
this plane of symmetry depends on the parity of po

and p1 in a way shown in Table 2.

3) Axes of even order perpendicular to z in the
stationary or rotated functions give rise to b glide
planes perpendicular to aorc respectively. Such

a glide only passes through the origin if the corres-
ponding Patterson axis is parallel to y.

4) Self rotation introduces a diagonal mirror
plane into the rotation function which passes through

the origin and is perpendicular to [101].

The practical implication of these statements is
that a Patterson rotation axis produces the most
helpful rotation space group symmetry when orientated
parallel to z. In these circumstances it produces

pure translational symmetry. When a Patterson

10

symmetry axis is oriented perpendicular to z, space
group symmetry only results when the axis is of even
order and in this case if the order is greater than
two then only the two-fold component produces space
group symmetry. The b glide plane produced by this
orientation is less convenient than the translational
symmetry produced by orientation of the symmetry

axis along z. It must be clearly understood that
the X, ¥ and z axes in this discussion are the
Cartesian axes about which Eulerian rotation takes
place and may not be parallel to the crystal;ographic
axes having the same labels. This is especially
true in the case of monoclinic Patterson functions
where the unique crystallographic axis is usually

chosen to be parallel to y.

The above discussion is also applicable when a
Patterson function has axes of pseudosymmetry which
may be either intermolecular or intramolecular.

Such a pseudo-axis when oriented parallel to z will
enable rotation function peaks corresponding to the
solution and the pseudo-solution to be viewed on the
same B section where they will have the same Eulerian

distortion.

Considerations other than symmetry may sometimes be
relevant when deciding how to orient a Patterson
function with respect to Eulerian axes. Rotation
function space is considerable distorted near the
sections B=0 and B=T where the angles 0 and Y are
degenerate. The occurrence of peaks close to these
sections may make interpretation inconvenient and
in such cases reorienting a Patterson function may
aid interpretation even if some Patterson symmetry

no longer produces such useful effects.

When the rotation symmetry of a Patterson function
belongs to a cyclic or dihedral point group then
alignment parallel to z of the principal symmetry
axis ensures that each axis gives rise to space
group symmetry in the rotation function. However

in the case of the cubic rotation groups 23 and 432,
it is not possible to align the axes so that they are
simultaneously all parallel or perpendicular to z.
Hence not all the symmetry axes will produce space
group effects in any given rotation function. For
example, if a Patterson function of rotation group
432 is aligned with a 4-fold axis parallel to z
then only the 422 swb-gqrowp will be effective in

producing rotation function space group symmetry.



Each 3~fold axis will give rise to sets of three
point within the asymmetric unit of the rotation
function where the function is equal valued. This
situation is analogous to the occurrence of non-
crystallographic. 3-fold axes in the crystal unit
cell. In order that one of the 3-fold axes shall
produce rotation function symmetry the Patterson

function must be oriented with a 3-fold parallel

Table 1

Rotation matrix which premultiplies a

to z in which case symmetry appropriate to point
group 32 will result.

A similar problem exists when the Patterson function
exhibits icosahedral symmetry 532 within the radius
of integration. 1In this case the sub-groups 52 or

3 produce rotation fhnction space group effects acc-
ording to whether a 5-fold or 3-fold axis is para-
llel to z.

column matrix of co-ordinates.

cost cosB cosy-sind siny -cost cosf siny-sina cosy cost sinf

R = | sino cosB cosy+cosd siny -sina cosB siny+cosd cosY sina sinf
~sinf cosy sinB siny cosf
Table 2

Rotation function symmetry elements as a function of axial parity.

po=2n+1 po=2n
P1=2n+1 n <
pi=2n a B

po and p; are the orders of the rotation axes parallel to 2 in the stationary

and rotated functions respectively. The Table indicates how the nature of the

glide or mirror plane produced in the rotation function perpendicular to b

depends on the parities of ps and pi.

11



Table 3

Matrix of cross-rotation space groups as a function of axial parity

Po is the stationary function and P1 is the rotated function. 1In the respective functions
po and py are the orders of the axis parallel to z and go and g1 are the orders of the axes
perpendicular to z. Cell dimensions are a = 2T/po, b = 27, ¢ = 2n/p1. Numbers in parentheses

are the space group numbers in International Tables for Crystallography (1983).

Po go=2n+1 qo=2n
2 po=2n+l  po=2n |  po=2n+l  po=2n
p1=2n+l Pn Pc Pbn2i Pbc2)
(7) (7 (33) (29)
gi=2n+1
po=2n Pa Pm Pba2 Pbm2
(7 (6) (32) (28)
21=23+1 P2;nb P2ch Pbnb Pbcb
(33) (32) (56) (54)
q1=2n
p1=2n P2;ab P2mb Pbab Pbmb
(29) (28) (54) (49)
Table 4

Matrix of self-rotation space groups as a function of axial parity

Rotation axes parallel and perpendicular to z have orders P and g respectively. The cell
dimensions of the primitive cell are 3=g=21T/E, b=27T. The centred cells for the two space
groups not based on a primitive lattice have unit cell vectors El=.a.-?.' 13'=}3 and S'=E+S'

Numbers in parentheses are the space group numbers in International Tables for Crystallog-

raphy (1983).

p=2n+1 p=2n
9=2n+1 B'ma2 B'mm2
(39) (38)
g=2n P42/nbm Pd2/mbm
(138) (132)

12
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ROTATION ANGLES

. P.
MRC Laboratory for Molecular Biology,

This paper considers the various ways of

representing a rotation matrix by three angles,

and in particular the relationship between

Eulerian angles and polar angles for rotation

functions., These alternatives, and the different

conventions for the directions, names, signs and
origins for these angles can be confusing, so it
the rotation matrix

the

always best to consider

itself as the basic definition of rotation,

and to regard the angles as derived from the

matrix. Even for the matrix, it is necessary to

distinguish . between the matrix which rotates the

coordinates of an object, and its inverse
(=transpose) which rotates the axes in the
opposite semnse,.

Three types of angular representation of a

rotation matrix may be distinguished. Within

each type, various conventions of axes have been

used.

(i) Eulerian angles where the first rotation axis

is the same as the last, eg successive rotations

of y about z, f about the new y, and a about the

new z. This is the usual convention for rotation

functions. Note that when the second rotation §

is zero, the first and last rotations are
equivalent, so omnly a + y can be determined.
Similarly, when $ = 180°, only a - y can be
determined,

R=

cosﬂ 0
sxnﬂ 0

cosy ~siny 0

s1ny cosy 2 ] (1)

cosa -sina O
sxgu cosu 0

sxnﬂ][
cosf

—-cosacosfsiny—-sinacosy
-sinacospsiny+cosacosy
sinfisiny

sinacosfcosy+cosasiny

[ cosacosficosy—sinasiny
-sinficosy

(2)

(ii) Eulerian angles where the first rotation

axis is different from the last, eg succesive

rotations of ¢ about z, @ about the new x, and p

about the new y. Such conventions are often used

for rigid body refinements, since the position of
equivalence of the first and last rotations ¢ and

p occurs when the second rotation € = +-90°,

rather than when 6 = 0, In refinement, it is

R.

by

[

cosasinf
sinasinf
cosp
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common to start with a zero rotatiom, ie an

identity matrix, in which case all angles are
zero, and the three parameters ¢0p are orthogonal
(iii) Polar

angle conventions, eg a rotation of an

rotations -away from this position.
angle X
about an axis whose direction is defined by the
These

convenient for self-rotation functions, which can

two angles ¢ and o. conventions are

then be examined for n-fold rotation axes.
R =

1*+(m*+n?)cosX 1m(1—gos§)—nsxnl nl(1-cosi)+msini
Im(1-cosX)+nsini m*+(1 Ycosk mp(1- os} ~1sink ]
nl (1-cosX)-msinX mn(l-cosl)+ls1nl n*+(1%+m?)cos’ a

4] -

Self-rotagtion functions in polar angle space

sinwcos¢
[ sinwsing ]

cosw

The usmal fast rotation function program of
Crowther(l) calculates a map on an Fulerian angle
grid. The position of any peak in Eulerian
angles may be converted to polar angles, using
relations derived from eﬁﬁating elements of
matrices (2) and (3). |However, it is often
useful to look at whole sections of the

self-rotation function at constant polar angle X%,

for example to look for 222 symmetry. In
general, there is no simple correspondence
between the Eulerjian grid and the polar angle

grid, as can be seen by comparing the traces of

matrices (2) and (3).

Trace(R) = cos{a + yYJ[ 1 + cos B ] + cos B
= 1+ 2 cos X%
A dyad axis, X = 180°, is particularly simple:

this can also be seen from the fact that for a

twofold axis R = R™* = K, je R is symmetric, so

equating matrix elements:

cos a = —cos ¥
sin a = sin y
ie a+ y = 180°

)



Thus it is easy to extract the X = 180° section

from the Eulerian angle rotation function, but

other rotation angles are more difficult.

An alternative been adopted by

(2)'

approach has
adapted the fast rotation
Instead of

Tanaka who has

function program to polar angles.
rotating the second Patterson P, relative to the

fixed first one P,, he rotates the first by
(a, B, 0) and the
their

defined by a (=90° + ¢) and P (= w).

second by (a, B, yv) so that

relative rotation is y about an axis

F(g,0.0) = [ R(a,p,0) Polx). R(a,B,7) Py(x) 4V

15

He shows how this modification can be put into
the Crowther program. This modified version runms

at least twice . as slowly as the Euler angle

version, and produces o (=8 ) sections: this
map may then be resectioned to produce X sections

(Paula Fitzgerald, personal communication).
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INVESTIGATIONS INTO THE LIMITATIONS OF A ROTATION AND A TRANSLATION FUNCTION

by

A.J. Schierbeek, R. Renetseder, B.W. Dijkstra and W.G.J. Hol
Laboratory of Chemical Physics, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

1. INTRODUCTION

Between 1962 and 1967 the molecular replacement
method has been developed at the MRC Laboratory in
Cambridge, UK, which allows the elucidation of an
unknown protein structure starting from the struc-

ture of a related molecule(l)

. This approach has
been used in the past with great success in many
laboratories. With an increasing number of protein
structures being available, the molecular replace-
ment method will become of even greater importance

in the future.

In our laboratory, the molecular replacement method

has been used with succes in the structure determi-

(2,3)

nation of a number of phospholipases A2 . As we

envisage the use of the method for solving the
structure of Triose phosphate isomerase from Trypa-

(41 starting from the known structure

(51 and of lipoamide dehydroge-

nase from A. vinelandii(sl starting from the known

nosoma brucei

of the chicken enzyme

structure of human erythrocyte glutathione reducta-

(7)
e

S , we looked into the limits of the molecular

replacement methods for solving structures. As both
T. brucei TIM and lipoamide dehydrogenase crystal-

lize in space group P212121, tests calculations were

(8)

carried out using actinidin as a model for sol-

ving the structure of the closely related enzyme

papain(g’lo). All calculations were carried out
using Crowther's fast rotation function(ll) and

Crowther and Blow's translation function(lz).

2. FAST ROTATION FUNCTION STUDIES
A flow diagram of the fast rotation function(ll),
as programmed by Crowther is given in Figure 1. The
program used can handle a maximum of 30 orders for
the spherical Bessel functions. It is important to
choose with care the triclinic cell used for calcu-
lating the model structure factors. It is advisable
to use cell dimensions which are equal to the maxi-
mum dimensions of the model molecule in the a, b

and ¢ directions increased by the radius of the
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Fig. 1 Flow diagram of the fast rotation function

calcvlations.

sphere in Patterson space to be employed in the
rotation function calculations. In this manner no
cross vectors between model molecules enter into

the rotation function calculations.

2.1 Results with Phospholipases A2
The structuresof bovine native phospholipase A2 and
of transaminated bovire phospholipase A, have been

2
determined at high resolution by Dijkstra et al.
13,14
(13, ). Starting with these models, the structures

of bovine prophospholipase A_ and of porcine native

2

phospholipase A_ could be determined by molecular
3

replacement methods(z' ). Some characteristics of

the enzymes and crystals involved are listed in

Table 1.

The fast rotation function gave only the corréct
solution in the case of the bovine prophospholipase
structure when the appropriate resolution limits
were chosen. As indicated in Figure 2, a narrow re-
solution range of 4.3 - 3.2 3 did not yield the
correct answer while the range 6.0 - 3,2 % worked
perfectly well. This was a first indication that in
the fast rotation function, the resolution range
should not be taken too narrow. This point was also

evident from rotation function studies on porcine



Table 1

PHOSPHOLIPASE A

2
(MW ~ 14.000)

Bovine Bovine Porcine

Native Pro Native
Space Group P212121 P3121 P3121
a (& 47.0 46.9 69.8
b () 64.5 46.9 69.8
c & 38.2 102.0 67.7
Medium 50% MPD 50% MPD 20% MeOH
Amino acid 100% 100% 85%
sequence identity + 7 extra

at N-terminal

phospholipase A2 as summarized in Table 2.

2.2 Results with actinidin and papain

Highly refined structures of the sulphydryl pro-
(9)

téases papain and actinidin(e) are available.
Some characteristics of these enzymes are given in
Table 3. This pair of molecules forms a more strin-
gent test of power of the molecular replacement
method than tne phospholipases as there is only

~ 50% amino acid sequence identity (Table 1). It
should be pointed out, however, that papain and
actinidin have a highly similar folding pattern
with ~ 600 atoms having an r.m.s. difference of

only ~ 0.4 2(10)- -

As model structure was taken actinidin which was

oy

1204
10+
1004
90
80
70 1
60
50 4

40
0%
0

T T T T T T

1 20 0 4 56 60 70 80 90— (degrees)

Fig. 2 Fast rotation function studies on bovine

using transaminated
(2)

prophospholipase A2

phospholipase A2 as model structure

highest values in each section with constant

The

B are plotted in the vertical direction\on
an arbitrary scalebased upon the highest
value in the section B = 0° which is given
a value of 50. Squares indicate results with
data between 6 - 3.2 . In the latter case
the maximum is at (a = 10°, B = 60°, vy =
85°) while the correct solution is (a = 25°%,
B = 55°, Yy = 87.5°) which was obtained with
the data between 6 - 3.2 & (circles). The
radius of integration was in both cases

19.2 . The model structure comprised 956
non-hydrogen atoms and was placed in a
rectangular unit cell with dimensions

74 x 63 x 78 8. An overall temperature
factor of 15 RZ was used for calculating

the model structure factors.

placed in a rectangular unit cell of 70 x 66 x 62 R
such that no intermolecular vectors shorter than
22 R occurred. An overall temperature factor of 15 22

was- used. A number of initial tests varying the

Table 2

PORCINE PHOSPHOLIPASE A

2

Summary of results obtained with fast rotation function

3-5
No. of refls (F ) 5042
obs
No. of refls (F ) 4115
calc
Rotation function¥* 1.1

Resolution Range (g)

3-7 3-8 3-9 " 3-10
6041 6222 6349 6432
5620 5907 6139 6326
1.3 1.3 .- 1.7 1.7

* ratio (peak height of correct solution)

(height of highest noise peak)



Table 3

PAPAIN and ACTINIDIN
(MW ~ 22.,000)

Papain : Actinidin

Space Group P212121 P212121

a (] 45.2 8.2

b 8 104.6 81.9

c & 50.9 33.0
Medium 67% MeOH 20% sat. Amm.

Sulphate

pH 9.2 6.0
Amino acid 100% 48%
sequence identity

No. of atoms 1654 1666

radius of integration from 6 to 17 X showed that
radii of 6 - 11 8 gave no useful results. The dif-
ferences between the results for radii from 12 to
17 X were only marginal. The resolution range was
kept constant, 7 - 3 8. The conclusion seems war-
ranted that even for these protein molecules with
dimensions of 45 x 44 x 36 83 a radius of integra-

tion of > 11 R appears to be sufficient.

The fast rotation function appeared to be insensi-
tive to the omission of weak reflections, although

it seems that leaving out the weakest reflections
does not harm the results at all. A test for the
sensitivity to changes in the resolution limits

gave a similar result as in the case of the phospho-
lipases: narrow resolution ranges of ~ 1 R gave poor
results, particularly at lower resolution. This is
distinctly different from the self-rotation function

(15.16) where resolution

in the case of haemocyanin
ranges of 6 - 5 R gave excellent results. This may
be related to the much larger size of the haemocya-
nin molecule and the larger radius of integration

employed.

The effect of the completeness of the model struc-
ture on the rotation function results were also in-
vestigated. It appeared that removal of one quarter
of the model molecule does usually not lead to a

poor result, although omitting the last quarter of

the model molecule, and incorporating all atoms,
leads to a result where the highest peak is no
longer the correct solution of the rotating problem.
It also appeared that removing side chains beyond
CB does give a somewhat better result than incorpo-
rating all atoms. Quite surprisingly, using only
the 218 Ca carbons gave also the correct solution,
but leaving out one guarter of the c® atoms is
disastrous. It can therefore be concluded that the
model can be surprisingly incomplete and still re-

veal the correct answer of the rotation problem.

3. TRANSLATION FUNCTION STUDIES

Crowfher& Blow(12)

derived a translation function
tor positioning a known molecule relative to a
symmetry axis in an unknown structure. The transla-
tion function is calculated as t, the distance be-
tween the centroid of two molecules related by the
rotational symmetry operation under consideration.
These authors also suggested that the self-vectors
be removed from the observed Patterson leading to

the following Fourier summation:

2 n-1 2 .
T(t) = ﬁ{lFoss‘ﬂ” —i£O|FM(_11[Ai])l }F, () F, (mlal)

- exp(-2mih.t),
where [Ai], i=0, n-1 are all crystallographic rota-
tional symmetry operations, [A] the crystallographic
symmetry operation for which T(t) is calculated
and FM the structure factors of the model molecule.
The simple flow diagram for the calculation of the
translation function is shown in Figure 3. It is

obviously important to have a proper scaling of the

Coordinates
Hodel
Structure

]

Orient by

max’ Cmax’ Ymax

:

Structure Factors Observed

Triclinir Structure
Observed Cell Amplitudes

Crowther & Blow's
Translation Function

maxima

in
"Harkar sections"”

Fig. 3



FM with respect to the Fo when subtracting self-

bs
vectors. This can simply be done by equating

' 2 n-1 2
sJF. % to & I |F (h[A ])]|° in case the
obs — . M— i
h h i=0

model structure contains roughly the same number

of atoms as the structure to be solved. If the mo-
del structure contains only a fraction of the atoms
of the unknown strucfure then the sum of the |FM|2
could be set equal to that fraction times the sum
of the ]F 2, assuming that Wilson statistics

hold.

obsI

3.1 Phospholipases A

2
As in many applications in other laboratories for

other problems, Crowther & Blow's translation func-
tion gave excellent results in the case of bovine

(2)

prophospholipase A2 using the transaminated

bovine phospholipase A2 as an initial structure
(Figure 4). In this case data between 3.2 and 5.0 2
were used whereas the orientational errors in a, B
as well as y were ~ 2°. The highest and correct
peakhadavalue of 115 arbitrary units while the

second highest peak had a value of 38.

In solving the structure of porcine phcspholipase

A2 starting from bovine phospholipase A2(3)

larly good results were obtained. As Table 4 shows,

simi-

the results of the translation function did not

critically depend on the resolution limits although
the range 3 - 10 2 gave considerably worse results
than the range 3 - 5 %. This may be due to crystal

packing effects as discussed by Crowther and Blow

Fig. 4 Section with z, = 1/3 in the translation

function, calculating cross vectors between

model molecules related by a 3, axis paral-

lel to the a-axis. The occurreice of a
major peak in this section and not in the
section z., = 2/3 shows that the space
group of prophospholipase is P3121 and not
its enantiomorph P3221. Contours are drawn
at intervals of 20 arbitrary units, start-
ing at level 20. The favourable peak-to-
noise ratio is typical for the translation

function.
4 and 2 indicates that the rotation and translation
functions seem to have opposite optimal resolution

ranges.

3.2 Papain and actinidin

The sensitivity of the translation function for a
number of parameters was investigated by using the

actinidin structure as a model to determine the

(12)

in their original paper . Comparison of Tables papain structure. In Table 5 is shown the very best

Table 4

PORCINE PHOSPHOLIPASE 2

2

Summary of results obtained with Crowther & Blow's translation function

Resolution Range (®)

3-5 3-6 3-7 3-8 3-9 3-10
No. of refls (Fobs) 5042 5703 6041 6222 6349 6432
No. of refls (Fcalc) 4115 5141 5620 5907 6139 6326
Translation function* 2.1 2.5 2.5 2.6 2.5 1.4

* ratio (peak height of correct solution)

(height of highest noise peak)
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Table 5

ACTINIDIN and PAPAIN

Removal of self vectors in translation function

1) 2)
Model Self-vectors TRFmax TRFsol
Structure Removed? x=0 x=%
Papain yes 21 99
Actinidin yes 61 99
Actinidin no 65 99

The translation function was calculated with resolution limits 3-7 R and with Fmin

TRF b TRF 2 TRF h TRF 2)
max sol max sol
y= X=§ z=0 z=3%
24 99 24 99
47 99 51 99
89 99 82 99

= 50. Actinidin was

oriented according to the superposition of the coordinates.

is the maximum translation function value in this section. As no peaks are expected in these

is the translation function value of the peak at the position of the solution of the translation

L TRF
max
sections, TRFmax can be considered as an indicator of the maximum noise level.
2) TRF
sol

problem. The maximum value in the two translation function sections (¥=0 & x=}) or (y=0 & y=%}) or

(z=0 & z=%) is set to 99.

result one could expect, namely when using the com-
plete and refined papain molecule as a starting
model. It appears that refined actinidin as starting
point gives a distinctly less good peak-to-noise
ratios but the correct answer is nevertheless ob-
tained without any problem whatsoever. Table 5 also
shows that removal of self-vectors in the observed
Pattersons gives much better peak-to-noise ratios

in two of the three "Harker sections" of the trans-

lation function.

The weak reflections appeared to be important for

an optimal translation function result. On the other
hand, the translation funcfion results were very
insensitive to the choice of resolution limits. For
instance the range 5 - 4 2 with 977 Fobs gave almost
as good results as the range 10 - 3 2 with 4735 Fobs
values. This is distinctly different from the re-
sults presented in Table 4 for the case of porcine-
phospholipase Az.
Insight into the sensitivity of errors in orienta-
tion is guite important as it appears that the rota-
tion function often gives peaks deviating somewhat
from the exact solution. For the case of actinidin
and papain, the correct solution obtained from a
superposition of coordinates, has a value of § =

110° which means that a and Yy are gquite orthogonal

20

to each other. So far, our calculations showed that
errors of in one of the angles of up to ~ 5° can be

tolerated.

Finally, the effects of the completeness of the
model was investigated. With the actinidin model in
exactly the correct orientation it appeared that
using only Cu atoms, i.e. 13% of the total number of
actinidin non-hydrogens, the highest peaks occurred
at the correct positions in the sections x = %, y =
% as well as z = ¥. Preliminary results do indicate,
however, that with such incomplete model structures
the translation function becomes extremely sensitive

to orientational errors.
4. CONCLUSIONS
The investigations described above may be summarized

as follows:

Fast rotation function

* Leaving out weak reflections does not harm

* Do not use too narrow a resolution range (A ~ 2 R)
* Do not use too small a radius (> 12 R)

* Removing side chains from start model may help

* Start model can be surprisingly incomplete.



Crowther & Blow translation function

* Remove self-vectors, with appropriate weight
* Resolution range quite unimportant

* Do NOT remove weak reflections

* Orientational errors of ~ 5° allowed

* Start model can be guite incomplete.

Further studies are undoubtedly necessary to esta-

blish how generally valid these conclusions are.
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like to thank the Oxford group for making the

refined chicken TIM coordinates available.



REVIEW OF SPACE GROUP GENERAL TRANSLATION FUNCTIONS THAT MAKE USE OF
KNOWN STRUCTURE INFORMATION AND CAN BE EXPANDED AS FOURIER SERIES
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1. ABSTRACT

The purpose of this paper is to review the
current status of the various techniques used to
solve the translation problem in the molecular
replacement method. I intend to deal only with
the case where the trial structure is known,
that is, the coordinates relative to an arbitary
origin, and optionally the thermal parameters, of
a homologous structure are known, and the
orientation has been accurately determined by
means of the Rotation Function, The latter is
of course being dealt with separately in this
meeting. Then, some results for two structures
will be discussed; the first, Y-crystallin IV,
where the translation had previously been
determined by R-factor search, and the second,
chymosin, where the result was not known

beforehand.

2. INTRODUCTION
In the papers of Tollin on the
Q—function(') and Crowther & Blow on the

T—function(z), emphasis was placed on the

separation of the general 3-dimensional -

translation function into several 2-dimensional
functions., This was clearly important before
the advent of the crystallographic Fast Fourier
Transform (), Considering only space groups
with only n-fold rotation and/or screw axes
(face and body-centring symmetry can be
ignored), and taking only the asymmetric units
related by one n-fold axis at a time, the
translation function varies only in a plane
perpendicular to the axis. Thus one
2-dimensional function is obtained for each
rotation/screw axis in the space group i.e. 1
for all polar point groups (2,3,4,6), 3 for
orthorhombic (222), 4 for point group 32, 5 for
422, 7 for 622, 7 for 23 and 13 for 432,

The disadvantages of this approach are
firstly that noise is introduced into the
translation function by ignoring vector peaks in

the Patterson of the unknown structure arising
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between asymmetric units other than those under
consideration, and secondly in high symmetry
apolar space groups one is still faced with the
task of extracting the required 3-D vector from
up to 13 number field sections, many of which,
due to noise, may well not have the correct
solution peak as the highest in the section.

The 3-dimensional functions proposed by
Crowther & Blow(2) and by Harada, Lifchitz &
Berthou(*) overcome these difficulties by
computing a single translation function in which
the solution peak will contain the combined
information from all the 2-dimensional
functions, thereby improving the signal-to-noise
ratio. In fact Crowther & Blow incorrectly
formulated their T, function, making an
unnecessary approximation, and subsequently Bott
& sarma®) reported failure of the T, function.
It should be mentioned that even though a
3-dimensional function is computed, advantage
can still be taken of the fact that the problem
breaks down into 2-dimensional functions in
producing the Fourier coefficients of the
translation function; the final computation is
then a 3~dimensional Fourier transform using
FFT.

The earlier papers on the translation
problem(*s¢) indicated the importance of
'sharpening' (i.e. normalising) the structure
amplitudes, but this seems not to have been
taken up in more recent papers, With the
exception of Harada et al.(“). The advantages
of this procedure are: 1i) the datasets are
automatically scaled together by taking the data
from the known and unknown structures separately
and making EZ=1 in shells of constant volume in
reciprocal space; and ii) data is sampled
evenly in reciprocal space. The 'sharpening' is
actually to some extent undesirable since it
leads to series termination bipples in the
Pattersons, but this has not been found to be a

serious problem. Incidentally the use of



normalised amplitudes also appears to be
advantageous in the Rotation Function
(I.J. Tickle, unpublished).

It should be pointed out that the current
practice of applying a rather severe low
resolution cut-off (e.g. 6A&) in rotation and
translation functions is nothing more than a
A 208 cut-off has

been found to be necessary because E? can change

crude sharpening technique.

rather rapidly at this resolution and there is
usually an insufficient number of reflections to
give a statistically meaningful average. The
omission of any data is always questionable, as
it inevitably introduces random and systematic
errors.

Another important factor often overlooked
is the noise introduced by failing to eliminate
from the Patterson, vector peaks between atoms
within the same asymmetric unit (self-vectors).
If.one makes the approximation that the known
and unknown structures have the same self-vector
set, then it is a simple matter to substract its
Fourier transform from the transform of the
unknown Patterson, i.e. the intensities.

These apparent difficulties encountered
with the scalar-product type of translation
function (i.e. the Q and T functions) have led
various authors to propose alternatives. These
fall into two major classes: R-factor and
overlap. The principal disadvantage of the
R-factor function(?+®) is that it cannot be
computed by a Fourier transform in order to take
advantage of the FFT algorithm, and therefore
unless one omits systematically (e.g. the small
intensities) a large proportion of the data, or
works at low resolution or computes on a coarse
grid, or in fact all of these, the compute time
can become prohibitive, typically 100 times
slower than the T-function under the same
conditions. In addition the conventional
crystallographic R-factor is actually a
less efficient statistic than the correlation
coefficient, which is closely related to the
scalar product. This means that the correlation
coefficient should have a higher discriminatory

power, provided it is used correctly.

R-factor (on F): EIFQ-&|

Fo
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Correlation coefficient (on E?2)

JPEQEQ? - nEg?.Ep?
[X(Eoz'Eoz)Z-E(Ecz'Ecz)z]Z

(note E;3=1 by definition; E,? depends on

overlap.)

Scalar product (on E2): JEo?Eq?

Overlap function: JF,?

Different forms of the overlap function
have been proposed(“vs's); probably the easiest
to compute is that of Harada et al.(*) wno
defined it simply as the origin peak of the
Patterson of the trial structure; this will be

smallest when no-atomic densities overlap.

3. RESULTS: Y-crystallin IV
Y-crystallin IV crystallises in space group
C222,, and has 85% sequence homology With
Y-crystallin II whose structure has been refined
to 1.64.(%°)

resolution has been determined, structure

The rotation function at 38

factors for one molecule of y-crystallin II in
the unit cell of y-crystallin IV computed, and
the translation vector determined by an R-factor
search program.(") A program T20RTH was
written to test various T functions; the
formulae used in the program are derived in the
Appendix; this is essentially a synthesis of the
work of Crowther & Blow(z), and of Harada et
a1.(«)
labelled S/N is the signal-to-noise ratio of the

Table 1 shows the results; the column

correct peak relative to the highest incorrect
one, The best S/N relative to the mode of the

distribution of the function was 12.3.

4. CONCLUSIONS: Y-crystallin IV
i) Using F's as coefficients the S/N increases
on omitting data with d>6&, and further improves
when scaled in shells. Omitting data with
d<3.58 reduces the S/N.

self-vectors greatly reduces the S/N. In

Including the

contrast, using E's as coefficients and omitting
data with d>64 reduces the S/N; in fact omitting
data in any way, with d<3.58 or leaving out

centric zones, has the same effect. The



conclusion is that the 'sharpening' effect
produced with F's by omitting data with d>6A& can
be achieved with E's by using all the available
data (at least in the range 20-34). Line 12 in
the table is the translation/overlap function of
Harada et al.(“); rather surprisingly the
inclusion of self-vectors in this has a positive
effect on the S/N. The last four lines show.a
fairer comparison between the translation and
translation/overlap functions since this was
developed for the case of the high-temperature
form of lysozyme at 6A resolution, and where the
sequence homology is 100%. The conclusion is
that the translation/overlap function may be
advantageous if only low resolution data is

available and the homology is high.

5. RESULTS and CONCLUSIONS: chymosin

Chymosin crystallises in space group I222
or 12,2,2, and has ~ 20% sequence homology with
endothia pepsin whose structure has been refined
to 2.1A(#2) | Computer graphics model building
was used to modify the sequence, build in the

side-chains and re-build the loops at the

periphery.(") The sequence homology is great-
est in the central core of the enzyme near the
active site but the loops have low homology.

The isotropic thermal parameters of the endothia
pepsin were retained as far as possible in the
chymosin model, but new atoms were given twice
the last known thermal parameter for the

purposes of the structure factor calculation. A

rotation function at 34 resolution using

normalised amplitudes and a 2.5° sampling
interval confirmed a previous result.(®*) Tabvle
2 shows the results using the T20RTH program,

assuming space group I1222. The best peak was

7.90 above the mode, No significant peak was

found for space group 12,2,2,.

The conclusions are similar to those for

Y-crystallin, except that the

translation/overlap function is no longer the

best, although there is some indication that it
improves relatively when high resolution
(3.5-34) data is omitted. The most consistent

results, however, are obtained when the self

vectors are subtracted.

Teble 1. Gamma-crystallin 1V (C2221) / Gasma-crystallin 11

Function Coefficient Resolution Centrice? Scaling Self-vectore?
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6. APPENDIX
Crowther & Blow T, functions(2) (with

self-vector subtraction):
To(t)=fy(Po(w)-Pp(u)) .Pe(u,t) .du (D

Harada et al. TO/O function(“):

TO(t)
o) -

fVPO' (E) 'PC' (E,_t_) .dg
Pe(0,%)

(2)

Form of translation function found best for
Y-crystallin IV and chymosin:

Q) =Fy (Po (W)=P 'm(u)) . (Pg' (u,£)-Pg’ (w)).du  (3)
where:
Po(W=Jplolh) .exp-2mih.u . )

(Patterson of unknown structure, from observed

intensities Io(h).)
Pm(u)=JpIn(h) .exp-2rih.u (5)

(Sum of separate Pattersons of n asymmetric
units of the known structure in their correct
orientations, from the calculated intensities of
the model, Ip(h).)

Pe(u,t)=Yplc(h,t) .exp-2nih.u (6)
(Patterson of complete unit cell of trial
structure made up of n asymmetric units of

known structure in their correct orientations,

but in unknown positions determined by t.)

Pe(0,8)=InIc(h,t) m
(Origin peak height of Pg(u,t).)

Po'(w), P'p(u) and P'o(u,t) are the
corresponding sharpened Pattersons computed with

normalised intensities E?p in place of Ip.

Io(h)d Folh) 2 (8)

In(h)= Y Folh, £l (9
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Io(h,t)=(J"Fo(h,t)) (T PP  (h,t)1)
=1 N Felh, t)k-Fet(h,t (10)

I'o(h),I'y(h) and I',(h,t) are obtained by using
E in place of F in (8), (9) and (10)

FC(E,E)k=ZJfJepo‘lriLl.Ejk(E) (11)

This is the structure factor for the kth
asymmetric unit, where fJ is the scattering
factor for the jth atom in the model structure,
and

85K (t)=Ag.(ry+t)+dy (12)

is the coordinate vector of the jth atom in the
kth asymmetric unit of the trial structure,
where Ay ,dy defines the kth general equivalent
position of the space group and rj is the
coordinate vector of the jth atom of the model
structure relative to its local origin before
application of the translation t. Note that
this is not the same as Crowther & Blow's
definition of t. The corresponding structure

factor is:
| Fm(b)| .exp i¢m(g)=2jfjexp2nig.£j (13)
Substituting (12) and (13) in (11)

Fo(h,t)kd Fn(hay) |.exp i(¢p(hAy)+2mh.dy).
exp2rihpt  (14)

Therefore | Fo(h,t)i = Fn(h,t)y | (15)
and from (9) Ip(h)=J] Fp(hay) |2 (16)
From (10) and (14):

Ie(h,£)=3" 1" Fm(bAk) . Fm(hay) |exp if
om(hAk)-ém(hA1)+2mh. (dy-d))].exp2nih.(Ag-A1) .t

@7

We now have everything required to expand (1),
(2) or (3) in terms of known amplitudes and

phases. For example, substituting (4), (5) and
(6) in (3): ‘



Q) =Y Tn (I o (M)-I'p(h)) (I o(h',£)-I"p(h")).
Jyexp(-2ni(h+h').u).du
=1 o(h)-I'p(h)) (I (h,t)-I7m(h))
(18)

Substituting (8), (16) and (17) in (18)

Q(t)=In(l Eoth) I*- 1k En(hay) ).
Ik" 11 Em(hAy) .F(hA1) .
k#1
exp 1[on(hAy)-oén(hAy)+2mh. (de-d1)].
exp2nih.(Ay-47).¢ (19)

Crowther & Blow(?) stated incorrectly that this
expression could not be cast as a single Fourier
series because of the J,J; summations. However
Bricogne (unpublished) and more recently Harada
et al.(“) showed that although it cannot be
éxpressed as a Fourier series in h, it can be so
expressed in terms of the modified index

h'=-h.(A-A7). In fact
Q(t)=Jp| Fpr lexpiopr.exp-2mih'.t (20)

where Jpe=Jplkl1

k#l
| Fel =0 Eo() =Ty En(hge) ).
| En(hay) | . | Ep(hay) | (21)

and ¢pr=¢m(hhi)-op (DAY J+2mh. (dy-dy ).

The other forms of the translation function can
E.g. in (2):

for Po(0,t) the Fourier coefficient is:

be expanded similarly.

| Fnol = Fm(hay) | « | Fp(hay) |
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MOLECULAR REPLACEMENT AND THE CRYSTALLINS

by

_ H.P.C. Driessen® and H. White
Laboratary of Molecular Biology, Department of Crystallography,
Birkbeck College, Malet Street, London WC1E THX, UK.

1, INTRODUCTION

The three-dimensional structure of bovine lens v-II
crystallin has been solved to 1.6A resolution in the
Department of Crystallography of Birkbeck College,
London{""2), This protein consists of two similar
globular domains, each comprising two similar Greek key
motifs. The two domains pack together with a single
connection and are related by a pseudo 2-fold axis (Fig.
1). In each damain the two Greek key motifs form a pair
of four-stranded antiparallel g-pleated sheets, each
sheet camposed of 3 strands from one motif and 1 from
the other.
a pseudo 2-fold axis.

The two motifs in their turn are related by
This structure therefore has a

very high internal symmetry.

motif 4
motit3

Fig.1 The internal symmetry of Y-II.

Y-II crystallin is a monomeric member of the 8,Y-
superfamily of crystallins, which camprises at least 13
different polypeptides having a protein sequence
hamology ranging fram 30 to 98$( "'f). All these proteins
have the invariant and conservatively varied residues,
necessary to form a similar structure to that of y-II,
Bovine Y-IV is a monomeric protein in solution and

crystallizes with 1 molecule in the asymmetric unit
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in space group C222,(’). The homology with Y-II is
80%.It is therefare clear that Y-IV is a good candidate
for molecular replacement studies, and as such one of

the few examples for p-sheet proteins.

2. Y-II CROSS-ROTATED AGAINST ITSELF

2.1 The Orientation of the Search Molecule

In arder to get a feeling for the problem an initial
study was started with a rotated v-II molecule against
itself,
axis, which for the Y-II backbone is present to an rms

Since the crystallins have a pseudo 2-fold

residual of 1.58 with a screw camponent of 0.44&, there
are expected to be two peaks in the rotation map. One
will have the carrect orientation, while the pseudo-
peak will represent the molecule rotated around the
central pseudo 2-fold axis. Therefore this pseudo
2-fold axis was aligned parallel to z. This has two
advantages: 1) the solution and pseudo-solution will be
present on approximately the same g-section with a
difference in Y of about 180° (the first rotation in
Crowther's version of the rotation function(3®) is v
about z showing symmetry in the search model), which
2) the

solution and pseudo-peaks will stand out among the

makes the distinction between them easier,
spurious peaks, facilitating the interpretation.

2.2 The Choice of the Unit Cell
The size of the Y-II molecule is approximately 58 x 27 x
264,

possible in order to keep computing costs low and

This molecule was placed in a cell as small as
contrast in maps high(‘) . The geometrical mean of the
ellipsoid semi-axes was chosen as the radius of
integration and the cell dimensions were made thrice as
large, although it was realised that this would cause
the presence of some intermolecular vectors in rotation
studies. The rotated molecule was put into an
orthogonal cell of P1 symmetry with a=b=c=604, and
structure factors were calculated using the atomiec

temperature factors of v-II.



2.3 The Pseudo-Solution and the Solution for y-1I

As expected, the pseudo-solution and solution were
immediately conspicuous on rotation maps, However,
the solution-peak was about twice as high as the
pseudo-peak over all resolution shells and radii of
integration used, and the position of the pseudo-peak
was subject to large shifts. An artificial temperature
factor of 204% was used for both the model and the
'unknown' in all further work, For precise deter-
minations a 60 Bessel function with stepsize 2.5° was

used(*),

2.4 The Effect of the Resolution and Radius for y-II

Although the pseudo-solution is not a problem in this
*ideal' case, the spurious peaks are, as can be inferred

fran a signal-to-noise plot (Fig. 2). For a Patterson

1.2

Il

RsoLution Il.o -
Regak

0.8%F
PATTERSON SHELL 6.0-15.0 A

il
] l

1.8F

1.6F

1.4

1.2

RsoLurion Tl'o i

RI’EAI(

L . N  PATTERSON SHELL 6.0-22.5 A
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Fig.2 The effect of the resolution and the radius of
integration on the signal-to-noise ratio for rotated
Y-I1 against itself.

radius of 15,0R the map is extremely noisy with data of
4.0~5.0&, although the spurious peaks are not
significantly higher than the solution. The situation
improves at 3.0-4.0A, where the solution becomes the
highest peak. The noisiness increases again at
2.1-3.0A. At a radius of 15.0A there appears no linear

relationship between noise and resolution of the data
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used. The degree of noise possibly reflects errars both
in the rotation function and in the intensity data.

The effect of altering the radius of integration is
quite dramatic, When this is increased to 22.5A the
signal-to-noise ratio at 3.0-4,08 becomes 1.9 for the
next highest peak. Clearly 22.5A is a good value to
find the best fit in cross-rotations for the cryst-

allins.

2.5 The Accuracy of the Rotation Solution for Y-II

How accurate must the solution be? It is clear that any
errors here will be carried into the next étep, the
The 60
Bessel version of the rotation function limits the

determination of the translation parameters.

stepsize in a and Y to 2.5°, while in g it is possible
to go smaller than 0.5°(3), More accuracy can be
obtained by interpolation if the peak is very consistent
in its position both as a function of the resclution and
the radius of integration.

For Y-II the solution is as close as 1° inqa, 2° in g
This result
was used for a 0.78 stepsize R-factor search (version of
E. Dodson (7)),
distinguished and was 0.88A& rms apart froam the actual

and 0° in Y, when no interpolation is used.
The correct solution could be clearly

coardinates, yielding an R~factor of 399 at 5.0-10.0A.
To refine the six rigid body parameters the constrained-
restrained least-squares program CORELS was used(®),
With three cycles of rigid body refinement the R-factor
dropped to 32% and the structure finished in the correct
position. This clearly indicates_: that even a good
rotation result with acceptable translation parameters
does need correction with rigid body refinement.

A more 'realistic' situation was chosen, where the three
Eulerian angles in the rotation function were 2.5° in
error. A smaller stepsize was used in the R~factor
search leading to a solution with an R-factor of 47.5%
at 5.0-10.0A, which is 1.56& rms out. 7 Cycles of
CORELS at 5.0-10.0A& were required to reach the correct
parameters.

What are the limits for rigid body refinement to be able
For v-I1
against itselt it appears that rotational errors have a

to correct the molecular replacement errors?
worse effect. When the error was 2.3A rms, or about 1%
bond distances, it took 10 cycles at 7.0-10.0A& to
carrect; at 5.0-10.0A refinement was unsuccessful. For
translational errors only, 2.5& could be covered in 15
cycles at 5.0-10,0A.

to be that the rotation solution should be determined as

The lesson for a real case appears

accurately as possible, preferably with interpolation.
After the molecular replacement the rms error should not
be much larger than one bond distance,
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3. Y-II CROSS-ROTATED AGAINST v-IV

3.1 The Rotation Map of y-II against v-IV

For the rotation studies on Y-IV the same rotated Y-II
molecule as in the Y-II case study was used. One of the
first features of the cross-rotation map to emerge was
that there is no distinet difference between solution
On the g=87.5° section (Fig. 3)

peak B, which is assumed to be the solution, and peak A

and pseudo-solution.

are approximately 180° apart in Y.
higher at g=85.0°.

close to B=90.0°, where a 2,-screw axis is present, the

Peak A is somewhat
Since both peaks A and B are very

B=87.5° section also shows peaks tailing fram the sym-
metry-equivalents at g=92.5° and 95.0°. This gives rise

to an apparent pseudo 2,-screw axis at g=87.5°.

3.2 The Effect of the Resolution and Radius for Y-IV

The signal-to-noise plot far Y-II against Y-IV (Fig. 4)
at a radius of 22.5A4 is distinctly worse than far the
*ideal' case discussed above. The noisiness of the maps

is much higher and there are many peaks higher than the
solution-peak in resoclution shells 3.0-4.0A and 4.0-5.0A.
They are, however, not significantly higher, and their
position is not very consistent. At the highest
resolution, 2,3-3.04, the solution B is the highest peak

as expected. This resolution is needed to resolve
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solution B and pseudo-solution A, Clearly the diff-
erence between the two domains of Y-IV is not as
outstanding as in the 'ideal’
itself., This may be due to the difference between the

model ¥-II and the unknown Y-IV or the lack of resolving

case of Y-II against

power in the cross-rotation for proteins as distant as
80% in sequence homology.

1.6 F
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1 1.2k
R

SOLUT10N al.ﬂ
R

PEAK

0.8F

3.0 4,0
——
RESOLUTION (A)

Fig.4 The effect of the resolution on the
signal-to-noise ratio for Y-II against Y-IV, The
Patterson shell is 6.0-22,5A. The arrow denotes the
pseudo-salution A.



3.3 "I'he Cross-Rotation Solution for Y-IV

It is clear from sections 3.1 and 3,2 that the pseudo-
solution A is not easily disting}xishable from the
solution B. On the other hand, there are indications
First, peak B is the highest

at 2.3-3.0R, where the differences between side chains

for this interpretation.

should be most apparent.
Third, and linked to the last

Second, peak B is very sharp,
while A is very broad.
argument , for peak B the maximum difference in the
Eulerian angles a, B and Y as a function of the
resolution and radius is small, of the order of 1 to 2°.
This then lead to the
choice of two different results for peak A, one for a

radius of 14,08 (A1) and one for 22.58 (A2), while for B

For peak A the arder is 3 to 5°.

only one at 22.5R was aken. The value of 22.5& was used
because of the results in the Y-II case study.

For peaks A1, A2 and B the position was optimised by
using small g-steps and interpolation, although the
value of the latter was arguable for the more variable
A-peaks.

3.4 The R-Factor Search for Y-IV

In an R-factor search at 5.0-10.0A with a stepsize of
0.54, it immediately became apparent that the A-peaks do
R-factors
for peak A2 (a=26.5, B=95.2°, ¥=25.,5°) were hardly above
the background.

not represent the correct rotation solution.

Furthermore, they did not yield a
structure with a reasonable packing in the unit cell
with space group symmetry elements going straight
(a=32.0, B=92.0,
Y=30.8°) two peaks with an acceptable packing were

through molecules. For peak A1
found, but their R-factors were rather large (53.é and
54,8% at 5.0-10.0R).
background at 4,0-104.

These peaks disappeared in the
Nevertheless, they were

subjected to rigid body refinement at 7.0-10.0 A, but

this gave no improvement in the statistics. At this
resolution their correlation coefficients were of the
order of 20% compared with the correct solution having a
value of 54%. The A-peaks from the cross-rotation were
not considered far further study.

The B-peak (a=155.0, B=86.8, Y=24.5°) on the other hand
produced 12 peaks with acceptable molecular packing and
with R-factors ranging fram 45.7 to 52.8% at 5.0-10.04,
much lower values than far the A-peaks. The translation
peaks wWere more accurately determined with 0.1R& micro-

grid searches.

3.5 The Determination of the R-Factor Search Solution

On the X-section, where the solution was present, a
pseudo-translation solution was also visible (Fig. 5).
This type of pseudo-peak was abundant, particularly at
low resolution and with centric reflections only. It
was therefore necessary to extend the initial low
resolution search to high resclution and to use all the
reflections. Since the R-factor search, even with
microgrids around peaks only, is computationally
expensive, the statistics at higher resolution for all
peaks were determined with CORELS. At the same time a
rigid body refinement at 7.0-10.0R would give all peaks
the best possible result, and would ensure that no peak
was dismissed without optimal checking. R-factors and
correlation coefficients were then calculated at
3.0-10.0R (Table 1). The correlation coefficient turns
out to be a particularly sensitive marker, indicated by
a peak which is about twice as high as the next peak.
This peak, with the lowest R-factor, shows a good
stereochemical packing in the unit cell, even when
side chains are taken into account. It has thus been
accepted as the solution.

The shifts found in the rigid body refinement were quite

65 68 S5
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Fig.5 R-factor search map for Y-IV: x=13.6R, y=0.0-22.5A, z=45,5-51.58; resolution 7.0—10.011; stepsize 0.5R. The map

shown has been obtained for rotation solution B.
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PEAK R (%) C (%) RMS SHIFT (A)
SOLUTION  48.1 41.5 0.66
A 54.7 22.6 0.74
B 54,7 22.6 0.81
o 53.8 21.8 0.65
D 53.7 22.3 0.64
E 56.1 15.5 1.36
F 53.6 25.4 0.62
G 54.5 21.6 0.58
H 53.9 22,7 0.76
I 55.9 17.2 0.86
J 55.9 16.9 1.13
K 55.9 17.2 0.73
Table 1. R-factor and Correlation coefficient at

3.0-10.04 and rms shift at 7.0-10.0A after rigid body
refinement of all possible R-factor search peaks for
rotation solution B.

large, up to one bond distance, confirming that the
radius of convergence of CORELS at 7.0-10.0A is large.

4. REFINEMENT OF Y-IV

4.1 Rigid Body Refinement of y-IV

For the solution of the cross-rotation of Y-II against
Y-IV the six rigid body parameters were now refined at
5.0-10.08, because the actual position had been chosen
at this resolution (Fig 6).
refined at 3.0-10.0A.

The molecule was then
The rms movement with respect to
the molecular replacement solution was a minimal 0.264,
indicating that the solution was quite accurate. Not
surprisingly the rotational parameters showed the
largest changes.

Subsequently the two domains of this molecule were
refined as two independent rigid bodies without
restraints. This was necessary, because in the connect~
ing peptide between the two domains of Y-IV there is a
deletion with respect to Y-II. The refinement was
completely stable, and the R-factor dropped to about u47%
at 2.3-10.0A. With respect to the molecular replacement
solution the total rms movement was 0.884, a
considerable change. It appears that the domains have
rotated around the central pseudo 2-fold axis giving a
closer interdomain contact. The screw component has
This shows that the
domains in y-IV are related by a 2-fold axis which has
less pseudo character than in y-II, This could explain

partly why the solution and the pseudo-solution were

been reduced fram 0,44 to 0,234,
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difficult to resolve in the rotation study.

Since the R~factor was as yet calculated for a model
having an overall temperature factor of 2042, the
refinement proceeded with two temperature factors per
residue, one for the main chain and one for the side
chain, The differences between Y-II and Y-IV now became
apparent, and were mainly at the expected positions,
i.e. in most of the side chains where a replacement has
taken place,
C-terminal tail.

in the connecting peptide and in the
The R-factor fell to below u40%.

4,2 Model Building and Restrained Refinement

The resulting map at 2.38 quite clearly showed the
distinction between correctly and incorrectly positioned
atoms. New density was visible, as were some new
lattice contacts. The Y-IV residues were built in, and
9% of the atoms were omitted. The new model was
subjected to restrained refinement at 2.3-5.0A using
atomic temperature factors with the program RESTRAIN
(s), Currently the R-factor is 39% and the correlation

coefficient nearly 70%. Further work is in progress.

50 L
45 =
R(D)
%0 r —-‘.—_ \
70 = 35 >
60 IF
C(x)
50 -
40 b
— 1 1 1 : ]
CORELS CORELS CORELS FRODO RESTRAIN
I II I11 Iv v
RMS movement 0.26 A 0.88 A -~ - 0.11 A

Fig 6. Refinement of the molecular replacement solution
far ¥-IV (statistics at 2.3-10.0R)
I rigid body:

5 cycles at 5.0-10.4 F>30

5 cycles at 3.0-10.8 F>30
II 2-domain rigid body:

6 cycles at 3.0-10.0A F>30

IITI 2 temperature factors per residue:

6 cycles at 2.3-10.08 F>30

IV model building of the Y-IV sequence;
9% of atams amitted

v restrained refinement with atamic
temperature factors:

6 cycles at 2.3-5.04 all F



5. CONCLUSIONS

The following conclusions can be drawn:

1) it was advantageous to do model studies with the
search molecule

2) the rotation solution had to be as accurately
determined as possible.

3) for this type of B~sheet protein high resolution data
were a necessary requirement.

4) molecular replacement results could be improved by
rigid body refinement with CORELS;

5) rigid body refinement of distinct structural domains

gave a large improvement.
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MOLECULAR REPLACEMENT:

E.Jd.

THE METHOD AND ITS PROBLEMS

by

DODSON

Department of Chemistry, University of York, Heslington, York YO1 5DD

Similar and homologous molecules will generally
crystallise in different forms; molecular replace-
ment techniques give us a handle for relating their
structures within the crysfals. The technique as-
sumes that relative to some orthonormal axial system
[1,3,K] we can generate the new coordinate set x1

from the known coordinate set xO0.

To write this in full, the vector
[ J K] |x, [1 7 K] Q] [x, tx
Y| = Yol + Ity (1)
z) zg tz
where [I J K] are the orthonormal axial
system
X the coordinates of individual
y atoms
z
el a rotation matrix,
t=x
ty a translation vector. _
tz

In practice we assume the axial system for both

sides of eq.(1) are the same,

and simply write x1 = [Q] %0 + t .

But that assumption introduces the first possibility
for confusion. We are dealing with crystals, which
all too often do not have orthonormal axes, so we
must be clear how we have defined the orthonormal
axes relative to the crystal axes. The program

ALMNFR, based on Tony Crowther's fast fourier summa-
tion for calculating the Rossmann/Blow rotation

overlap allows three ways for defining these.

They are 1.
2.
3.

I along a , K along c*.
I along b , K along a*
I along ¢ , K along b*
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The atomic coordinates x0 relative to these axes are
derived from the fractional x0 = [Q]‘l xf and the
elements of [Q] for each system are given in

Appendix 1.

It reduces the amount of calculation to have the
highest symmetry along K, so option 3 is used for
monoclinic spacegroups, option 1 for all high symme-
try spacégroups with 3,4 or 6 fold axes along c. For

orthorhombic spacegroups the choice is arbitrary.

The second area where confusion is rife is in the
definition of [R). Any matrix with real elements
and determinant equal to unity represents a rotation
in real space, and any rotation can be expressed in
terms of three independent angles. There are many
ways of doing this, but as long as the user knows
how his/her matrix has been defined, the matrix ele-
ments should be the same for each and all methods.
It is simply necessary to make sure all the programs

used have the same convention built into them!
One useful form is given in Int. Tab., Vol.2 p.63,

If [Q]) describes a rotation of ¢ about a vector with
direction cosines 1l 12 13, then

cos¢+112(1—cos¢) 1,1, (1-cos¢)-13sin¢
1311(1-cos¢)+lzsin¢

1,1, (1= cos¢)+lysing cos¢+122(1—cos¢)
1,13(1-cos¢)-1ysing
131 (1-cos¢)-1,sin} 131, (1-cos¢ ) +1; sin¢
cos¢+132(1—cos¢)

If the rotation axis makes an angle of w with the L6
axis, and its projection in the I,J9 plane makes an
angle of ¢ to the I, axis, (measured as positive to-
wards the JO axis), the direction cosines are

Sin w Cos ¢

sin w sin ¢ cos w

and the substitution of these values gives [RQ] in



its spherical polar form. It is often useful to use
this form when searching for non-crystallographic
symmetry within the asymmetric unit, where we expect
to find a two-fold or a three-fold or even a seven-
teen-fold axis, and therefore knoﬁ the expected

value of w.

Tony Crowther defines [Q] using the system given

below.

If the two sets of coordinates are defined relative
to an orthonormal axial system I, J, K, the matrix
[Q] can be written as a function of three Eulerian

angles, «, B, Y.

If « is a rotation about the initial direction of
Kg» B is a rotation about the subsequent direction

of J,, and y is a rotation about the final direction

of Ky then
cosa cosf cosy =cosa cosf siny cosa sinf
-sina siny -sina cosy
[R] = |sina cosB cosy -sina cosf siny sina sinf].
+cosa siny +cosa cosy
=-sinf cosy sinf siny cosB

Appendix 2 shows why this rotation of axes is equi-
valent to the rotating of the coordinates relative
to fixed axes by a, then B, then y.

The actual multiplications by [R] are sometimes done

in real space, sometimes in reciprocal space, and it
is important to be clear whether [Q] is being used
to pre-multiply the column vector of coordinates, or

post-multiply a row vector of indices.

THE ROTATION OVERLAP FUNCTION

So assuming we now know what we are doing, let us

consider methods for finding the three angles which

define the rotation matrix Q1.

' Rossmann and Blow (1962) defined a Patterson overlap

function:
RIQ] = fv P(u') P(u) av

where P(u') and P(u) are the values of the Patterson
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functions at the points u' and u where u'=[Q)] u and
V is the volume over which matching is expected.
When [Q] is correct parts of the Patterson functions

will overlap and R[Q] will be large.

The idea is simple, but it would take a very long
time to check the values of R[Q] for many different

[2) by direct integration.

Rossmann and Blow show that if P(u) is expanded in

the usual way as a Fourier series:

P(u) = I F2

exp(~2n i h.u)
Bkl hkl

R[Q] simplifies to

R[Q] =

where h and p range over reciprocal space and

h = [p] [Q].

Gh p is a shape function which can be defined for
simple volumes of integration, 1In fact Gh p is vir-

tually zero unless h is close to p.

The first program for calculating R[Q] used a lot of

computing resources.

Tony Crowther showed that by expanding the Patterson
density within a spherical volume in terms of spher-
ical harmonics it was possible to use fast fourier
transforms to calculate values of the overlap func-
tion. I have collated some of his mathematical
treatment of this problem in Appendix 3, since‘it
has never been completely written up for publica-

tion,

Consideration of this overlap function suggests two

further pitfalls which can cause difficulties.

1. The overlap search is done by matching spherical
shells of Patterson space. This shell should ideal-
ly contain most of the intra-molecular vectors, but
few of the inter-molecular ones resulting from crys-
tal packing. This is possible if the molecule is
roughly globular, and in a large volume of solvent,
like haemoglobin. The choice of radius for the
sphere of integration is determined by the dimen-
sions of molecule, its shape and its packing in the

crystal, If the molecule is markedly ellipsoidal as



is 6PGDH vectors will be omitted if the radius is
limited to the molecules smallest dimension; on the
other hand if the radius is set to the largest di-
mension, the spherical volume will be grotesquely
larger than the molecular volume., {Paul Carr; see
below).

When there is close crystal packing with small sol-
vent volume and an irregular shaped molecule as with
despentapeptide insulin, any change of radius can
alter the appearance of the overlap map consider-
ably. Pigure 2 illustrates how changing the radius
from 11 A to 13 R altered the map. Increasing the

radius to 15 A also increased the noise level.

Obviously if the sphere radius is greater than half
a cell edge the same Patterson density will be in-
cluded twice, and if the radius were set greater
than a cell edge the origin peak would be included

again.

The inner radius is used in a function to modify the
F terms to remove the origin peak. It must be at

least equal to the resolution limit.

This problem of non-spherical molecules is an in-
soluble one when using the Crowther-Blow method and
I feel it is the main reason why some overlap maps
look like the haemoglobin one (fig.1) and some like
the DPI ones (fig.2).
Ru-Chang et al (1983)).
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(Derewenda et al (1981), Bi
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A section through a rotation function map of
native haemoglobin, form II. 10-4 A data
has been used; a single aff dimer was used as
the search unit. The value of B on this
section is 55°, X denotes the true maxima,
® denotes the pseudosolutions.

Fig.1.
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Fig.2,

The B = 85° section for various beef DPI

C2/model rotation functions. (a) The model
contains 70% of the expected atoms; the
sphere of integration extends to 13 A; shar-
pening factor B = 20 A; data range 8-3 A.
This map gave the clearest maxima. (b) as
(a) but with the sphere of integration limi-
ted to 11 A. Reducing the volume of inte-
gration has reduced the height of the true
peak relative to spurious ones. (c) as (a)
but with the model limited to main-chain
atoms only. Again, spurious peaks are now
the same height as the true one. (d) as (a)
but with data limited to 12~5 A. The maxi-
mum peak is now seriously misplaced.

2. The overlap function is a Patterson functién
using squared and sharpened values of F2, and is
therefore likely to be distorted by a few large
terms, I find it is always necessary to sharpen the
input intensities to give an even distribution of
large F2s against resolution; the program lists the
number of terms in each Sin6/A shell after sharpen-
ing thus allowing you to check whether the chosen
sharpening factor is sensible, Another problem

arises with values of F calculated from a model



structure; obviously differences between the two
structures will affect the degree of overlap. Some
differences are inevitable; usually the known struc-
ture will have a different sequence or crystal form,
so it may seem safer to omit many sidechains and
external regions. However the DPI example (fig.2)
shows that caution can be overdone - a better result
was obtained when more atoms were included even
though many were not correctly placed in the new
form. Presumably their presence gave a more realis-
tic distribution of Fcalc'
The best way round these problems is to repeat the
overlap search several times using different shells
of intensities., Any true solution should be at
least positive in all such searches, even if it is
not the local maxima. There seems no way of pre-
dicting which shell will be the best for your prob-
lem; if there has been a good deal of movement be-
tween different protein domains the best result may
come from low resolution matching; but if there are
packing difficulties then the solution may only show
up when high resolution data is used allowing match-
ing of more precise features. The work reported
today shows how unwise it is to use parameters sim-

ply because they work for someone else!

3. Crystal symmetry can make interpretation of
results very complex. There are formulae for pre-
dicting symmetry equivalents of Eulerian angles, but
it is essential to remember that the formulae depend
both on the crystal symmetry AND the orthogonalising
convention. I now use a version of the program
which tabulates all equivlaent sets of Eulerian
angles for any maxima, with the spherical polar
equivalents and the direction cosines of the axis of
rotation. Appendix 4 gives the derivation of the

equivalents.

It is worth illustrating this with the results of
the self-rotation search of P2, insulin. This form
has a hexamer in the asymmetric unit, so we expect

to find 4 maxima; one corresponding to a three-fold
rotation, and three others corresponding to two-fold
rotations, all perpendicular to the three-fold, and
at 60° or 120° to each other. Here are extracts of
the program output giving the symmetry equivalents

of each maximum, first calculated in Eulerian

angles, and then transformed to spherical polar

angles.
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Peak « B Y w LI T 2] 2y X3

20.1 170 20 160 85 20 180 .94 .34 .09(1)
170 20 =20 90 110 170
-170 20 =20 90 ~70 170 (2-fold)
-170 20 160 g5 20 180 .94 .34 -.09
14,2 120 75 110 120 -108 178 -,26 =-.83 -.50
120 75 =70 89 163 120
-120 75 =70 89 <17 120 (2-fold)
-120 75 110 120 72 178 .26 .83 -,50(2)
14.5 65 150 100 142 ~65 122 .26 -,56 -.79(3)
65 150 =80 48 =155 93
-65 150 -80 48 25 93 (3~fold)
-65 150 100 142 115 122
19.0 110 145 35 125 =35 180 .67 =~.47 -.57
110 145 =145 90 -125 110
-110 145 -145 90 55 110 (2-fold)
-110 145 35 55 =35 180 .67 -.47 .57(4)
Check 1
2-fold axes must be at 60° or 120° to each other.
(1)*(2)
111*112 + 121*122 + 131*132 = .48 = cos(60)
(1)*(4)
Ly * Ry + Rg *Rgy + 231 *3, = .52 = cos(60)
(2)*(4)
R1o* Ry *+ Roo*hyy, + R32*%3, = .50 = cos(60)
Check 2
2-fold axes must be at 90° to 3-fold axis.
(1)*(3)
R11* 23 * Ry *Ro3 + Rg M3z = 0022 = cos(90)
(2)*(3)
1% 3 + Ryo* Ry + R3,*033 = =.0171 = cos(90)
(4)*(3)
Ry * g + R *Ro3 + L3, %33 = =.0129 = cos(90)

In the DPI study the difficulty was not that the
complexity of the solution was disguised by the cry-
stal symmetry, but that there were high noise levels
and ambiguous peaks. We were howevereable to cross-
check all the results from the four crystal forms by
using the suitable symmetry equivalents of the max-
ima to find equivalent matrices matching A to B, B

to C and A to C, etc.



4. There is another insoluble problem which can
arise from crystal symmetry which cannot be avoided.
If the non-crystallographic symmetry axis is approx-
imately aligned with a crystal symmetry axis, any
maxima of the search function will tend to smear
into its symmetry eguivalent, and it is often not
possible to be sure where the true peak is. This
hazard is obviously more likely to arise with higher

symmetry space groups.

POSITIONING THE MOLECULE IN ITS CELL

In most of the work done at York we have found the
translation parameters by searching for a minimum R
value between the observed intensities and the dif-
ferent sets of calculated amplitudes generated as
the molecule was moved through the unit cell. This
method was used by Cutfield et al (1974) and de-
scribed fully by Nixon and North (1976). The pro-
gram used {(called SEARCH) uses the fact that if the
partial Fc's, Fcl' Fcz, ses, are calculated for all
the symmetrically equivalent model molecules, orien-
tated according to the appropriate rotation matrix,
then the value of Fc for any set of translations,
t trreee, where the ti are gsymmetrically equiva-

lent, will be given by
F_(hkl) = Fcl(hkl)exp(—zlmﬂﬂgi)
-2irh. + eee
+ Fcz(hkl)exp( 2imh.t,)

So, once the Fci are calculated it is only necessary
to sum them together with appropriate phase modifi-
cations to generate the different sets of Fc's. It
is possible to use the inverse fast Fourier trans-
form for space group P1 using the cell dimensions of
the obsgerved intensity set to calculate all the re-
quired Fci relatively inexpensively. The scale
factor between Fo and charies by as much as 20%
depending on the position of the molecule in the
unit cell, and the amount of overlap in the sym-
metry~-related positions. The scale factor was de-
termined by comparing <F°> and <Fc>, with some al-
lowance for the incompleteness of the model. Earl-
ier calculations had shown that the positions of
correct minima were not very sensitive to the

changes in the scale.

In Beef DPI the space group was C2, where the posi-

tion along the y axis is arbitrary, and the search
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was relatively cheap to run. For haemoglobin space
group P21212 it was necessary to search one quarter
of the unit cell, which took a good deal of comput-
ing resources. However the answer was extremely
sharp. ' It would be interesting to test the transla-
tion function on this problem, and see if there is

any gain in accuracy when using the R factor search.

In any space group with only two symmetry operations
it is important to exclude reflections where either
Fcl or Fcz is weak from the R-factor calculation.
For any such reflection chl is almost independent
of the values of t1 and t2. In general, such space
groups have an R value for a correctly oriented
molecule in any position in the unit cell consider-

ably below that of a randomly wrong structure.

In our experience the characteristics of the trans-
lation parameter search gives some verification to
the quality of the

rotational parameters. If these

are inaccurate, or if there is a poor match between
the model and the new structure, it is impossible
to find consistent clear solutions for the transla-

tion parameters.

VERIFYING THE RESULTS

We use two procedures to check the quality of our
fitting. The first is to run a distance/angles
calculation to see that the suggested fit is not
causing different symmetry models to collide. The
program, PRJANG, does this very quickly. (It has
been modified to step through the unit cell with a
reduced set of atoms, usually the CAs, to chart
possible and impossible locations within the cell; a

very poor poor-man's graphics substitute,)

The best check is to generate phases from the model
in the new cell and see if these phases are any use,
If there is heavy atom derivative data, then these
phases should show up the heavy atom sites. In DPI
they were sufficiently accurate to show sulphur
atoms which had been excluded from the phasing
(fig.3).

The final test of the model is: is it good enough
to allow us to refine it to an accurate structure,
Obviously there will be some gross errors where the

model structure and the new form are different.



Fig.3. Part of the Fobs Fourier map showing the
electron dengity at the sulphur atom (A 11)
excluded from the phasing. Map (a) is un-
weighted and map (b) was calculated using
modified Sim weights (Bricogne, 1976).

Nevertheless in our experience if the refinement of
some parts of the new form can proceed smoothly and
generate phases sufficiently accurate to allow re-
building of the different fragments, then the search
for isomorphous derivatives is bypassed, and a use-
ful accurate crystal structure can quickly be ob-
tained. We have found initial R factors of about
60% for 2A data fall to 30%-35% automatically when
the initial rotation and translation parameters have
been substantially correct. At that point rebuild-
ing and extension of the model has been fairly
straightforward. A word of warning; incorrect struc-
tures have "refined"™ to about 40%, then stuck. Re-
finement procedures will always lower the R factor
whether the model is nonsense or not, and other bio-
chemical criteria are necessary in deciding on the

correctness of any solution.
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APPENDIX 1

The Orthonormalisation Matrix [h k 1] {E| = [H K L] |x
n Yy
These simple expressions for rotation matrices are [ z

only valid when the co-ordinates are given relative
to an orthonormal set of axes. It is necessary to
define a matrix to convert the crystal lattice

(a,b c), to the chosen orthonormal frame (IO,JO,KO).
Different crystal space groups are more conveniently
converted in different ways so there are three op-
tions available in the rotation and matching pro-

grammes.

The real space co-ordinates in the orthonormal frame

are in Angstrdms, 'and the reciprocal space units are

A-L,

s : . "
Option 1 Io is parallel to a, Ko is parallel to ¢
FOEtion 2 Io is parallel to b, Ko is parallel to a*

. . . .
Option 3 Io is parallel to ¢, Ko is parallel to b
Let us summarise the mathematics. The co-ordinates

of the unique molecule with respect to the crystal

axes are
Ei
ni i =1, «¢ee M where n is the number of
Ci atoms in the molecule

From knowledge of the crystal axial system we can
define a (3 x 3) orthonormalisation matrix [Q) to
convert the fractional co-ordinates and the recipro-

cal indices (h k 1) to an orthonormal form.

Define where £ is defined relative to
x| the crystal axes, and x is de-
= [Q] |yl fined relative to the crtho-

[ z] normal axial system. £ units
range from O to 1; x is mea-
sured in As.

Then ' x g
yi = Q17! |n
g

Also, defining orthonormal indices [H K L], with re-
spect to the same axial system as the orthogonalised

coordinators such that
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then [H K L] = [Q)(h k %].

For option 1

l-t = a

For option 2

i~ = a

-a

For-option 3

1t = a

cos
sin

sin

sin

b cos y c cos B
b sin y -c sin B
0 ¢ sin B
Y c
Y cos B* 0 c
Y sin B*
8 b cos «
B -b sin a cos y¥*
b sin « sin y*

cos

sin

cos

sin

a*

a*



APPENDIX 2

Rotation of Axes v. Rotation of Co~ordinates

The interpretation of rotation function maxima often
leads to confusion over whether axes or co-ordinates
are moving. (The Patterson density can be described

as- a set of co-ordinates).

The definition of Eulerian angles are usually given
as rotation of axes, Crowther's system first rotates
the axes about K; by a, then rotates by § about the
new axis, J,, followed by a rotation of y about the

new axis, K.

In practice however we want to match one set of den-

sity to another, relative to a fixed axial system.

Using matix notation it is easy to visualise how
this definition of [Q] affects the co-ordinates. A

co-ordinate can be written as

Lox + Jgy + Koz = Lo Jg Ko |

If we rotate the axes by [Qa] = |cosa =-sina O
sina cosa O

0 0 1
the new vector relative to these axes is

Lix + 41y + K1z = (L 3 Kol (@) (x
¥

z

Rotating the axes
I, 3. K by [QB] = | cosB 0 sinf
[o] 1 [o]

-sinf 0 cosf

gives a new vector

EZX + I,y + Koz = [I;, Iy Kyl [Qa] [Qﬁ] x
Y
and finally
I3x + Jay + K3z = [I; Iy Kgl [Qa] [Qﬁ] [QY] x
Y

where

[QY] = fcosy =-siny

siny cosy
0 0 1
and
Q] = [Qd] [QB] [QY]

Obviously the final co-ordinates relative to
[r, 33 K] are
1 [Q;] [Q. ] |x
a Y
b4

B

implying rotation of the co-ordinates, by first vy,

then B, then a.



APPENDIX 3

This is based on Tony Crowther's'description of the
Fast Rotation Function in the book "The Molecular
Replacement Method" and his program description.

The conventions used here are those used in the pro-

gram which are different from those in the book.

The rotation function is generally used to correlate
a spherical volume of a given Patterson density with
rotated versions of either itself or another Patter-
son density. Since we are dealing with rotations of
spherical volumes, it is likely that a more natural
form for the rotation function than that given by

Rossmann and Blow(10) should be derivable if, in-

stead of working with the Cartesian Fourier compon-

ents |Fh|2 of the crystal, we expand the Patterson

density within the sphere in terms of more appropri-

ate functions, namely spherical harmonics.,

Using spherical polar co-ordinates (r,0,¢) for the

vector B we can expand

P(r,9,¢) = X
Amn

29mn slmn(r'e'¢) *

We define the normalised expansion functions:

A “m
S mn(r,e,¢) = Jl(klnr) Y1(9;¢)

2
A =
Here J2 is a normalised spherical Bessel function of
~
order X and kln is such that an(kxna)=0, (n=1,2...)

where a is the radius of the chosen sphere of

Patterson density.

/2

/j\l(k r) = 3/—2-—
a 32_1(k1na)

on (k nr)

3%

A

The normalised spherical harmonics Y;(6,¢) are given
in terms of the associated Legendre polynomials P;
by

Am _ simf-m \/Q21+1)
Yl(9,¢) = 1| l y

When integrated throughout the sphere of radius a,

(l-lml)l
(2+|m|)l

md

m i
Pl(cos 0) e

the S

oo then satisfy the orthogonality relation:
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21tf1r Ia 2 .
f S* s r? gin® dr 49 d¢ =
6=0 9=0 r=0 mn "2'm'n’

(1)

=6,,,0 6

2 "mm' “nn'

Evaluation of almn

=f »ptr,0,0 7% ™ 2 o
almn-r<a r,8,0) 3 lko r) ¥, (8,¢) r° sind dr d6 d¢

The Patterson density can also be represented as

P(u) = P(r,0,¢) = i z IFhIZ exp(2ni u.h)
Vh ~

where the vector u can be represented in spherical
polar co-ordinates (r,0,¢) and the reciprocal lat-

tice vector h is represented in spherical polars as

(Rh,eh,éh).

So
almn
" A Am¥
=—3 |F |2 [ exp(2miu.h)j (k, r)Y" r2 sin® drdeds
h ——""2""&n 2
v h ~ r<a
-1 2 o
. i IFhI T an RrrOn !

where Tlmn is the Fourier transform of a normalised
expansion function

i3 * Sgmn
lattice points h of the crystal.

Feshbach, p.1467):

, sampled at the reciprocal

But (Morse and

/™ ae [ sino de e2mid-h ym*

(6,9)
0 2 L

= 4 A Am* .
= 47 i Y2 (Oh,éh) Jl(zﬂrRh)

so

)
* = an it "

* a . 2
2 on 0 @, r®) { 3y (k, 1) 3 (2m2R )r? ar.

an . 2 _
g Jl(klnr)Jl(zﬂrRh)r dr =

/2 a’ *, 3, (3, a)d, (2maR )
372 2 4202 An"2-1 "4n 2
a 31_1(k1na) (kln 4T Rh) )
k., j,(2nar, )
=/ l; ; Zh
[4m R2 - kln]



klnjl(znakh) Anr

l —
TF = 4n i” J2a —=—————— ¥ ' (0,3 )
Amn 2p2 _ 12 1 h""h
[an?R2 -2 ] 7
X, 3, (2maR ) . 108Z% - mp )
= 4n V/2a ——&f—&—-——§h— P:(cos Oh) e 2 h
2
[An Rh kln]
80 almn =
. . T
4n v 2a 5 IF lzklnjl(znanh) ‘sm(cos 0.) el(lz - m@h)
v on R [en22 -2 ]t h

Note that the transforms T
Amn

are orthogonal on the infinite domain in

of the expansion func-
tions s,

the transform. Since the summation over h used in

will be truncated after a finite
Lmn

the estimated coefficients a
Amn

Better estimates could be found

generating the a
number of terms,
will be in error.
by expanding the Patterson density P(r,0,¢) directly
in terms of the Slmn’ which are orthogonal on the

finite domain r<a. This would require prior calcu-
lation of the Patterson density from the intensi-

ties.

If we perform a rotation [Q] specified by Eulerian
angles (a,B,y), a rotated harmonic Q{Y;} of degree 2
may be expressed as a weighted sum of the (24+1)

unrotated harmonics Ym of degree 2 in the form

2
(Hamermesh, 1962)(7):
An b 1% Aq
{y (6,00} = £ DT (Q) ¥Y:(8,9) (2)
2 mq L
q=-l
The D A (Q) have the form:
mg
0% @ =™ &t (p) &I
mg mg

The matrix elements diq(ﬁ) of the rotation group can
be conveniently calculated by recurrence relations
1963) 1),

tions of spherical harmonics and need therefore to

(Altmann and Bradley, They refer to rota-

be calculated only once for all rotation functions.
If we now have two Patterson densities Pl(r,9,¢) and

Pz(r,9,¢), we may expand them within the spherical

volume r<a in the form:
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~ Am*
Jl(klnr) Yl (6,4)

Pl(r:el¢) = I almn (3)
Amn
r Am'
P,(r,8,¢) = % bl,m,n,'Si,(kl,n,r) y;,(e,¢) (4)

L'm'n'
The rotation overlap is then defined as:

R(Q) = [
sphere

Py (r,0,¢) @{P,(r,8,¢)} r? sind dr d6 d¢

where Q{Pz} is the rotated version of P, resulting

from the rotation Q(a,B,y). Substituting from (3)

and (4) gives:

R(Q) = [ %

An*
(anr) Yl (8,¢)
sphere imn

.
almn Jl

A ]
2 Paranr Tge (e 9{32,(e,¢)}dv
m'n

Substituting for the rotational harmonics from (2)

we obtain:

R(Q) = [ =

/\m*
(klnr) Yl (6,9)
sphere imn

* e
3mn g

ll
m'qg

z

2'm'n' (k 'n'r) Lo
m'n

~ A
b mins Iy (K, Yy, (0,0)av

Using the orthogonality relations (1) for the expan-

sion functions this now reduces to:

_ 2
R(R) = I By Parg (@)

at
Amm’n Amn

We may perform the radial summation n independently

of the rotation Q and so writing

C =z

Amm* n aEmn blm'n (s

we get finally:

R@) = T o, Di,m(Q)
fmn'
or
R(B,a,y) = I (Ze, , at, (8) grin'y-ima (g,
mm' £

where [Q] is defined in terms of the Eulerian angles

a, B and y.



Note:

The rotation matrices for spherical harmonics are
calculated from recurrence relations (27) and (28)
of Altmann and Bradley (1963), Notice however that
because we are considering a rotated density rather

than a rotated axial system, the Dl (Q) that are

ng
used in the Fast Rotation Function are the Hermitian
conjugates (transposed complex conjugates) of those

used by Altmann and Bradley.

It is now apparent that by using expansion functions
appropriate to the rotation group (rather than the
Fourier series appropriate to the translation group
of the crystal), the rotation function has been

The coefficients ¢ refer

Rmm’
to a particular pair of Patterson densities and are

The

split into two parts.

independent of the rotation Q. coefficients

Dﬁ,m(Q), which contain the whole rotational part of

the problem, refer to rotations of spherical harmo-
nics and are independent of the particular Patterson
densities. This new form for rotational correlations
is comparable with that derived previously for
translational correlations (Blow, Rossmann, Harding

and Coller, 1964; Crowther and Blow, 1967), where

the same type of separation occurs.

Fur thermore, because of the form of the rotation co-
efficients Dﬁ'm two of the three summations in ex-
pression (6), those over m and m', occur as Fourier
series. They wmay therefore be performed very effi-
ciently by using fast Fourier summing techniques

(Cooley and Tukey, 1965).

Computation of the fast rotation function therefore

proceeds as follows.

ments dﬁ,m(ﬁ) of the rotation matrices for each B.

We set up and store the ele-
This need only be done once.

"~
The Bessel function jl(Z“aRh) are calculated from
the standard recurrence relation, taking care to set
jl(X) = 0 for small values of the argument since the

recursion otherwise diverges.

The normalised associated Legendre polynomials
Sz(coseh) are computed by backwards recursion using
Wiggins and Saito (1971) Algorithm 2, modified to
generate the normalised functions. Note that for-
ward recursion using the standard formulae is highly

unstable,
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From the two sets of expansion coefficients we cal-
culate the coefficients c
imn'
each § we perform the £ summation in ex-
(6).

a fast Fourier transform program which

using equation (5).
Then for
pression The resulting coefficients form the
input to
produces values of the rotation function for all a

and y for each B.

Preliminary studies indicate that this new way of
evaluating the rotation function ig at least 100
times faster than previous methods. Furthermore,

the approximations introduced in previous methods by
truncating the interpolation function G and by using

only large values of IFh‘z (Tollin and Rossmann,

1966) need no longer be made. The fast rotation
function is therefore potentially more accurate,
though whether it will be significantly so in prac-
tice remains to be investigated. A more detailed
description of the fast rotation function and its

applications is in preparation.

These are some further notes from the program de-

scription,

S. SYMMETRIES OF THE COEFFICIENTS almn

(a) Because the Patterson density P(r,9,¢), is real

the almn

Friedel relation, namely:

satisfy a condition analogous to the

a =

- m *
mn -1 almn

Hence the coefficients c

omm’ in the rotation func-

tion summation satisfy
m+m'
= (-1)

c

ct
L-m-m*

mm*
But the rotation matrices dﬁ,m(ﬁ) are real and sat-

isfy

2

1
g - oy™m g '
-m"-m

(8)

so finally the cocefficients f , satisfy f  =f* '
mm mm -m-m
and the final Fourier series defining the rotation

function has a real sum as expected.

(b) The Patterson density is centrosymmetric so only

thoge coefficients with % even are non-zero, because



of the symmetry of the spherical harmonics Y;(9,¢).

(c¢) The spherically symmetrical terms 2=0 may be
omitted as they contribute only a constant to the

rotation function.

(d) If Patterson P, has a p -fold rotation axis

along.Ko, only those a for which m is a multiple

Amn

of p, are non-zero. If Patterson P, has a pz-fold

rotation axis along Ko, only those bl'm'n

The unit cell

, for which

m' is a multiple of p, are non-zero.

of the rotation function is then reduced to

0<a<2n/p and 0 < y < 2n/p,. We can take advan-

tage of this when computing the final Fourier series
~imr-im'r

b fmml and compress the coefficients

fmm' : the Fourier summation then computes only a
single unit cell, which is sampled 1/p3 as finely in
a and 1/p, as finely in y as it would be if there

were no symmetry.

6. NUMBER OF TERMS TO BE INCLUDED FOR A GIVEN
FOURIER CUT-OFF

If intensities are to be included out to a Fourier
cut-off of RESMAX A for a cut-off sphere of radius a
A in the Patterson density, the maximum value of m
and hence of 1 that should be included is approxi=-
mately

9 . _2na

X
MaX  RESMAX

The peak of the transform T n(R,@,@) of an expan-

m
sion function Skmn(r’e’¢) occurs at a radius of
approximately
. kkn
Rln LT
*2n

21 RESMAX

should be included. This may be written as

2na . _
where Jk(Kkn) =0

RESMAX

Kkn <

As presently implemented the program allows a lar-

44

gest value for 2 of 60,
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APPENDIX 4

We know [Q], a rotation matrix and the symmetry [SZi] g, [S1j] £,
matrices for the crystal space groups [S1j1j =1, ny| te ul}
nsym; for crystal 1, and [SZi]i = 1, ....nsym, for Ca ¢,
crystal 2.

Now n,| = n (2)
Cz Cl
[Qlll X9 X [51 referred to orthonormal axes
Yol = |v1 Matrix manipulation eguating gl from equations (1)
z2 2] n
91
and x E| [E] referred to crystal axes and (2) gives
y| = (@17 In
-1 - ~1 -
z G Q1 (,1 [Q,] = [Slj] (Q,] [Qij] (Q,] 1 [SZi]
i.e. (@)1 171 gy (9171 |g i.e.
ny| = m (1)
g, g, (@;51 = (Q17h (840 (@) (0,1 (17} (5,17 I[g,)
If [Qij] is the rotation matrix to rotate The generation of the [Qij] is easy once [911] is

known and the programme now tabulates for each (Qll)
which gives a maximum overlay all the [Qij] and the

sets of («,B8,y) and (w,$,¢) which they define.
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I. INTRODUCTION

Small crystals (g0.15mm) of 6-phosphogluconate de-
hydrogenase (6PGDH) extracted from Bacillus stero-

thermthilus(l)
tron data to 4.5

have been used to collect synchro-
K(Z). Using this data the space
group and unit cell dimensions have been determined
(2). The space group is P3221 with cell dimensions
a=b=123.1% ¢ = 147.74, @ = B = 90°, y = 120°.
The structure of 6PGDH extracted from sheep's liver
has been solved to a resolution of 2.6£& by the

(3)

Oxford group They kindly sent us a set of
atomic coordinates which have been used for the
molecular replacement calculations discussed in this
paper 6PGDH is a dimer of molecular weight 100,000
daltons. The dimer axis is the sheep liver crystals
1/4,

the two monomers being related by the symmetry op-

(space group C2221) is crystallographic at 2 =
erator - X, ¥, 5 - #. The dimer axis is non crystal-
lographic in the bacterial cell. The 6PGDH monomer
is a roughly ellipsoidal molecule with méjor axes of
90x60x608*.

2. SELF ROTATIONS

The program ALMN written by Tony Crowther and exten-
sively modified by Eleanor Dodson was used to cal-
culate the Rotation Function for the sheep liver

rotated onto the bacterial Fo Two separ-

F

calces bs.
ate datashells were used. These were 4.5-6& and
6-10&%. The outer radius of the Patterson sphere of
integration was varied between 10 and 40&. The best

results were obtained using a sphere of 3-304.

*Paper presented by P.D. Carr
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Two peaks were observed on the maps produced using
the 6-10A datashell. The first was at afy = 90,30,
90 with a peak height of 16.8 (relative to an origin
peak of 50). The second was a smaller peak at 0GRy =
30,20,30, with a peak height of 13.2. Both of these
peaks were fairly broad extending over a large range
1). The rest of the

in Eulerian space (see fig.

Eulerian maps were very flat.

When the 4.5-6A datashell was used the second of
these two features was not observed, the original
peak at afy = 90,30,90 being the only major feature
of the output Eulerian map. The peak was sharper for
this datashell although it still extended over a

large area of Eulerian space (see fig. 2).

Changing the size of the integration sphere altered
the peak heights but did not alter their position on

the output maps.

From the Eulerian coordinates of the major feature
in the self rotation maps one is able to deduce the
two spherical polars (w, #) defining the direction
of the dimer axis in the bacterial cell. However in
this particular case # = 90° (i e perpendicular to
a crystallographic two fold) which leads to an
ambiguity in the w value. Therefore from the self
rotation calculations we were able to deduce that
the dimer axis in the bacterial cell was at an
angle of either [5°
30° to b.

or 105° to ¢, 90° to a and

3. CROSS ROTATIONS

Using the sheep liver atomic cordinates placed in

a Pl cell, structure factors were calculated for
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Table 2 Value of the Rotation Function (RF) obtain-

1 L] .
Table | The three 'best' cross rotation peaks, ed at points corresponding to (i) w, #, X =

their symmetry equivalents and directional 105,90, 180 (or Lane group equivalents) and

cosiner. Patterson sphere. 3-308, datashells,

4.58 and 6-10R.

(ii) w, &, x = 15,90,180 (or Lane group

equivalents ).

. 8 Y Equivalent . ¢ x [ Monomer Dimer
~— 8 RF, RE, RF,
35 &5 -1% aiB,y 67.3 115 49,0 ¢ Y 4.5-6 6-10 ©.5-6  "%.10
(i
158 45  -1S{ 120+q,8, v 23,8 175 143,2 90 15 21| -35 14 -4 19
45 20 310| =28 -5 -4 -6
95 45 165 6044,-8,1804y 151.6 55 107.1 15 20 230 30 -8 7 -7l
: 15 20 50 “ 36 -4 -6
85 135 165 120-4,180-5,180+y| 108.7 =130  154.6 45 20 130 3 -28 7 -1
35 25 320 -19 -12 14 1
25 -135 -1S| €0-a,-18048,y 87.9 =70  135.2 25 25 220 | -32 -27 -13 -95
25 25 0| -14 a 14 1
1¢5 <135 -1S| 180-a,8-180,y €5.4 <10 1614 3 25 140 -5 -53 -13 -95
30 30 33| -8 -22 16 1
30 30 210 4 -33 23 -56
30 30 30 3 a 16 1
0 s, 40.%  102.5 100.6 30 30 150 -19 -2 23 -56
55 &0 2 acbey 20 35 33 5 -38 -22 -35
0 20+ 349,41 -17.5 15044 35 35 205 19 -3 2l =24
175 60 301 120ta ¥ 20 35 155 | -6 10 25 -24
-60 - 60 g, 8, y-180 117.5  42.5 €06 40 35 25 41 27 -22 =35
us -6 150 0% e=goy-l 20 40 335 13 -26 0 -28
- -6,180-p,y-180 .3 -162.5 1367 | 0 40 205 6 8 1 -1
65 120 -150 | 12C-4,180-8,y 111.3 -1s A i 58 58 : 2
_ . .2 -102. 9 200 40 155 | -39 6 1 =31
5 -120 20| 60~q, 8180,y 80.2 -102.5 123 non s 32 .8 o i
. - . 45 45 200 5 -22 -9 -8
125 -120 30 | 180-q, 8~180, y 6U.6 -42.5 187.6 D H % 58 12 o e .
1S 45 160 | - 31 -1 -9 -58
15 S0 340 3 -16 39 4
- 45 50 200 i -6 -16 -61
110 g0 125 G.8.y 136.6  ~97.5 138.6 45 50 20 4a7(54) 63 39 49 e
. 15 50 160 | -52 -20 -16 -61
50 <80 =55 | a~60,-8, =180 93.0  ~37.5 £0.1 10 25 3 H - 1 e
. SO 55 200 -36 -12 -35
170 -20 =55 |a 460, -8,y -180 4.9 22,5 1314 % 55 20 8i67) 51 ik 4
0 | - - -
10 100 =55 | 120-0,180-8, 160 |307.8 122,85 107.1 1w s e 33 -3 12000 Tos
50 s | -24 - - -15
130 100 -55 24C-a,180-8, v~14d0 62.9 -177.5 118.7 50 gg lgs i‘ I(IJ: S (44) 100 ¢
10 165 -14 -11 -35
0 -109 125 | Jeu-o,-180+6, v 1296 62,5 170.4 S o 1 it -
55 65 195 | =10 9 6 -33
55 65 15 | -1 99 -1 9
5 65 165 24 -18 6 -33
5 70 345 46 15 -4 . 11]
55 70 195 22 5 -8 -10
5 70 15 | -8 1 -4 80
S 70 165 | -9 5 -8 -10
5 95 345 19 23 -21 8s
S 75 195 11 12 -1 8
5 75 15 | -7 62 -27 85
5 75 165 0 0 -1 8
S 80 345 | -3 23 -30 110
S 80 195 | -23 25 =& 32
55 80 15 | -1o0 7 -30 101
5 80 165 19 -3 - 32
0 85 345 ‘4 13 -12 123
6 85 195 | -11 3l 37 53
60 85 15 | -16 101 -12 123
0 85 165 16 -2 37 53
t dicer related to (50,60,10)
(1)
30 78 950 | -8 29 21 ~24
30 15 270 36(82) -72 21 -24
80 80 80 2 12 aQa -30
100 80 100 | -28 12 -46 -23
160 8o 280 3 ~55 41 =30
80 80 260 | =7 -a -6 -2
100 85 5 ) -26 0 -1%
80 85 105 5 -4 11 -100
80 85 285 a -20 0 -19
100 85 255 2 -4 n -100
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both a 6PGDH monomer and dimer. These F
calcs

used to perform cross rotation functions using the

were
same datashells, sphere of integration and tempera-
ture factors as were used for the self rotations.
Problems were encountered in trying to decide on an
appropriate integration sphere for the cross rota-
tions because of the size of the 6PGDH molecule.

Any  sphere chosen will necessarily either exclude
large numbers of intramolecular vectors or include
large numbers of intermolecular vectors for. this
elliptical molecule. The limitation of the maximum
order of Bessel functions used being 30 also restri-
cted the range of integration radius, a, and maximum
resolution, RESMAX, to §E§g§i‘< 30. Several combina-
tions were tried and the results presented in this
paper are those obtained using a spherical shell
with an inner radius of 3% and an outer radius of

30%.

The resulting maps had many peaks and bands of high
density on them. Unlike.the self-rotation maps the
peak heights and positions were vulnerable to the
choice of calculating parameters. The peaks were all
listed and checked for consistency between data-
shells and monomer/dimer runs. Only three peaks
showed any real signs of consistency and for these
and their symmetry related positions the spherical
polars were calculated. None of these were very
close to the wd = 105,90 or 15,90 that we were

expecting (see table 1).

As simple inspection of the major peaks did not
reveal what we were expecting we decided to predict
whgre the cross rotation peaks would occur, using
our knowledge of w and # from the self rotations
and the fact that the dimer axis is parallel to b

in the sheep liver cell. Using the expression;

[e] [o pCl
1 = DC2
0 DC3

Cc222, P3,21
expressing the directional cosines DC!,DC2 and DC3
in terms of spherical polars and the [le], [sz]
and [ng] elements in terms of Eulerian angles
ofy then by comparing matrix elements we obtained
the following expressions:
cos#®

- cosd. cosB. siny - sino. cosy = sinw.

- sina. cosf. cosy + cosO. cosY = sinw. sing

sinf. siny = cosw
using these expressions, values for a and Yy for

each B section were calculated for both w,d = 15,90
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and 105,90. Table 2 shows values of the cross rota-
tion function obtained for the monomer, dimer and
both datashell runs at these calculated positions on

the output Eulerian maps.

Only one position gave high values for all four runs
this was at oBy = 50,60,15. This was in the same
area as the oBy = 55,60,30 peak which was one of the
three hopefuls from simple inspection. A similar
procedure was carried out for the smaller self rota-
tion feature but none of the predicted peaks gave
consistency over all four runs. The spherical polars
for aBy = 50,60,15 were wfy = 105,90, - 62.4.

4. TRANSLATION SEARCH

An R-factor search using the program SEARCH was con-
ducted on a I& grid for both a P3,21 cell and a
P3,21 cell, as we did not know which of this enan-
teomorphic pair was the correct group. A finer 0.2%
grid was used around the translations with lowest R-
factors. The minimum R values obtained were 52.75%
for the P3;21 cell and 50.30% for the P3,21 cell.
Neither of these were strikingly low compared to the
minima on other sectionsnor were they very close to
457 which one would expect for a good fit of the

model structure.

The programs LSQKAB and PRJANG were used to apply the
rotation matrix, translation vector and symmetry op-
erations to the sheep liver atomic coordinates and
also to check for overlapping of the Ca atoms in the
bacterial cell. The results show that fewer overlaps
occurred for the translation containg symmetry op-

erators when the P3,21 cell was used.
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THE MOLECULAR REPLACEMENT METHOD
AND GRAMICIDIN S

by

M.M. Harding
IPI Chemistry Department, Liverpool University, Liverpool L69 3BX

1. INTRODUCTION

The molecular replacement method was the key to
solving the structure of the hexagonal form of
gramicidin S, so I wish to take a look back at the

history of this.

Gramicidin S is a cyclic decapeptide antibiotic
which was characterised by Synge and others in
1948(1,2)

L-pro - L-val - L-orn - L-leu - D-phe

l

D-phe - L-leu - L-orn - L-val - L-pro

Very soon Dorothy Hodgkin, Gerhardt Schmidt and
Beryl Oughton (Rimmer) were looking at a variety
of crystalline forms, contemplating a crystal

structure determination, and building models.(3)
Late in the 1950' s the hexagonal N-acetyl form,

with chloro-, and iodo-derivatives was

bromo-,
chosen (see table) and data collection went ahead.
(I became involved in the work at this stage). No
solution for the structure was forthcoming

despite all these heavy atoms, probably because
the isomorphism was not very good and the

From 1965

onward I made a series of attempts to solve it by

pseudosymmetry confused the. issue.

what 1s now known as the molecular replacement
method.

As I see it the molecular replacement method
involves three stages:

(1) finding a structure model for all or a
sufficiently large part of the molecule in the
unknown structure,

(ii) finding the orientation and position in the
cell of the model structure, usually by rotation
and translation functions, sometimes by structure
factor calculation,

(iii) calculating phases from the model and an
electron density map which allow the remainder of
the structure to be found and refined. It is only
in stage (iii) that you can know you have been

successful .
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None of the early attempts with gramicidin S were
successful, but many times during the period
1965-78 new models for the gramicidin S molecule
appeared and were tried. I shall describe the
series of models, and then the methods used to try
to fit them.

2. THE MODELS

The main models were
a) one of Hodgkin and Oughton's models, based on
a F—sheet(B) “

b) a model put forward by Sheraga et al ,

resulting from energy calculations, and similar to
a G—sheet, )
c) a model put forward by Liquori et al ,

ol
again based on energy considerations, but morekin

type,
d) a model based on torsion angles deduced from

(6) and more like a)

n.m.r. data by Ovchinnikov
than b) or c)
e) the molecule of gramicidin S as found in 1978

(7 .

in York by the crystal structure

determination of its urea complex.

In every case the backbone polypeptide chain and
ﬁ—carbon atoms were used, but side chains were
not, on the grounds that the side chain might

adopt different conformations.

3. METHODS OF SEARCHING

At an early stage, a rotation function was used,
and indicated a ﬁ—sheet orientation roughly normal
to the g_axis; any more precise results from
rotation and translation functions seemed to be
precluded by the multiplicity of orientations
present as a result of the crystal symmetry,
P6522. The main search was a stepwise one,
looking for regions of structure factor agreement,
preceded by searches for regions where van der

Waals contacts were acceptable . These search



methods were very much limited by the computing
power available at the time, but assisted by the
symmetry and pseudosymmetry; the latter was

assumed to hold exactly.

Fig. 1(a) Hodgkin and Oughton model of
gramicidin S. Hydrogen atoms are omitted. Oxygen
atoms are largest, then nitrogen, then carbon:

(below) view along the molecular twofold axis and
(above) view nearly normal to this axis. In the
first' view the atoms in the upper part of the

molecular are shaded (Redrawn from Schmidt et al.

(1957).

Fig. 1(b) Experimentally determined conformation
of gramicidin S in trigonal crystals (Hull et al,
1978); (beleow; view along the approximate
molecular 2-fold axis, and (above) view normal to

this axis. Shading as in fig. l{(a).
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The model molecule must be placed on a
crystallographic diad where it has two degrees of
freedom, rotation about the diad (¢) and
translation along it (D); the twofold axis may be
parallel to [1010] or [1120], and the space group
may be 96122 or P6522. The structure factor
calculcations were done for 30-90 reflections;
these reflections were chosen carefully so that
the largest and the smallest observed reflections
from each parity group were included. The
structure factor agreement was assessed by a
correlation coefficient; an example for one model
is shown in Fig 2.

3 .
N.Sw-\ ,Fal bddaun
2 b] Vaw 'd.\.r
Woals Coubrcty
{1
1
2
3
% . -

[’ % 20 tso 5o o — ¢
Fig. 2 Structure factor agreement as shown by
the correlation coefficient between Fobs and
F evaluated in the region of space where van

calc

der Waals contacts are acceptable. The model was
Liquori's in 1967, with 2-fold axis parallel to
[1010] in P6,22.

4. DISCUSSION

Success was apparent when the phenyl rings and
parts.of other side chains turned up clearly in
the map phased on the York model. The structure
which emerged is shown in Fig 3. The molecules
are tilted in relation to the sixfold screw axis,
and their repetition up it makes a twisted frsheet

similar to that found in proteins.

Subsequent work on this form of gramicidin S has
been assisted by a new data set, from Yves Mauguin

in Paris, and by much computational help from John



Campbell.

asymmetric unit have refined nicely and the third

Two of the three half molecules in the

is in a mess and it is still not entirely clear
what is wrong. The two good molecules are not
significantly different from the York model in
their backbone conformation, but some of the side

chains are different.

But it would be useful to look backward through
the models tried and see why we did not get a
solution earlier. The penultimate model,
Ovchinnikov's, was fitted in the cell with the
correct tilt and with the centre of gravity in the
right ‘position, but the mirror image of the
correct peptide chain orientation appeared to fit
best; the model does not have the pronounced
distortion from a simple [%sheet that the true
structure does. Compare fig l(a) and 1l(b).
Looking further back the tilt and position in the
cell were approximately right in all cases where

the model was of a ﬁ— type.

So, perhaps, not surprisingly, the lesson we
should learn from this is that a model with
stereochemistry close to that of the true
structure is essential if the molecular

replacement method is to work.

TABLE

N-acetyl gramicidin S

(C32 Hyg Ng 06)2’ MW 1140
Hexagonal
a=27.5¢c=55.4A
Spacegroup P6522 (or P6;22)
Z = 18 implies 3 pentapeptides
per asymmetric unit, each decapeptide molecule
must lie on a 2-fold symmetry axis.
Oscillation photographs, Cu&i radiation,
amin = 1.9% along a, 1.6 along o
pseudosymmetry relates the three chemically
identical peptides in the asymmetric unit
approximately: x y 2
dax, 34y, 342

2
24x, vy, ez

further details in reference (8)
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Fig. 3 Structure found for hexagonal N-acetyl

gramicidin S. One molecule is viewed along its

two-fold axis, and two more are related by the

six-fold screw axis along c. Val. ine and leucine

side chains are omitted for clarity.
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P. R, Evans, G.W.Farrants‘, M.C.Lawrence' & Y.Shirakihara

MRC Laboratory for Molecular Biology,

The T-state conformation of B,stearothermophilus

(PFK), and the

conformation of E.coli PFK, have been

phosphofructokinase R-state

solved at

low resoluotion from the atomic model derived
earlier from the crystal structure of
B,stearothermophilus PFK in the active R-state
conformation(l). This paper briefly describes

the solntions to illustrate how structures

corresponding to known models can be located in

low resolaotion diffraction data, and tells a
cautionary tale about using heavy atom
derivatives to check a molecular replacement

solution,

1. T-STATE B.STEAROTHERMOPHILUS PFK

B,stearothermophilus PFK
group P2,2.2,, cell dimensions 131.5, 114.7, 96.2
ffrom 2M 10mM
analogue of the
These
the asymmetric
2.93

present, data are available

crystallizes in space

potassium tartrate with
2-phosphoglycollate (an
allosteric inhibitor phosphoenolpyruvate),
have one

crystals tetramer in

unit. They diffract rather weakly to about
resolution, but at
only to 78 resolution. All the calculations
from 10 to 7R

The first evidence of the

described here have used data
resolution.

of the

location
molecular 222 axes came from the mnative
Patterson function. This showed a large peak on
one of the
0.44:

molecular dyad axis approximately parallel to the

Harker sections at nvw = 0.23, 1/2,

this can be interpreted as arising from a

crystallographic y
x=0.12,2=0.47 in

_axis, passing through

the x-z plane. Fignre 1 shows

the 180° rotation section of the self-rotation

function, projected along the crystallographic y

axis. This shows the three orthogonal

crystallographic dyads as 1large peaks, the

central one obscuring the
The

parallel molecular ¢

axis. other two molecular axes are on the

Current addresses:

Department of Biochemistry, University of
Sheffield, Sheffield S10 2TN

* Institute of Electron Microsco y, South African
Medical Research Council, PO on 70, Tygerberg
7505, South Africa

53

Hills Road, Cambridge CB2 2QH

Figure 1. A
the y

stereographic
axis of the

projection down
T-state
B.stearothermophilus self-rotation function.
The three molecular dyad axes are marked p, g

&r.

periphery (marked p and r in figure 1) rotated by

about 20° from the crystallographic axes: these

three molecular axes p, q & r form a 222 set.

The identification of which of these axes

corresponds to each molecular axis in the model

from the R-state conformation was done from a

cross—rotation function between the T-state data

and structure factors calculated from a R-state

tetramer placed in a large Pl unit cell (208 x
208 x 208 &). The four peaks expected from
superimposing two tetramers are reduced to two

because of the molecular dyad lying parallel to

the crystallographic screw dyad. The largest two

peaks in the cross—-rotation function were found

in positions consistent with the orientation of

the .molecular axes from the self-rotation

function.

An R-factor search was used to 1locate the

position of the centre of the tetramer along the
y axis (using the position on x and 2z from the

native Patterson), and

to improve the rotation
parameters. The top curve in figure 2 shows the
search along y with the molecular axis parallel
This

small dip in the R-factor.

to the y axis. orientation gives only a
The other curves show

the search with the axis tilted by + or —4°



7
R ——"—WQ\\’__’ 0
Ve \
61 / -4,
7 \
/ \
5 / \
\
/
/ \
/ \
/’ bad contacts
/
!
/
//
\
\ //
\ e
\ —
-~
Y
Figure 2, R-factor searches for the
B,stearothermophilus T-state molecule (solid
lines) along the y-axis. The four 1lines
correspond to orientations of the model

(defined by Eulerian angles p 6 ¢) of
-200,0,0; -20°,0,-49; -200°,0,+409; and
-19.89,-2.8°,+4.7° in descending order. The
dashed 1line is a crystal packing search, the
number of a-carbons less than 61 apart for
each position of the tetramer.

around the z axis, and with the axes in the final
orientation from

below).

the rigid body refinement (see
This last curve and the one at +4° tilt

show a good minimum. This example shows how the

R-factor search may be used to explore a part of
the 6-dimensional rotation-translation space of

the solution, once an

approximate solution is

found. In this way the rotation parameters may
be improved over those obtained from the rotation
function, which is relatively inaccurate because

it is based on Patterson functions. Also shown

in figure 2 (dashed line) is a crude estimate of

the number of bad contacts between
crystallographically related molecules (the
number of a-carbons closer than 68 to each

other). For these crystals, the packing search

is not very discriminating between alternative

positions, but it does 1limit the

about 1/3 of the

possible y
cell. These

a clear indication of the placing

positions to
searches give

of the R-state model in the T-state cell.

(ii) Refinement

Starting from the model of the R-state tetramer

rotated and translated into the T-state cell as
described above, three methods of refinement were
used to try to improve the model, using data from

10-78 resolution.
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(a) Rigid-body refinement taking the subunit as

the basic unit, and maintaining the 222 symmetry

of the tetramer. This refinement included the 6

parameters defining the orientation and position

of the subunit relative to the molecular axes, 6

parameters defining the tetramer in the cell,

plus a scale factor. During the course of this

refinement, the sobunits rotated by about 3.5°

about the molecular p axis,

(b) A smoothed individual atom refinement, in

which individual atom shifts for main chain atoms

were taken from the gradient of the difference

map(Z), and were then smoothed out by taking a

running average along the main chain, This was

first done with the four subunits treated

independently: it was found that they tended to

move in directions related by the molecular

symmetry, which suggested that the refinement was

improving the model. Later refinement was done

for one subunit wusing the averaged difference

map.,

(¢) Rigid-body refinement using CORELS(3),
breaking each subunit into 2, 6 then 8 rigid
groups, The four subunits were kept equivalent

by averaging the transformations for each group

over the four subunits between each cycle(4)

The results from these refinements were not
conclusive becaumse of the limited resolution of
the data, The change in quaternary structure is

clear, a rotation of the p-axis dimer relative to
the other dimer by nearly 8° about the p axis.

Within each subunit there are structural changes,

but they are difficult to characterize from
refinement at this resolution. Also the
refinements did not account for all the changes

in structure, since the
both

significant

difference maps after
still

could not be

refinements (b) and (c)
which

showed
features

interpreted at this stage.

(iii) A cautionary tale

It is sometimes difficult to know if a proposed

molecular replacement solutiomn 1is correct. At

one stage during the analysis of the PFK T-state
structere we had problems with the translation
search (which later went away), and during this

period we did a good deal of work with the

tetramer 78 away from its correct position along



y (at y=218 instead of 14%), but in the correct

orientation, Since we were unsure of the truth

of the solution, we tried to use a poor mercury

derivative (the best we had) as a check on the

calculated molecular replacement phases, by

calculating a difference map., This map had peaks
at many of the predicted mercury positions, mnear

the three thiol groups on each subunit, giving

the misleading impression that this solution was
correct, It is true that when we had the correct
solution, the mercury peaks were higher and 1less
sensitive to the exact orientation of the model,
but with 5 of the 6 rotation—translation
parameters correct, the phases were sufficiently
correct for the presence of heavy—atom peaks to
give. us a false indication that we had the right

solution. The presence of peaks in a heavy-atom
difference map is clearly not sufficient evidence

for the complete truth of a proposed solution.

2. R-STATE E.COLI PFK

The R-state B.stearothermophilus model was

located in the E.coli crystal cell in a similar

way to that wused for the B.stearothermophilus

T-state crystals, rotation functions and
E.coli FPFK
2-methyl-2,5-pentanediol
and Mg/ADP, in
group P2,2.2, cell dimensions 112.0, 85.4,

96.4 8 with half a

using
R-factor searches at 68 resolution.
crystallizes from
containing fructose—6-phosphate
space
tetramer in the asymmetric

unit. The molecule must therefore lie somewhere

Figure 3. A stereographic projection down
the z axis of the R-state E.coli
self-rotation function. The three molecular

dyad axes are marked p, q 8 r.
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. The orientation of the model was

on the

crystallographic dyad axis along z.
Figure 3 shows the 180° section of the
self-rotation function 1looking along z. As

before, two molecular dyad axes can be seen on

(marked p 8 1),
forming a 222 set with the crystallographic dyad.

the periphery of the section

found from a

cross—rotation function which showed that the

crystallographic 2z dyad coincides with the

molecular q axis, Figure 4 shows the R-factor

L]
search used to explore the translation of the

centre of the tetramer along z and its rotation

around the =z-axis. The best value for this
rotation of 28.4° was found from rigid-body
refinement (type (a) above). The data is now
being extended to 2.58 resolution, and will be

phased by molecular

replacement and two—fold

averaging,

0 !
; 2

Figure 4. R-factor searches for the
R-state molecule along the =z-axis, for
different rotations of the molecular p-axis
from the crystallographic x—axis.

E.coli
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USE OF MULTI-DIMENSIONAI, SEARCH METHODS FOR STRUCTURE DETERMINATION

OF LARGE MOLECULES

by

Dov Rabinovich

Department of Structural Chemistry,

Rehovot 76100,

Search methods are perhaps the most obvious and
direct implementations of molecular replacements
principles. However, direct and naive applications
of these methods result in prohibitive computing

times and poor discrimination criteria.
1)

On the
other hand, we have shown that small molecular
structures can directly and efficiently be solved by
a systematic search procedure using geometrical
criteria such as global molecular packing considera-
tions and hard sphere atom-atom contacts combined
with a set of multi-level sieving operatons, by
means of which only a limited number of accepted
trial structures are left for further examination by
R-factor calculations.

This procedure proved, however, to be inefficient
for large molecular structures since it was time
consuming as a result of the large number of atoms.
It also yielded too many acceptable trial structures
owing to the relatively small number of intermolecu-
lar atom-atom contacts resulting from the fact that
a large fraction of the unit cell volume consists of
solvent molecules. Consequently, we have developed
a new multi-dimensional search approach(z) incorpor-
ating global packing criteria with structure-factor
calculations for very-low-resolution x-ray data,
which proved to be efficient for the solution of

large-molecule structures.

The approach owes its efficiency to four distinct

features. The first, global packing considerations,
can reduce the number of the search grid points in
the six dimensional parameter-space by orders of
magnitude., Secondly, the use of very-low-resolution
x-ray data renders the approach reasonably insensi=-
tive to deviations of the model from the actual
structure and permits the use of a coarse parameter-
space grid on the one hand, and reduces considerably
the structure-factor computation time, on the other.
Thirdly, the use of the transforms of the model and
the fringe functions of its origin allows extremely
fast and efficient algorithms for the calculations

of the structure-factors. Lastly, a great improve-
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ment in the performance of the approach is achieved
by using group scatterers in lieu of the individual
atomic scatterers, a procedure justified by the use
of low-resolution data.

Several criteria for testing the agreement between
the observed and calculated structure factors were

considered, e.,g. product functions, correlation
coefficients and

which is

the discrepancy factor R. The

latter, more indicative for further

refinement, was also found to be more

discriminative. Accordingly, the set of trial

structures (typically 20) with the lowest R was
subjected to a further rigid-body least~squares
refinement procedure with increasingly higher

resolution to yield the correct structure,

Using a computer program, ULTIMA, based on this
approach, we have solved the structures of three

A-DNA octamers, an A-DNA decamer, a B-DNA dodecamer

and a 2-DNA hexamer. We have also reproduced the

solutions of another B-DNA dodecamer(z), of

tRNAphe(3) (4)

and of two proteins, lysozime and

concanavalin A(S) (see Table 1).

The models for the oligonucleotides were taken from

(6)

Arnott and Hukins ; for the tRNAphe from the

refined structure of the monoclinic form(7); for the

(8) and

(9)

triclinic lysozywme from the tetragonal form
for cocanavalin A from the demetallised form
Group scatterers for the oligonucleotides were the

phosphates, sugars and base moieties. Most of the
amino acids were divided into two groups, where one
group consisted of the backbone atoms, the other of

the side chain ones,



4.

Table 1

Compound S.G Na? N 20° au? G.R® Res. R Rrbf
GGTATACC P6, 322 46 30.0 3 0.03 25-10 42 23
gegeeree? P6, 324 46 30.0 3 0.03 25-10 45 28
Geeereec? P6, 324 46 30.0 3 0.03 25-10 46 - 28
ACCGGCCGGT P6, 22 404 56 22.5 3 0.33 25-10 4 22
cGCGAATTTGCGY P2, 2,2, 488 70 22.5 3 0.016 25-10 47 31
recece? P2, 2,2, 242 34 30.0 3 0.01 25-10 32 24
ceceaarreace 2 P2, 2,2, 486 70 22.5 3 0.016 25-10 42 28
trnaPPe(3) P2, 22, 1652 228 15.0 4 0.15 50-17 40 . 20
Lysozyme(4) P1 1000 209 22,5 - 0.70 25-10 43 29
Concanavalin A(s) 1222 1807 362 15.0 4 0.01 25-15 36 28

Number of atoms

o

Number of group scatterers
Rotational grid step (9)
Translational grid step (A)

a Hh O QA 0

Mutant DNA
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EXPERIENCE WITH THE APPLICATION OF PATTERSON SEARCH TECHNIQUES

by

Robert Huber
Max-Planck-Institut fuer Biochemie,

Hoppe discovered that the Patterson function of a
crystal composed of discrete molecules can be decom-

posed into molecular functions,
(1,2)

which he called
Faltmolekuele There are two different types
of Faltmolekuele, those with equal indices and those
with mixed indices. The first type represents the
intra-molecular vector set., It is centered at the
origin of the unit cell and has a structure and
orientation which is uniquely derived from the
molecular structure and orientation. Consegquently
it may serve to determine the orientation of the
molecule in the crystal cell if the molecular struc-
ture is known. The second type represents the
inter-molecular vector sets between molecules
related by the crystal symmetry. The structure of
these Faltmolekuele depends only on the molecular
structure and orientation. They are centered at the
difference vectors of the two molecules they are
derived from. Consequently, they can be constructed
if the molecular structures and orientations are
known and may then serve to determine the transla-

tion relative to the crystal symmetry elements.

N »
* x PM?M
. Y [
§ (EQ 4 h (Ey) B , \
w2/ |\9M ! smiEd [\ /\ SulEY)
A .__:. ] /// %\\. .
5 X x (&)
- )
N
SMIE 8y (Ey) S@SWEE)
Fig.1 Faltmolekuele with equal indices derived

from a triangular structure (py). A number of
properties are immediately obvious: the internal
structure of the Faltmolekuele pypy* (the intra-
molecular vector set) is evidently determined by the
molecular structure., It is centered at the origin
of the coordinate system and is independent of
translation., 1Its orientation follows from the
orientation of py.
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Faltmolekuele were constructed graphically before
computer programmes were available and rotated or
slid over Patterson projections to observe the opti-

mal fit. A number of crystal structures of organic

molecules were solved in this way(3_9).

In the lower half of fig.1 py in orientation E; is

repeated by a diad along Y and the mixed indexed

Faltmolekuele pM(El)pM*(Ez) constructed. E, follows
from E, by the diad symmetry operation. It is

obvious that the Faltmolekuele is located on the
Harker line Y = 0 at a distance 2X from the diad.
Its internal structure depends on both, the molecu-
lar structure and orientation, as can be seen when
/\/_\
pM(El)pM*(Ez) and pM(El')pM*(Ez') are compared,

Equation (1) formulates the relations:

K
p=2=I pM(Ek,rk);
k
K L)
P =pp* = & pMpM*(Ek,O) +
k=1
X X
TN
r I pM(Ek)pM*(Ek.)[rk - rk,]
x=k' k=1 K=1

pM 1s the electron density of an individual mole-
cule in arbitrary orientation and translation. Its
orientation and translation in the crystal cell is
defined by Ex and ry respectively. The summa-
tion over the K molecules in general equivalent
positions of the unit cell yields p. * denotes the

operation of inversion.

The necessary sequence of operations to positiczn &
known molecule in a crystal cell is therefo - to
determine the orientation by correlating the
Patterson function with the intra-molecular vector
set, Thereafter the cross-vector sets can be con-
structed and the translation parameters relative to
the symmetry elements determined by correlating the

The
(10,11)

Patterson function and cross-vector sets.
Faltmolekuele method was programmed by Huber

and Nordman and Nakatsu(12)

and different criteria
for the correlation between the Patterson function

and vector set were used.



(13)

Rossmann and Blow discovered that the product
correlation between the Patterson function and self-
vector sets can be expressed in reciprocal space.
They also recognized that internal symmetry in the
asymmetric unit py is reflected in the Patterson

map from which it can be derived by a rotational
self-correlation function of the Patterson function.

Figure 2 shows a motif with internal symmetry. Py

&"b
A

S
&$
X\\& KS

{x) ﬁ;‘}u° +
x ©) St St

Fig. 2

is related to Pui by a diad axis of symmetry., The
self-vector sets of Py and Pyt are related by the
rotational part of the symmetry operator relating
pMand Pyt It can be analysed with the Rotation
function by calculating the self-correlation of the
Patterson function with respect to three angular
variables describing the rotational symmetry opera-
tor. The self-correlation calculation_must be res-
tricted to a certain radius around the origin of the
Patterson map to make the number of inter-molecular
vectors small as they do not obey these symmetry
relations. The truncation requires a convolution
with the Fourier transform of the shape func-

tion(13'14).

The translation function expresses the correlation
between the Patterson function and cross-vector sets
in reciprocal space. It calculates the product
correlation and was formulated by Crowther and

Blow(15) in an elegant way as a Fourier series.

In correlation calculations between the Patterson
function and Faltmolekuele in real space a variety

(10,12) but do not

of criteria of fit can be used
seem to be superior to the product correlation. The
product correlation has the advantage of being

insensitive to the relative scaling of the Patterson

function and Faltmolekuele. The exclusion of parts

of the Patterson map and Faltmolekuele is very
simple in real space, an advantage over reciprocal

space methods.

The angular correlation calculation may be performed
in various systems., The Eulerian angular system
allows the symmetry properties of the Patterson map
and Faltmolekuele to be taken into account by res-
tricting the required minimum scan range, The space
group dependent symmetry properties have been

analysed in a lucid way by Rossmann and Blow(13) and

X X 16
Tollin, Main and Rossmann( ). The polar angular
system is convenient for the search of given rota-

tion axes by two-dimensional scans.

The following series of references documents our
experiences with Patterson search techniques: the
programmes employed were almost always the real
space orientation correlation in the Protein pro-
gramme system(17) and the translation function pro-
gramme of Lattman modified by Deisenhofer and Huber.
The examples analysed were proteins and protein
proﬁein complexes of various sizes ranging from 5 to
100 kD. The models used in the searches stemmed
from crystal structures of the same molecules in
different crystal forms or from closely related,
homologous variants or from components of protein
complexes. They comprised various proportions of
the asymmetric unit from 100 to 30 percent and were
of various degrees of refinement. 1In the following
sections I shall not repeat details described in the
original publications but try to summarize and

generalize various aspects.

A. Calculation Procedures

The model Patterson map was usually calculated from
the atomic model in a cubic box with cell edges
twice the longest molecular dimension, to isolate
the intra-molecular vector set. For the orientation
correlation calculation a variable number of maxima
were picked from the model Patterson function to be
compared with the crystal Patterson function. Inner
and outer radii of 5 A and 15 to 30 A respectively,
were applied. The outer radius was chosen small for
the initial rough scan and increased later in the
fine scans. The number of maxima extracted from the
model Patterson map was also varied from about 2000
to 8000 depending on the problem. The signal to
noise ratio increases with the number of peaks used.
In the citrate synthase oxaloacetate complex the use

of a very large number of peaks was a prerequisite



(18)

for the correct solution . The resolution
applied was usually to the limit of the available

data set but not beyond 2.5 A,

This orientation correlation function did not always
result in an outstandingly high signal of the
correct solution. In doubtful cases the highest
peaks in the correlation function were tested by the

translation function,

The translational functions were usually calculated
at the resolution allowed by the experimental data
set. The molecular Fourier transform was generated
from the molecular coordinates placed in a cubic
unit cell with dimensions twice the largest diameter
of the molecule., The translation function programme
allows orientation of the Fourier transform accord-
ing to the orientational angles determined in the
previous step. Translation functions corresponding
to all inter-molecular vectors generated by the

The

space group symmetry were calculated. multiple

determination of translation components in space
groups of higher symmetry is most welcome, Discrim-
ination of enantiomorphous space groups is possible
by calculating the appropriate translation function.
As the orientational symmetry operator is identical
in the two possible space groups the translation

vector occurs in different sections of the same

. . 18-21
three-dimensional translation function map( 8-2 ).

The orientational and translational parameters
obtained by Patterson search techniques were refined
before refinement of the atomic model was initiated.
Appropriate procedures are rigid body least squares

refinement procedures in reciprocal space(22'23).

B. Properties of the Search Model

It is obvious that the signal of the correlation
functions increases with the similarity of search
and target molecules. A search model from a refined
crystal structure is advantageous. The crystal
structure analyses of chymotrypsinogen using models
of various refinement stages demonstrates this

(24)

aspect . We note however that identical mole-
cules crystallizing in different crystal lattices
may show deviations of about 0.4 A in C% atom

positions as revealed by the very high resolution

(25'26). These deforma-

analyses of two forms of PTI
tions are due to the crystal lattice packing

forces.
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independently for the two molecules.

Most of the successful examples referred to in
Refs.(18-21, 26, 27-29) had r.m.s. deviations

between search models and final refined crystal
structure models of about 0.5 to 1 A, Models with
insufficient similarity, yet clearly recognizeable
amino acid sequence homology, did not yield a sig-

nificant solution. The trypsin model was insuffici-

(30)

ent to find kallikrein, a related protease .

C. Size of the Search Model

It is clear that the signal of the correlation cal-
culations increases with the proportion of the
search model in the asymmetric unit. The search
model may be part of a complex of different proteins
or may be identically repeated in the asymmetric
unit, In the latter case analysis of the self rota-
tion function is useful as it places constraints on
the possible orientations of the independent mole-

(31)

cules « In our experience a search with one half

of the asymmetric unit in the structure analysis of
chymotrypsinogen proceeded without problems(24).
Orientation and translation searches were performed
A cross-
translation function solved the origin problem., 1In
crystals of C-phycocyanin of Agmenellum quadrupli-

catum(az) however three af units of known struc-

ture(33) build up the asymmetric unit.

The search
model comprises one third of the asymmetric unit. A
Patterson search analysis was successful only be-
cause certain plausible assumptions about orienta-

tion and position of the molecules could be

made(za).
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REAL SPACE VS,

by

RECIPROCAL

, M, Buehner® and H.J, Hecht
A.G, Roentgenstrukturanalyse, Universitaet Wuerzburg, Am Hubland, D-8700 Wuerzburg, Fed. Rep. Germany

1o INTRODUCTICN

fiost components of the complex procedure called
structure analysis are rigidly associated with a
given space, either real or reciprocal, the transi-
tion between both spaces being afforded by the Fou-
rier transformation. In the subset of molecular rep-
lacement procedures, however, there are some compo=-
nents which can be adapted to execution in either
space, This symmetry of spaces in theory, and the
limitations of either space for practically applic-
able algorithms, have been clearly spelt out i.a.

by Ge Bricogne(1)° Although the theoretical equiv-
alence of spaces stands undisputed, real world con-
ditions such as running time and memory availability
of computers (or their limitation by computer centre
management and/or fees) require shortcuts, simpli-
fications, limitation of series etcs,, which in prac-
tical application lead to advantages and disadvan-
tages of one space over the other for a given set of
experimental conditions. Therefore, in real life,
the guestion is often not whether to use real space
or reciprocal, but rather real space and reciprocal,

whichever is best suited,

In Wuerzburg we have not done a systematic compari-
son of spaces for molecular replacement algorithms,
but we have encountered a few cases where a compa-
rison could be done during some protein structure
pro jects, Both projects described here are being
done by molecular replacement exclusively, i.e.
withcut any independent phase information from iso-
morphous replacement, so that phase combination is

not an issue of this paper.

2. THE PROGRAMMES

DENS expands atomic co-ordinates into a density map
for structure factor calculation using FFT,
ROTFUN is a modification of M.G. Rossmann's recipro-

cal space rotation function programme(z).

*Paper presented by M. Buehner,
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TRAFUN is a short translation function programme(3)
which-simply combines model sfructure factors with
F-obs into translation function coefficients. These
coefficients are subsequently transformed into the
translation function map by FFT,

TRALS is a translations-only least squares procedure.
Translations are applied as phase shift factors and
thus no Fourier transformation is reguired. There-
fore this programme is very fast, allowing extensive
translational searches with "zeroing in" by least
squares at each point,

RIGID is a complete rigid body least sgquares proce-
dure, refining all 6 degrees of freedom. It is very
time consuming so that in our case its application

is limited by the availability of computing funds

(or lack thereof).

DISPRF (DIrect SPace Rotation Function) was written
using the angle/matrix framework of ROTFUN, It works
on Patterson maps (3 rotational parameters) as well
as on electron density maps (3 rotational + 3 trans-
lational parameters). In its present stage it can
deal with proper single rotations and 222-systems
("locked" rotation function). Improper rotations can
be simulated by using the cross-rotation mode betw—
een identical data sets and employing the transla-
tion parameters to do the shifting along the axis,
AVERAG is a programme which allows aueraging(4’5)
the density of subunits grouped about 1 or more ori-
gins. Either it uses a "labelled" mask (where each
legal density point is marked by the number of its
origin), or it works within spheres of a given radi=-
us, Where spheres overlap the maximum function is
used for selecting the output density, following the
experience that density parts belonging to the cur~
rently used origin come out strong whereas parts be-
longing to neighbouring origins are chopped into
noise, because the local symmetry operator used does
not hold for thems

MASK uses monomeric model density provided by DENS
and puts it into the natural unit cell to make a
labelled mask which describes the molecular volume
about each non-crystallographic origin,

All other programmes used are adapted standard pro-

ducts from various sources,.



The programmes mentioned above were designed for our
university's present central computer (Telefunken

TR 440) which is a slow (~VAX/750) non-virtual ma-
chine with limited memory, lacking a good and fast
sort/merge package, but equipped with very good ran-
dom access file handling. The real space programmes
DISP, AVERAG and MASK do not use peak lists or the
double sorting technique, but work on scratch dep-
sity maps., A scratch map consists of a sphere (or
spheres) containing the coherent density around an
origin, so that no symmetry operations or cell
translations need be applied. Scratch density is
held in paginated sections in random access files,
The look=-up scratch map is mirrored into a large
array by a procedure that mimicks virtual addres-

sing.

All programmes are available for distribution,

please contact M.B.

3o APPLICATION

Table 1 attempts to survey the application of the
different methods in different spaces, as to our
present knowledge, It might seem odd that "Films"
(ie.eo visual inspection of precession photographs)
is assigned a column of its own in the table, but
the power of immediate film analysis should by no
means be underestimated., Its strength is not the
accurate quantitative evaluation of rotational or
translational parameters, but besides giving an
overall picture of the situation it can impose cru-
cial constraints on the range of validity and on
the interpretation of the results of other methods,

Pseudo systematic absences e.gs can be the most

Table 1

reliable translation information at all since they

are independent of any model,

Both structures mentioned below have non-crystallo-
graphic symmetry, but they differ in complexity and

size of the asymmetric unit. For both projects model

. co=ordinates were available, Uteroglobin had been

solved in a different crystal form {monomer in the
asymmétric unit) by JePe Mornon in Paris, with whom
we are co-operating, and LDH co-ordinates were kind-
ly provided by M.G. Rossmann (pig heart LDH ternary
complex) or could be obtained from the protein data
bank (dogfish muscle apo LDH).

3.1 Uteroglobin from Rabbit

Uteroglobin is a small steroid binding protein con-
sisting of 2 identical polypeptide chains of 70
amino acids, It crystallises in many different cry-
stal forms what might be an indication of flexibili-
ty or conformational variability, We have been look-
ing at a crystal form in space group P 21 (a = 43,3
L, b=38,11%, c=234,5%, 6=090,7°) with a dimer
of molecular weight 2x 7,900 in the asymmetric unit,

The crystals contain 67 % protein by volume(s)

This crystal structure is an example for the power
of looking at films: a) The monoclinic angle B is
close to a right angle, b) an upper layer precession
photograph (1k€) at 2.5 L resolution showed.only a
handful of deviations from exact mm-symmetry(s) al-
though only 1 mirror plane is required by crystallo-
graphic symmetry, c) an hOg precession photograph
revealed good syétematic absences on the h0O0=1line
out to about 4-5 & resolution whereas the 00¢-line
did not display anything special(ﬁ)o The general in-

tensity distribution on all layers recorded exhibi-

Molecular replacement methods as used in reciprocal and real. space, Capitals indicate names of programmes,

Method Reciprocal Space Real Space
Films Fourier Bessel Patterson Density
Rotation search spikes etce ROTFUN + DISPRF -
Translation search pse syste abse TRAFUN - + packing
lo sQe - TRALS - - -
Rote + Tra. search - + - - DISPRF
ls sqe - RIGID - - +
Phase Improvement - ? - - AVERAG
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ted an mm-symmetry of quite reasonable quality.

These observations from films suggest that there are
non-crystallographic 2-~fold axes roughly in the dir-
ection of the a- and c-axes, and that the axis para-
llel c is most likely the molecular dimer axis since
it appears to be a proper rotation, Furthermore,
this molecular dyad and the centre of the molecule
must be close to x = 1/4 and x = 3/4, to produce a
translation by a/2 required by the pseudo systematic
absences on h00, Thus the situation is close to

P 21'5 supergroup P 21212, and only the angle of ro-
tation of the molecule about its axis and the posi-
tion of its centre of gravity along this axis (z)

are really unknown,

A general search for dyads using programme ROTFUN
indeed revealed a high peak (79 % of origin) at the
polar angles ¥ = 90.0° and P = 0,40, i.e, midway
between a* and a, Due to its special position on the
afc-plane this peak is mirrored at ¥ = 90,0° and

¢ = 90,4° (i.e., between -c* and -c) by symmetry im-

posed by the crystallographic b-axis. Model co-ordi-
nates from Mornmon's structure determination were
then used to calculate the cross-rotation function
ir reciprocal space (ROTFUN)s The whole asymmetric
unit of Eulerian space was searched although it
would have sufficed just to superimpose the model's
dimer axis on the vector at ¥ = 90.00 and @ = 90040.
The map was sssentially flat except for the molecu-

lar axes' superposition,

When searching for a dimer using a monomeric model
one would expect 2 solutions 180° apart, What we did
find, however, were 4 peaks of about equal height
roughly 90° apart, So we found 2 equally possible
dimers instead of one. One of these solutions must
be spurious, created by packing. Inter-molecular
vectors must be expected to play a major role in
this tightly packed unit cell. To resolve the ambi-
guity we resorted to cross-rotation in Patterson
space, Unfortunately, the symmetry of spaces was
proved beyond doubt by the equal failure of both

methods to discriminate between the 2 sclutions,

Figel

Precession photograph of the h0f reciprocal lattice plans of L. casei LDH., Cu K
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Obviously the model is not good enough to success-
fully tackle the problems The conformation of the
protein must be quite different in both crystal
forms, Sure enough, under those conditions the tran-
slation function did not work properly either, and
rigid body calculations were a mere sink for compu-
ting money. Packing calculations narrowed down the
possible range of the position of the molecule to
within a couple of Angsfroems, but the result came

out the same for both alternatives.

The best way out of the dilemma seemed to be to use
the redundancy of non-crystallographic symmetrye.
The more likely looking solution 7 was applied
after rigid body refinement. A ZFO—FC electron den=-
sity map was subjected to cyclic averaging: After
each cycle, structure factors were calculated from
the averaged density, a 2FO—FC map was calculated,
and the non-cryst. symmetry operators were readjus-
ted using the new map, After 6 cycles convergence

= 19,3 % (1040 = 2,5 & res.)

and the map was inspected by model building. The

was about reached at R

density was very clean, but no significant modifi-
cation of the model was apparently needed, much to

our surprise, It turned out that the whole averaging

Fige2

procedure had done nothing more than ridding the
faulty model of its noise without removing its sys-
tematic errors, This indicates clearly that averag-
ing under the prevailing conditions (only 2 copies,
parameters very close to a crystallographic super-
group) did not exert sufficient power to improve

the model.

The lesson to be learned here is that being close to
a supergroup, i.e. non-crystallographic symmetry mi-"
micking crystallographic symmetry, diminishes, or
even destroys, the power of the averaging process.
The reason is that a data set sampling the molecular
transform repeatedly at about the same grid points
does not contain really independent redundant infor-
mations Only if a non-crystallographic symmetry ope-
rator is sufficiently distant from systematic cry-
stallographic directions to sample the molecular
transform at truly different points is the addition-
ally gained information independent and the averag-
ing process can exert its power by using true redun-
dancy.

342 Lactate Dehydrogenase from Lactobacillus casei

This bactsrial LDH is regulated by allosteric effec-

/ \
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tors, Fru—1,6—P2 and Nn2+, in contrast to vertebrate
isoenzymes, The molecule is a tetramer consisting of
4 identical polypeptide chains of 325 amino acids.
It crystallises in space group C 2 (a = 169,20 i,

b = 85,35 A, c = 180,18 &, 8 = 91.3°), The unit cell
ccntains 6 tetrameric molecules, i.e, there are

1 1/2 tetramers (mol. weight 6 x 35.440) in the
acymmetric unit(8 , which is not quite expected for
tetramers in a monoclinic space group. The protein

content of the crystals is 43 % by volume,

At low resolution 00&-reflexions are absent or very
weak for' € # 3n (figs1)o This shouws clearly that a
prominent translation vector of size c/3 exists and
the cell content therefore must be a multiple of 3.
A general search for dyads in reciprocal space
(ROTFUN) solved the riddle by revealing (fig.2) one
222-system of axes in a special position, including
the crystallographic b-axis, and an unrestficted
second 222-system plus its symmetry equivalent, This
suggests a central tetramer on a crystallographic
dyad contributing a dimer to the asymmetric unit and
a second, peripheral, tetramer in a general position
at z = % 1/3, making the asymmetric unit 6 subunits
=1 1/2 tetramers, One dyad of the peripheral tetra-
mer is close to the a/b-plane at ¥ = 126, The total
arrangement of dyads together with the systematic
absences makes c an approximate 3,1—a><is° Therefore,
the arrangement of molecules in the unit cell resem-
bles strongly the space goup P 3121 which is a su-
pergroup to C 2,

All axes were identified in terms of the molecular
system P/Q/R by cross-rotation function with the
model of dogfish apo-LDH, again in reciprocal space,
The answers were unambiguous in all cases, shouwing
that the model was appropriate, The dyads were then
checked in Patterson space, with deviations within

the limits of error (+ 2°).

The position of the central tetramer can be set to
D/D/D and only the origin of the peripheral tetramer
need be determined., First, the translation function
was used in the classical way, to determine the dis-
tance between symmetry related components, Thus we
found 2x and 2z for the peripheral tetramer, but not
ye The translation function was then modified to ac-
cept 2 independent models instead of a pair of sym-
metry related components and was used to determine
the vector between the central and peripheral tetra-
mers (figs.3). The answer was unambiguous at 270/
.145/.672, However, only the z-range between 13 and
.91 of the translation maps could be used, The part
close to the origin was plagued by high noise, obvi-
ously produced by self vectors. The noisy part of
the map could safely be ignored, however, because ,
the systematic absences permitted only small bands
of z=values about 1/3 and 2/3. Packing calculations
confirmed the solution, but, as in the case of uter-
oglobin, packing alone could not have resolved the
ambiguity between 1/3 and 2/3. The translation para-
meters were then least squares refined, and finally

rotation and translation parameters were further im-

9 /1171981 LDH TF CENT.-PERI. TETR.
=60 /90 MIN=-3352 MAX=7433

Q © @)

T 0
0
9 0
@ O Q
0
@ - 9
-——’x

Fige3 Translation function of L. casei LDH, section at z=2/3. Peaks appear twice due to the C-centred cell.
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Table 2

Statistics of calculated structure factors during averaging of LDH,

R Correlation

(%) coefficient 1. Model Ave 1 Ave 2 Ave 3
1. Model 48,06 .1839 -
Ave 1 41,97 04604 49,6 -
Ave 2 34,66 «5372 54,8 20,2 -
Ave 3 33.22 25912 57.9 25,7 1146 -
Ave 4 29,95 o6426 60.3 3304 21.0 1542

R and the correlation coefficient were calculated in the resolution range of

Correl, coeff. =

proved by rigid body least squares. A 2F0-Fc map

was interpreted by model building and the amino acid
sequence was changed from the model {pig heart LDH)

to the L. casei LOH sequence. Then we could proceed

by cyclic averaging:

All 6 indspendent copiss of the LDH subunit were av-
sraged, In cycles 1-3 straight 2F0—Fc maps were
used without weighting. Reflexions were excluded by
resolution limits (10.0-3,0 &) only, the maximum
molecular radius used was 42 A, After cycle 3 the
procedure was changed towards molecular radius 45 A,
using Sim—qeighted ZFD-F maps and rejecting refle-
IFDI—lFC||/|F0|+|Fc|>>1.2. The results

are outlined in table 2,

xions if 2

After model building and after each cycle of averag=

ing the non=crystallographic symmetry operators were

10,0 - 3.0 &,

nz( |F0l° |FC!)_2|FD lOZ IFEI

Cnz([F, -2 2]+ Ln2( e [D~(2]F P21 '72

optimised in the 2F0-FC density using DISPRFe In
table 3 the orientation of the molecular dyads is
compared for all steps in the molecular replacement
procedure, and in table 4 the same is done for the
position of the peripheral tetramer (the central
tetramer was always held at 0./0¢/0e)s

The average-4 map could not be checked yet at the
interactive display, but the average=-3 map still
contains spots of bad density and shows traces of
the model, We have been able to identify and tenta-
tively orient the allosteric effector fructose-1,6-
bis-phosphate in its binding site, but a C02+ ion
(Co was used instead of Mn for reasons of crystal
stability and scattering power) could not yet be
founde Obviously, even with the power of 6-fold ave-
raging it is not trivial to get rid of all influen-

ces of the primary model,

Table 3

Orientation of all molecular 2~-fold axes of LDH (in spherical polar angles ¢/<PX

Central Tetramer

Peripheral Tetramer

1 (R) 2 (Q) 3 (-P) 4 (R) 5 {(Q) 6 (=P)

Rec, Space 6 & 0./0, 90,/3640 90,/12640 12646 /=140 133,8/133,2 65,0/69,0

Patt, Space 3 & Ce/0s 90,/34,70 90,/124,70 126,42/-1,72 133,47/132.65 65.33/68447
Rigid Body 6 & 1.1/~98.8 89,36/33.08 89,22/123.09 126463/=a67  131.17/129,90 62.68/66,76
1. Modsl 33 0./0, 90,/33,55 90,/123455 126470/=435  131,19/130,36 62.78/67.11
Ave 1 04/0. 90,/33.58 90./123.58 126468/=047  131.29/130,38 62,88/67,10
Ave 2 0./0. 904/33464 90,/123.64 126464/=e49  131.34/130,38 62,89/67414
Ave 3 D./0. 90,/33.65 90,/123,65 126066/=652  131437/130.44 62,96/67415
Ave 4 0./0. 90,/33.70 90./123.70 126468/-452 131.39/130,50 63400/67,17
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Table 4

Position of the peripheral LDH tetramer (in cell fractions).

X y z
Translation Function 6 i «270 0145 o672
Translation L. Sqe 6 & <2698 21437 «6732
Rigid Body L. Sqe 6 & «26776 $14172 «67543
1. Model 3k 02675 01386 «6740
Ave 1 02677 1387 #6741
Ave 2 02678 »1387 «6742
Ave 3 026782 +13862 «67424
Ave 4 026794 +13860 «67420

4, CONCLUSIONS

As far as the reliability of rotation results is
concefned, the data in table 3 seem to imply that
the Patterson method is doing slightly better than
reciprocal space, but the difference is not really
significant. In our view there remain 2 differences
between real and reciprocal space: 1) Reciprocal
space programmes work faster than Patterson space
programmes (Rossmann's by a factor of 3-35, Crow-
ther's much faster still), 2) Patterson rotation
peaks are smoother than reciprocal space peakse The-
refore, reciprocal space offers itself for general
surveys whereas Patterson seems more suited for fine
tuning and for compromises if peaks appear split or

rugged in reciprocal space,

For translation purposes, real space (i.e. packing)
is no match for reciprocal space, because it uses
shape information only and not internal structure.
It is, howsver, very valuable for excluding large
parts of (often quite noisy) translation Function
maps, Therefore, translation information from both
real and reciprocal space should always be combined,
Pseudo systematic absences on precession films are
often the most reliable translation information at
all,

Once parameters are roughly established they should
first be refined by rigid body procedures. For fur-
ther refinement direct space rotation/translation
search ssems superior to R-search, because it allouws
to work in genuine electron density, while R-search
and rigid body least squares despend on model co-ord-
inates with all their shortcomings. Density, on ths

other hand, can be shifted in the diresction of the
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correct structure by sither the nFo+m(Fo_Fc)_ tech-
nique or, even more, by averaging and recycling the

averaged density,.

For phase improvement by use of the redundant infor-
mation from multiple molecular copies therse is as
yet no alternative to real space {density averaging
(5)). Although reciprocal space methods are still

being discussed(g)

the stage of a really applicable
algorithm or sven working computer cods does not
seem to have bsen reached yet, Whatever the appro-
ach, one caveat seems advised: The power of the me=
thod depends strongly on the redundant information
being really independent through non-identical

sampling of the molecular transform,
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ROTATION FUNCTIONS, DENSITY AVERAGING AND PHASE EXTENSION: PANULIRUS INTERRUPTUS HAEMOCYANIN
by

Wim G.J. Hol, Anne Volbeda and Wil P.J. Gaykema
Laboratory of Chemical Physics, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

1. INTRODUCTION Table 2
Haemocyanins are the copper-containing, non-heme, Structure Determination of
oxygen-transport molecules occurring in a large Panulirus interruptus haemocyanin

number of invertebrates. The cylindrical m~lluscan

haemocyanins differ completely in architecture from pH 4.5
the hexameric or multihexameric arthropodan haemo- Buffer 0.01 M acetate
cyanins(I'Z). The structure of the single-hexameric Temperature 4°C
haemocyanin from the spiny lobster Panulirus inter- Space group le
ruptus, an arthropod, has been solved by isomorphous Cell dimensions 119.8 x 193.1 x
and molecular replacement methods(3-8). A number of 122.2 g;B=118.1°
characteristics of this haemocyanin are summarized Daltons per asymmetric unit ~ 470.000
in Table 1, whereas Table 2 lists some of the Subunit types in crystal asgb
details of the structure determination. Here we will No. of sites of Pt-~derivative 36
No. of sites of Hg-derivative 70
No: of refls with MIR phases 32721
Table 1 No. of refls with only MR phases 31121
Total no. of phased reflections 63842

Characteristics of

Panulirus interruptus haemocyanin

conventional rotation function are shown in Figure

MW 6 x 77.000 1. In these calculations data between 10 -~ 25 8 and
Residues per subunit 657
Copper ions per subunit 2 .
K=180"¢ =90

Carbohydrate moieties per subunit 1 270
No. of disulfide bridges per subunit 3 *
Subunit types native Hc a, bae R
Amino acid sequence difference @ vs b ~ 3% 150+ T " 1,

4 0 30" 60 90

——

focus on the role which molecular replacement .

methods played in the course of the determination b-d /
of a structure where the entire hexamer with MW 2 /
~ 470.000 occurred in the asymmetric unit. /“\\A‘jfdj
150 ~
2. STUDIES AT 10 R RESOLUTION: THE SYMMETRY OF THE voow e g oW W W
MOLECULE

Fig. 1 Rotation function studies with 10 X resolu-
Using 32 precession films a set of 1440 structure tion data. Upper Figure: search for two-fold
factors out to 10 R resolution was obtained(4). Both non-crystallographic axes perpendicular to
the conventional Rossmann & Blow rotation function(g) the b-axis. Lower Figure: search for rota-
and Crowther's fast rotation function(lo) were tion axes parallel to the b-axis. Angular
applied and gave results which were in excellent parameters as defined in Rossmann and
agreement with each other(4). Some results of the Blow(g).
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a radius of 45 8 were used. Reducing the radius to
25 g had hardly any effect on the calculations.
Changing the resolution range to 10 - 12.5 8 aia
not give much different results. Varying the number
of large terms between 109 and 427 had little

effect on the appearance of the rotation function.

As the polar rotation axes were defined as in the

(9), the results of Figure

paper by Rossmann & Blow
1 indicate that the three-fold axis of the hexamer
runs approximately parallel to the b-axis whereas
the molecular two-fold axes run nearly parallel to
the a- and c-axis and to the bisectrice of these

two axes. The point group symmetry of the molecule

is 32.

3. RESULTS AT S X RESOLUTION: THE SHAPE OF THE
HEXAMER AND THE ACCURACY OF ROTATION FUNCTION
RESULTS

Wwith a 5 % resolution data set, obtained by the

oscillation method(4)

, the conventional rotation
function was used to establish the direction of the
molecular symmetry elements with greater precision.

As depicted in Figure 2, each two-fold rotation

(2, ) relating vector sets of subunits within
intra

Fig. 2 Schematic drawing of 2 hexameric anti-
prisms related by a crystallographic two-
fold axis (for the rotation function the
translation parallel to the two-fold in

L is irrelevant and has been
omitted for clarity). The local three-fold

space group P2

and one local two-fold has been drawn for
each hexamer. The associated pseudo two-
fold is perpendicular to the plane of the

paper with a rotation unequal to 180°.
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one hexamer, is accompanied by a pseudo two-fold

rotation (2in r) which relates vector sets of sub-

te

units within two different hexamers. These two non-
crystallographic dyads are perpendicular to each

other and are related as follows:

zintra: K 180 P + = 90-4 ()

180-24, ¢+90, ¢ = 30

2 :
inter

neglecting the 2inter rotation with Kk = 180+2A for
simplicity. Calculations with small angular incre-
ments showed that at ¢ = -1°, 50°

and 120° maxima

occur for x # 180° (Fig. 3). Consequently, the first
set of rotation operations are pseudo-~twofolds re-
lating different hexamers and the second set com-
prises the true dyads relating subunits within one
hexamer. Inspection of the positions of the peaks

in Figure 3 shows that the angular relationships of

equation (1) hold well.

The accuracy of the rotation function results could
be tested because the two heavy atom derivatives
used for phase determination at S R resolution con-
tained a large number of sites (Table 2 and ref. 4).
The sites allowed an independent assessment of the
direction of the non-crystallographic symmetry ele-
ments because in the heavy atom parameter refine-
ment all positions were treated independently. As
Table 3 shows, the angular parameters derived from
the rotation function and from the heavy atom.sites
agree very well with each other: - only two angles
differ by more than 0.5°, one of which is a A¢ of
2.1° when Y is close to 0° and thus a change in ¢
is not greatly affecting the direction of the axis.

4
) did thus not only

The 5 & resolution studies(
reveal the shape of the haemocyanin hexamer but
also showed that the direction of local symmetry
elements can be established with considerable

accuracy using rotation function procedures.

4. PHASE IMPROVEMENT AT 4 X RESOLUTION: THE
LOCATION OF THE COPPER IONS

Reprocessing the oscillation films of the two
derivatives resulted in quite complete sets of
structure factors to 4 8 resolution, while a 3.2 X
native data set was already available. After a few
cycles of heavy atom parameter refinement at 4 R,

a new MIR electron density map was calculated.



Fig.

3

4 $eWV=-)

p
30
284

Vet 9we=py

t 1" T T T T Y —
180 178 176 1 172 170 168 165 164 167
—
3
B . $250%9 120
324
4
30
284
Zﬁj
%S
3¢
b Y=8lo=i0
324
30+
28+
26+
2

WU 16 % 12 170 168 166 166 162

— {

Jed $=N0=59
304
prS

i =35 0umily

3

30

28

|

6

—r T T T T T T T
180 179 176 W% 12 170 168 e 184 162

—_—
Pairs of local "true" dyads (x = 180°) and
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resolution range was 6 - 5 R.
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Table 3

Angular parameters of local symmetry elements

A. Rotation Function with 6-5 X data

2A 2C 2D 3

29.6 89.2 149.4 142.0

87.4 94.2 96.4 6.5
3 180.0 180.0 180.0

120.0

B. Heavy-atom Superposition (5 X data)

29.7 89.3 149.6 144.1
87.3 93.4 96.2 6.4
3 180.3 180.3 180.5 119.9

From the heavy atom parameters, the centre of the
hexamer could be obtained with great accuracy(S).
Six~fold averaging of the density lead to a much
improved map which immediately revealed the dinu~
clear copper sites: two maxima, of equal height, at
a mutual distance of ~ 3.8 % and much higher than
any other feature in the map, occurred in the centre

of each subunit(S).

rn Foas® Curr

Eleccron Density Map

Average

st Foms* Oy

Electron Density Map

E] Hj

OBS

Fig. 4 The density averaging and phase improvement
cycle. Instep "2" phases can be calculated

for reflections which did not contribute to
the calculation of the electron density maps

in steps "O" or "4".

Hereafter, Bricogne's program system for density

averaging and phase 1mpr0vement(11)

was employed to
enhance the quality of the map (Figure 4). Great
care was taken in order to ensure that the molecular
enveloppes of neighbouring hexamers did not inter-
penetrate. Six cycles were carried out at 4 ! reso-
lution. The MIR phases were immediately replaced by
the phases obtained by Fourier ‘inversion of the six-
fold averaged map. Sim weights were applied to cal-

culate new electron density maps and relative Wilson



plots were used in each cycle to obtain scale and

The
v

overall difference between the final MR phases after

temperature factors which were applied to Fin .

six cycles and the initial MIR phases was 60.4°. The
overall R-factor, defined-as L|!F
t|F

ossl = 1Fnwll/
OBSI' was 20.3% after six cycles, whereas the
mean Sim weight, or figure of merit, increased from
0.67 after the first cycle to 0.77 after the sixth

cycle. Figure 5 shows the phase changes, as function
of resolution, in successive cycles. As observed in
several other applications of this procedure, con-

vergence was obtained after a few cycles. The 4.0 g

electron density map obtained in this way by using
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SHELL MUMBER

Fig. 5 Phase changes {degrees) between successive
cycles in the phase improvement step at 4 R

resolution.

32721 reflections formed the starting point for
calculating de novo phases for an additional 31121
reflections between 4.0 and 3.2 & for which no MIR

phase information was available.

5. PHASE EXTENSION TO 3.2 A RESOLUTION: THE ARCHI-
TECTURE OF PANULIRUS INTERRUPTUS HAEMOCYANIN

The Fourier inversion (step "2" in the cycle depicted
in Figure 4)=2licows the calculation of phases for

reflections with higher resolution than used for the
calculation of the electron density map in step "1".

(12-13) that non-

As several authors have shown
crystallographic symmetry leads to phase relation-
ships between reflections with similar resolution,
it was decided to expand the phases from 4 to 3.2 o
in ten "Steps" of increasing resolution. Each "Step"
consisted of one phase expansion cycle followed by
three cycles of phase improvement at constant reso-
lution. Only in the last "Step" a total of eleven
phase improvement cycles were carried out as a

"finishing touch".
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The results obtained by this procedure were better
than we had dared to hope for. The entire polypeptide
chain could be traced, disulphide bridges and carbo-
hydrate moiety could clearly be located and an "X-
ray sequence" could be established which showed good

correspondence with the amino acid sequence recently

" completed by Vereijken, Soeter, Bak and Beintema.
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SHELL MUMBER
Fig. 6 Phase changes, in degrees, between the be-

ginning and end of the phase expansion Steps

I, III, V, VIII and X. In Steps I, III, V and

VIII 3 phase improvement cycles at constant

resolution were carried out, while after the
- final expansion Step X 11 phase improvement

cycles were carried out.

The phase changes in a number of “Steps" are shown
in Figure 6. It appears that the newly added reflec-
tions are subject to major changes in phases while
the previously calculated phases change considerably
less. The effect of the procedure on the electron
density map is shown by Figures 7 and 8 which are
quite representative for the tremendous improvement
of the electron density map occurring at many places

of the molecule during the phase extension procedure.
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A NEW SAMPLING METHOD FOR MOLECULAR REPLACEMENT AND ANGULAR CORRELATION

by

Rolf Karlsson
Department of Structural Biology, Biocentre, CH~4056 Basle, Switzerland

1. INTRODUCTION

It is sometimes necessary to calculate the structure
factors of a molecular density (or an approximate
vector set), which is part or the whole of a known
structure, for a new crystallographic environment.
This amounts to the isolation of a molecular density
Pa from the crystal structure p and its replication

in order to form a new crystal structure.

Isolation of Pa is achieved by multiplying the
periodic structure p with a shape function (e.g. a
molecular mask) by which all density except pA is
deleted. The continuous Fourier transform of Pa is
thus evaluated by the convolution of the structure-
factors of p and the continuous transform G of the
shape function, and subsequently sampled onto the

new reciprocal lattice.

This principle forms the basis of the well-known
structure factor relationships derived by Main and

) and Crowther(Z)

Rossmann for the purpose of
utilising non-crystallographic redundancies for
phase refinement (local symmetry averaging), which
were also implicit in the rotation function of

Rossmann and Blow(3).

However, their procedure requires the cumbersome
evaluation of G at general positions in reciprocal
space. In our work, this problem is circumvented by
obtaining the continuous transform Pa in two steps

rather than one.

First the structure factors of Pa in the old unit
cell are obtained swiftly by standard discrete con-
volution, or Fourier transform techniques, in which
the structure factors of G are used. In a second
step the continuous transform of Pa is obtained by
modified Lagrange interpolation in reciprocal space.
The interpolation is a convolution and thus corres-
ponds to a multiplication of the periodic structure
of pA with a single unit cell with smoothed boundar-
ies. This requires that the nonperiodic density Pa
be entirely enclosed within the unit cell.
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Although the method is of general use, only the
rotation function problem or angular correlation is

considered here.

2. ANGULAR CORRELATION
In 1970 Lattman and Love(4) presented a fast version
of the rotation function of Rossmann and Blow to de-
termine the orientation of a known molecule in an
unknown crystal structure. They calculated the
structure factors of the self vector set or molecu-
lar Patterson function fram atomic coordinates. The
transform at the rotated reciprocal lattice points

were obtained by linear interpolation.

In the present method the structure factors of an
approximate self vector set are obtained by the con=-
volution of the Patterson coefficient F°2 based on
observed intensities and the structure factors of a
spherically symmetric shape function. The present
method can thus be considered as a further develop-
ment of their method. In the following, only self
rotation will be considered but extension to cross
rotation is easily done.

Criteria for rotational relationships. The overlap

criterion or rotation function is usually of the

form

R =32 F _2(h) F(u),
h [o]

where u = hC, C is the transformation matrix in real
space, h is a reciprocal lattice vector and F(hC)
are the structure factors of the rotated approximate

self vector set.

1f F(h) is used instead of F 2 (as in Crowther's

(5)

fast rotation function ), a normalised criterion

for rotational relationships is obtained:

R* = £ F(h)F(u) / £ F2(h).
h h

It is also possible to calculate a normalised dif-

ference criterion:



D =L {F(h) - <F(w)>}2 / £ F2(n),
h h

where the averaged F(u) is taken over the Laue

symmetry.

Shape functiong. Spherically symmetric shape func-
tions such as a Gaussian function and a sphere con-
voluted with itself or with a Gaussian function are
convenient. These functions are similar to the

*shaded' rotation function of Prothero and

Rossmann(s), which uses the product of a Gaussian
function and a sphere as shape function. However a
pure spherical shape function is discontinuous at

radial distance from its centre; this gives rise to
a high noise level in the structure factors F at the
highest resolution. RAs a consequence, truncation of
the transform of the sphere at different resolutions
can give quite different results especially for dif-

ficult cases.

Interpolation. Linear (2 by 2 by 2 point) interpo-
lation seems to be as good as higher interpolations.
Even the very fast nearest neighbour or one point

interpolation, although not giving very smooth func-

tions of the R' and D criteria, seems to give very
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similar results. Possible influence from neighbour-
ing origin peaks are however reduced with increasing

number of interpolation points.
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CORELS ~ HOW RIGID IS YOUR MOLECULE?

by

A.G.W. Leslie
Blackett Laboratory, Imperial College, London SW7 2BZ, U.K.

1. INTRODUCTION

The determination of an unknown structure using the
molecular replacement method can be subdivided into
two quite distinct parts. The first involves find-
ing an appropriate model structure and solving the
rotation and translation functions, while the second
is concerned with the refinement of the resulting

model. The most common strategy is to use CORELS to

optimise the position and orientation of the complete

molecule in the unit cell, and then go straight into
restrained least squares (RLS) refinement, alternat-—
ing rounds of refinement with manual rebuilding
“using an interactive graphics display. In some
cases it may be necessary initially to omit those
parts of the model that are clearly incorrect and
rebuild them as the refinement proceeds. Experience
has shown that this approach is very often success-
ful, and there are several examples of structures
solved in this way in the literature. However,
there are some cases in which the errors in the
initial model are sufficiently large to prevent con-
vergence to the cdrrect solution, or in less extreme
examples, to make the refinement process an extreme-

ly long and painful one.

I would like to describe an example where an alter-
native approach, using CORELS to improve the molec-
ular model before going on to RLS refinement, has
proved very successful. This approach was adopted
in the refinement of the structures of the apo- and
1 NAD per tetramer species of glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) from Bacillus

stearothermophilus, using the refined holo-enzyme

structure as a starting model!s?. Before consider-
ing these examples in detail, I would like to give

a brief description of the CORELS program itself.
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2. CORELS

CORELS is a COnstrained REstrained Least Squares
refinement program originally written by Joel

L
»

Sussman and colleagues in the early 1970's to

refine the structure of a tRNA molecule. It has
been improved considerably in recent years, primari-
ly by Joel Sussman, and in its present form it is
applicable to both protein and nucleic¢ acid struc-
tures. The feature that makes CORELS different to
other RLS programs is that the program refines the
parameters of constrained groups of atoms rather
than individual atomic parameters. Within a con-
strained group, all bond lengths and angles are
fixed at values determined from small molecule
crystallography. The refined parameters are then
the position and orientation of the group, and
optionally specified dihedral angles within the
group (thus a constrained group is not necessarily
rigid).

single amino acid or as large as an entire molecule.

A constrained group may be as small as a

This approach results in a considerable reduction in
the number of refined parameters, and as a conse-
quence, a significant improvement in both the speed
It is the increase in

and radius of convergence.

the radius of convergence when compared with con-
ventional RLS methods that makes CORELS particularly
attractive when employing the molecular replacement
technique. This is achieved principally by starting
refinement using only low resolution data (e.g. 68
or even lower resolution), which is possible because
of the small number of parameters being refined.

The function minimised in the refinement is:

Q= wFDF + w.DD + w.DT (1)

D T

where the first term is the usual structure factor

contribution:

a 2
DF ﬁ “n (lFobs,hI IFcalc,hl)



Table 1
The rigid groups used in the 48 CORELS refinement

of GAPDH.

CORELS group

Secondary Structural units

Residue numbers

1 BA’BB'BC 0-8,23-24,71-77

2 oy 9-22

3 a. 36-52

4 B-structure 53-70

5 ap 78-88

6 GE 101-113

7 BD’BE’BF 89-100,114-120,142-147
8 BE-BF loop 121-141

9 catalytic domain 148-311
10 C-terminal helix 312-333

The second term is for stereochemical restraints,
which are all expressed as distance restraints be-

tween pairs of atoms:

DD =T w

- 2
e ®bs,d Dealc,d

where D is the "ideal” distance between two

obs,d

atoms and D is the distance calculated from
cale,d

the model. (Planarity restraints are dealt with in
this way by the introduction of dummy atoms.)

The final term restrains the model to a set of
target coordinates, and is expressed as:

. (x )2

T - i “l'=targ,i

I w - X :
i ~—calc,1

ztarg,i is a vector defining the position of the

ith atom in the target coordinates and X . is
= =calc,i
the vector defining its position in the model.
The quantity Q in equation (1) is an explicit func-
tion of all the group positional and thermal para-

meters, and can be written as:
Q = £(t,R,¢,B)

In this expression, t and R refer to the transla-
tion vector and rotation matrix to be applied to
each constrained group, ¥ describes the internal
dihedral angles of each group and B represents the
thermal parameters. Group derivatives are obtained
by differentiation of (1) with respect to individ-
ual atomic parameters and application of the chain

ruled.

79

Fig.l A schematic representation of the structure

of one subunit of B. stearothermophilus
holo-GAPDH.
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3. THE APPLICATION TO GAPDH

GAPDH is a tetramer of four identfcal subunits,
total MW 145000, that requires the cofactor nico-
tinamide adenine dinucleotide (NAD) for activity.
The structure of the holo?enzyme, with four mole-
cules of NAD per tetramer, has recently been refined
to an R-factor of 227 at 2.4% resolution (unpub-
lished work of A.J. Wonacott and P.C.E. Moody). A
schematic diagram of the structure of one subunit
is shown in Figure 1. Each subunit is made up of
two domains, the coenzyme binding domain (residues
1-147 and 312-333) and the catalytic domain (resi-
dues 148-311).
222 molecular symmetry, with the catalytic domains

The refined

The four subunitsare arranged with
forming the inner core of the tetramer.
holo-enzyme structure was used as a starting model
for the refinement of the apo-enzyme (no bcound NAD),
same space group (P2;) but
The

which crystallises in the
with changes in cell dimensions of up to 5R.
_ crystallographic asymmetric unit contains the com-
plete tetramer in both cases. Diffraction data were
collected to 6% resolution from a mercury and a
platinum derivative, and the heavy atom coordinates
were used to locate the molecular centre and the
orientation of the 222 molecular symmetry axes,
although this could have been done equally well

using rotation and translation functionms.

The initial model had an R factor of 44,57 for data
to 6% resolution.

CORELS.

This model was then refined using
Initially only data to 6% resolution were
included, in order to get a reasonably large radius
of convergence. Each subunit of the tetramer was
divided into three rigid groups, corresponding to
the coenzyme binding domain excluding the C-temrminal
helix, the catalytic domain and the C-terminal
helix. Six cycles of CORELS refinement reduced the
R factor to 39.4%, with a total shift of 5° in the
orientation of the coenzyme binding domain of each
subunit. To improve the model further it became
necessary to divide the structure up into a larger
number of rigid groups. The choice of rigid groups
was made by examining a 68 resolution (Fo - Fc)’ a,
electron density map and by looking at the secondary
and tertiary structure of the enzyme. This
resulted in each subunit being divided into 10 rigid
groups (Table 1), with each group corresponding to

an element of secondary structure or a group of
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elements. The resolution of the X-ray data was ex-—
tended to Aﬂ, and refinement reduced the R factor
at this resolution to 32.3%Z. When refined individ-
ual atomic temperature factors from the holo-enzyme
structure were added to the refined coordinates of
the apo—enzyme the resulting model gave an R factor
of 30.2% to 3% resolution. Further refinement was
performed using the Hendrickson-Konnert RLS refine-
ment program (unpublished work of T. Skarzynski and
A.J. Wonacott). 1In 19 cycles all the serious errors
in stereochemistry introduced during the CORELS re-
finement (these were primarily at the junctions
between rigid groups) had been eliminated, and the
R factor had dropped to 25.3% at 2.58 resolution.

At this stage a minor rebuild of the model was re-

quired.

The same strategy was adopted for the refinement of
the 1 NAD per tetramer species. This form crystal-
lises in an different space group (P2;2;2), but the
molecular packing is in fact very similar to that in
the crystalline apo- and holo-enzymes. The molecu-
lar orientation and the position of the molecular
centre were again located by analysing the posi-
tions of the heavy atoms in mercury and platinum
derivatives. The refined apo-enzyme coordinates
were used as a starting model, giving an initial R
factor of 40.3% at 68 resolution. Eight cycles of
CORELS refinement at 6] resolution, followed by a
further eight cycles at 4% resolution, using the
same rigid group definitions as in the apo-enzyme
refinement, reduced the R factor to 29.57. These
coordinates were then combined with the holo-enzyme
individual atomic température factors and the re-
sulting model was refined for a further eleven
cycles using the Hendrickson-Konnert program.
Again, the refinement eliminated all serious errors
in stereochemistry, and gave a final R factor of

23.9% for data to 3% resolution.
4, CONCLUSIONS

The total r.m.s. shift in a=~carbon positions for
the coenzyme binding domain of GAPDH was 1.28 for
the apo-enzyme refinement, with a maximum shift of

2.38 for the a-carbons in the helix a«.. It is un-

D
likely that shifts of this magnitude would have
been within the radius of convergence of a conven-

tional RLS program. The use of CORELS was a much



Table 2

The structural stability of helical secondary structures in molecules undergoing a large conformational

change on ligand binding.

structural forms of the enzyme, using W. Hendricksons superposition program .

For any given enzyme, each helix in turn has beeg superimposed in the two

The superposition was

performed using only a-carbons, and the resulting rms deviation in a-carbon positions was noted for each

helix.

for any one helix.

The table gives the overall rms deviation for all helices, and the maximum and minimum deviation

Enzyme Domain Number of Total number of rms deviations in a-carbon
rotation helices residues in positions after superposition
(degrees) helices overall maximum minimum
[¢:0)
GAPDH 5 4x7 4x86 0.16 0.24 0.09
LADK" 7 9 95 0.37  0.45 0.27
Citrate Sym:hase7 18 20 315 0.66 1.17 0.27

simpler alternative to solving the apo-enzyme
structure either using multiple isomorphous replace-
ment techniques or using the molecular replacement
method with the initial omission and subsequent
rebuilding of a large part of the coenzyme binding
domain. The results of the work on GAPDH suggest
that CORELS refinement is the ideal way of tackling
those structural problems where the structure of an
enzyme in one state of ligation is known, and where
the enzyme is suspected of having undergone a
substantial conformational change as the result of
a change in the state of ligation by substrate or

cofactors. There are of course examples where the

conformational change is so large that it would be
outside the radius of convergence of even a CORELS
refinement. In such cases, however, it may still be
possible to locate the larger domain and use this to
calculate an electron density map from which it is

possible to obtain an initial estimate of the posi-
tion of the smaller domain. This would provide a
greatly improved starting model for further CORELS

refinement.

This approach depends on two. factors for its success.
Firstly, the known structure must be well determined,
and preferably already refined at high resolution.
Secondly, it must be possible to approximate the
conformational change by rigid body movement, of
complete domains at the crudest level, or of ele-
ments of secondary structure (a-helices and strands
of B-sheet) at a more sophisticated level. The
analysis of the conformational changes in
hexokinases, liver alcohol dehydrogenases, citrate

7 2 .
synthase and GAPDHI’ all suggest that this
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requirement is usually satisfied, although to some-

what varying extents (see Table 2).

The use of CORELS as a precursor to restrained least
squares refinement has been of considerable value in
the case of GAPDH. As the number of structures
solved using molecular replacement techniques in-—
creases, it seems likely that CORELS will have an
increasingly important contribution to make to

protein structure determination.
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SOME EXPERIENCES WITH HAEMOGLOBIN REFINEMENT

Zygmunt S.

1. INTRODUCTION

The molecular replacement method (MR) has become an
increasingly popular alternative to the multiple

isomorphous replacement (MIR) technique of solving
macromolecular crystal structures. The two methods
yield model structures which may then be used to

calculate sets of Fc and a. and may subsequently be
subject to least-squares refinement. The quality of
these initial sets of Fc and a, seems comparable for
the nature of errors intro-

both methods. However,

duced with each of the models may be different.

The atomic coordinates derived fram the MIR map will
suffer mainly from random errors with more serious
faults confined to less well defined and/or external
residues with comparatively high temperature

(1)' the

factors. During the refinement of actinidin
r.m.s. shift between the starting and final sets of
coordinates was 0.5 A, The quality of this particu-
lar starting model was considered to be high, but
the r.m.s. difference quoted is probably typical for
many structures determined fram MIR electron density
maps at 2.0-2.8 A resolution. Considering the large
theoretical radius of convergence of least squares
refinement, one might expect these model structures

to refine automatically and rapidly.

Although models used in the MR calculations may be
superior in terms of their stereochemistry, even
small errors in the rotation and translation param=-
eters may lead to systematic shifts of entire parts
of the structure relative to true positions. There
are also likely to be moves of 1-2 A in elements of
secondary structure which will further weaken the
match. This situation may cause severe problems
during least-squares refinement. 1In this paper I
wish to report some experiences with the refinement
of human semioxyhaemoglobin at 2.1 A resolution from

a set of atomic coordinates obtained by MR.

* On leave from the Department of Crystallography,
University of Iodz, Poland.

by

Derewenda*
Chemistry Department, University of York, Heslington, York YO1 5DD.
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2. THE HAEMOGLOBIN CASE

At the time of our initial calculations, the most
accurate model of haemoglobin available was that
of human deoxyhaemoglobin refined by G. Fermi at
2.5 R resolution using real-space refinement tech-

niques(z).

Non-crystallographic, molecular symmetry
was assumed to be ideal, and accordingly the model
was composed of one dimer. A complete molecule (a
tetramer) was obtained by rotating the dimer 180°
around the molecular dyad (i.e. the molecular Y

axis).

However, in an attempt to investigate the quaternary
structure of the molecule in the crystal in ques-
tion, and in order to assess the power: of the com
puting techniques, a single dimer was used as the
search model. The final model of the entire mole-
cule was composed of two dimers, each of which was
independently oriented using the fast rotation func-

tion program(s).

The positions of the dimers within
the unit cell were established simultaneously using
a six-dimensional version of an R-factor minimiza-
tion type translation function with incorporated

The details of this work
(4)

Fast Fourier Transform.

have been published elsewhere

The above calculations were carried out using 3.5 A
diffractometer data for four forms of haemoglobin.
In order to refine and analyse the structure of
semioxyhaemoglobin, a 2.1 A photographic data set
was collected using synchrotron radiation at ILURE.
To reduce camputing costs, the positions of the two
dimers established earlier were used to obtain the

starting set of coordinates.

The structure has since been extensively refined.
The initial stages of refinement were carried out
using the unrestrained PFast Fourier Transform

refinement method of Agarwal(s). with periodic

restoration of proper stereochemistry using the

MODELFIT method(s). In later stages the energy
(7)

refinement procedure of Jack and Levitt was also



used, while the last stage was performed with the
Konnert-~Hendrickson restrained refinement proced-

(8)
e

ur , modified by E.J. Dodson to make use of the

FFT. During the course of the refinement 2F°-Fcand
FO-FC maps were plotted out at various points. The
structure was reviewed and rebuilt in parts several
times. Although certain details of static disorder
and water structure are still being investigated the
structure is essentially refined. The conventional
crystallographic R-factor for a restrained coordin-

ate set including 84 water molecules is 20.5%.

3. . PROBLEMS ENCOUNTERED DURING THE REFINEMENT

Most of the problems encountered during the refine~
ment of the semioxyhaemoglobin structure are repre-
sentative of various difficulties resulting from the
use of MR coordinates in general. Using samewhat

liberal criteria they may be classified as follows:

(i)
eters established by the MR technique.

Errors in the rotation and translation param-

(ii)
case of semioxyhaemoglobin the starting model was

Inaccuracies of the starting model; in the

obtained from real-space refinement at 2.5 A resolu-
tion. Both these factors could have resulted in
errors, though one would expect them to be randomly
distributed and in general not exceed 0.5 A for well
resolved groups of atoms.

(iii) Influence of crystal packing forces and pro-
tein solvent interaction. These are probably the
most difficult differences to assess a priori. One
may expect that a number of residues involved in
intermolecular contacts may exhibit marked conforma-
tional changes; the different nature of protein-
solvent interactions (e.g. high~salt vs. low-salt
solvent) may also cause differences in the hydrogen
bond network.

(iv) TLack of water structure in the initial model
structure; although crystallographically identifi-
able water molecules rarely constitute more than 10%
of the scattering matter (and thereby their direct
effect on the course of protein refinement is nearly
negligible), their absence in the initial model may
lead to errors such as displacements of atoms hydro-
gen bonded to water molecules towards the latters'

positions, or the refinement of some sidechains into
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. a related derivative.

the density of the water molecules and not that of
the protein.

(v)

ture of the particular form of the protein molecule

Functional differences; normally the struc-

is not known, and the initial model represents only
These structural differences
are of major biochemical importance and every care
should be taken to separate them fram any of the

previously described differences.

The above presented problems may be grouped into two
categories: a) general errors affecting the entire
structure (points 1 and 2), b) localized or highly
localized errors affecting individual residues or

atoms.

Since the functional differences are impossible to
foresee they cannot be classified a priori. All
localized errors, and particularly the large errors
often cannot be corrected autamatically and are
normally detected and corrected during the inspec-
tion of the electron density map. It is therefore
the first category of errors which has a particular
effect on the course of automatic refinement, and
especially the errors introduced by the rotation and

translation parameters.

4. THE ACCURACY OF THE MR SOLUTION IN
SEMIOXYHAEMOGLOBIN

Once the structure is fully refined, it is easy to
check the accuracy of the initial rotation and
translation parameters by simple least-squares
matching of the starting model on the final struc-
ture. I shall henceforth refer to the model obtain-
ed by the MR method as the MR model, and to the
model obtained a posteriori by least squares match-
ing on the final structure as the LSQ model. Table
1 compares the rotation (Eulerian a, B and y) and
translation ('E;,,IE&I,IE;,) parameters of the two

models.

It is clear that the MR method gave an accurate
solution, with orientation errors mostly within 1°.
The translation parameters are also fairly accurate
with only one serious discrepancy (0.6 A for ':x' of
dimer 1).

Fig.1 shows r.m.s. differences (averaged separately



Table 1
The comparison of rotational and translational parameters derived fram the MR solution and obtained fram a

least~squares matching of the initial model onto the final set of coordinates*.

DIMER 1 DIMER 2
Model Eulerian angles Translation vector (A) Eulerian angles Translation vector (A&) R%
a 8 Y ty, ty t, _ a B Y ty ty t,
MR 66° -124° 161° 4.12 1,25 15.22 68° 56° -164° 3.59 1.39 15.6 47.2
L1 66.7° =-123.6° 162,6° 3.88 1,35 15.34 67.7° 56.4° =164.4° 3.51 1.36 15.57 43.7
L2 67.1° =123.6° 163.1° 3.68 1.39 15.40 67.6° 56.7° =-164.9° 3.48 1.35 15.5 41.2
LSQ 67.1° =123.7° 163.1° 3.44 1.32 15.42 67.3° 56.4° =-165.3° 3.47 1.46 15.45 39.3

*parameters for models denoted L1 and L2 have been obtained as described in section 5.
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Fig.1 r.m.s. differences (averaged separately over main- and side-chain atoms) between each of the MR and LSQ
models and the final set of coordinates of the o) chain of semioxyhaemoglobin:
a) MR model vs. final structure; b) LSQ model vs. final structure:
thick bars -~ mainchain atoms; thin bars - sidechain atoms.

over main-chain and side-chain atoms in each resi- the Konnert-Hendrickson restrained refinement with
due) between each of the MR and LSQ models and the FFT.

final structure (only one chain is shown). It is

easy to see that even small errors in the position-

ing of the model structure introduced serious dis- Se THE REFINEMENT OF LSQ AND MR MODELS
placements into the starting set of coordinates.

The efficiency of the refinement is highly dependent

Figure 2 shows the exact nature of these errors. on the guality of the set of phases obtained with
Figure 2a shows that the F helix was systematically the initial model. 1If they are close to the correct
displaced by over 1.0 A along its axis. On the values, the difference Fourier map should reveal
other hand the G helix shows a very good fit, except well defined gradients, and accordingly convergence
for few sidechains (fig.2b). should be fast.

In order to assess the significance of these errors Figure 3 shows the quality of the ZFO-Fc maps cal-
during the refinement I have simultaneously sub- culated using the LSQ and MR models to obtain the
jected the LSQ and MR models to refinement, using values of Fc and e The region shown is that of
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Fig.2 The agreement of the MR with the final structure:
a) region of poor fit - a; F helix
b) region of good fit - 31 G helix
Filled bonds and atoms: final semioxyhaemoglobin structure
Empty bonds and atoms: MR model

N
-

47

Fig.3 2F “Fa. electron density maps obtained directly from MR and LSQ models without refinement.

o ;
a) MR model; b) LSQ model

The maps were calculated and contoured in an identical way; filled bonds - final
semioxyhaemoglobin structure; empty bonds - trial model (MR or LSQ).
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the alF helix, which was earlier shown to be consid-
erably displaced in the MR model.

Ideally, the 2F,-F, map should reveal the true
structure. It is the sum.of Fcac and 2(F°-Fc)ac
Fourier transforms. The factor of 2 puts the
features of the difference map on the absolute
scale. The minima indicating wrongly placed atoms

should therefore cancel out those features on the

Fcac map, while new features should reveal the true
structure on an absolute scale. This is based on
the assumption that the phases are accurate; in

other words that the model is fairly close to the

correct structure.

Figure 3a shows that the MR model is sufficiently
displaced to disturb the phases in such a way that
the map reveals significant "ghosting”, (i.e. re-
appearance of the initial erroneous model) and the
resulting density spreads over the model and the
true positions. The LSQ model yields a much more
reliable set of phases, and the density is sharper
and emphasises the true positions much more

clearly.

Both models have been subjected to 2 rounds of
least~squares refinement each consisting of 5 xyz
and 3 unrestrained temperature factor refinement
cycles. During the first round the distance
restraints were set to the value of e.s.d. for a
single bond to 0.01 A, somewhat stronger than usual,
to keep proper geometry in spite of large shifts in
the early stages of refinement. At the beginning of
the second round this value was increased to that
normally used (0.02 A), and a file with 84 water

molecules was added.

Figure 4 shows the progress of both refinements in
terms of the decrease of the conventional R factor.
Normally one would be inclined to consider the pro-
gress of the MR model refinement as at least satis-
factory. It is clear, however, that the LSQ model
is much better, and the effort involved in

rebuilding would probably be much less.

Figure 5 shows that while the LSQ model refines
quite easily into the true structure, the MR model
(in spite of the encouraging R factor value) is too
much in error in some parts to refine adequately.

The above calculations indicate that the succeéss and
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Fig.4 The progress of the refinement of the MR and
LSD models
® x,y,z refinement cycle
*B refinement cycle

> water file added; restraints relaxed

efficiency of the least-squares refinement of
coordinates obtained by the MR method depends
strongly on the accuracy of the parameters used to

position the initial model.

Héﬁing refined the semioxyhaemoglobin structure it
is trivial to check these parameters against the LSQ
model. With hindsight it would have been much more
valuable to assess the accuracy of the MR solution
in the course of the refinement, and apply the
necessary corrections. I will now show that this is

indeed possible.

Following the first round of automatic refinement of
the MR model (5 cycles of xyz and 3 of B factor
refinement), 91 atoms located not further than 12 A
fran the molecule's centre were selected. It was
found that the temperature factors of these atoms
were all close to or under 20 A2 (mean value for the
structure) and were therefore assumed to have
refined correctly. BAn identicial set of 91 atoms
from the initial model used in the MR calculations
was fitted by least-squares. The resulting values
of orientation and translation parameters were used
to reposition the initial model and the refinement
was restarted. Another 5 cycles of xyz and 3 cycles
of B factor refinement were performed and the
procedure was repeated, this time with 254 atoms
located within the sphere of 15 A radius. Three
such cycles of orientation refinement were enough to
bring the model within 0.2° and 0.05 A of the ISQ

model (Table 1).



a

Fig.5

b

The refined MR and LSQ models (10 cycles of x,y,z and 6 of B refinement as shown on fig.4):

a) MR refined model vs. final semioxyhaemoglobin structure
b) LSQ refined model vs. final semioxyhaemoglobin structure
The part of the structure shown is the a,F helix.

7. CONCLUSIONS

It is generally agreed that the accurate positioning
of the starting model is vital for successful sub-
sequent refinement, and there are a number of poss-
ible ways in which one can do it.

is the CORELS(g)

One useful method
technique, i.e. rigid body refine-
ment in the early stages. The calculations present-
ed here indicate that, even though least squares
refinement is unable to correct overall errors in
orientation and translation parameters, it provides
accurate information which can be readily used to
improve the starting model. It seems that the least
squares refinement approach is very powerful for
rigid structures and will possibly cope with in-
dependent shifts of several subunits or domains. 1In
our calculations, however, we have used only two

independent parts of the haemoglobin molecule.

Since these calculations were carried out, the
method was used to refine the structure of methaemo-
globin in crystals obtained from poly{ethylene
glycol). These crystals seemed to be isomorphous
with those of semioxyhaemoglobin and accordingly
semioxyhaemoglobin atomic coordinates were used as
the initial model for refinement. The starting R
factor value was 46% and it was brought down to 27%
in the course of the refinement. An electron

density map calculated at this stage revealed no
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serious errors, but little could be done about
iﬁproving the agreement of the model with the
diffraction data. At this point the stragegy des-
cribed here was used, and it was found that the
molecule in crystals of methaemoglobin is shifted by
approximately 0.7 A along the X axis. The initial
model was then reconstructed by positioning the
semioxyhaemoglobin dimers in the methaemoglobin
crystal unit cell in agreement with these observa-
tions and the refinement was resumed. Two cycles of
this procedure allowed to bypass the local minimum
encountered earlier, and the current R factor value

is now 21%.
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The method of molecular replacement depends on three
of the most aesthetically pleasing and elegant as-

pects of crystallography; symmetry, molecular trans-
forms and the convolution theorem. It is therefore
an area where intuitive arguments based on concepts
have_a place alongside the more rigorous mathematic-~

al analyses.

Let us begin our review by reiterating the aspects
of symmetry which are often ignored in practice as
molecular replacement practitioners rush to their
computers. An n-fold rotation axis - whether it be
a proper rotation or a screw rotation axis - leads
to n-fold gsymmetry in the diffraction pattern and
itg transform, the Patterson function, whether it be
crystallographic or local symmetry. Thus a local
two fold axis leads to pseudo 2/m symmetry which can
be observed most easily in sections parallel to the
local two fold axis., The Patterson has a pseudo-
Harker plane through the origin and perpendicular to
the local axis; the higher the order of the axis the
more peaks on the Harker section. The Harker plane
is thus located as a plane containing a higher con-
centration of vector peaks. Alternatively, the
Harker plane transforms in reciprocal space to a
line of extra intensity in the direction of the
rotation axis - the well known “"spike®" which is
evident in the diffraction patterns of viruses but
which can be seen even for the pseudo 2-fold axes in

the insulin hexamer.

The existence of more than one molecule or subunit
in the asymmetric unit gives a diffraction pattern
that is derived from the molecular transform of the
molecule in each orientation, When two molecules in
different crystal systems are compared the problem
is still essentially the same; we must recognise the
relative orientations of the two molecular trans-
forms in reciprocal space or the two self vector
sets in Patterson space.
addressed the problem of what model should be used

Much of the meeting

to calculate the transform although this was not

always explicitly discussed.

a9

When two identical molecules are compared there is
considerable advantage in using a refined protein
structure at the highest resolution possible.
Thermal parameters will be crucial - except for low
resolution structure analyses - as these have the
effect of emphasising the ordered and more rigid
parts of the structure. Although the crystal pack-
ing will limit the dynamics of the protein at the
points of lattice contact, recent work on comparison
of the thermal parameters defined by x-ray analysis
and those deduced from normal mode analysis or
molecular dynamics shows that x-ray parameters do
reflect the intrinsic internal dynamics of the
system, They therefore are relevant to more than
one crystal system.

When there is no identical structure which has been
refined by x-ray analysis of another crystal system,
there is the possibility of using proteins modelled
by homology, for example see the work by Tickle
(this volume) for chymosin. However, this offers
little advantage unless thermal motion and disorder
are modelled. We suggest that this might most econ-
omically be achieved using normal mode analysis, the
results of which can be expressed straightforwardly
as thermal ellipsoids for the calculation of struc-

ture factors,

When the homology between the search structure and
the molecule in the unknown crystal structure is not
high, the success seems to depend critically on the
nature of the protein structure., For example an
a-helical protein such as a globin can be success-
fully studied at low (~ 6 A) resolution. Th?s suc-
cess may be related to the fact that helices have
low resolution images which correspond to rods of
density which are not too dependent upon the amino
acid sequence. However, the low resolution image of
a B-sheet structure is not so obviously related to
the path of its mainchain and may be critically
dependent on the sequence. In this case higher
(~ 3 &) resolution data may be appropriate even

though the molecular structures are not identical



At very high (~ 1.5 A) resolutions other problems
may arige due to small differences in the relative
positions of topologically equivalent secondary

structures.

Much of the method of molecular replacement of
Rogssmann and Blow can be most easily understood in
terms of the convolution theorem. This states that
the transform of A convoluted with B can be calcula-
ted from the product of the transforms of A and B.
Thus the rotation function involves the product of
two self vector Patterson functions which can be
calculated as the convolution of two intensity

patterns in Eulerian space or:

R = fP(xz)P(xl)dx1 = hoh!

(u/vd) ¥ g ’F |2|F |2G

pn BTN
in which each self Patterson is the convolution of
the molecule with its inverse. On the other hand
the translation function involves the product of the
Patterson function with a Patterson function involv-
ing cross vector terms, which is the convolution of
the translated and rotated molecule with the

inverse,

With respect to rotation functions several questions
arose during the discussions. First the success of
the Munich group in using Patterson functions is
gsignificant. Could the apparently smaller success
rate of many other groups be due to the limitations
of the number of reflections in many of the recipro-

cal space programs?

A general question concerning rotation functions
appears to be the precision of the rotation angles
defined. These must depend on the resolution of the
data used. In fact the consistency of the rotation
angles with data shells of different resolutions
appears to be a good guide to a correct solution.
Clearly the higher the resolution the better, For
large molecules with a radius of ~ 60 A, the resolu-
tion should be reasonably high; an error of 1° in
the rotational parameter will lead to a 1 A error at
the periphery of the molecule., If used in molecular
replacement or symmetry averaging this will have a
serious effect on the interpretation - see for
example the work on the semioxygenated haemoglobin
(this volume) where the structure near the rotation
axis was clearer and more easily interpretable than

that at the molecular periphery.
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One aspect of translation functions that has been
paid little attention is the use of overlap func-~
tions. BAny pair of molecules in a crystal unit cell
must occupy distinct volumes which do not overlap.
The closest contact cannot be less than a van der
Waals distance ~ 3 A. This can be re-expressed by
saying that in a get of cross-Patterson vectors
between molcules related by a crystallographic oper-
ation (Ax + d) there should be no interatomic
vectors in a sphere of radius 3 A around the origin.

The cross-Patterson is given by

Pio(w = py(x)py(x + u) dx
v

This is the convolution of one molecule with its
inverse operated on by the symmetry. Thus if t is

the translation between 1 and 2
P)p(u) = F,(h) FE(h.A) exp =2ni(h.t - h.u)

This function should be zero within radius 3 A of

the origin.

34
”
s OF=[ I F (h)F (h.A) exp -2ni h.t exp 2%i h.u &V
0

This is part of the calculation implied by the
translation function of Crowther and Blow and may be

used to weight the terms in the function.

The weight should be dependent on %; and the new
function might be

L 2 * i

e = ozlr (|2 By (h) Fy(hiA) exp(-2ni hot)
This is similar to the translation overlap function
of Lifschitz et al except that OF is there defined

simply as the origin peak height of P;,(u).

Finally we consider analysis of the rotation and
There is some confusion in
the definition of the significance of peaks. To
avoid this it would be sensible for both the number

translation functions.

of standard deviations above the mean and above the
next significant peak to be quoted for the peak of

choice.

The Table shows the forms of crystallographic agree-

ment values (R) and product moment correlation



coefficients (C) which may be of use in evaluating
the results, Although the expected values for ran-
dom and perfect solutions are well known, further
work is necessary to define the expected values
especially when the orientation is correct and only
the translation is in error, and when only a few
reflections are used. In general it seems that
correlation functions are more discriminating than

R-factors.

Table

Conventional crystallographic residual

_ Zh Fobs - Fca.lc

ZE l?obs

Product moment correlation coefficient

Zh[(xobs—xobs) * (xcalc-xcalc

)1
Cc =

-X 2 -X 2\1/2
( thxobs Xops)® ;E(xcalc Xcalc )

(X = F, E, F2 or E2, note E2 = 1)

Random*: R

R

0.586 - (0.203/n)1/2 (acentric);
0.828 - (0.455/n)1/2 (centric)
c=0

Perfect: R = 0
C =1

*The authors thank Prof. A.J.C.Wilson for comments
on the forms of these expresgsions.

n is the number of reflections.
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