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Abstract

In this thesis we investigate two independent topics: neutron Compton scattering from

hydrogen and perovskite oxide interfaces.

Part one is an investigation of the scattering of high energy neutrons from hydrogen

compounds. The motivation for this investigation stems from neutron Compton scattering

experiments, performed with the VESUVIO neutron spectrometer at the ISIS pulsed

neutron source, which report an anomalously reduced cross section for hydrogen. We

explore the possibility that electronic excitation is responsible for the discrepancy between

conventional theory and experiment. We conclude that the effect of electronic excitation

on the scattering is small, at the energies relevant to the experiments, and therefore cannot

account for the anomalies.

Part two is an investigation of two perovskite oxide interfaces: a cuprate-manganite

interface, and the interface between SrTiO3 and LaAlO3. Both interfaces are investigated

using the techniques of impurity theory. Firstly, a simple model of a cuprate-manganite

interface is proposed to explain several recent experiments. By applying the idea that

the metallicity of the manganite spills out into the cuprate, we provide a theoretical

interpretation of the unusual electronic and magnetic properties observed at the interface.

Finally, a simple model of the SrTiO3-LaAlO3 interface is investigated. Two ingredients

are contained within this model: the orbital physics of the titanates, and the long range

coulomb interactions produced by the polar discontinuity at the interface. From this

model, we predict a two dimensional layer of charge confined to the interface, which is

consistent with experimental observations.
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Chapter 1

Neutron Compton scattering from

hydrogen

Neutron Compton scattering, also referred to as deep inelastic neutron scattering, is dif-

ferentiated from other branches of neutron scattering by the high energies involved. In

this high energy regime, which often involves neutron energies in the region of 100eV,

the scattering process is so rapid that interatomic forces acting on the struck nucleus can

be neglected during the collision. This is the impulse limit; in this limit, the relation-

ship between the measured response and the nuclear momentum distributions becomes

remarkably simple. In addition, the scattering from the different nuclei can be separated,

which enables detailed investigations of the individual atomic species within a sample.

In analogy with x-ray Compton scattering, which provides information of the momen-

tum distribution of electrons, neutron Compton scattering provides information about

the momentum distributions of different nuclei. This idea has been applied to extract the

condensate fraction in superfluid 4He[1, 2], and to reconstruct the nuclear wavefunctions

and potentials of hydrogen in ferroelectric KH2PO4[3]. A comprehensive review of the

theoretical background for neutron Compton scattering has been given by Watson[4].

In the following four chapters we investigate the application of the neutron Compton

scattering technique to hydrogen systems, and determine the reliability of the approxima-

tions used to analyse the results. The motivation behind such an investigation originates

from several experiments, performed on the VESUVIO neutron spectrometer at the ISIS

pulsed neutron source, each reporting an anomalously reduced measurement of the neu-

tron cross section for hydrogen[5, 6, 7, 8, 9, 10, 11]. These anomalies have prompted

several investigations: into the theoretical description of scattering high energy neutrons

from a variety of different systems[12], and into possible experimental or data analysis

problems[13, 14, 15].

This investigation focuses on the theoretical possibility that electronic excitation,

2



CHAPTER 1. NEUTRON COMPTON SCATTERING FROM HYDROGEN 3

which becomes more significant as the energy of incident neutrons increases, is responsible

for the anomalous measurements. Previous investigations[16] into the significance of elec-

tronic excitations have reported small modifications to the neutron response. However,

due to the more recent influx of experimental data, we re-examine the possibility that

electronic excitations may be responsible for the anomalous measurements of hydrogen

cross sections. The simple systems which we examine allow for a detailed investigation,

of the two different mechanisms responsible for electronic excitation: the centre of mass

recoil (CMR) effect, which is caused by the mixing of electronic and nuclear coordinates

in the centre of mass frame, and the non-adiabatic coupling (NAC) between the electrons

and the nuclei, which is a consequence of the electronic response to the dynamical motion

of the nuclei.

Chapter 1 serves as an introduction to the neutron Compton scattering technique,

and contains the background material necessary to interpret the experiments which re-

port anomalous measurements of hydrogen cross sections. The impulse approximation

is introduced and its application to high energy neutron scattering is discussed, together

with the corrections which can be expanded in powers of 1/q, where q is the transferred

momentum. In particular, the effect of the environment on the scattering of the struck

nucleus, which is not included in the impulse approximation, is discussed. The possibility

of electronic excitation is then introduced, and it is shown that accurate calculations of

the response function for hydrogen systems are required to quantify this effect.

In chapter 2, the methods required to analyse the response function of a simple model,

which in this case is a four body problem, are introduced. The analysis of the four body

problem illustrates how a separation of energy scales, of different modes of excitation,

leads to a convolution of the associated excitation probabilities.

The electronic excitation of the hydrogen atom is the topic of chapter 3. The proba-

bilities of electronic excitation are analysed and the energy scales for electronic excitation

and dissociation are determined. This analysis enables us to rule out one of the mecha-

nisms of excitation, the CMR effect, as a significant source of electronic excitation at the

energy scales considered relevant to the experiments.

Chapter 4 concludes the investigation with an analysis of the NAC effect in the molecu-

lar hydrogen system H+
2 . The NAC effect is shown to be synonymous with the breakdown

of the Born-Oppenheimer approximation, which assumes the adiabatic separability of the

nuclear motion from the electronic motion. To investigate these effects it is necessary to

incorporate the non-adiabatic corrections in the calculation of the molecular wavefunc-

tions. The wavefunctions of H+
2 are calculated using two independent methods: from an

approximate numerical solution of the exact Hamiltonian, and by expanding in the basis

of electronic states. These two methods reveal the errors which are implicit in applying
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the Born-Oppenheimer approximation to the calculation of highly energetic dissociated

states, which represent the final states in a high energy neutron scattering experiment,

but these errors are found to be small for the momentum transfers actually realised. Fi-

nally, it is concluded that a reduction in the scattered intensity of neutrons in the main

hydrogen peak would only be observable at momentum transfers approximately an order

of magnitude higher than is currently obtainable.

Finally, the results of this work are summarised at the end of chapter 4, where it is

concluded that electronic excitation cannot lead to a significant reduction in the measured

Compton profile, and therefore cannot be responsible for the reported anomalous hydrogen

cross sections.

1.1 The time of flight method

The neutron Compton scattering technique relies on the time of flight method. This

method involves measuring the intensity of neutrons scattered through a fixed angle α,

as a function of the time of flight of the neutron between the accelerator target and the

detector. In these experiments, the energy transferred to the struck nucleus typically

varies from about 5eV to 150eV, implying that we are close to the high energy limit

where the impulse approximation is valid. In this case, the time scale of the scattering

event is much shorter than the time scale of atomic motions within the sample, and the

nuclei may be regarded as free particles. This means that the response function peaks at

the classical recoil energy Er = ~2q2/2M , which is the energy imparted to a stationary

nucleus in a collision with a neutron.

To understand the scattering we therefore consider the classical ‘billiard ball’ scattering

of a neutron, as illustrated in Fig. 1.1(a): an incoming neutron, with momentum p and

mass m, collides with a stationary nucleus of mass M . Conservation of energy and

momentum requires:

p′ cos(α) + k′ cos(θ) = k (1.1)

k′ sin(θ) = p′ sin(α) (1.2)

k2

2m
=

p′2

2M
+
k′2

2m
. (1.3)

The relative velocities of the incoming and outgoing neutrons are dependent on the scat-

tering angle α,

k′

k
=
v′

v
=

cos(θ) +
È

(M/m)2 − sin2(θ)

M/m+ 1
. (1.4)
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(a) The peak in the time of flight spectrum oc-
curs at Er, and may be interpreted classically;
a neutron of momentum k scatters of a nucleus
which is initially at rest. After the interaction,
the neutron recoils at an angle θ and the nucleus
recoils at an angle α.

neutron detector

analyser foilL'

sample
moderator

L

(b) A schematic illustration of the time of flight
experiment. The neutron travels a distance L
from from the moderator to the sample, where
it scatters at an angle θ, before traveling a dis-
tance L′ through the analyser foil to the neutron
detector. The analyser foil absorbs neutrons of a
specified energy

Figure 1.1: The time of flight experiment

For hydrogen M ≈ m and we obtain the expression k′/k = cos(θ), which implies that

θ ≤ π/2, and consequentially there is no backwards scattering from hydrogen. The

transferred momentum is simply

q2 = k2 + k′2 − 2kk′ cos(θ) (1.5)

and energy transferred to the nucleus is

Er =
k2

2m
− k′2

2m
=

q2

2M
. (1.6)

The time of flight method is performed on the ‘inverse geometry’ instrument VESUVIO.

For an inverse geometry instrument, the energy of the scattered neutrons is analysed1

by placing an analyser foil between the target and the detector to absorb neutrons at a

particular resonant energy Efoil
2. By subtracting the ‘foil in’ spectra from the ‘foil out’

spectra, the remaining spectra corresponds to the scattering of neutrons with final energy

E ′ ≈ Efoil and final momentum k′ ≈
√

2ME ′. It is then possible to express the momentum

transfer in terms of the scattering angle, which for hydrogen is simply q = k′ tan(θ).

1In a more conventional ‘direct geometry’ instrument, the energy of the incident neutrons is analysed
with a ‘chopper’, which selects the velocity of the incoming neutrons.

2The energy resolution of the detector is therefore dependent upon the resonance width of the analyser
foil.
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Therefore a large scattering angle corresponds to a large momentum transfer. The time

at which the neutron reaches the detector is given by

t = t0 +
L

v
+
L′

v′
. (1.7)

Where L is the distance from the accelerator target to the sample and L′ is the distance

from the sample to the detector. Because of the relationship between k and k′, the time

at which the neutrons reach the detector is dependent on the mass of the struck nucleus,

with neutrons scattered from lighter nuclei arriving first. This idea is used in section 1.3

to separate the hydrogen peak, which is the first to be observed, from the peaks associated

with heavier nuclei. By estimating the area under the observed peaks it is possible to

extract the relative neutron cross sections for the constitutive materials. It is here that an

anomaly arises; for large scattering angles (high momentum transfers) the scattering from

hydrogen is significantly reduced and the measured cross section for hydrogen is therefore

less than expected.

There are several complications that arise when performing these experiments, and

these should be considered as possible causes of the anomalous results. The incident flux of

neutrons, which varies with the incident neutron energy E0, has a distribution N(E0)dE0;

for epithermal neutrons from a pulsed source N(E) is approximately equal to c/E, where

c is a constant. The number of detected neutrons is dependent on the factor N(E), and

the corrections to the data are quite large. The possibility that the energy dependent

detector efficiency deviates from the expected intensity has also been considered[15]. It

has been shown that this could, in principle, lead to anomalous measurements at large

scattering angles.

When performing theoretical calculations it is natural to determine the response, as

a function of transferred energy, in a constant-q scan. As the time of flight varies for a

particular detector, in a constant scattering angle scan, both the transferred energy and

momentum vary. This presents complications when comparing experiment with theory

because we have to convert between a constant scattering angle time of flight scan and

a constant-q scan. This can be achieved with a suitable transformation[14], but again,

the corrections are quite large and the validity of the impulse approximation must be

assumed. Ideally, the response function would be measured directly, as a function of

transferred energy and transferred momentum q, using many closely spaced detectors

and without resorting to the impulse approximation.

To understand how the possibility of electron excitation arises in experiments using

the time of flight method, it is necessary to understand the theory behind the quantum

mechanical scattering of neutrons from nuclei. The more detailed analysis involved for

the quantum mechanical problem allows us to justify the simple classical picture. It also
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establishes the relationship between the observed scattering and the detailed properties of

the sample, via the response function, which allows information, such as the momentum

distribution of the struck nucleus, to be extracted.

1.2 The theory behind neutron Compton scattering

To understand the relationship between the properties of the sample and the observed

neutron Compton scattering, one starts with the neutron cross section, which is an ob-

servable quantity. Three approximations must be invoked to arrive at the form which

is appropriate to high energy neutron scattering: i) The Born approximation, which is

applicable when the scattering is weak and the wavelength of the incident neutron is

much larger than the range of the scattering potential. ii) The incoherent approximation,

which is applicable when the spatial scale of the scattering event is much shorter than the

inter-nuclear separation. iii) The impulse approximation, which is applicable when the

scattering event occurs on a very short timescale. Once these approximations have been

invoked, the neutron cross section simplifies considerably.

1.2.1 The neutron cross section

The most fundamental quantity in any neutron scattering experiment is the neutron cross

section. This quantity can be understood by considering the probability of an interaction,

Pint, between an incident neutron and a sample of thickness ∆x with a density of particles

N ,

Pint =
W

J
∝ N∆x. (1.8)

Where W is the number of interactions per unit time and J is the incident flux of neutrons.

The constant of proportionality defines the neutron cross section σ:

W

J
≡ σN∆x. (1.9)

The neutron cross section defines an effective area of a target particle and is measured

in units of barn≡bn= 10−24cm2. In a neutron scattering experiment an incident neutron

with wave vector k is scattered into a state with wave vector k′, transferring momentum

~q and energy ~ω to the sample in the process. The geometry of this neutron scattering

experiment is shown in Fig. 1.2.

The quantity which is measured in an experiment is Jd2σ, where d2σ is the double

differential cross section: the fraction of neutrons with incident energy E scattered into
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target

neutron detector

Figure 1.2: The geometry of a neu-
tron scattering experiment. The inci-
dent neutron with wave vector k inter-
acts with the target and is scattered into
a state with wave vector k′. The cross
section is determined from a measure-
ment of the number of neutrons scat-
tered into the solid angle dΩ with an en-
ergy between E′ and E′ + dE′.

an element of solid angle dΩ with an energy between E ′ and E ′ + dE ′. From these

measurements the cross section per unit solid angle, per unit energy is determined to be

d2σ

dΩdE ′
, (1.10)

which has the units of (area/energy). To determine the microscopic form of the cross

section it is simplest to start with elastic scattering. In this case the differential cross

section is

dσ =
Wk→k′

J
. (1.11)

WhereWk→k′ is the transition rate of the neutron between its initial state, with wavevector

k, to its final state, with wavevector k′. This transition rate is determined from Fermi’s

golden rule,

Wk→k′ =
2π

~
|
Z
drnψ

∗
k(rn)V̂ ψk′(rn)|2ρ(E ′). (1.12)

The neutron is represented by a plane wave,

ψk =
1√
V
eik·rn with E =

~2k2

2mn

, (1.13)

which is normalised in an arbitrary volume V . The density of final states for the scattered

neutron satisfies
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ρ(E ′)dE ′ =
V

(2π)3
dk′ =

V

(2π)3
k′2dk′dΩ. (1.14)

Then, using the relationship dE ′ = ~2k′dk′/m, the transition rate is

Wk→k′ =
k′~V
m

� m

2π~2

�2

|
Z
drnψ

∗
k(rn)V̂ ψk′(rn)|2dΩ. (1.15)

We then use the relationship J =velocity of incident neutrons×density of incident neutrons=

~k/mV to write the differential cross section as

dσ = V 2
� m

2π~2

�2 k′

k
|
Z
drnψ

∗
k(rn)V̂ ψk′(rn)|2dΩ. (1.16)

We then adopt the notation

〈k′|V̂ |k〉 =
m

2π~2

Z
drne

−ik′·rnV̂ eik·rn (1.17)

to write the cross section per unit solid angle as

dσ

dΩ
= |〈k′|V̂ |k〉|2, (1.18)

where we have used the fact that k′ = k for elastic scattering. We next need to generalise

this to inelastic processes which occur when the neutron transfers some of its energy to

the target:

E − E ′ = ~2k2

2m
− ~2k′2

2m
= ~ω. (1.19)

In this case we introduce the index n to label the internal states of the target. We then

define the microscopic cross section per unit solid angle, associated with the transition of

the target from the initial state |Ψi〉 to the final state |Ψf〉, to be:�
dσ

dΩ

�f
i

=
k′

k
|〈Ψfk

′|V̂ |kΨi〉|2. (1.20)

The microscopic cross section per unit solid angle, per unit energy, is then defined such

that �
dσ

dΩ

�f
i

≡
Z ∞

0
dE ′

�
d2σ

dΩdE ′

�f
i

. (1.21)

Conservation of energy then dictates that Ei − Ef = ~ω, and therefore that�
d2σ

dΩdE ′

�f
i

=
k′

k
|〈Ψfk

′|V̂ |kΨi〉|2δ(~ω + En′ − En). (1.22)
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This expression contains the transition probabilities between microscopic states: using

time-dependent perturbation theory[17], the probability that the system makes a transi-

tion from the state |kn〉 to the state |k′n′〉 is proportional to |〈n′k′|V̂ |kn〉|2δ(~ω+Ef−Ei).
Finally, the experimentally determined quantity is the macroscopic cross section per unit

solid angle, per unit energy. This is obtained by averaging over all of the microscopic

states:

d2σ

dΩdE ′
=
k′

k

X
if

Pi|〈Ψfk
′|V̂ |kΨi〉|2δ(~ω + Ef − Ei). (1.23)

The probability distribution Pi corresponds to the Boltzmann distribution,

Pi =
e−

Ei
kTP

i e
− Ei
kT

. (1.24)

Additional averaging may also be required to account for the distribution of isotopes and

positions of the nuclei. For the hydrides, which are discussed in section 1.3(a), this would

involve averaging over the hydrogen occupancy of different interstitial sites.

The cross section, as expressed by Eq. 1.23, can be derived from formal scattering

theory[18] in the first Born approximation3. This is a consequence of applying Fermi’s

golden rule, which contains the assumption that the potential is weak and each neutron

therefore only scatters from the sample once: an assumption which is only valid for a

sufficiently thin sample.

1.2.2 The scattering length

When the De Broglie wavelength of the incident neutron is much larger than the range

of the scattering potential, the energy of the incident neutron is insufficient to resolve the

structure of the target. The scattered wave is then spherically symmetric and may be

characterised by a single parameter: the scattering length. This can be understood if we

consider an arbitrary central potential V (r), for which the asymptotic wavefunction of

the neutron may be expressed in the form[18]

ψk ∼ eik·rn + f(θ)
eikr

r
. (1.25)

The function f(θ) is the scattering amplitude which, for a central potential, can be ex-

panded in terms of Legendre polynomials:

3In formal scattering theory we obtain an identical result, but with the potential, V̂ , replaced by the
transition operator, or T-matrix, T̂ . The T-matrix may then be expanded in terms of the potential and
the Green function, Ĝ, to obtain T̂ = V̂ + ĜV̂ Ĝ+ · · · . In the first Born approximation we simply apply
T̂ = V̂ to obtain the result, Eq.1.23.
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f(θ) =
1

2ik

∞X
i=0

(2l + 1)[e2iδl − 1]Pl(cos(θ)), (1.26)

which is uniquely defined by the phase shifts δl. The scattering amplitude is related to

the angular cross section by

dσ

dΩ
= |f(θ)|2. (1.27)

If we consider a very simple form for the central potential which corresponds to a hard

sphere of radius r0, then the phase shifts are found to be δl ∼ (kr0)2l+1. The interaction

potential is known to be of very short range, of the order of 5 fm, and the neutron wave-

lengths that we shall be dealing with in this investigation are typically k ≈ 200Å−1. This

means that kr0 ∼ 10−2 and consequentially δ1/δ0 ∼ 10−4, so that to a good approximation

we may consider only s-wave (l = 0) scattering. The scattering amplitude is then simply

f(θ) =
1

2ik
[e2iδ0 − 1] = [k cot(δ0)− ik]−1, (1.28)

which can be expanded in powers of k2 so that

f(θ) = −b+ ikb2 +O(k2). (1.29)

The parameter b is the scattering length, which is equal to r0 for the hard sphere potential.

The scattering length characterises the purely s-wave scattering, and is in general a com-

plex number b = b′ − ib′′, where the complex part describes absorption of the neutron by

a nucleus. The cross section can therefore be represented as the sum of a scattering cross

section σs and an absorption cross section σa. The absorption cross section is inversely

proportional to the incident neutron velocity at low energies[19], except in the vicinity of

a resonance when the formation of a long lived compound nucleus is likely and σa has a

pronounced peak. For most nuclei the scattering cross section is much larger than the

absorption cross section4 (for hydrogen σs = 81.67bn and σa = 0.3326bn) and we may

write f(θ) = −b. Therefore

σ =
Z
|f(θ)|2dΩ = 4π|b|2 (1.30)

and to obtain agreement between Eq. 1.27 and Eq. 1.18, we require that

〈k′|V̂ |k〉 =
m

2π~2

Z
drne

−ik′·rnV̂ eik·rn = −b. (1.31)

This can only be satisfied by Fermi’s pseudopotential [21, 22]

4Although there are notable exceptions such as 3He[20].
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V̂ =
2π~2

m
bδ(rn). (1.32)

Fermi’s pseudopotential is defined to give the correct answer for s-wave scattering in

the first Born approximation. The interaction between the neutron and the nucleus is

assumed to be impulsive and therefore interatomic forces are ignored during the instant

of the collision. In addition, the complex part of the scattering length which allows for

absorption processes is also neglected. In practice, the scattering length which appears in

Fermis’s pseudopotential is treated as a phenomenological constant to be determined by

experiment.

For an array of nuclei the potential operator is represented as a sum over the indepen-

dent potentials of each nucleus5,

V̂ =
X
j

V̂j =
2π~2

m

X
j

bjδ(rn −Rj). (1.33)

The observed scattering is then the superposition of the spherical waves emanating from

each nucleus. When Fermi’s pseudopotential is substituted into the cross section, Eq.1.34,

we obtain

d2σ

dΩdE ′
=

�
k′

k

�X
if

Pi|〈Ψf |
X
j

bje
iq·Rj |Ψi〉|2δ(~ω + Ef − Ei), (1.34)

which is a function of the transferred momentum q = k − k′ and the transferred energy

~ω.

1.2.3 The bound atom cross section

The bound atom cross section characterises the scattering of low energy neutrons from

bound atoms in condensed matter systems; it is distinct from the free atom cross section

which is defined σf = σ
(1+m/M)2

. It is the bound atom cross section which is extracted

directly from experimental data in the time of flight experiments6. The scattering length

depends on the relative spins of the incident neutron and the struck nucleus. To describe

an interaction between a neutron and a nucleus of spin I we define the scattering lengths

b+ and b− for the total spin states I + 1
2

and I − 1
2

respectively. The cross section can

then be expressed as the sum of a coherent part, which arises from the weighted averages

of the scattering lengths, and an incoherent part which arises because of the difference in

scattering lengths. The simplest example is hydrogen, for which

5This representation of the potential operator is valid in the first Born approximation since multiple
scattering is assumed to be negligible.

6This is despite the fact that a nucleus is completely dissociated from its bound state in a high energy
neutron-nucleus collision.
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b+ = 1.04× 10−14m b− = −4.74× 10−14m. (1.35)

Here, b+ and b− correspond to the triplet and singlet spin states respectively. The average

is

〈b〉 =
3

4
b+ +

1

4
b− = −0.38× 10−14m (1.36)

and the coherent bound atom cross section is therefore

σc = 4π〈b〉2 = 1.8bn. (1.37)

The total bound atom cross section is

σ = 4π〈|b|2〉 = 4π
�

3

4
|b+|2 +

1

4
|b−|2

�
= 81.7bn. (1.38)

For hydrogen the scattering is almost entirely incoherent. This is because the opposite

signs of b+ and b− result in a small average 〈b〉. This is not the case for deuterium, for

which

b+ = 0.95× 10−14m b− = 0.10× 10−14m. (1.39)

In this case the total bound atom cross section is σ = 7.6bn, which contains a large

coherent part σc = 5.6bn. When quantum mechanical exchange forces are negligible and

the averaging over spin degrees of freedom is independent of the thermal averaging, the

cross section for scattering from N identical nuclei may be written

d2σ

dΩdE ′
=
� σc

4π
+ δjj′

σi
4π

��k′
k

�
S(q, ω), (1.40)

where the index j refers to the j-th nucleus. The neutron cross section divides into a

coherent part and an incoherent part. As a consequence of random spin orientations

and isotope distributions, the potential experienced by the neutron varies throughout

the sample. The coherent scattering is created by the average potential, experienced

by the neutron as it passes through the sample, and leads to strong interference effects.

The incoherent scattering is proportional to the mean square deviation of the potential,

from its average value, and does not lead to interference effects. The response function7,

S(q, ω), is defined

S(q, ω) =
X
if

Pi|〈Ψf |
X
j

eiq·Rj |Ψi〉|2δ(~ω + Ef − Ei). (1.41)

7The function S(q, ω) is more commonly referred to as the dynamic structure factor.
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The response function contains information about the structure and dynamical properties

of the target, including the probabilities of exciting the electronic modes. This investiga-

tion is essentially an analysis of the response functions for a variety of different models,

with the aim being to extract the electronic excitation probabilities.

1.2.4 The Impulse approximation

In neutron scattering experiments involving sufficiently high momentum transfers we may,

to a good approximation, take the limit q → ∞. This is known as the impulse approxi-

mation, and it is assumed that it is valid in the time of flight experiments. The impulse

approximation is applied by considering the response function, written in the form8

S(q, ω) =
1

2π~N

Z ∞
−∞

dte−iωt
X
jj′
Yjj′(q, t). (1.42)

The density-density correlation function Yjj′ is defined

Yjj′(q, t) = 〈e−iq·r̂jeiq·r̂j′ (t)〉, (1.43)

where the angled brackets denote a thermodynamic average. In the Heisenberg represen-

tation, the time dependence of the operator r̂j is

r̂j(t) = eiHtrje
−iHt. (1.44)

The angular brackets denote an average over all degrees of freedom, including thermo-

dynamic averaging. This form of the response function shows how the response of the

sample is related to the spectrum of spontaneous fluctuations (correlations), a relation-

ship which is formally described by the fluctuation-dissipation theorem. This relationship

stems from the fact that neutron scattering, because it is a very weak process, measures

the properties of the unperturbed system.

For large momentum transfers q � 2π/d and it is only necessary to consider the

incoherent terms, Yjj, of the density-density correlation function. Physically, the spatial

scale of the scattering event, which is set by 1/q, is too small to detect correlations

between the positions of different nuclei9. The impulse approximation is then applied to

the incoherent terms by deriving the short time expansion of r̂j(t), which is obtained from

the Taylor series:

8This form of the response function is obtained by writing the Dirac delta function as a time integral,
and working in the Heisenberg representation[23].

9This approximation is particularly good for hydrogen since σi is much larger than σc.
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r̂j(t) = r̂j(0) + it[H, r̂j]−
t2

2
[H, [H, r̂j]] + ... (1.45)

The Hamiltonian is generally of the form

H =
X
j

p̂2
j

2mj

+ V (r̂j), (1.46)

which implies

[H, r̂j] = −i
p̂j
mj

[H, [H, r̂j]] =

�
V, i

p̂j
mj

�
= − 1

mj

∂V

∂r̂j
=

f̂j
mj

. (1.47)

Putting this together we can write the time dependency of the coordinate as

r̂j(t) = r̂j(0) +
p̂j(0)

mj

t+
f̂j(0)

2mj

t2 + .... (1.48)

In this expression p̂j is the momentum of the struck particle and f̂j is the force acting on

it. In the impulse approximation we assume that the time t of the scattering event is so

short that we may neglect the forces acting on the particle and consider the particle to be

moving freely with initial momentum p. Using the Baker-Campbell-Hausdorff theorem

eAeB = eA+B+1/2[A,B]+..., the correlation function can then be written

Yjj(q, t) ≈ 〈ei(q·p̂j/mj+
1
2 [q·r̂j ,q·p̂j/mj])t〉 = 〈ei(q·p̂j/mj+~q2/2mj)t〉

⇒ S∞(q, ω) =
1

2π~N
X
j

Z ∞
−∞
〈e−iωt+

i~q2t
2mj

+iq·p̂jt/mj〉dt. (1.49)

If the nucleus can be represented as a single particle state, which is a reasonable assump-

tion if the nucleus sits in a Born-Oppenheimer potential well, then the response function

takes a very useful form. The momentum state |p〉 is an eigenstate of the momentum

operator p̂j such that p̂j|pj〉 = ~pj|pj〉. With these single particle states, the expectation

value is evaluated by integrating over the momentum and replacing the time integral with

a Dirac delta function:Z ∞
−∞
〈e−iωt+

i~q2t
2mj

+iq·p̂jt/mj〉dt =
Z ∞
−∞

dt
Z
dpje

−iωt+ i~q2t
2mj

+iq·~pj/mjn(pj)

=
Z
n(pj)δ

�
ω − ωr − ~q · pj/m

�
dpj. (1.50)

For N identical particles the summation over j contributes a factor of N, which cancels
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with the factor of N in the denominator. We may then write the response function,

obtained using the impulse approximation, as

S∞(q, ω) =
1

~

Z
n(p)δ (ω − ωr − ~q · p/m) dp, (1.51)

where the recoil energy of the struck nucleus is defined Er = ~ωr = ~2q2/2m. In the

impulse approximation, the response function is related to the momentum distribution

of the target by a Radon transformation. This simple relationship between the response

function and the momentum distribution of the sample is what makes the impulse ap-

proximation valuable; by inverting the Radon transformation it is possible to obtain the

momentum distribution, and therefore also the spatial wavefunction10, from measurements

of the neutron cross section. This method has been applied to determine the momentum

distributions of nuclei in several systems including: hydrogen in KH2PO4[3], the Fermi

liquid 3He[20], and the Bose condensate 4He[24].

The impulse approximation can also be interpreted classically; if we consider the

classical scattering of a neutron, with initial momentum k, by a nucleus, with initial

momentum p, then conservation of energy and momentum requires

p2

2m
+

k2

2M
=
p′2

2m
+

k′2

2M
(1.52)

p + k = p′ + k′, (1.53)

which implies that ω is

ω =
~k2

2M
− ~k′2

2M
= ωr +

~q · p
m

. (1.54)

This is exactly the value that the response function assigns to ω in the impulse approx-

imation. In other words, in the impulse approximation the final states correspond to

those of a free particle with initial momentum p, scattered into a state with momentum

p + q. Therefore we can obtain detailed information about the momentum distribution

of the struck particle, which is created by the surrounding particles, without knowing the

details of the interactions between the particles. Although the final state is assumed to

be that of a free particle, the impulse approximation is still applicable to bound state

problems, such as for a nucleus in a harmonic potential. In the final state, for sufficiently

high energies, the forces acting on the nucleus do not change its energy significantly dur-

ing the time scale of the interaction. In this case, the impulse approximation provides a

continuous envelope of the discrete excitation spectra, which is actually observed if the

energy resolution of the experiment is insufficient to distinguish between the individual

10There is a loss of phase when obtaining the wavefunction since n(p) = |ψ(p)|2. This loss of phase is
only avoided if the wavefunction has the symmetry ψ(r) = ψ(−r).
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peaks.

There is a subtlety involved when applying the impulse approximation to analyse

experimental data. In the limit q → ∞ the struck nucleus is completely dissociated,

not only from other nuclei within a molecule or solid, but also from all of the electrons.

It is shown in section 3.2 that for hydrogen the electron remains in its ground state

for the energies considered and therefore it is sensible to refer to the atomic impulse

approximation, for which the entire atom recoils. However, this does not make a significant

difference to the analysis of the experimental data, because the mass of the atom is almost

the same as the mass of the nucleus. At high enough energies the electrons can be excited

as the atom recoils and, in a time of flight measurement, this would lead to a series of

peaks arriving at different times.

For the short time expansion to be valid the correlation function Yjj′(q, t) must decay

to zero on a suitably short time scale τs[4]. This time scale is defined τs = 1/∆ω, where

∆ω, is the width of the response function. We therefore obtain

τs ∼
mj

q〈p2
q〉1/2

, (1.55)

where 〈p2
q〉1/2 is the width of the momentum distribution (but projected onto q) of the

struck nucleus. The inverse dependence of τs on q implies that the short time expansion

is indeed valid when the transferred momentum is large.

1.2.5 Y-scaling

It is sometimes convenient to introduce the concept of y-scaling, which simplifies Eq. 1.51.

By aligning the z axis of the momentum coordinates with q the response function can be

expressed as a function of a single variable[25] y = (m/~q)(ω − ωr):

S∞(q, ω) =
m

~q
J(q̂, y). (1.56)

Where J(q̂, y) is the neutron Compton profile,

J(q̂, y) =
Z
n(p)δ(q̂ · p− y)dp, (1.57)

and q̂ is a unit vector in the direction of the momentum transfer q. The Compton profile

is therefore the one dimensional projection of the nuclear momentum distribution along

the direction of q. The Compton profile can be determined from measurements of the

partial differential cross section by performing a constant energy scan through all possible

scattering angles11.

11However, for an isotropic system the nuclear momentum distribution can be determined from the
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The y-scaling technique demonstrates that the impulse approximation corresponds to

the simultaneous limit q →∞ and ω →∞, such that y remains finite. By taking the limit

in this way the response function is well approximated for sufficiently high momentum

transfers by S∞(q, ω). The y-scaling technique is used in several of the neutron Compton

scattering experiments which are central to this investigation, including the work on the

hydrides which is discussed later in this chapter.

In the limit of very high momentum transfers we may assume that the struck particle

is initially at rest, and the appropriate limit of the response function is then obtained

through x-scaling ; by introducing the variable x = ~q2/2Mω into Eq. 1.51, and taking

the limit q →∞, we obtain[25]

lim
q→∞

[S∞(q, ω)] =
1

ω
δ(1− x) = δ(ω − ωr). (1.58)

By taking the limit q →∞ (whilst x remains constant) of S∞(q, ω), which was obtained

by applying the impulse approximation, we obtain a delta function peak in the response

function, centred at the recoil energy Er. Therefore, in the limit of infinite momen-

tum transfer the response function describes scattering from a stationary nucleus. This

choice of scaling is analogous to Bjorken scaling [26], which was originally used in lepton-

nucleon scattering to provide experimental evidence for the existence of the ‘point-like’

constituents of nucleons, i.e, quarks.

1.2.6 Final state effects

In an experiment involving high energy neutrons it is often necessary to include the cor-

rections to the impulse approximation which arise because q is finite, and consequentially,

the final states of the recoiling protons are affected by the interatomic forces. If these

corrections are large, then a detailed theory of the interactions in the system under study

is required. In general these final state effects lead to a broadening of the response func-

tion, a shift of the peak to below the recoil frequency ωr, and an asymmetry such that

weight is transferred from the low frequency tail to the high frequency tail. These effects

are conveniently captured by expanding the response function in powers of 1/q, so that

the leading order term corresponds to the impulse approximation.

The response function for finite values of q can be represented as the convolution of a

final state resolution function, R(q, ω′), with the q →∞ limit of the response function:

S(q, ω) =
Z ∞
−∞

R(q, ω′)S∞(q, ω − ω′)dω′ (1.59)

where the resolution function R(q, ω) becomes a delta function δ(ω) in the limit q →∞.

data collected at a single scattering angle.
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For large values of q the resolution function should be approximately a delta function,

which means that an expansion of S∞(q, ω−ω′) in powers of ω′ should give a convergent

expression for S(q, ω). The expansion takes the form

S(q, ω) =
m

~q

∞X
n=0

(−1)nAn(q)
dnJ(y)

dyn
(1.60)

where the coefficients of the expansion are defined

An =
Rn(q)

n!

m

~q
where Rn(q) =

Z ∞
−∞

ωnR(q, ω)dω. (1.61)

These coefficients have been calculated explicitly[25], and are given by:

An(q) =

8>>>>><>>>>>:
1 n = 0

0 n = 1, 2

O(q−1) n = 3, 5, ...

O(q−2) n = 4, 6, ...

(1.62)

The antisymmetric corrections are of order q−1, whilst the symmetric corrections are of

order q−2. For many neutron scattering experiments these final state corrections play a

significant role in the analysis of the data. A notable example of the application of this

procedure is in the determination of the condensate fraction[1, 2] in liquid 4He12. However,

when the energy transfer is of the order of 100eV the final state effects are expected to

be small.

1.3 Neutron Compton scattering from hydrogen com-

pounds

The motivation for studying the neutron response from systems containing hydrogen

stems from several experiments. Anomalous measurements, of the atomic cross section

for hydrogen, have been reported in neutron Compton scattering experiments involving

hydrogen compounds[5, 6, 7, 8, 9, 10, 11]. We will examine a particularly clear example

involving neutron Compton scattering from niobium and palladium hydrides[8].

12When the momentum transfer is sufficiently large the final state effects have been shown to be
small[27].
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i)

ii)

(a) i) The body centred cubic crystal structure of
niobium with interstitial tetrahedral sites ii) The
face centred cubic crystal structure of palladium
with octahedral interstital sites

Nb

Pd

H/D
Empty

i)

i)

(b) i) NbHx (NbDx) at temperatures below
200K, for which the hydrogen (deuterium) forms
ordered chains. ii) Top view of PdHx (PdDx), for
which hydrogen (deuterium) pairs occupy the 420
planes, alternating with pairs of empty sites.

Figure 1.3: Crystal structures of palladium and niobium hydrides.

1.3.1 Niobium and palladium hydrides

Niobium hydride (NbHx) forms in the body centred cubic structure with the hydrogen

atoms occupying tetrahedral interstitial sites illustrated in Fig. 1.3(a). There are six as

many hydrogen sites as niobium atoms, allowing a maximum hydrogen capacity for NbH6.

In the doping range 0.73 < x < 1.00 and the temperature range 200K < T < 370K the

β-phase is stable, and in this phase the body centred cubic structure experiences a slight

tetragonal distortion. Below about 200K the energetically favourable H sites form chains,

as illustrated in Fig. 1.3(b).

Palladium hydride forms in the face centred cubic structure with the hydrogen atoms

occupying octahedral interstitial sites. There are equal numbers of hydrogen sites and

Palladium atoms, allowing a maximum hydrogen capacity for PdH. At room temperature

the α-phase is saturated at about x ≈ 0.02, where a β-phase starts to form, and is fully

developed at x ≈ 0.60. The hydrogen or deuterium atoms exhibit partial ordering, as

illustrated in Fig. 1.3(b).
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1.3.2 Anomalous neutron Compton cross sections

We will briefly summarise some results obtained, by Karlsson et al, from neutron Comp-

ton scattering measurements of the neutron cross sections of hydrogen in niobium and

palladium hydrides[8]. The quantities of interest are the cross section ratios σH/σPd and

σH/σNb, where σH , σNb and σPd are the neutron cross sections of hydrogen, niobium

and palladium respectively. These values are determined directly from the time of flight

spectra of niobium and palladium hydrides, and are compared with the conventionally

expected values. It is found that in both compounds there is an anomalous reduction in

σH/σNb and σH/σPd.

The double differential cross section for N identical nuclei is[28]

d2σ

dΩdE ′
= Nb2k

′

k
S(q, ω). (1.63)

The impulse approximation is then applied to represent the response function in terms of

the Compton profile:

S(q, ω) =
M

q
J(q̂, y). (1.64)

In a sample containing several distinct nuclei with different masses Mi, the number of

neutrons measured in a time interval ∆t is[29]

C(t)∆t =

�
N(E)

dE

dt
∆t

�
(η(E ′)∆Ωf(E ′))

X
j

Nj
d2σj
dΩdE ′

, (1.65)

where N(E) is the number of incident neutrons of energy E per cm2s, η(E ′) is the detector

efficiency, ∆Ω is the element of solid angle covered by the detector and f(E ′) is the energy

resolution associated with the analyser foil. The count rate can then be related to the

Compton profile by

C(t) =
k′

k

�
N(E)

dE

dt

�
(η(E ′)∆Ωf(E ′))

X
j

σjNj
Mj

4πq
J(q̂, y)⊗R(y). (1.66)

The term J(q̂, y) ⊗ R(y) represents a convolution of the Compton profile with the mo-

mentum space instrument resolution function. The cross section of a particular element,

which is defined to be σj = 4π|bj|2, has a simple relationship with the area under the

relevant peak in the time of flight spectrum,

Aj ∝ σjNj. (1.67)

Where Aj is the area under the peak associated with the nuclei j, Nj is the number

of nuclei in the sample, and Σj is the cross section. The constant of proportionality is



CHAPTER 1. NEUTRON COMPTON SCATTERING FROM HYDROGEN 22

eliminated if we take the ratio of two such areas,

Aj
Aj′

=
σjNj

σj′Nj′
. (1.68)

The ratio of two cross sections can therefore be obtained directly from the time of flight

spectra, and can be compared with the expected value.

The time of flight spectrum for NbH0.16D0.70, measured at an angle θ = 65◦, is shown

in Fig. 1.4(b). The experimental energy resolution is achieved by determining both the

foil in and foil out spectra, as is illustrated in Fig. 1.4(a), using a gold analyser foil with a

Lorentzian shaped absorption resonance centred at 4908 meV. The energy of the scattered

neutron is therefore E ′ ≈ 4.9 eV, which corresponds to a momentum k′ ≈ 48.6Å−1, and a

momentum transfer of q ≈ k′ tan(θ). The difference spectrum is illustrated in Fig. 1.4(b)

and has three peaks corresponding to hydrogen, deuterium and niobium, in order of

increasing mass. The cross section ratios σH/σNb and σH/σPd determined from the areas

of the peaks in the difference spectra are illustrated, as a function of the scattering angle,

in Fig. 1.4(c) and Fig. 1.4(d). The ratio σH/σNb starts to decrease significantly from

the conventionally expected value for angles θ ≥ 60◦ and for the highest scattering angles

(and momentum transfers) is reduced by approximately 40%. Similar measurements of

the ratio σH/σPd show a substantial reduction from the conventionally expected value for

angles θ ≥ 50◦ and for the largest scattering angles is reduced by approximately 60%. On

the contrary, measurements of the ratio σD/σNb, which are shown in Fig. 1.4(e) do not

show a significant deviation from the conventionally expected value, and show no angular

dependence. However, this is to be expected for deuterium because the relationship

between the transferred momentum and the scattering angle is q ≈ 2k′
È

3− z cos(θ)/z,

with z = cos(θ) +
È

3 + cos2(θ). Therefore, whilst in hydrogenated samples a momentum

transfer q ≈ 58Å−1 corresponds to a scattering angle θ ≈ 60◦, in deuterated samples it

corresponds to a much larger scattering angle, θ ≈ 90◦. The data therefore indicates a

shortfall, in the measured intensity of scattered neutrons, when the momentum transferred

from the neutrons to the nuclei is large.

The scattering angle is also related to the scattering time (Eq. 1.55), whereby large

scattering angles are associated with short scattering times. The cross section ratios

σH/σNb and σH/σPd are shown in Fig. 1.4(f) and clearly decrease rapidly from the

expected values for scattering times τs ≤ 0.6 fs.

Several possible sources of error have been ruled out in these experiments including

the problem of separating the overlapping peaks in the time of flight spectrum. For large

scattering angles, for which the anomalies are observed to be most significant, the overlap

between the different peaks is actually small. The problem of multiple scattering has also

been investigated using monte carlo simulations and has been found to lead to very small
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(a) The time of flight spectra for both the foil in,
and foil out measurements at an angle θ ≈ 65◦.

(b) The difference between the foil in and foil out
measurements at an angle θ ≈ 65◦.

(c) The measured cross section ratio σH/σNb =
81.67/6.25 = 13.1 in NbH0.78. The convention-
ally expected value is indicated by the horizontal
line, and is obtained, within experimental error,
below an angle of θ ≈ 60◦.

(d) The measured cross section ratio σH/σPd in
NbH0.54, normalised to unity. The conventionally
expected value is indicated by the horizontal line,
and is obtained, within experimental error, below
an angle of θ ≈ 60◦.

(e) The measured cross section ratio σD/σNb in
NbH0.16D0.70. The conventionally expected value
σD/σNb = 7.63/6.25 = 1.22 is indicated by the
horizontal line.

(f) The measured ratio of cross sections σH/σNb
and σH/σPd, as a function of the scattering time
Eq. 1.55. The ratios are found to be anomalously
reduced below τs ≈ 0.6fs.
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corrections.

1.4 Interpretation of the anomalous measurements

The departure of the measured hydrogen cross section from the expected value, for short

scattering times, has prompted several investigations into possible quantum coherence

between the protons in the sample[12]. It has been suggested that, for scattering times

on the scale of 1fs, entangled states between the protons may be expected to survive. To

support this idea a calculation of the scattering from an entangled pair of identical protons

was performed, and the scattering was reported to be proportional to the spin dependent

incoherent cross section, and was therefore less than the expected total cross section.

However, Several problems with this result have been pointed out; it is inconsistent with

observations of scattering from the highly entangled superfluid 4He, which has a negligible

incoherent cross section but produces observable scattering[14]. Furthermore, a more

thorough treatment of the entangled protons reported that the reduced cross section was

a consequence of unnecessary approximations[30, 31].

Apart from the possible theoretical causes of the anomalies, there are also several

possible experimental causes, which are also being investigated[14, 15]. One possibility,

which has been considered, is that the energy dependent detector efficiency deviates from

the expected distribution at high energies. Another possibility is that the anomalies

are related to the transformation from the constant scattering angle time of flight scan,

to the constant q scan. It has been suggested that it would be better to determine

the response function, S(q, ω), directly by combining data from many detectors. The

integrated intensity could then be obtained by integrating the response function over a

constant q scan[15], rather than integrating over a constant scattering[13] angle.

We choose an alternative line of investigation: the possibility that electronic exci-

tations may be responsible for the appearance of a reduced cross section. This idea is

particularly relevant to hydrogen because the mass ratio of the electron to the nucleus

me/M , which is an important parameter in the calculation of electronic excitations, is

largest for hydrogen. The basic idea is as follows; if the electrons are excited in the col-

lision, then the time of flight spectrum will contain additional peaks associated with the

recoiling nuclei in excited electronic states, and these peaks would appear before the main

hydrogen peak. The temporal separation of the peaks depends on the energetic separa-

tion of the electronic energy levels of the target. In the bulk material the electronic states

form bands with a characteristic bandwidth t, and with a continuous set of energy levels.

The resulting time of flight spectrum would therefore contain a shallow peak smeared out

across all of the electronic states, and would be difficult to separate from the background.



CHAPTER 1. NEUTRON COMPTON SCATTERING FROM HYDROGEN 25

The experimental investigations of high energy neutron scattering from hydrogen, such

as the investigation of niobium and palladium hydrides discussed in the previous section,

provide an incentive to explore the scattering process in more detail. In particular, we have

discussed how the presence of peaks associated with electronic excitations may appear,

and how they may not show up clearly in a time of flight spectrum.

The theoretical techniques introduced in this chapter will be used in the following

three chapters to undertake a detailed investigation of the role of electronic excitations

in high energy neutron scattering events. The response function as defined by Eq 1.41

provides the detailed information which we require to understand how the different modes

are excited in the neutron-nucleus interactions, and the energy scales for which each mode

becomes important.

To perform satisfactorily detailed calculations of neutron-nucleus scattering in bulk

materials, such as for the metal hydrides, is no simple task. Several complications must

be overcome, including: the accurate determination of the electronic structure, together

with a good description of the coupling between the nuclear and electronic degrees of

freedom which is valid for rapid nuclear motion, and the problem of treating the hydrogen

order/disorder in the interstitial lattice sites. It is perhaps more reasonable to focus on

the coupling between the electronic and nuclear motion which is a central part of this

investigation. This involves the idea that a hydrogen nucleus sits in a potential well

created by the surrounding electrons, and that the coupling between the electronic motion

and the recoiling nucleus leads to electronic excitation. To quantify the size of this effect

it is sufficient to study much simpler systems including hydrogen atoms and molecules.

The following two chapters involve calculating the response function for exactly solv-

able systems, to interpret the different mechanisms through which the systems are excited.

In chapter 4, the focus turns to molecular hydrogen. The validity of the adiabatic approx-

imation is analysed and the amount of electronic excitation, at the energy scale of the

experiments, is determined. Finally, the investigation is rounded off by showing that the

adiabatic approximation is valid up to very high energies, and therefore it can be shown

that the probabilities associated with electronic excitation remain small even at the high

energies considered. This conclusion supports the view that the anomalies may be related

to the difficulties associated with the data analysis[14, 15].



Chapter 2

Electronic excitation in separable

systems

The interaction between a simple atom or molecule and a neutron leads to a complicated

response function, capable of describing the excitation probabilities associated with every

excitation mode of the system, for the entire range of transferred energies and trans-

ferred momenta. Although the details of the response function depend intimately on the

Hamiltonian of the target system, it is nevertheless possible to elucidate some of the most

relevant features by studying the response functions of some exactly solvable models. In

this chapter we focus on a particular class of Hamiltonian which is separable and we show

how the response functions of such models can be interpreted. We also show that the

separability, which makes these models exactly solvable, also means that the probability

of electronic excitation is fundamentally limited because of the small mass ratio, me/mp,

of the electron mass and the proton mass.

In the first section we show how to interpret the matrix elements appearing in the

response function in terms of the excitation probabilities of the system, and show that the

matrix elements are all that is required to determine the amount of electronic excitation.

We then separate the centre of mass wavefunction from the internal wavefunction and

show that the excitation probabilities depend only on the internal wavefunctions. These

techniques are very general and are applied to each of the models investigated. Two

further techniques are also discussed which apply to particular models: the convolution of

probabilities that occurs in separable systems, and the dependence on angular momentum

of the response function, which applies to models with spherical symmetry.

The first model is the simple harmonic oscillator which is solved to obtain analytical

formulas for both the wavefunctions and the electronic excitation probabilities. The

results of this model demonstrate the high energy scales required to excite the electronic

degrees of freedom, and the techniques employed to obtain the solution are also used in

26
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the more sophisticated models to follow.

The second model is a four body system consisting of two protons and two electrons

which interact via a model potential. The electron-proton interaction is harmonic and

is attractive, whilst the electron-electron and proton-proton interactions are repulsive.

This model resembles the molecule H+
2 and, although it does not feature the important

dissociation dynamics of a real molecule, it does demonstrate the difference in the energy

scales of the electronic and nuclear modes. The wavefunction separates into a product

of the nuclear and electronic wavefunctions. Because of this separability, the excitation

probabilities of the four body problem are found to be a convolution of the excitation

probabilities associated with the electronic and nuclear modes.

2.1 The excitation probabilities

In this section we will show how the matrix elements appearing in the response function

can be associated with the probabilities of exciting the target system from the initial state

Ψi to a final state Ψf . The response function is

S(q, ω) =
X
if

Pi|〈Ψi|
X
j

eiq·rj |Ψf〉|2δ(~ω + Ei − Ef ). (2.1)

We will consider a discrete set of microscopic states for the target system. Because we

are interested in excitation probabilities, and not the coherent scattering (which becomes

negligible for large momentum transfers anyway), we will focus on the scattering from a

single nucleus located at rt. Then, according to Fermi’s Golden rule, the matrix element

|〈Ψi|eiq·rt |Ψf〉|2 is the probability that the target makes a transition from the state Ψi to

the state Ψf , when the momentum transferred from the neutron to the target is q. To

see that these probabilities are correctly normalised we use the resolution of the identity,X
f

|Ψf〉〈Ψf | = 1̂, (2.2)

and sum over all such quantities:X
f

|〈Ψi|eiq·r|Ψf〉|2 =
X
f

〈Ψi|eiq·rt |Ψf〉〈Ψf |e−iq·rj |Ψi〉 = 〈Ψi|Ψi〉 = 1. (2.3)

We can therefore define a probability distribution

Pq(Ef ;Ei) ≡ |〈Ψi|eiq·rt |Ψf〉|2 (2.4)

which defines the probability that, if the system is initially in the state Ψi and gains
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momentum q, the system will be excited into the state Ψf . The contribution to the

response function from the particle at rt may be written

St(q, ω) =
X
if

PiPq(Ef ;Ei)δ(~ω + Ei − Ef ). (2.5)

In any calculations of the response function it is useful to verify that the complete set of

excitations is included by integrating over the energy:Z
dESt(q, ω) = 1. (2.6)

Throughout this chapter we shall make the simplifying assumption that the initial state

is the ground state Ψ0, so that the distribution of initial states Pi is omitted. This

assumption is is valid at room temperature because the thermal excitations are only of

the order of 0.025eV: this is significantly lower in energy than the modes of excitation

for the systems we investigate. In this chapter we calculate Pq(Ef ) to determine the

electronic excitation probabilities of the harmonic oscillator and a four body problem.

These probabilities allow us to quantify the amount of electronic excitation occurring in

these systems, at the energies we are interested in.

2.2 Conservation of momentum in the centre of mass

frame

A simple technique for reducing the number of degrees of freedom of an N particle molec-

ular Hamiltonian from 3N to 3N − 3 is to make use of the translational invariance by

representing the Hamiltonian in the centre of mass frame. The general Hamiltonian for a

system of N particles is

H =
NX
i=1

p̂i
2

2mi

+
1

2

X
i<j

V̂ij(|ri − rj|). (2.7)

The centre of mass coordinate of the system is defined to be

Rcm =
1

M

NX
i=1

miri M =
NX
i=1

mi. (2.8)

The remaining N − 1 coordinates may be expressed as linear combinations of the original

coordinates:

Ri =
NX
j=1

Tijrj i = {1, ...., N − 1}. (2.9)
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The transformation matrix T̂ is defined so that the last row contains the components of

the centre of mass coordinate, TNj = mj/M . Then translational invariance implies that

the addition of an arbitrary displacement vector R0 leaves the transformation unchanged:

Ri =
N−1X
j=1

Tijrj =
N−1X
j=1

Tij(rj + R0)⇒
N−1X
j=1

Tij = 0. (2.10)

In the new coordinates the Hamiltonian is[32]

H =
N−1X
i=1

PijP̂iP̂j +
P̂ 2
cm

2M
+

1

2

X
i<j

V̂ij(R1, ...,RN−1). (2.11)

Therefore, to separate the centre of mass motion from the internal coordinates it is re-

quired that the components of the remaining N − 1 coordinates sum to zero, and there

is clearly an element of choice when deciding on the appropriate coordinate system. Fur-

thermore, it is possible to choose from a discrete number of different Jacobi coordinates

which diagonalise the transformation matrix Pij, thereby eliminating the cross terms in

the momentum operators[33]. Often it is intuitive to group the particles into clusters

and to choose the centre of mass coordinates of the various clusters as a set of Jacobi

coordinates. Once the centre of mass coordinate has been separated from the internal

coordinates it is then a simple matter to obtain the centre of mass wavefunction,

Ψcm(Rcm) =
1√
V
eikcm·Rcm , (2.12)

and to write the total wavefunction Ψt as the product of the centre of mass wavefunction

Ψcm and an internal wavefunction Ψin:

Ψt(Rcm,R1, ...,RN−1) = Ψcm(Rcm)Ψin(R1, ...,RN−1), (2.13)

with energy E = Ecm + Ein. If a neutron scatters from the particle with coordinate rt,

the transition probability is���DΨt
i(r1, ..., rN)

���eiq·rt ���Ψt
f (r1, ..., rN)

E���2 . (2.14)

The coordinate of the scattering target can be written as

rt = Rcm +
N−1X
j=1

αjRj, (2.15)

where the components αj are obtained from the matrix T̂ . The matrix element may then

be written as the product
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���DΨcm
i (Rcm)

���eiq·Rcm

���Ψcm
f (Rcm)

E���2
×
����­Ψin

i (R1, ...,RN−1)
����eiPn−1

j=1
αjq·Rj

����Ψin
f (R1, ...,RN−1)

·����2 . (2.16)

The first term can be easily evaluated:

D
Ψcm
i (Rcm)

���eiq·Rcm

���Ψcm
f (Rcm)

E
=

1

V

Z
e−ikcm·Rcmeiq·Rcmeik

′
cm·RcmdRcm = δk′−k,q. (2.17)

Finally, the response function can then be represented in terms of the internal wavefunc-

tions by summing over the final states with momentum k′, with the only contribution

arising when k′ − k = q

St(q, ω) =
X
if

Pi

����­Ψin
i

����eiPN−1

j=1
αjq·Rj

����Ψin
f

·����2 δ(~ω −∆Ein −∆Ecm), (2.18)

where the energy transferred to the centre of mass frame is

∆Ecm =
k2

2M
+

k · q
M

(2.19)

and the energy transferred to the internal wavefunction is denoted ∆Ein. The total

momentum is transferred to the centre of mass frame, reflecting the fact that in the centre

of mass frame the total momentum must be equal to zero. The energy is transferred to

both the centre of mass wavefunction, and to the internal wavefunction, thereby exciting

the internal modes of the system. By transforming to the centre of mass frame we can

see that the electronic excitations probabilities that we are interested in are completely

contained in the matrix elements of the internal wavefunctions. This method is used in

each of the models in this chapter, and in the investigation of molecular hydrogen in

chapter 4.

2.3 The convolution of probabilities in separable mod-

els

The excitation probabilities associated with the different modes of a system can occasion-

ally be decomposed into a convolution of the excitation probabilities associated with each

of the modes. For this simplification to work, it must be possible to separate the Hamilto-

nian using a linear transformation of the coordinates. This is the case in section 2.6 where
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a four body wavefunction is expressed as a product involving the centre of mass motion,

and the electronic and nuclear motion. In this case it is possible to describe the four body

excitation probabilities in terms of a convolution of the electronic and nuclear excitation

probabilities. One could also imagine more complicated systems where the excitations of

independent modes may lead to a similar convolution of the excitation probabilities.

In a separable system the wavefunction may be expressed as the product

Ψ(r1, ...., rn) =
nY
j=1

Ψj(rj). (2.20)

The coordinate of the scattering target can be written as

rt =
nX
j=1

αjrj (2.21)

and the matrix element isD
Ψi(r1, ...., rn)

���eiq·rt ���Ψf (r1, ...., rn)
E

=
nY
j=1

D
Ψj
i (rj)

���eiαjq·rj ���Ψj
f (rj)

E
. (2.22)

The probability of exciting the target is

Pq(Ef ;Ei) =
nY
j=1

���DΨi
j(rj)

���eiαjq·rj ���Ψf
j (rj)

E���2 =
nY
j=1

P j
q(Ej

f ;E
j
i ), (2.23)

where the total energy is E =
Pn
j=1E

j and the probabilities associated with the coordi-

nates rj are denoted P j
q. The response function can then be expressed as a convolution

of the probabilities associated with exciting each mode:

St(q, ω) =
X
if

Piδ(~ω + Ei − Ef )
nY
j=1

P j
q(Ej

f ;E
i
i). (2.24)

Associated with each mode of excitation is a momentum scale, Tij, and an energy scale,

Ej. These scales determine the characteristics of the response function for a separable

model, and when the energy scales are different, it is a simple matter to distinguish

between the different modes of excitation in the observed response function.

2.4 Separating the rotational symmetry

When determining the response of a simple one body problem it is often the case that

the system can be well described by a spherically symmetric potential; this is true for the

hydrogen atom, and is often assumed to be true in simple atomic calculations. In these

cases it is always possible to calculate the excitation probabilities as a one dimensional
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integral over the radial coordinate. The single particle Hamiltonian for a spherically

symmetric system is

H = − ~2

2m
∇2

r + V (|r|). (2.25)

The solution is represented as a product of a spherical harmonic Y m
l and a term depending

on r = |r|:

Ψ(r) = Y m
l (θ, φ)Xnl(r). (2.26)

If we assume that the system is initially in the ground state the transition matrix element

is

D
Ψ0

���eiq·r���Ψf

E
=

1√
4π

Z 2π

φ=0

Z π

θ=0

Z ∞
r=0

X∗00(r)eiq·rY m
l (θ, φ)Xnl(r)r

2 sin(θ)drdθdφ. (2.27)

The exponential can be expanded as an infinite sum involving spherical Bessel functions

Jl:

eiq·r = 4π
∞X
l′=0

il
′
Jl′(qr)

l′X
m′=−l′

(Y m′

l′ )∗(θ, φ)Y m′

l′ (θ′, φ′), (2.28)

where θ, φ are the angular coordinates of r and θ′, φ′ are the angular coordinates of q. Then

substituting this into Eq. 2.27 and using the orthogonality of the spherical harmonics we

obtain D
Ψ0

���eiq·r���Ψf

E
=
√

4πY m
l (θ′, φ′)

Z ∞
r=0

r2X∗00(r)Jl(qr)Xnl(r)dr, (2.29)

and the probability of exciting the system into the state with quantum numbers (n, l,m)

is therefore

Pq(n, l,m) = 4π(Y m
l )∗(θ′, φ′)Y m

l (θ′, φ′)
����Z ∞
r=0

r2X∗00(r)Jl(qr)Xnl(r)dr
����2 . (2.30)

This expression can be simplified further by applying the addition theorem for spherical

harmonics:

Pl(cos(γ)) =
4π

2l + 1

lX
m=−l

(Y m
l )∗(θ, φ)Y m

l (θ′, φ′), (2.31)

where Pl is a Legendre polynomial and γ is the angle between the coordinates of the

spherical harmonics. In Eq. 2.30 γ equals zero and therefore Pl(γ) = 1. Finally, after
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summing over the quantum number m we obtain

Pq(n, l) =
lX

m=−l
Pq(n, l,m) = (2l + 1)

����Z ∞
r=0

r2X∗00(r)Jl(qr)Xnl(r)dr
����2 . (2.32)

This result is used for a four body problem later in this chapter, and for the hydrogen

atom in chapter 3.

2.5 The harmonic oscillator

To introduce the mathematical techniques and theoretical concepts encountered in real

physical systems, it is best to start with the simplest possible model: the harmonic

oscillator. The wavefunctions and their respective energies can be easily found using

standard techniques for solving ordinary differential equations, but we choose instead

to use a slightly less conventional approach involving integral representations (appendix

A). This approach has the advantage that it can be generalised to the more complicated

problem of calculating the dissociated states of hydrogen, which is encountered in the

next chapter. In this section we calculate the response function of the harmonic oscillator

in three simple steps: i) we transform the Hamiltonian to the centre of mass frame, ii)

we calculate the harmonic wavefunctions, and iii) we calculate the harmonic response

function. These steps are the same, albeit less complicated, as those used to solve all the

systems in this investigation, and so the harmonic oscillator is a useful model to study.

The harmonic potential is often encountered in physical systems and leads to a discrete

set of vibrational modes, such as the phonons in a lattice, and the vibrational modes of

nuclei in molecules. We are interested in electronic excitations, so we employ a toy

Hamiltonian for an electron and a proton with an attractive harmonic interaction:

H = − ~2

2mp

∇2
R1
− ~2

2me

∇2
r1

+
k1

2
(R1 − r1)2. (2.33)

2.5.1 Tranformation into the centre of mass frame

We employ the centre of mass coordinate, Rcm, and the relative coordinate, R, between

the electron and the proton:

Rcm =
mpR1 +mer1

me +mp

R = R1 − r1. (2.34)

In the centre of mass frame the Hamiltonian is
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H = − ~2

2M
∇2

Rcm
− ~2

2µ
∇2

R +
k1

2
R2, (2.35)

for which the effective masses are defined

M = me +mp µ =
memp

me +mp

. (2.36)

The first term in the Hamiltonian controls the translational motion of the centre of mass

frame, whilst the remaining terms control the relative motion of the two particles in the

centre of mass frame. The Hamiltonian separates in these coordinates, resulting in a

solution of the form

Ψho(Rcm,R) =
1√
V
eikcm·RcmΨ(R). (2.37)

The total energy is the sum of the centre of mass energy and the internal energy: E =

Ecm + Ein.

2.5.2 The internal wavefunctions

The wavefunction representing the relative motion of the two particles in the centre of

mass frame satisfies �
− ~2

2µ
∇2

R +
k1

2
R2

�
Ψ(R) = EinΨ(R). (2.38)

The coefficients can be removed with a suitable scaling of the coordinate R and the energy

Ein:

r =

�
µk1

~2

� 1
4

R εin =
�

µ

~2k1

� 1
2

Ein, (2.39)

which gives �
−∇2

r + r2
�
Ψ(r) = 2εinΨ(r). (2.40)

The equation is again separable and the internal wavefunction factorises into the product

state Ψ(r) = ψx(x)ψy(y)ψz(z) with energy εin = εx + εy + εz, where each function ψ

satisfies an equation of the form�
− d

2

dx
+ x2

�
ψ(x) = 2εψ(x). (2.41)

The asymptotic behaviour of this equation as x → ∞ is found using the WKB approxi-

mation. Then the ansatz ψ(x) = e−
x2

2 φ(x) results in a simple equation for φ(x),
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�
d2

dx2
− 2x

d

dx
+ (2ε− 1)

�
φ(x) = 0. (2.42)

The coefficients of the above equation are linear in the dependent variable: a situation

which is encountered in each of the three systems described in this chapter. It may

therefore be solved using the method of integral representations by introducing the Laplace

kernel ezx

φ(x) =
Z
C
ezxf(z)dz. (2.43)

This transforms the differential equation into an integral equation,Z
C
ezxf(z)(z2 − 2xz + (2ε− 1))dz = 0. (2.44)

Then integrating by parts we obtain

= [−2zezxf(z)]∂C +
Z
C

�
(z2 + 2ε+ 1)f(z) + 2z

df(z)

dz

�
ezxdz. (2.45)

The function f(z) is chosen so that both the integrand and the boundary term vanish.

The integrand vanishes when

df(z)

dz
+

�
z2 + 2ε+ 1

2z

�
f(z) = 0. (2.46)

The function f(z) which solves this equation is

f(z) = e−
z2

4 z−
2ε+1

2 , (2.47)

which gives the integral representation for φ(x),

φ(x) ∝
Z
C
ezxe−

z2

4 z−
2ε+1

2 dz, (2.48)

where the normalisation is to be determined at the end of the calculation. The boundary

term can be made to vanish by choosing a closed contour which encircles the pole at the

origin. The wave function must be finite which implies that the pole must be of integer

order n, where n > 0. This quantises the energy spectrum so that the energy levels are

given by

2ε+ 1

2
= n+ 1⇒ ε = n+

1

2
. (2.49)

Returning to the integral representation and transforming to the new variable z = 2t we

find
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φ(x) ∝
Z
C(0)

e−t
2+2xtt−n−1dt. (2.50)

This integral can be evaluated using Cauchy’s integral formula,�
dn

dzn
f(z)

�
z=z0

=
n!

2πi

Z
C(z0)

f(z)

(z − z0)n+1
dz, (2.51)

which gives, when applied to Eq. 2.50

φ(x) ∝
�
dn

dtn
e−t

2+2xt

�
t=0

. (2.52)

Making a further substitution ω = x− t, we obtain

φ(x) ∝ (−1)nex
2

�
dn

dωn
e−ω

2

�
ω=x

= (−1)nex
2 dn

dxn
e−x

2

= Hn(x). (2.53)

This expression relates φ(x) to the Rodrigues representation of the Hermite polynomials

Hn(x), which can be used to calculate the wavefunctions. The normalisation constant is

determined from the integral

N2 =
Z ∞
−∞

ψ(x)∗ψ(x)dx = 2n
√
πn! (2.54)

The normalised wavefunction is therefore

ψ(x) =
1È

2nn!π
1
2

e−
x2

2 Hn(x). (2.55)

Finally, the internal wave function with quantum numbers n = (nx, ny, nz) is then

Ψn(r) =
1q

2nx+ny+nznx!ny!nz!π
3
2

e−
1
2

(x2+y2+z2)Hnx(x)Hny(y)Hnz(z) (2.56)

with an energy of

En =

�~2k

µ

� 1
2
�
nx + ny + nz +

3

2

�
. (2.57)

2.5.3 The response function

The response function of the harmonic oscillator to an interaction between the neutron

and the proton is

S(q, ω) =
X
if

Pi|〈Ψho
i |eiq·R1 |Ψho

f 〉|2δ(~ω + Ei − Ef ). (2.58)
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The coordinate of the proton is

R1 = Rcm + α

� ~2

µk1

� 1
4

r, (2.59)

where the mass ratio α = me
me+mp

. After integrating out the centre of mass coordinate the

response function is

S(q, ω) =
X
n

Pq(En)δ(~ω + E0 − En −∆Ecm), (2.60)

where the probability of exciting the electron from the ground state to an excited state

Ψn, given a momentum transfer q, is

Pq(En) = |〈Ψ0|eiαq·r|Ψn〉|2. (2.61)

2.5.4 Electronic excitation probabilities

To calculate the transition probabilities we require the matrix element

〈Ψ0|eiαq·r|Ψn〉 =
1È

2nx+ny+nznx!ny!nz!π3

Z
eiαq·re−(x2+y2+z2)Hnx(x)Hny(y)Hnz(z)d3r.

(2.62)

The generating function can be deduced from the integral representation of Hn(x):

e2xt−t2 =
∞X
n=0

Hn(x)
tn

n!
, (2.63)

and can be used to evaluate the transition probabilities:

∞X
n=0

sn

n!

Z ∞
−∞

e−x
2

Hn(x)eiαqxxdx = eiαqxse−
α2q2x

4

Z ∞
−∞

e−(x−s− iαqx2 )
2

dx =
√
πeiαqxse−

α2q2x
4

=
√
π4

∞X
n=0

sn

n!
(−iαqx)n

√
πe−

α2q2x
4 . (2.64)

Then, comparing the first and last terms, we find the equalityZ ∞
−∞

e−x
2

Hn(x)eiαqxxdx = (−iαqx)n
√
πe−

α2q2x
4 . (2.65)

Then the scattering probabilities are
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Pq(En) =

������ 1È
2nx+ny+nznx!ny!nz!

(−iαqx)nx(−iαqy)ny(−iαqz)nze−
α2q2x

4
−
α2q2y

4
−α

2q2z
4

������2 . (2.66)

The energy depends only on the sum N = nx+ny+nz resulting in degenerate eigenstates.

The quantities of interest are the probabilities of exciting the system to particular energy

levels. To calculate these probabilities, all of the degenerate states corresponding to a

particular energy level must be summed over:

Pq(EN) =
X

nx+ny+nz=N

Pq(En) =
∞X

nx=0

∞X
ny=0

∞X
nz=0

α6q2
xq

2
yq

2
z

2nx+ny+nznx!ny!nz!
e−

α2q2

2 δN,nx+ny+nz .

(2.67)

This can be greatly simplified by using the generalisation of the binomial theorem to three

dimensions:

(x+ y + z)n =
∞X
i=0

∞X
j=0

∞X
k=0

n!

i!j!k!
xiyjzkδi+j+k,n. (2.68)

A comparison of the two formulas results in the following expression for the probability

of exciting the system from the ground state to an excited state with energy EN :

Pq(EN) =
1

N !

�
α2q2

2

�N
e−

α2q2

2 , (2.69)

and the response function is

S(q, ω) =
X
N

Pq(EN)δ(~ω + E0 − EN −∆Ecm). (2.70)

The simple form of the excitation probabilities occurs because, when we calculate the

matrix elements, we are essentially performing a Fourier transform of the wavefunctions

for the harmonic oscillator. It can be easily verified that these probabilities sum to unity

regardless of the magnitude of the transferred momentum. The probability that the

electron is excited, in a high energy neutron-nucleus collision, is examined in section 2.7.

The response function for the harmonic oscillator also appears in the four body problem,

which is the investigated next.
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2.6 A four body problem

In a molecule the adiabatic separation of the nuclear motion and the electronic motion

results in a separation of the electronic, vibrational and rotational modes, and this in

turn results in an excitation spectrum which depends on the associated energy scales Eel,

Evib and Erot. The interaction of the neutron with a proton can then excite the different

modes of the molecule which, depending on the energy transferred from the incident

neutron, can leave the molecule in a higher electronic, vibrational or rotational state.

The excitation spectrums associated with each of the different modes can therefore be

probed with incident neutrons within different energy ranges.

In this section we investigate a model of two electrons and two protons interacting

with model force laws[34]; the interaction between the electrons and the protons is at-

tractive and harmonic, whilst the electron-electron and proton-proton interactions are

repulsive and are modeled with an inverse square law. With these simple interactions the

Hamiltonian is separable and the wavefunctions can be found analytically1. The model

contains the electronic, vibrational and rotational modes which are present in molecular

systems, and the excitation probabilities are a convolution of those associated with each

of the different modes. Whilst this is only true in a separable system, in a real molecule

the different energy scales associated with each mode lead to a similar situation.

The Hamiltonian for this model is

H = −~2

2

"
∇2

R1

mp

+
∇2

R2

mp

+
∇2

r1

me

+
∇2

r2

me

#
+
k1

2

�
(R1 − r1)2 + (R1 − r2)2 + (R2 − r1)2 + (R2 − r2)2

�
+
k2

2

�
1

(R1 −R2)2
+

1

(r1 − r2)2

�
. (2.71)

Where k2 ≥ 0.

2.6.1 Transformation into the centre of mass frame

The transformation into the centre of mass frame is performed by representing the Hamil-

tonian in Jacobi coordinates. The general technique involves grouping the particles into

clusters, and defining the coordinates between the centre of mass of each of the clusters.

In this case it is convenient to group the electrons into one pair, and the protons into

another pair, which gives the following choice of Jacobi coordinates:

1Interestingly, this model has been used to study the validity of the Born-Oppenheimer approximation
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Figure 2.1: The centre of mass frame coordinates for the four body problem.

Rcm =
mp(R1 + R2) +me(r1 + r2)

2(mp +me)

R = (R1 −R2)

X1 = r1 − r2

X2 =
r1 + r2

2
− R1 + R2

2
. (2.72)

The total Hamiltonian separates completely in the centre of mass frame, resulting in the

following set of four equations governing the motion of the particles:�
− ~2

4M
∇2

Rcm

�
Ψcm(Rcm) = EcmΨcm(Rcm) (2.73)�

− ~2

mp

∇2
R +

k1

2
R2 +

k2

2R2

�
Ψnu(R) = EnuΨnu(R) (2.74)�

− ~2

me

∇2
X1

+
k1

2
X2

1 +
k2

2X2
1

�
Ψel(X1) = EelΨel(X1) (2.75)�

− ~2

4µ
∇2

X2
+ 2k1X

2
2

�
Ψel−nu(X2) = Eel−nuΨel−nu(X2). (2.76)

where the total energy is the sum E = Ecm +Enu +Eel +Eel−nu. After the centre of mass

motion associated with Eq. 2.73 has been separated, the four body wavefunction can be

written as the product

Ψfb(Rcm,R,X1,X2) =
1√
V
eikcm·RcmΨnu(R)Ψel(X1)Ψel−nu(X2). (2.77)



CHAPTER 2. ELECTRONIC EXCITATION IN SEPARABLE SYSTEMS 41

The wavefunction Ψnu represents the vibrational motion of the nuclei in the potential well

created by the attractive electron-proton interaction, and the repulsive proton-proton

interaction. Similarily, the wavefunction Ψel represents the vibrational motion of the

electrons in the potential well created by the attractive electron-proton interaction, and

the repulsive electron-electron interaction. Finally, the wavefunction Ψel−nu represents

the relative motion of the electron pair and the proton pair in the potential well created

by the attractive electron-proton interaction.

Each of the wavefunctions Ψnu, Ψel and Ψel−nu have a similar functional form to the

harmonic wavefunctions calculated in the previous section. In the next section we will

calculate each of these wavefunctions and their associated energies.

2.6.2 The electronic-nuclear wavefunctions

The wavefunction Ψel−nu corresponding to the relative motion of the electron pair and

the proton pair is determined from Eq. 2.76. The coordinates and energy are scaled to

remove the coefficients:

x2 =

�
8k1µ

~2

� 1
4

X2 εel−nu =
�

µ

2~2k1

� 1
2

Eel−nu. (2.78)

The Hamiltonian corresponds to that of the harmonic oscillator,�
−∇2

x2
+ x2

2

�
Ψel−nu(x2) = 2εel−nuΨel−nu(x2). (2.79)

The wave functions Ψel−nu(x2) are the harmonic wavefunctions Ψn(x2) with the corre-

sponding energies EN .

2.6.3 The nuclear wavefunctions

The nuclear wavefunction Ψnu represents both the vibrational states and the rotational

states of the two nuclei, and is determined from Eq. 2.74 with a suitable scaling of the

coordinates and energy:

r =

�
mpk1

2~2

� 1
4

R εnu =
�
mp

2~2k1

� 1
2

Enu. (2.80)

Then, after scaling the constant k2 (which has the units energy×area) appropriately, the

Hamiltonian is �
−∇2

r + r2 +
k2

r2

�
Ψnu(r) = 2εnuΨnu(r). (2.81)
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The above equation is separable in spherical polar coordinates, so that the nuclear wave-

function can be expressed as the product Ψnu(r) = X(r)Y m
l (θ, φ). The vibrational states

are characterised by X(r) and the rotational states are the spherical harmonics. The

function X(r) satisfies�
r2 d

2

dr2
+ 2r

d

dr
− r4 + 2εnur

2 − L(L+ 1)

�
X(r) = 0. (2.82)

The repulsive potential has been incorporated into the centrifugal potential by defining

an angular quantum number that satisfies L(L+ 1) = l(l + 1) + k2, i.e,

L = −1

2
+

s�
l +

1

2

�2

+ k2. (2.83)

The negative value of L was ignored because it leads to irregular solutions with infinite

energy. The regular solutions follow the power law rL and can be obtained with the ansatz

X(r) = rLy(r). Then we find�
r2 d

2

dr2
+ 2(L+ 1)r

d

dr
+ (2εnur

2 − r4)

�
y(r) = 0. (2.84)

Then in terms of the variable x = r2 the above equation is�
4x

d2

dx2
+ 2(2L+ 3)

d

dx
+ (2εnu − x)

�
y(x) = 0. (2.85)

The coefficients of this equation are all linear functions of x and therefore y(x) may be

found by employing the method of integral representations with the Laplace kernel, ezx:

y(x) =
Z
C
ezxf(z)dz. (2.86)

The differential equation is transformed into the following integral equationZ
C
ezxf(z)(4xz2 + 2(2L+ 3)z + (2εnu − x))dz = 0. (2.87)

Then performing an integration by parts on the terms proportional to x, we obtain

�
(4z2 − 1)ezxf(z)

�
∂C

+
Z
C
ezx

�
(2(2L+ 3)z + 2εnu)f(z)− d

dz

�
f(z)(4z2 − 1)

��
dz = 0.

(2.88)

The integrand vanishes when

d

dz

�
f(z)(4z2 − 1)

�
− (2(2L+ 3)z + 2εnu)f(z) = 0, (2.89)

for which the solution is
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f(z) = (2z − 1)
2L+3+2εnu

4
−1(2z + 1)

2L+3−2εnu
4

−1, (2.90)

so that the integral representation of y(x) is

y(x) ∝
Z
C
ezx(2z − 1)

2L+3+2εnu
4

−1(2z + 1)
2L+3−2εnu

4
−1dz. (2.91)

For a finite solution we require that there is a pole in the complex plane of order n+1,

which quantises the energy:

2L+ 3− 2εnu
4

= −n⇒ εnu = 2n+ L+
3

2
, (2.92)

where both n ≥ 0 and l ≥ 0. It is instructive to compare this quantisation of the energy

with that of the quantum harmonic oscillator derived in the previous section, which is

the same when k2 = 0. The degenerate states with a particular value of l but different m

are all related by simple rotations. In the previous discussion of the harmonic oscillator

these rotations are obtained by permuting the quantum numbers nx, ny and nz, which

is equivalent to a rotation by π
2

about one of the coordinate axes. It is also possible to

obtain some rather obscure identities between the Hermite polynomials and the associated

Laguerre polynomials by comparing the wavefunctions.

The pole in Eq. 2.91 can be shifted to the origin with a translation t = z + 1,

y(x) ∝ e−
x
2

Z
C(0)

etx(t− 1)n+L+ 1
2 t−n−1dt. (2.93)

The contour can be chosen to enclose the residue at the origin, and although the non-

integer value of L will result in a branch cut, it is along the real axis from z = 1
2

to z =∞
and does not intersect the contour. Then the integral can be evaluated using Cauchy’s

integral formula to find the residue at z = 0:

y(x) ∝ e−
x
2

�
dn

dtn

�
etx(t− 1)n+L+ 1

2

��
z=0

. (2.94)

Then a general formula for y(x) is found by employing Leibnitz’s rule,

dn

dzn
(f(z)g(z)) =

nX
j=0

n!

j!(n− j)!

�
dj

dzj
f(z)

��
dn−j

dzm−i
g(z)

�
(2.95)

which gives, when applied to Eq. 2.93,

y(x) ∝ e−
x
2

nX
j=0

(−1)j(L+ 3
2
)n

j!(n− j)!(L+ 3
2
)j
xj = e−

x
2L

L+ 1
2

n (x). (2.96)

Where (L+ 3
2
)j is the pockhammer symbol and L

L+ 1
2

n (x) is an associated Laguerre poly-
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nomial. The normalisation constant is determined by evaluating the following integral

N2 =
Z ∞

0
r2X∗(r)X(r)dr =

1

2

Z ∞
0

x
1
2X∗(x)X(x)dx =

1

2n!
Γ
�
n+ L+

3

2

�
(2.97)

We therefore find that the vibrational component of the nuclear wavefunction, Ψnu =

Xnl(r)Y
m
l (θ, φ), is

Xnl(r) =

Ì
2n!

Γ(n+ L(l) + 3
2
)
e−

r2

2 rL(l)L
L(l)+ 1

2
n (r2), (2.98)

with an energy of

Enl =

�
2~2k1

mp

� 1
2
�

2n+ L(l) +
3

2

�
. (2.99)

2.6.4 The electronic wavefunctions

The electronic wavefunctions are the solutions of Eq. 2.75 and are obviously of the same

functional form as the nuclear wavefunctions:

Ψel = Xn′l′(x1)Y m′

l′ (θ′, φ′). (2.100)

The scaling of the coordinates and the energy is

x1 =

�
mek1

2~2

� 1
4

X1 εel =
�
me

2~2k1

� 1
2

Eel. (2.101)

2.6.5 The total internal wavefunctions

Combining all of the wavefunctions we obtain the total internal wavefunction,

Ψn′l′m′

nnlm ≡ ΨnuΨel−nuΨel = Xnl(r)Y
m
l (θ, φ)Xn′l′(x1)Y m′

l′ (θ′, φ′)Ψn(x2), (2.102)

with an energy

En′l′

Nnl ≡
�

2~2k1

me

� 1
2

24�2n′ + L(l′) +
3

2

�
+

s
1

1− α

�
N +

3

2

�
+

Ê
α

1− α

�
2n+ L(l) +

3

2

�35 .
(2.103)
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where the first, second and third terms are associated with the electronic, electronic-

nuclear and nuclear energies respectively. The contribution to the energy from the elec-

tronic excitations and the electronic-nuclear excitations are roughly equal, whilst the con-

tribution from the nuclear excitations are smaller by a factor of approximately
√
α. This

leads to a separation of energy scales associated with the different modes of excitation: a

feature which will be discussed further in section 2.7.

2.6.6 The excitation probabilities

The scattering from each proton is identical and therefore, to calculate the excitation

probabilities, we need only consider the contribution to the response function from the

nucleus at R1:

S1(q, ω) =
X
if

Pi|〈Ψfb
i |eiq·R1 |Ψfb

f 〉|2δ(~ω + Ei − Ef ). (2.104)

Where we have assumed that the system is initially in its ground state. The coordinate

of the struck proton is

R1 = Rcm +
1

2

�
2~2

mpk1

� 1
4

r− α
� ~2

8k1µ

� 1
4

x2. (2.105)

The next step is to integrate out the centre of mass coordinate to represent the response

function in terms of the internal wavefunctions. Initially, the nuclei and the electrons are

assumed to be in their vibrational and rotational ground states. After integrating out the

centre of mass coordinate the response function is

S1(q, ω) =
X
n′l′m′

nnlm

|〈Ψ0|eiq·(
1
2
r−αx2)|Ψn′l′m′

nnlm 〉|2δ(~ω + E0 − En′l′

Nnl −∆Ecm). (2.106)

We note that the interaction between the neutron and the proton cannot excite the

electronic rotational and vibrational modes of this system. This is because there is no

scattering from the electrons and therefore their relative momentum remains unchanged.

The electronic states with quantum numbers (n′, l′m′) are therefore eliminated from con-

sideration.

Because of the separability of the four body wavefunctions and the linearity of the trans-

formation to the centre of mass coordinates, the response function simplifies considerably.

The excitation probabilities of the internal states are a convolution of the nuclear excita-

tion probabilities, P nu
q , and the electronic-nuclear excitation probabilities P el−nu

q :
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S1(q, ω) =
X
Nnlm

P el−nu
q (EN)P nu

q (Enl,m)δ(~ω + E0 − E00
Nnl −∆Ecm). (2.107)

All remains is to determine P nu
q and P el−nu

q . The electronic-nuclear excitation probabilities

are exactly equal to the harmonic excitation probabilities of the previous section,

P el−nu
q (EN) =

1

N !

�
α2q2

2

�N
e−

α2q2

2 , (2.108)

with the mass ratio α = me
me+mp

. The nuclear excitation probabilities are

P nu
q (Enl,m) =

����Z X∗10(Y 0
0 )∗ei

q·r
2 XnlY

m
l dr

����2 . (2.109)

Because of the spherical symmetry we can sum over the degenerate states with quantum

number m:

P nu
q (Enl) ≡

mX
l=−m

P nu
q (Enl,m) = (2l + 1)

����Z ∞
0

X∗10Jl

�qr
2

�
Xnldr

����2 . (2.110)

The response function for the four body problem,

S1(q, ω) =
X
Nnl

P el−nu
q (EN)P nu

q (Enl)δ(~ω + E0 − E00
Nnl −∆Ecm), (2.111)

is discussed further in section 2.7.

2.7 The excitation probabilities of separable systems

The two models analysed in this chapter demonstrate the inherent difficulty of exciting

the electronic modes of a separable system. This fact is easily verified by examining the

excitation probabilities for each of the models as a function of transferred momentum and

transferred energy, and is due to the small mass ratio α = me
me+mp

≈ 5.441× 10−4. Thus,

for each model we will examine the probabilities Pq(E) for constant momentum transfer,

and for constant energy transfer. To gain some indication of the ability of each model to

be excited we will also evaluate the probability Pq(E0) of remaining in the ground state

for a reasonable value of transferred momentum.

2.7.1 The harmonic oscillator

The excitation probabilities calculated in section 2.5 are
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electronic modes, evaluated as a function of trans-
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Figure 2.2: Excitation probabilities for the harmonic oscillator.

Pq(EN) =
1

N !

�
α2q2

2

�N
e−

α2q2

2 . (2.112)

If we choose the energy scale to be in units of the Bohr energy Eb, i.e, the energy of

the hydrogen atom, then we obtain k1 ≈ 19.7. This allows us to calculate the excitation

probabilities for an energy transfer E = 100eV, which is equivalent to q = 219.7Å−1. At

this momentum we obtain the probability, from Eq. 2.112, that the electron remains in

its ground state is Pq(E0) ≈ 0.9823. The amount of electronic excitation is proportional

to α2q2, and is consequentially only about 1.2%.

2.7.2 The four body problem

The excitation probabilities for the four body problem were determined in section 2.6 to

be

Pq(ENnl) = P nu
q (Enl)P

el−nu
q (EN), (2.113)

where the electronic-nuclear probabilities are defined

P el−nu
q (EN) =

1

N !

�
α2q2

2

�N
e−

α2q2

2 , (2.114)

the nuclear probabilities are defined
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(a) The excitation probabilities of the nuclear
modes of the four body problem, evaluated for
q ≈ 28Å−1, with k2 = 10.
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(b) The excitation probabilities of the nuclear
modes of the four body problem, evaluated with
k2 = 10, as a function of transferred momentum
q.

Figure 2.3: Nuclear excitation probabilities for the four body problem.

P nu
q (Enl) = (2l + 1)

����Z ∞
0

X∗10Jl

�qr
2

�
Xnldr

����2 , (2.115)

and the energies of the accessible excited states are

ENnl =

�
2~2k1

me

� 1
2

24s 1

1− α

�
N +

3

2

�
+

Ê
α

1− α

�
2n+ L(l) +

3

2

�35 . (2.116)

The dependence of the nuclear-electronic excitation probabilities on the transferred

energy and momentum is shown in Fig. 2.2. The results are identical, apart from a

slight change of scale, to those of the harmonic oscillator. The probabilities P el−nu
q (EN)

for a fixed value of q ≈ 8000Å−1 are illustrated in Fig. 2.2(a), which are calculated

for a very high momentum transfer to illustrate the different electronic modes. The

probabilities P el−nu
q (EN) are also calculated as a function of momentum transfer in Fig.

2.2(b), which illustrates that as q increases the higher energy electronic modes are excited

with increasing probability. The sum over all probabilities is also evaluated for each value

of q, to verify that the complete set of excitations is included.

The nuclear-electronic excitation probabilities obviously resemble those of the harmonic

oscillator, whilst the nuclear excitation probabilities have a more complicated structure

due to the additional potential parameter k2 which reduces the symmetry2to that of the

2The full symmetry of the harmonic oscillator is represented by the group of four dimensional rotations.
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rotation group SO(3). Interestingly, the range of values that k2 may take are k2 > −1
4
,

with acceptable (finite energy and normalisable) solutions even when the proton-proton

and electron-electron interactions become attractive. When k2 = −1
4

the energy of these

states is no longer finite and the particles experience a first order transition, collapsing

into each other.

The excitation probabilities of the nuclear rotational and vibrational states are illus-

trated in Fig. 2.3. Also illustrated, in Fig. 2.4, are the convoluted excitation probabilities

of the complete four body excitation spectrum. The peaks associated with the nuclear

excitations are easily distinguished from those of the nuclear-electronic excitations due to

the different energy scales of the two modes. The rotational and vibrational modes of the

nuclei are accessible on an energy scale of order
√
α and can therefore be easily excited

in the scattering process. If we scale the nuclear-electronic energy in units of Eb then,

for an energy transfer of E = 100eV, the nuclear modes are highly excited. However,

the probability that the electrons remain in the ground state is Pq(E0) ≈ 0.993, and the

amount of electronic excitation is therefore less than 1%. A similar situation occurs in

molecules, whereby the rotational, vibrational and electronic modes all occur on differ-

ent energy scales and can therefore distinguished from each other; at low energies the

rotational modes are excited, then at slightly higher energies the vibrational modes also

become excited, and at even higher energies the electronic modes are excited. This idea is

important when we calculate the excitation probabilities for a molecule because, when we

investigate the probability that the electron remains in its ground state, we must consider

very high energy nuclear vibrational states. In fact, the energies are sufficiently high that

the nuclei will dissociate. Dissociation is not a feature of the four body problem studied

in this chapter, but it does occur in the hydrogen atom which is investigated in the next

chapter.

A similar situation occurs in the hydrogen atom; the ‘accidental’ degeneracy of the energy levels is related
to a hidden symmetry, which is also described by the group of four dimensional rotations[17].
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Figure 2.4: An example of the convolution of probabilities, for the nuclear and nuclear-electronic
modes, in the four body problem. The excitation of the nuclear-electronic modes occurs on an
energy scale Eb. These modes, which display the same excitation probabilities as the harmonic
oscillator, are only excited when the momentum transfer is q ∼ 1000Å−1. Each electronic peak
has a finer structure associated with the nuclear rotational and vibrational modes, which are
excited on a smaller energy scale,

√
αEb. The nuclear modes (which are magnified in the upper

right corner) are excited at modest momentum transfers q ∼ 1Å−1.



Chapter 3

The hydrogen atom

Dating back to 1913, when Niels Bohr first reproduced the energy spectrum of the hy-

drogen atom[35] using the Bohr model, the hydrogen atom has always been considered to

be the prototypical quantum system. The study of the hydrogen atom has often lead to

new insights into fundamental physics, including: the calculation of the energy spectrum

of hydrogen, obtained from the analytic solutions to the Schrodinger equation in 1926,

the theoretical understanding of spin, acquired from the analytic solutions to the Dirac

equation in 1928, and the development of quantum electrodynamics, motivated by the

observation of the Lamb shift in 1947. There is substantial benefit in having analyti-

cal solutions to a simple problem such as the hydrogen atom: The concepts developed

by studying the solutions to the simplest problem often apply to the more complicated

problems one usually encounters.

In this chapter we investigate the response function of the hydrogen atom in detail.

The energy spectrum of the hydrogen atom consists of a discrete set of bound states

with negative energy, and a continuum of dissociated states with positive energy. In a

high energy neutron-nucleus collision the electron is excited, and for very high energy

collisions the electron becomes completely dissociated from the proton. This is similar

to the situation which occurs in molecules when the struck proton dissociates, although

the energy scale for electronic dissociation is considerably higher. The solution to the

hydrogen atom illustrates how to quantise the energies of the continuum, and obtain a

probability density associated with scattering into the high energy dissociated electronic

states. These concepts are useful for the work in the next Chapter on the dissociation of

hydrogen molecules.

Finally we make some conclusions regarding the probability of exciting an electron

in the hydrogen atom, and in separable systems in general. It is found that the amount

of electronic excitation for experimentally obtainable momentum transfers is very small

(< 1%). This is a direct consequence of the separable form of the wavefunctions, which

51
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means that the only mechanism available for electronic excitation is centre of mass recoil

(CMR).

3.1 Excitation probabilities for dissociated states

In the hydrogen atom we must consider the probability of exciting an electron into the

continuum of dissociated states. In this case the final states can be characterised by the

continuous energy parameter ε. We then quantise the system by making the system size

finite and determine how the intervals ∆ε scale with the system size. We can then write

Ψε =
√

∆εΨ̃ε, and in the limit that the system size becomes infinite we can take the limit

∆ε → dε, and then the sum over final states becomes an integral. The resolution of the

identity then becomes Z
dε|Ψ̃ε〉〈Ψ̃ε| = 1̂. (3.1)

We then calculateX
f

|〈Ψi|eiq·r|Ψf〉|2 =
X
ε

∆ε〈Ψi|eiq·r|Ψ̃ε〉〈Ψ̃ε|e−iq·r|Ψi〉

→
Z
dε〈Ψi|eiq·r|Ψ̃ε〉〈Ψ̃ε|e−iq·r|Ψi〉 = 〈Ψi|Ψi〉 = 1. (3.2)

Therefore the squared matrix element is associated with a probability density

ρq(ε;Ei) ≡ |〈Ψi|eiq·r|Ψ̃ε〉|2. (3.3)

This method of dealing with a continuous excitation spectrum is used to determine the

electronic excitation probabilities for the dissociated states of the hydrogen atom in section

3.2. When there are both discrete and continuous excitation spectrums the most general

form of the response function is

S(q, ω) =
X
if

PiPq(Ef ;Ei)δ(~ω + Ei − Ef ) +
X
i

Pi

Z
dερq(ε;Ei)δ(~ω + Ei − ε)

=
X
if

PiPq(Ef ;Ei)δ(~ω + Ei − Ef ) +
X
i

Piρq(~ω + Ei;Ei). (3.4)

Throughout this chapter we shall again make the simplifying assumption that the initial

state is the ground state Ψ0, and we will then calculate the quantities Pq(Ef ) and ρq(ε)

to determine the electronic excitation probabilities of the hydrogen atom.
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3.2 The hydrogen atom

We will now look at the simplest realistic model: the hydrogen atom. This is useful

as a first step towards understanding the full range of excitations which occur in more

complicated hydrogen systems, such as in a molecule, or in a solid. The important process

which is encountered when one investigates the hydrogen atom, which was lacking in

the two previous models, is dissociation; in an interaction involving a sufficiently high

momentum transfer it is possible for the electron to dissociate from the proton, resulting

in a continuum of high energy excitations. Understanding how the electron dissociates

from the proton will provide the necessary understanding which is required in the next

chapter when one considers the dissociation of two nuclei which occurs in molecules. The

Hamiltonian for the hydrogen atom is

H = − ~2

2mp

∇2
R1
− ~2

2me

∇2
r1
− e2

4πε0|R1 − r1|
. (3.5)

3.2.1 Transformation into the centre of mass frame

We perform the usual transformation to the centre of mass frame using the following

coordinates

Rcm =
mpR1 +mer1

mp +me

R = R1 − r1. (3.6)

Then the Hamiltonian is

Ĥ = − ~2

2M
∇2

Rcm
− ~2

2µ
∇2

R −
e2

4πε0|R|
= E, (3.7)

where the effective masses are again given by

M = me +mp µ =
memp

me +mp

, (3.8)

and the wavefunction again factorises into the product of the centre of mass wavefunction

and the internal wavefunction:

Ψh(Rcm,R) =
1√
V
eikcm·RcmΨ(R). (3.9)

3.2.2 The internal wavefunctions

The internal wave function satisfies
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�
− ~2

2µ
∇2

R −
e2

4πε0|R|

�
ψ(R) = EinΨ(R). (3.10)

The appropriate scaling of the coordinates and the energy is

r =
µe2

4πε0~2
R =

1

a0

R ε =
32π2ε20~2

e4µ
Ein =

1

Eb
Ein, (3.11)

where we have introduced the Bohr radius a0 and the Bohr energy Eb. Then the Hamil-

tonian is �
−∇2

r −
2

|r|

�
ψ(r) = εΨ(r). (3.12)

We again apply separation of variables to represent the wavefunction in the form Ψ(r) =

X(r)Y m
l (θ, φ), which gives the following equation for X(r):�

r2 d
2

dr2
+ 2r

d

dr
+ 2r + εr2 − l(l + 1)

�
X(r) = 0. (3.13)

The solutions follow a power law close to r = 0; the regular solutions follow the power

law rl, whilst the irregular solutions follow the power law r−l−1. The solution which is

finite at the origin is be obtained with the ansatz X(r) = rly(r):�
r
d2

dr
+ (2l + 2)

d

r
+ (2 + εr)

�
y(r) = 0. (3.14)

This equation contains coefficient which are linear in r and can therefore be solved with

the Laplace Kernel, ezr:

y(r) =
Z
C
ezrf(z)dz, (3.15)

which results in the integral equationZ
C
ezrf(z)(rz2 + (2l + 2)z + (2 + εr))dz = 0. (3.16)

Performing an integration by parts to remove the r coefficients gives

�
(z2 + ε)ezrfl(z)

�
∂C

+
Z
C

�
2fl(z) + (2l + 2)zfl(z)

d

dz
((z2 − ε)f(z))

�
ezrdz = 0. (3.17)

We again demand that the boundary term vanish, and that the integrand be equal to

zero:

d

dz
((z2 − ε)f(z)− (2 + (2l + 2)z)f(z) = 0, (3.18)
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with the solution

f(z) = (z + i
√
ε)
l+ i√

ε )(z − i
√
ε)
l− i√

ε ). (3.19)

The integral representation for y(r) is therefore

y(r) ∝
Z
C
ezr(z + i

√
ε)
l+ i√

ε (z − i
√
ε)
l− i√

εdz (3.20)

The nature of the solutions which are obtained by solving this integral depends on the

choice of the parameterisation of the energy εn. If we choose to look for bound states with

negative energy, then we find solutions which are of a polynomial form. If however we

look for positive energy states for which the electron is completely dissociated from the

electron, then we find that the solutions are of a transcendental form. In the next section

we find the analytic form of both styles of solution and then discuss how to calculate the

excitation probabilities associated with each.

3.2.3 The bound states of the hydrogen atom

To calculate wavefunctions representing the bound state we paramaterise the energy so

that ε = − 1
n2 . There is then a pole of order n at the point z = − 1

n
, which quantises the

energy by requiring that n be a positive integer. In this case the wave function defined

by Eq. 3.20 is

y(r) ∝
Z
C
ezr

�
z − 1

n

�l+n �
z +

1

n

�l−n
dz. (3.21)

The contour must be chosen to form a closed loop around the residue which ensures that

the boundary term will vanish and a non-trivial solution exists. If n had not been a integer

there would have been a branch cut which would have prevented this. It is convenient to

shift the residue to the origin with the translation t = z + 1
n
:

y(r) ∝ e−
r
n

Z
C(0)

ert
�
t− 2

n

�l+n
tl−ndt. (3.22)

This can be evaluated using Cauchys integral formula:

y(r) ∝ e−
r
n

"
dn−l−1

dtn−l−1

 
ert
�
t− 2

n

�l+n!#
t=0

, (3.23)

and then using Leibnitz’s rule:

y(r) ∝ e−
r
n

n−l−1X
i=0

(l + n)!(−1)i

i!(n− l − 1− i)!(2l + 1 + i)!

�
2r

n

�i
= e−

r
nL2l+1

n−l−1

�
2r

n

�
. (3.24)
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To normalise these wavefunctions we simply calculate

N2 =
Z ∞

0
r2X∗(r)X(r)dr =

�n
2

�3
�

2n(n+ l)!

(n− l − 1)!

�
. (3.25)

The normalised radial wave functions for the bound states of hydrogen are therefore

Xnl(r) =

Ì�
2

n

�3 (n− l − 1)!

2n(n+ l)!

�
2r

n

�l
e−

r
nL2l+1

n−l−1

�
2r

n

�
, (3.26)

with an energy En = −Eb
n2 .

3.2.4 The dissociated states of the hydrogen atom

To obtain the wavefunctions describing the dissociated states we return to Eq. 3.20, and

apply the transformation z = i
√
εζ:

X(r) ∝ (i
√
εr)l

Z
C
ei
√
εζr(1− ζ2)l

�
1− ζ
1 + ζ

� 1
i
√
ε

dζ, (3.27)

with the boundary condition24ei√εζr(1− ζ2)l+1

�
1− ζ
1 + ζ

� 1
i
√
ε

35
∂C

= 0. (3.28)

To analyse the positive energy dissociated states it is convenient to parameterise the

energy so that ε = 1
η2 :

X(r) ∝
�
r

η

�l Z
C

(1− ζ2)lei(
ζr
η

+η ln( 1+ζ
1−ζ ))dζ. (3.29)

For these choices of ε the integrand has become multi-valued, requiring branch cuts in

the ranges ζ < −1 and ζ > 1 in the complex plane. A contour must now be chosen which

satisfies the boundary condition�
(1− ζ2)l+1ei(

ζr
η

+η ln( 1+ζ
1−ζ ))

�
∂C

= 0. (3.30)

There is no longer a pole in the complex plane so we cannot choose a closed contour as

we did previously. Instead, we must choose the contour such that the contribution from

the boundary is zero at both ends, which leaves just three possibilities: we can place the

ends of the contour at the two branch points at ζ = ±1, or the in the asymptotic region

ζ → i∞. The latter choice ζ → i∞ diverges1 close to r = 0. This only leaves the contour

1if we scale the coordinate such that ζ̃ = η
r ζ, it can be shown that X(r) follows the power law r−l−1

close to the origin
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which connects the two branch points at ζ = ±1:

X(r) ∝
�
r

η

�l Z 1

−1
(1− ζ2)lei(

ζr
η

+η ln( 1+ζ
1−ζ ))dζ. (3.31)

If we write eif(ζ) = cos(f(ζ)) + i sin(f(ζ)) we find that the complex part is antisymmetric

in ζ, and therefore does not contribute to the integral. We can then write

X(r) ∝
�
r

η

�l Z 1

0
(1− ζ2)l cos

�
ζr

η
+ η ln

�
1 + ζ

1− ζ

��
dζ. (3.32)

This integral representation of the wave functions can be transformed into a form more

useful for numerical calculations by introducing the variable ζ = tanh(x):

X(r) ∝
�
r

η

�l Z ∞
0

dx

cosh2l+2(x)
cos

�
r

η
tanh(x) + 2ηx

�
. (3.33)

Normalising the dissociated states is much more difficult than normalising the bound

states. To normalise the dissociated states we require the asymptotic behaviour of the

radial probability density r2X(r) as r →∞, which can be seen in Fig. 3.44. The energy

levels can be quantised by normalising the radial wavefunctions in a finite sphere of radius

L, which results in a normalisation constant proportional to L. To determine the constant

of proportionality we must evaluate Eq. 3.32 in the limit r →∞. For this calculation it

is convenient to introduce a variable x, which is defined by the expression 1− ζ = ηx
r

. We

then find

X(r) ∝
�
r

η

�l−1 Z r
η

0
dx
�ηx
r

�l �
2− ηx

r

�l
cos

�
r

η
− η ln

ηx

r
− x+ η ln

�
2− ηx

r

��

=
η

r
2l
Z r

η

0
dxxl

�
1− ηx

2r

�l
cos

�
r

η
+ η ln

2r

η
− x− η lnx+ η ln

�
1− ηx

2r

��
. (3.34)

In the limit r →∞ the last term vanishes and we obtain

lim
r→∞

[X(r)] =
η

r
2l
Z ∞

0
dxxl cos

�
r

η
+ η ln

2r

η
− x− η lnx

�
=
η

r
2l
Z ∞

0
dxxlRe

�
ei(

r
η

+η ln 2r
η
−x−η lnx)

�
=
η

r
2lRe

�Z ∞
0

dxxl−iηe−ixei(
r
η

+η ln 2r
η )
�
. (3.35)
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Re (ζ)
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(a) The contours used to calculate the dissociated
electronic states. The contours C1 and C2 are
associated with the regular and irregular solutions
respectively.

Im (ζ)

Re (ζ)

(b) The relationship between Γ(l − iη + 1) and
Λ(l − iη + 1). Regularisation is required to make
the integral over C vanish.

Figure 3.1: Contours of integration for dissociated states of hydrogen.

To perform the integral over x is convenient to rotate x in the complex plane by intro-

ducing the variable y = ix:Z ∞
0

dxxl−iηe−ix = (i)iη−l−1
Z i∞

0
dyyl−iηe−y = (i)iη−l−1Λ(l − iη + 1). (3.36)

This integral is related to the Gamma function Γ(l − iη + 1), which can be seen by

performing the contour integral illustrated in Fig. 3.1(b). To obtain the identity Λ(l −
iη+1) = Γ(l−iη+1), the integral must be regularised so that the integral over C vanishes.

The regularised wave functions therefore have the asymptotic form

lim
r→∞

[X(r)] =
η

r
2lRe

�
iiη−l−1Γ(l − iη + 1)ei(

r
η

+η ln 2r
η )
�

=
η

r
2lRe

�
e−

ηπ
2
− ilπ

2
− iπ

2 Γ(l − iη + 1)ei(
r
η

+η ln 2r
η )
�
. (3.37)

We can now define the phase shift2 of the wavefunction,

δl = arg(Γ(l − iη + 1)). (3.38)

The asymptotic wave functions may then be written

lim
r→∞

[X(r)] = 2l
η

r
e−

ηπ
2 |Γ(l − iη + 1)| sin

�
r

η
+ η ln

2r

η
+ δl

�
, (3.39)

and the normalisation constant is therefore

2This is the phase shift of the l-th partial wave of the dissociated electronic wavefunction.
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N2 =
Z L

0
r2Rηl(r)R

∗
ηl(r)dr

= 22le−ηπ|Γ(l − iη + 1)|2η2
Z L

0
sin2

�
r

η
+ η ln

2r

η
+ δl

�
dr. (3.40)

The term involving the Gamma function can be simplified by using the identity

|Γ(l − iη + 1)|2 =
πη

sinh(πη)

lY
p=1

(p2 + η2). (3.41)

Apart from the logarithm, the asymptotic form of the wavefunction corresponds to the l-th

partial wave component of the scattered wave for the dissociated electron. The logarithm

arises because of the long ranged nature of the coulomb potential. However, in the limit

r →∞ this logarithm changes very slowly compared to r and can be safely ignored. The

integral required for the normalisation is therefore

lim
L→∞

�Z L

0
sin2

�
r

η
+ η ln

2r

η
+ δl

�
dr

�
= lim

L→∞

�Z L

0
sin2

�
r

η
+ δl

�
dr

�
=
L

2
, (3.42)

and the normalisation constant is found to be

N2 = 22l−1e−πη
Lπη3

sinh(πη)

24 lY
p=1

�
p2 + η2

�35 . (3.43)

The normalised dissociated wave functions with energy E = Eb
η2 are

Xηl(r) =

Ì
sinh(πη)

L22l−1η3πe−πη
Ql
p=1 (p2 + η2)

�
r

η

�l Z ∞
0

 
cos( r

η
tanh(x) + 2ηx)

cosh2l+2(x)

!
dx. (3.44)

The radial probability distribution, r2|X(r)|2, for several bound states and a dissociated

state, are illustrated in Fig. 3.2.

3.2.5 Electronic excitation probabilities

To calculate the electronic excitation probabilities we start from the response function for

the hydrogen atom,

S(q, ω) =
X
if

Pi|〈Ψh
i |eiq·R1|Ψh

f〉|2δ(~ω + Ei − Ef ). (3.45)

The coordinate of the proton is R1 = Rcm+αa0r. We assume that the electron is initially
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Figure 3.2: The radial charge distributions (r2|X(r)|2) of states belonging to the discrete spec-
trum of bound states, and the continuous spectrum of dissociated states.

in the ground state configuration, and then represent the response function in terms of

the internal wavefunctions,

S(q, ω) =
X
εlm

|〈Ψ0|eiαq·r|Ψm
εl 〉|2δ(~ω + E0 − Eεl −∆Ecm). (3.46)

At this point we need to distinguish between the excitation probabilities of the bound

states and those of the dissociated states, since each case is interpreted differently. For

the bound states we have the discrete excitation probabilities

Pq(En, l,m) = |〈Ψ0|eiq·R1|Ψm
nl〉|2, (3.47)

whilst for the dissociated states we have the excitation probability density

ρq(Eη, l,m)dEη = |〈Ψ0|eiq·R1|Ψm
ηl〉|2. (3.48)

The contribution from the bound states is simply

Pq(En,m) =
����Z X10(Y 0

0 )∗eiαq·rXnlY
m
l dr

����2 . (3.49)

Then due to the spherical symmetry

Pq(En, l) =
lX

m=−l
Pq(En, l,m) = (2l + 1)

����Z ∞
0

X10Jl(αqr)Xnldr
����2 . (3.50)

To calculate probability density for the contribution from the dissociated states we first

quantise the wavefunctions in a finite sphere of radius L, and then take the limit L→∞
to obtain the continuum limit. In this limit the interval ∆Eη between neighbouring energy
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becomes the measure dEη for the energy. To confine the wavefunctions (Eq. 3.44) to a

sphere of radius L, the wavefunction must vanish at the boundary of the sphere. This

quantises the energy by imposing the condition

L

η
+ η ln

2L

η
+ δl = mπ. (3.51)

If we examine the quantity L
mπ

and take the limit L→∞, then we find

lim
L→∞

�
L

mπ

�
= lim

L→∞

24 L�
L
η

+ η ln 2L
η

+ δl
�35 = η. (3.52)

The interval between neighbouring energy levels is therefore

∆Eη = ∆

�
1

η2

�
=

2

η
∆

�
1

η

�
=

2π

ηL
. (3.53)

This term must be incorporated into the normalisation of the wavefunctions in Eq. 3.44:

Xηl(r) =

Ì
∆Eη sinh(πη)

22lη2π2e−πη
Ql
p=1 (p2 + η2)

�
r

η

�l Z ∞
0

 
cos( r

η
tanh(x) + 2ηx)

cosh2l+2(x)

!
dx. (3.54)

If we define Xηl =
È

∆EηX̃ηl, then in the continuum limit ∆Eη → dEη and the probability

density takes the form

ρq(Eη, l,m) = |〈Ψ0|eiq·R1|Ψ̃m
ηl〉|2 =

����Z X10(Y 0
0 )∗eiαq·rX̃ηlY

m
l dr

����2 . (3.55)

Then, using the spherical symmetry,

ρq(Eη, l) =
lX

m=−l
ρq(Eη, l,m) = (2l + 1)

����Z ∞
0

X10Jl(αqr)X̃ηldr
����2 . (3.56)

The integral over the continuum of dissociated states givesZ ∞
0

ρq(Eη, l)δ(~ω + E0 − Eη −∆Ecm)dEη

= ρq(~ω + E0 −∆Ecm, l)Θ(~ω + E0 −∆Ecm). (3.57)

Finally, the complete hydrogen response function is

S(q, ω) =
X
nl

Pq(En, l)δ(~ω + E0 − En −∆Ecm)

+
X
l

ρq(~ω + E0 −∆Ecm, l)Θ(~ω + E0 −∆Ecm) (3.58)
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3.2.6 The excitation probabilities for the hydrogen atom

The probability of exciting an electron in the hydrogen atom is found from the probability

distributions:

Pq(En, l) = (2l + 1)
����Z ∞

0
r2X∗10(r)Jl(αqr)Xnl(r)dr

����2 (3.59)

ρq(Eη, l) = (2l + 1)
����Z ∞

0
r2X∗10(r)Jl(αrq)X̃ηl(r)dr

����2 . (3.60)

The natural calculation to begin with is the probability that the electron remains in its

ground state,

Pq(E0, 0) = 16

�����Z ∞0 r2e−2r sin(αrq)

αrq
dr

�����2 =
1�

1 + α2q2

4

�4 . (3.61)

We are essentially calculating the momentum distribution of the electron relative to the

proton, i.e, n(αq). If we consider an incident neutron with an energy of E = 100eV,

which is experimentally obtainable, then this corresponds to a momentum of 219.7Å−1,

or equivalently 116.2a−1
0 . Then using this value for the transferred momentum q the

probability that the electron remains in its ground state is Pq(E0, 0) ≈ 0.996, which

corresponds to the excitation of only 0.4% of the electrons. Similar conclusions have

been made in previous works such as [16, 36]. For the hydrogen atom this quantity is all

that we require and we could stop here. Nevertheless, it is instructive to calculate the

probabilities associated with electronic dissociation, which occurs at much higher energies

than neutron Compton scattering experiments are currently able to probe.

The excitation probabilities Pq(En, l) for the bound states, and the excitation probabil-

ity densities ρq(Eη,l) for the dissociated states are illustrated in Fig. 3.3. The momentum

transfer q is chosen to be large so that both the bound states and the dissociated states are

excited. An examination of these probabilities shows that when the momentum transfer

is increased, the dissociated states with high angular momentum are more likely to be

excited.

The excitation probabilities as a function of transferred momentum are illustrated in

Fig. 3.4, where all the states with angular momentum l ≤ 10 and energy E ≤ 20 are

included. To verify that the entire excitation spectrum is included in the calculation of

the excitation probabilities we sum over all of the energies, for each value of q. For large

values of q this summation starts to drop below one, indicating that some of the states

are not accounted for. This is because high energy states, and states with high angular

momentum are excited for high values of q. There is a significant probability (∼ 10%)

that the electron becomes excited above 1000Å−1, at which point there are transitions to
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7000Å−1.

Figure 3.3: Excitation probabilities for the hydrogen atom.

higher energy bound states and to the dissociated state with angular momentum l = 1.

This fact can be understood if we expand the exponent of the transition operator in

powers of αq. The first order correction is ∼ q ·r which has the form of a dipole operator,

and consequentially satisfies the selection rule ∆l = ±1. As the momentum transfer is

increased, higher order terms become significant which are capable of exciting the higher

angular momentum dissociated states.
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indicating that all of the low energy states are accounted for.



Chapter 4

Non-adiabatic effects in molecular

hydrogen

In a molecular system containing several nuclei it is convenient to assume that, because

the light electrons travel much faster than the heavy nuclei, we can adiabatically sepa-

rate the electronic and nuclear degrees of freedom by applying the Born-Oppenheimer

approximation[37]. However, if we employ the basic Born-Oppenheimer style molecular

wavefunctions, then the electron is only excited through the CMR effect. The result-

ing electronic excitation probabilities would then be expected to be of the same order

of magnitude as in the hydrogen atom, i.e, less than one percent. However, in a suffi-

ciently high energy neutron-nucleus collision the recoiling nucleus can travel at speeds

which are comparable to that of an electron, and the logic behind an adiabatic separation

obviously breaks down. We would then anticipate large non-adiabatic corrections to the

final state wavefunctions, which opens up the possibility of electronic excitation through

non-adiabatic processes. Understanding the nature of the break down of the adiabatic

approximation is therefore the main goal of this chapter.

In this chapter we investigate non-adiabatic effects arising in H+
2 , and assess the ac-

curacy of the adiabatic approximation as a function of the mass ratio α ≈ me/mp and

the transferred momentum q. The H+
2 molecule has obviously been subjected to many

detailed investigations and, consequently, the methods that we employ are not wholly orig-

inal. However, the non-adiabatic properties of high energy dissociated states are rather

less well studied and it is therefore necessary to perform accurate calculations for these

states. Previous studies[16] have looked at the non-adiabatic effects in simple molecules,

but we employ a slightly different, non-perturbative, approach to investigate the non-

adiabatic effects. We utilise two different methods to obtain the molecular wavefunctions,

and the results are compared so that we may understand the strengths and weaknesses

of each method.

65
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In the first approach we perform a Born-Huang expansion[38] of the exact wave-

function. This technique uses the electronic states, obtained from applying the Born-

Oppenheimer approximation, as a basis in which to recover the exact solution. This

leads to the Born-Huang matrix equation for the nuclear wavefunctions which contains

non-adiabatic coupling (NAC) between the electronic states. This approach is particu-

larly intuitive, and clearly illustrates the mechanism by which NAC leads to electronic

excitation.

The second approach is to obtain an approximate numerical solution to the exact

molecular Hamiltonian. To simplify the molecular Hamiltonian it is necessary to make a

distinction between two styles of coordinates: the Euler angles, which specify the orienta-

tion of the molecule, and the shape coordinates, which specify the relative positions of the

particles. We rigourously separate the three Euler angles from the internal shape coordi-

nates to obtain a much simpler form of the Hamiltonian which can be solved numerically

to obtain the zero angular momentum eigenstates. This approach is non-perturbative and

does not rely on the use of a particular basis set to obtain the molecular wavefunctions:

it is therefore of use when investigating situations where the adiabatic approximation is

known to break down.

By comparing the solutions obtained using both techniques we show that the results

are consistent, but highlight specific points where the adiabatic separation of nuclear and

electronic coordinates breaks down. From this analysis we conclude that for realistic

values of α and q NAC leads to less electronic excitation than CMR, and therefore the

adiabatic approximation remains valid.

Finally, we look at the implications of this work for experiments involving neutron

Compton scattering from systems such as NbH2 and PdH2, and conclude that electronic

excitations cannot be responsible for the anomalous measurements of hydrogenic cross

sections.

4.1 The Born-Oppenheimer approximation

The Born-Oppenheimer (or adiabatic) approximation greatly simplifies the investigation

of molecular systems. The approximation relies upon one simple assumption; the motion

of the light electrons follows the motion of the heavy nuclei. Basically, because the

electrons are much lighter and move much faster than the heavy nuclei, it is assumed that

the electrons arrange themselves around the instantaneous positions of the nuclei. The

nuclei, however, only feel the average potential created by the charge cloud of the electrons.

Therefore, the electronic distribution can be studied for a fixed nuclear configuration

and the resulting electronic energies, which depend upon the nuclear configuration, form
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potential energy surfaces which govern the motion of the nuclei.

To derive the Born-Oppenheimer approximation we start with the molecular Hamil-

tonian, which may be written

Hmol = He + Tn, (4.1)

where the electronic kinetic energy and the potential energy terms are contained in the

electronic Hamiltonian,

He =
NeX
i=1

~2∇2
ri

2me

+
NeX

i>j=1

1

|ri − rj|
+

NX
α>β=1

ZαZβ
|Rα −Rβ|

−
NeX
i=1

NX
α=1

Zα
|Rα − ri|

, (4.2)

and the kinetic energy of the nuclei is

Tn = −
NX
α=1

~2∇2
α

2Mα

. (4.3)

We will adopt the compact notation R = (R1, ...,RN) and r = (r1, ..., rNe) for the nu-

clear and electronic coordinates respectively. The electronic Hamiltonian depends para-

metrically on the nuclear coordinates R. We may therefore solve it for each nuclear

configuration, so that both the electronic wavefunction and the electronic energy depend

parametrically on R:

HeΦn(r; R) = εn(R)Φn(r; R). (4.4)

The energy eigenvalues map out the potential energy surfaces for the nuclei:

[Tn + εn(R)]Xm
n (R) = Em

n X
m
n (R), (4.5)

where the wavefunction Xm
n correpsonds to the m-th vibrational mode of the nuclei in

the n-th potential energy surface. In the Born-Oppenheimer approximation we express

the molecular wavefunction as

Ψm
n (R, r) = Xm

n (R)Φn(r; R). (4.6)

This result was originally derived by Born and Oppenheimer using Taylor series expan-

sions in the small parameter λ = (me/M)
1
4 . They expanded the molecular Schrödinger

equation in powers of λ and solved the electronic eigenvalue problem in powers of the

internuclear displacements, assuming the latter to be small. It was systematically showed

that, when there is no degeneracy in the electronic energy, the Born-Oppenheimer molec-

ular wavefunction (Eq 4.6) has an error of order λ3.
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For high energy states, for which the oscillations of the nuclei can no longer be regarded

as being small, the original treatment by Born and Oppenheimer is not valid. Other

approaches, which circumvent this problem by using variational methods to derive a

wavefunction of the same form Eq 4.6, do not give a good indication of the size of the errors

involved. For high energy dissociated states the situation is even less clear and quantifying

the errors is a difficult task. It has also been demonstrated[39], using the model four body

problem discussed in chapter 2, that in addition to the customary expansion parameter

λ, other non-analytic terms may appear in the expansion of the wavefunction in the large

M limit. In this chapter we investigate, as thoroughly as possible, the reliability of the

adiabatic approximation for high energy dissociated states.

4.2 Going beyond the Born-Oppenheimer approxi-

mation

To acquire accurate molecular wavefunctions it is necessary to go beyond the Born-

Oppenheimer approximation. There are many schemes which allow us to do this, usually

involving a insightfully chosen basis set, but the simplest is probably the Born-Huang ex-

pansion. This expansion exploits the completeness of the electronic wavefunctions, which

are used as a basis for the exact solution. The exact wavefunction is expanded as

Ψm
n (R, r) =

X
n′
Xm
nn′(R)Φn′(r; R) (4.7)

with an energy

Em
n =

X
n′n′′
〈Xm

nn′Φn|εn(R) + Tn|Xm
nn′′Φn〉. (4.8)

To obtain the exact equations for the vector Xm
n = (Xm

n1, X
m
n2, ...) we require the Hamil-

tonian matrix elements

Ĥn′n′′ = Û〈Φn′ |Tn|Φn′′〉+ δn′n′′εn′ . (4.9)

The first term is in fact an operator which acts on the vector Xm
n . This operator, when

fully expanded, is

Û〈Φn′ |Tn|Φn′′〉 = δn′n′′Tn −
NX
α=1

~2〈Φn′|∇α|Φn′′〉
Mα

∇α + 〈Φn′ |Tn|Φn′′〉. (4.10)

This results in a set of coupled differential equations which, in matrix notation, may be

written
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ĤXm
n = Em

n X
m
n . (4.11)

The matrix Hamiltonian defined by Eq. 4.11 contains the small coupling terms between

different electronic Born-Oppenheimer states. When two electronic states become de-

generate for some nuclear configuration the concept of a distinct energy surface breaks

down. In this case one can perform a diabatic transformation[40] which eliminates the

off-diagonal coupling terms from the Hamiltonian matrix and removes the degeneracy.

Degeneracy of the electronic energy surfaces also leads to a geometric Berry phase[41],

which appears when the nuclei are transported along a path in configuration space which

encloses a degenerate point.

It is usually impractical to use a large number of electronic states as a basis and we are

forced to truncate the expansion of the wavefunction to just a few terms. In this chapter

the non-adiabatic matrix equations are solved for the H+
2 molecule, using a basis of just

two electronic states.

4.3 The failure of the Born-Oppenheimer approxi-

mation

A straightforward application of the adiabatic approximation to molecular systems reveals

that it is insufficient for describing the electronic excitation that occurs in very high energy

neutron-nucleus scattering. This is because the separation of the molecular wavefunction,

into a nuclear part and an electronic part, eliminates the coupling, between different

electronic states, which leads to electronic excitation upon nuclear dissociation. This can

be demonstrated by calculating the excitation probabilities for an interaction between the

neutron and the nucleus at Rt:

Pq(Ef ;Ei) = |〈Ψi|eiq·Rt |Ψf〉|2. (4.12)

In the adiabatic approximation the molecular wavefunction is decomposed into nuclear

and electronic parts, i.e,

Ψm
n (R, r) = Xm

n (R)Φn(r; R). (4.13)

If we substitute this into Eq. 4.12, we find that

Pq(En′m′ ;Enm) =
����Z dRXm

n (R)eiq·RtXm′

n′ (R)
����2 δnn′ , (4.14)

where we have made use of the orthogonality condition,
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Z
drΦn(r; R)Φn′(r; R) = δnn′ , (4.15)

for the electronic wavefunctions. We therefore find that the adiabatic approximation does

not allow electronic excitation1. The non-adiabatic contributions to electronic excitation

arise from the coupling between different electronic states that appears in the Born-Huang

expansion of the molecular wavefunction:

Ψm
n (R, r) =

X
n′
Xm
nn′(R)Φn′(r; R). (4.16)

We then find the excitation probabilities,

Pq(En′m′ ;Enm) =

�����X
n′′

Z
dRXm

nn′′(R)eiq·RtXm′

n′n′′(R)

�����2 . (4.17)

In this chapter we will make use of a Born-Huang expansion of the molecular wavefunc-

tion to determine the probability that the H+
2 molecule is electronically excited during

molecular dissociation. However, the drawback of this technique is that we can only use a

finite basis of electronic states, and we cannot be certain of the relative errors. Therefore,

to fully capture the non-adiabatic effects, we also solve the molecular Hamiltonian directly

to incorporate the contributions from all of the electronic states.

4.4 The molecular Hamiltonian of H+
2

In this section we will focus on the simplest realistic system, the hydrogen molecular ion

H+
2 , which can be solved with a high degree of accuracy. To obtain the desired level of

accuracy we work with the exact Hamiltonian for as long as possible, which requires us

to carefully consider the symmetries of the molecule. We make use of known techniques

to separate the translational and rotational symmetries of the molecule. This reduces the

number of coordinates from nine, to just three for the zero angular momentum states.

The eigenstates of the simplified three dimensional Hamiltonian are then be obtained

using numerical techniques. We start from the Hamiltonian for the general three-body

problem,

H = −~2

2

"
∇2

R1

m1

+
∇2

R2

m2

+
∇2

R3

m3

#
+

e2

4πε0

�
Z1Z2

|R1 −R2|
+

Z2Z3

|R2 −R3|
+

Z1Z3

|R1 −R3|

�
. (4.18)

1If the adiabatic approximation is applied in the centre of mass frame, as it often is, we are then able to
determine the contribution to electronic excitation from the CMR effect. Unfortunately, the contribution
to electronic excitation from the NAC is always excluded when the Born Oppenheimer expansion is
applied.
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The first step is to transform to the centre of mass frame, which is accomplished with the

following choice of Jacobi coordinates2:

Rcm =
m1R1 +m2R2 +m3R3

m1 +m2 +m3

(4.19)

r1 = R3 −
m1R1 +m2R2

m1 +m2

(4.20)

r2 = R1 −R2. (4.21)

In these coordinates the centre of mass can be separated, and the molecular wavefunction

is

Ψmol =
1√
V
eikcm·RcmΨ(r1, r2). (4.22)

The six dimensional wavefunctions Ψ(r1, r2), which represent the motion of the nuclei

and the electron in the centre of mass frame, are the eigenstates of the Hamiltonian

H = −
~2∇2

r1

2µ1

−
~2∇2

r2

2µ2

+
e2

4πε0

24 Z1Z2���r1 + m1

m1+m2
r2

��� +
Z2Z3���r1 + m2

m1+m2
r2

��� +
Z1Z3

|r2|

35 . (4.23)

The reduced masses are defined

µ1 =
(m1 +m2)m3

m1 +m2 +m3

µ2 =
m1m2

m1 +m2

. (4.24)

4.4.1 Separating the rotational symmetry

After separating the centre of mass motion of a molecule containing N particles there are

3N−3 remaining degrees of freedom. It is then useful to think in terms of the shapes which

are created from all the possible configurations of the particles in the centre of mass frame.

Since every possible orientation of these shapes can be obtained by successive rotations

through the three Euler angles, we only require 3N − 6 shape coordinates to define every

possible shape[32]. A common example is the Eckart frame[42], which is often used to

study polyatomic molecules. In this case, the 3N−6 coordinates represent the vibrational

modes of the N nuclei about their equilibrium configurations.

By applying this idea to the three body problem it is possible to reduce the number

of degrees of freedom to just three for L = 0 states, or just four for L 6= 0 states3. In the

2There are obviously other choices, but this choice is appropriate because it treats the two nuclei
symmetrically and simplifies the treatment of nuclear dissociation. In general, different Jacobi coordinates
are appropriate for describing different entrance and exit channels in scattering processes.

3The group SO(3) (the group of proper three dimensional rotations) is a symmetry of the general
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latter case three of the coordinates describe the evolution of shape of the system, and the

fourth describes the evolution of the angular momentum vector in a body fixed frame. To

utilise the rotational symmetry and reduce the number of degrees of freedom, we represent

the Hamiltonian in a suitable body-fixed frame of reference, where the coordinate axes

rotate with the molecule. The choice of body fixed frame is not unique, but is equivalent to

choosing a particular gauge. We will make a choice (Very similar choices have previously

been used in, e.g, [43]) which defines the body fixed frame illustrated in Fig. 4.1, for

which r2 lies along the body fixed z-axis and r1 is in the x-z plane: r1 = r1(0, 0, 1) and

r2 = r2(sin(γ), 0, cos(γ)), where γ is the angle between r1 and r2. The transformation

to the body fixed frame is accomplished by representing the Hamiltonian in bi-spherical

coordinates:

r1(x1, y1, z1) 7→ r1(θ1, φ1, r1) r2(x2, y2, z2) 7→ r2(θ2, φ2, r2) (4.25)

x1 = r1 cos(φ1) sin(θ1) x2 = r2 cos(φ2) sin(θ2) (4.26)

y1 = r1 sin(φ1) sin(θ1) y2 = r2 sin(φ2) sin(θ2) (4.27)

z1 = r1 cos(θ1) z2 = r2 cos(θ2). (4.28)

The Hamiltonian becomes may then be written

H = − 1

2µ1r2
1

�
~2 ∂

∂r1

�
r2

1

∂

∂r2

�
− L̂2

1

�
− 1

2µ2r2
2

�
~2 ∂

∂r2

�
r2

2

∂

∂r2

�
− L̂2

2

�
+

e2

4πε0
V̂ , (4.29)

where V̂ is the potential energy, and the single particle angular momentum operators are

L̂
2

i = (L̂i)
2
x + (L̂i)

2
y + (L̂i)

2
z = −~2

�
1

r2
i sin(θi)

∂

∂θi

�
sin(θi)

∂

∂θi

�
+

1

r2
i sin2(θi)

∂2

∂φ2
i

�
. (4.30)

Then to define the body-fixed frame we rotate the first set of coordinates so that the

z-axis lies along r2 (i.e ẑ1 = r̂2). We therefore apply a rotation of the coordinates,

r′1 = R(φ2, θ2, 0)r1:

N-body molecular Hamiltonian. However, due to the non-Abelian character of SO(3) it is only possible
to eliminate two degrees of freedom, except in the special case where L = 0.
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α

β

θ

Φ

2

2

x

y

z
z'

x'

y'

z'

x'

y'

r1 r2

(a) The body fixed frame is defined relative to
the space fixed frame by the Euler angles θ2, φ2

and β.

z'

x'

y'

r1 r2
γ

(b) The shape of the particles is defined in terms
of the shape coordinates r1, r2 and γ in the body
fixed frame.

Figure 4.1: Separation of the Euler angles from the shape coordinates.

�
(r′1)x

(r′1)y

(r′1)z

�
=

�
cos(θ2) cos(φ2) cos(θ2) sin(φ2) − sin(θ2)

− sin(φ2) cos(φ2) 0

sin(θ2) cos(φ2) sin(θ2) sin(φ2) cos(θ2)

��
(r1)x

(r1)y

(r1)z

�
. (4.31)

We then define the body fixed coordinates illustrated in Fig. 4.1 in terms of the angles γ

and β: �
r1 cos(β) sin(γ)

r1 sin(β) sin(γ)

r1 cos(γ)

�
≡

�
(r′1)x

(r′1)y

(r′1)z

�
. (4.32)

After employing the above identities, the transformed Hamiltonian may be written

cos(β) sin(γ) = sin(θ1) sin(θ2) cos(φ1 − φ2)− cos(θ1) cos(θ2) (4.33)

sin(β) sin(γ) = sin(θ1) sin(φ1 − φ2) (4.34)

cos(γ) = sin(θ1) sin(θ2) cos(φ1 − φ2) + cos(θ1) sin(θ2). (4.35)

The wave function depends on the body fixed coordinates Φ(r1, γ, β, r2, θ2, φ2), and the

differential operators must also be represented in the body fixed frame:

∂

∂θ1

=
∂γ

∂θ1

∂

∂γ
+
∂β

∂θ1

∂

∂β
(4.36)



CHAPTER 4. NON-ADIABATIC EFFECTS IN MOLECULAR HYDROGEN 74

∂

∂φ1

=
∂γ

∂φ1

∂

∂γ
+
∂β

∂φ1

∂

∂β
(4.37)�

∂

∂θ2

�
1

=

�
∂

∂θ2

�
2

+
∂γ

∂θ2

∂

∂γ
+
∂β

∂θ2

∂

∂β
(4.38)�

∂

∂φ2

�
1

=

�
∂

∂φ2

�
2

+
∂γ

∂φ2

∂

∂γ
+
∂β

∂φ2

∂

∂β
, (4.39)

where the indices 1 and 2 refer to the operator acting in the (r1, θ1, φ1, r2, θ2, φ2) and

(r1, γ, β, r2, θ2, φ2) coordinate spaces respectively. After calculating the derivatives in the

body fixed frame we find that

1

~2
L̂

2

1 = − 1

r2
1 sin(γ)

∂

∂γ

�
sin(γ)

∂

∂γ

�
− 1

r2
1 sin2(γ)

∂2

∂β2
(4.40)

1

~2
L̂

2

2 = − 1

r2
2 sin(γ)

∂

∂γ

�
sin(γ)

∂

∂γ

�
− 1

r2
2

�
cos2(γ)

sin2(γ)
+

cos2(θ2)

sin2(θ2)
+

2 cos(θ2) cos(γ) cos(β)

sin(θ2) sin(γ)

�
∂2

∂β2

−2 sin(β) cos(θ2)

r2
2 sin(θ2)

∂2

∂γ∂β
− 1

r2
2 sin(θ2)

∂

∂θ2

�
sin(θ2)

∂

∂θ2

�
− 1

r2
2 sin2(θ2)

∂2

∂φ2
2

+
2 cos(β)

r2
2

∂2

∂γ∂θ2

−2 cos(γ) sin(β)

r2
2 sin(γ)

∂2

∂β∂θ2

+
2 sin(β)

r2
2 sin(θ2)

∂2

∂γ∂φ2

+
1

r2
2

�
2 cos(θ2)

sin2(θ2)
+

2 cos(γ) cos(β)

sin(θ2) sin(γ)

�
∂2

∂β∂φ2

.

(4.41)

The first operator L̂2
1 retains its original form in the body fixed frame because it does

not affect θ2 and φ2, but L̂2
2 becomes much more complicated. The reason for using these

coordinates will become clear in the next section where we will see that the solution

of the Hamiltonian can be greatly simplified by using the correct angular momentum

eigenfunctions.

4.4.2 The angular momentum operators

The eigenfunctions of the Hamiltonian are not eigenfunctions of the single particle angular

momentum operators L̂1 and L̂2. Instead, we must use the total angular momentum

operator L̂ = L̂1 + L̂2, which we will now calculate in the body fixed frame. In the centre

of mass frame the components of the total angular momentum are

i

~
L̂x = − sin(φ1)

∂

∂θ1

− cos(φ1) cos(θ1)

sin(θ1)

∂

∂φ1

− sin(φ2)
∂

∂θ2

− cos(φ2) cos(θ2)

sin(θ2)

∂

∂φ2

(4.42)
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i

~
L̂y = cos(φ1)

∂

∂θ1

− sin(φ1) cos(θ1)

sin(θ1)

∂

∂φ1

+ cos(φ2)
∂

∂θ2

− sin(φ2) cos(θ2)

sin(θ2)

∂

∂φ2

(4.43)

i

~
L̂z =

∂

∂φ1

+
∂

∂φ2

, (4.44)

which are represented in the body fixed frame as

i

~
L̂x = −cos(φ2) cos(θ2)

sin(θ2)

∂

∂φ2

+
cos(φ2)

sin(θ2)

∂

∂β
− sin(φ2)

∂

∂θ2

(4.45)

i

~
L̂y = −sin(φ2) cos(θ2)

sin(θ2)

∂

∂φ2

+
sin(φ2)

sin(θ2)

∂

∂β
+ cos(φ2)

∂

∂θ2

(4.46)

i

~
L̂z =

∂

∂φ2

, (4.47)

from which we obtain

1

~2
L̂

2
= − 1

sin(θ2)

∂

∂θ2

�
sin(θ2)

∂

∂θ2

�
− 1

sin2(θ2)

∂2

∂φ2
2

− 1

sin2(θ2)

∂2

∂β2
2

+
2 cos(θ2)

sin2(θ2)

∂2

∂β∂φ2

.

(4.48)

It can be verified that these angular momentum operators commute with the Hamiltonian

and obey the necessary commutation relations,�
L̂

2
, L̂z

�
= 0

�
L̂a, L̂b

�
= i~εabcL̂c. (4.49)

It turns out that the Hamiltonian is conveniently expressed in terms of the body fixed

angular momentum operators. If the angles φ2 and β are exchanged, then we obtain a set

of operators for which the z-axis is the vector r̂2:

i

~
Ĵx = −cos(β) cos(θ2)

sin(θ2)

∂

∂β
+

cos(β)

sin(θ2)

∂

∂φ2

− sin(β)
∂

∂θ2

(4.50)

i

~
Ĵy = −sin(β) cos(θ2)

sin(θ2)

∂

∂β
+

sin(β)

sin(θ2)

∂

∂φ2

+ cos(β)
∂

∂θ2

(4.51)

i

~
Ĵz =

∂

∂β
. (4.52)

These body fixed angular momentum operators satisfy the same commutation relations

as the original operators: �
Ĵ

2
, Ĵz

�
= 0

�
Ĵa, Ĵb

�
= i~εabcĴc. (4.53)

It must be emphasised however that the components of the body fixed angular momentum

operators do not commute with the Hamiltonian. It is also apparent that Ĵ
2

= L̂
2
, and



CHAPTER 4. NON-ADIABATIC EFFECTS IN MOLECULAR HYDROGEN 76

therefore Ĵ
2

does commute with the Hamiltonian. The angular momentum eigenfunctions

are solutions to the differential equation�
Ĵ

2 − ~2l(l + 1)
�
D(j)
kzmz

(θ2, φ2, β) = 0. (4.54)

The solutions are the 2j + 1 dimensional Wigner-D matrices, otherwise known as the

symmetric-top eigenfunctions. Because the operators L̂
2
/Ĵ

2
, L̂z and Ĵz mutually com-

mute, they can be simultaneously diagonalised. The general form of the Wigner-D ma-

trices is

D(j)
kzmz

(θ2, φ2, β) = eikzφ2d(j)(θ2)eimzβ, (4.55)

where the quantum numbers kz and mz correspond to the z-component of the angular

momentum in the centre of mass and the body fixed frames respectively. The Wigner-d

matrices d(j)(θ2) satisfy the differential equation

�
d2

dθ2
2

+
cos(θ2)

sin(θ2)

d

dθ2

− m2
z + k2

z − 2mzkz cos(θ2)

sin2(θ2)
+ j(j + 1)

�
d

(j)
mzkz

(θ2) = 0 (4.56)

and may be expressed in terms of the Jacobi polynomials,

d
(j)
kzmz

(θ2) =

�
(j + kz)!(j − kz)!

(j +mz)!(j −mz)!

� 1
2

coskz+mz

�
θ2

2

�
sinkz−mz

�
θ2

2

�
P

(kz−mz ,kz+mz)
j−kz (cos(θ2)).

(4.57)

Finally, the Hamiltonian may be rewritten in terms of the body fixed coordinates and the

angular momentum operators,

H = − 1

2µ1r2
1

�
~2 ∂

∂r1

�
r2

1

∂

∂r2

�
+

~2

sin(γ)

∂

∂γ

�
sin(γ)

∂

∂γ

�
− 1

sin2(γ)
Ĵ2
z

�
− 1

2µ2r2
2

�
~2 ∂

∂r2

�
r2

2

∂

∂r2

�
+

~2

sin(γ)

∂

∂γ

�
sin(γ)

∂

∂γ

��
− 1

2µ2r2
2

�
−Ĵ2

x − Ĵ2
y −

cos2(γ)

sin2(γ)
Ĵ2
z − 2i~Ĵy

∂

∂γ
+

2 cos(γ)

sin(γ)
ĴxĴz

�
+

e2

4πε0
V. (4.58)

The solutions to this equation are linear combinations of the 2j + 1 angular momentum

eigenfunctions,

Ψlkz
n (r1, γ, β, r2, θ2, φ2) =

X
mz

ψlmzn (r1, r2, γ)D(l)
kzmz

(θ2, φ2, β). (4.59)

We have now completed the partial separation of the angular momentum eigenfunctions.
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The coordinates of the three dimensional functions ψjmzn can be chosen independently of

the angular coordinates which greatly simplifies the problem.

4.4.3 Shape space

In the previous sections we have shown that the eigenstates of the three body Hamiltonian

may be represented, in the body fixed frame of reference, in terms of the Wigner D-

matrices. There is then only the problem of determining the three dimensional functions

ψjmzn (r1, r2, γ) which control the shape of the three particles in the body fixed frame. For

N = 3 the particles all lie in a single plane and the shape is simply a triangle, as illustrated

in Fig. 4.2.

To carry out an investigation of non-adiabatic effects it is appropriate to work in

the spheroidal coordinate system. This is a very natural choice of coordinates for a

diatomic molecule because, as will be explained later in this chapter, the electronic Born-

Oppenheimer Hamiltonian becomes clearly separable and can be solved analytically. To

perform this transformation it is convenient to make use of an intermediate coordinate

system which is defined by the inter-particle distances:

s2
1 = |R2 −R3|2 s2

2 = |R1 −R3|2 s2
3 = |R2 −R1|2 . (4.60)

These coordinates are illustrated in Fig. 4.2(b). These can be expressed in terms of the

body fixed coordinates:

s2
1 =

����r1 +
m1

m1 +m2

r2

����2 = r2
1 +

2m1r1r2 cos(γ)

m1 +m2

+
m2

1r
2
2

(m1 +m2)2
(4.61)

s2
2 =

����r1 −
m2

m1 +m2

r2

����2 = r2
1 −

2m2r1r2 cos(γ)

m1 +m2

+
m2

2r
2
2

(m1 +m2)2
(4.62)

s3 = r2. (4.63)

When the derivatives have been transformed the Hamiltonian becomes

H = − ~2
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. (4.64)

As would be expected, this choice of coordinates treats the particles in a highly symmetric

manner. The term p is symmetric in s1, s2 and s3, and is defined

p4 = ((s1 + s2)2 − s2
3)(s2

3 − (s1 − s2)2) = ((s2 + s3)2 − s2
1)(s2

1 − (s2 − s3)2)

= ((s1 + s3)2 − s2
2)(s2

2 − (s1 − s3)2). (4.65)

The transformation to spheroidal coordinates is performed using the relationships

u =
s1 + s2

s3

v =
s1 − s2

s3

w = s3. (4.66)

The spheroidal coordinates are illustrated in Fig. 4.2(c). These expressions are easily

inverted to give the inter-particle separations in terms of the spheroidal coordinates,

s1 =
(u+ v)w

2
s2 =

(u− v)w

2
s3 = w. (4.67)

When performing this transformation we will make the simplification m1 = m2 and choose

the values of Z1, Z2 and Z3 which are appropriate for studying H+
2 . We then obtain

H = −~2

2

�
1

m1

+
1

m3

�
A− ~2

2m3

B +
e2

4πε0
V, (4.68)

where the operators A and B are defined to be

A =
4

w2(u2 − v2)

�
∂

∂u

�
(u2 − 1)

∂

∂u

�
+

∂

∂v

�
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��
− 4w2

p4
Ĵ2
z (4.69)
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(a) The shape coordinates in
the original body-fixed frame:
r1 = |r1| and r2 = |r2|

(b) The symmetric shape coor-
dinates s1, s2 and s3

(c) Spheroidal coordinates:
contours of constant u and v
are displayed

Figure 4.2: Three different choices of shape coordinates for the three body problem.
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V =

�
2

w
− 8u

(u2 − v2)w

�
, (4.71)

with p4 = w4(u2− 1)(1− v2) in the spheroidal coordinate system. The coefficients can be

removed by scaling the internuclear separation w and the energy E,

ω =
4πε0~2(m1 +m3)

e2m1m3

w =
a0

1− α
w ε =

e4m1m3

32π2ε20~2(m1 +m3)
E = (1−α)EbE. (4.72)

Then the Hamiltonian can be expressed in terms of the mass ratio, α = m1

m1+m3
,

H = −A− αB + V. (4.73)

This is the most convenient representation of the Hamiltonian for our investigation of the

H+
2 molecule. The separation of the centre of mass coordinates, and the partial separation

of the rotational coordinates, from the internal shape coordinates has resulted in a drastic

simplification of the Hamiltonian. In particular, the L = 0 states can now be studied by

solving a relatively simple three dimensional problem.
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4.5 Non-adiabatic wavefunctions for H+
2

To obtain non-adiabatic wavefunctions for H+
2 we use two independent methods. The first

method is a Born-Huang expansion of the wavefunction into the basis of electronic states.

The second method is to solve numerically, without resorting to any particular basis set,

the exact Hamiltonian for the L = 0 states. By comparing the solutions of both of these

methods we are able to carefully analyse the accuracy of the adiabatic approximation.

4.5.1 Application of the Born-Oppenheimer approximation to

H+
2

We will now apply the Born-Oppenheimer approximation to the H+
2 molecular ion, using

the equations derived in the previous section. The analysis for this problem is well known

and can be found in, e.g, [44]. The only difference being that, because we are working in

the body fixed centre of mass frame, we use the reduced masses: as opposed to the nuclear

masses which are relevant to the laboratory frame. To obtain the electronic Hamiltonian

we set the mass ratio α (≈ 0.00054) equal to zero, and we then only have to consider the

operator A. The first step involves finding the solutions of the electronic Hamiltonian,

HeΦ
mz
n (r) = [A+ V ] Φmz

n (r) = εmzn (w)Φmz
n (r), (4.74)

where the index mz specifies the angular momentum in the body-fixed frame and n spec-

ifies an electronic energy level. The electronic Hamiltonian is clearly separable using the

ansatz φ = L(u)M(v)eimzβ and the equations satisfied by L(u) and M(v) are

d

du

�
(u2 − 1)

dL

du

�
+

�
A+ 2wu− g2u2 − m2

u2 − 1

�
L = 0 (4.75)

d

dv

�
(1− v2)

dM

dv

�
+

�
−A+ g2v2 − m2

1− v2

�
M = 0, (4.76)

where A is a separation constant and g2 = −w2ε/4. The function M(v) is known as a

spheroidal harmonic and can be expanded in terms of the associated Legendre polynomi-

als, whilst the function L(u) has a more complicated series expansion. These functions

are not convenient to work with analytically, so it is better to seek a numerical solution of

Eq. 4.74 to determine the electronic wavefunctions and their eigenvalues. To obtain nu-

merical solutions it is convenient to parameterise the coordinates so that u = cosh(θ) and

v = cos(φ), and to change the measure by defining a new wavefunction X̃(w) = w2X(w).

These steps change the form of the operators and simplify the boundary conditions con-

siderably (see appendix G).
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(a) Electronic wavefunction for the 1σg state, at
the equilibrium inter-nuclear separation w ≈ 2.
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(b) Electronic wavefunction for the 2σg state, at
the equilibrium inter-nuclear separation w ≈ 8.8.
The amplitude is maximal above the two nuclei
at x ≈ ±4.4.

Figure 4.3: Electronic Born-Oppenheimer wavefunctions for H+
2 .

States with different values of |mz| have different energies and are labeled σ, π, δ, · · ·
for mz = 0, ±1, ±2, · · · respectively. States which are even under inversion symmetry

(bonding states) are labeled with the subscript g, whilst states which are odd under

inversion symmetry (anti-bonding states) are labeled with the subscript u. Illustrated in

Fig. 4.3 are the bonding states 1σg and 2σg. In our investigation we will only require the

set of bonding, zero-angular momentum, σg states.

In the limits w → 0 and w → ∞ the molecular states have simple forms. As w → 0

the two nuclei become equivalent to a single nucleus with twice the charge, and corre-

spondingly the molecular orbitals become the eigenstates of the helium ion. The 1σg state

corresponds to the helium 1s state with energy E = −4 + 1/w, whilst the 2σg and 3σg

states are those of the helium 2s and 2p states respectively, with energy E = −1 + 1/w.

At infinite nuclear separation the 1σg becomes the superposition of two hydrogenic 1s

states centered on the two nuclei, and becomes degenerate with the 1σu state with energy

E = −1. The 2σg and 3σg states become the superposition of the 2s and 2p hydrogenic

states respectively, with energy E = −1/4.

The adiabatic energy surfaces, obtained from the eigenvalues of the electronic Hamil-

tonian, are illustrated in Fig. 4.4. The final step of the Born-Oppenheimer approximation

is to determine the nuclear wavefunctions from the nuclear Hamiltonian,

[−αB + εm(w)] X̃m
n (w) = Em

n X̃
m
n (w). (4.77)

The ground state energy surface, which forms the potential well for the two nuclei, has

a potential minimum close to w ≈ 2, where the potential is roughly harmonic. In their
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Figure 4.4: The adiabatic energy sur-
faces of the symmetric σg electronic
wavefunctions of H+

2 . The ε1 energy sur-
face forms a potential well centred at
w ≈ 2, whilst the ε2 energy surface forms
a potential well centred at w ≈ 8.8. At
w ≈ 4 the ε2 and ε3 energy surfaces be-
come degenerate.

ground state, the nuclei oscillate about the equilibrium separation, where their low energy

wavefunctions are similar to those of the harmonic oscillator.

4.5.2 Application of the Born-Huang expansion to H+
2

The Born-Oppenheimer approximation is usually reliable for accurate solutions of the

molecular Hamiltonian, but there are some special cases where it can give poor results.

This can happen when two energy surfaces come close together or become degenerate, as

is the case for the 2σg and 3σg states in H+
2 at w ≈ 4. The error depends on the difference

in energy between the two states and can become large when this difference is very small.

It is also questionable how accurate the adiabatic approximation is when the derivatives

of the nuclear coordinates are large, which is relevant when the nuclei are moving fast.

For our purposes it is therefore necessary to expand in the basis of electronic states.

We will again restrict attention to the zero angular momentum states. In addition,

it is only necessary to include those states with even symmetry because the Hamiltonian

does not mix odd and even states. The expansion of the wavefunction, performed in the

basis of σg states, is then

Ψm
n (θ, φ, w) =

X
n′
X̃m
nn′(w)Φn′(θ, φ;w). (4.78)

The expectation value of the energy is

Em
n =

X
n′n′′
〈X̃m

nn′Φn′|(−αB0 + εn(w))|X̃m
nn′′Φn′′〉, (4.79)

and the Hamiltonian matrix is then constructed from the matrix elements,

Ĥn′n′′ = − Û〈Φn′ |αB0|Φn′′〉+ δn′n′′εn′(w). (4.80)

The components of the wavefunction can be expressed in terms of the vector X̃
m

n =
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(X̃m
n1, X̃

m
n2, ...), which satisfies the matrix equation

ĤX̃m

n = Em
n X̃

m

n . (4.81)

Later in this chapter we perform a simple calculation, which involves an expansion in the

1σg and 2σg electronic states, of the non-adiabatic molecular wavefunction. The details

of the calculation are outlined in appendix H, and the results are discussed in section 4.6.

4.5.3 Numerical solution of the exact Hamiltonian

To obtain information about the non-adiabatic effects in the most direct way we will

solve the exact Hamiltonian (Eq. 4.73), for the states with zero angular momentum,

numerically. By solving the Hamiltonian directly it is guaranteed that any non-adiabatic

effects, with contributions from all electronic Born-Oppenheimer states, will be captured.

This approach is non-perturbative, i.e, it does rely on an expansion in the usual parameter

αq[16], and is not biased towards any particular basis set; the price we pay for using

this approach is increased numerical difficulty. The solutions are represented on a three

dimensional grid using a finite difference technique so that the ground state is obtained

first and subsequent states of higher energy are found using orthogonality. The number

of bound states increases dramatically for small values of α, and all of these states must

be calculated before the dissociated states are reached. Since we are interested in the

high energy dissociated states of the molecule, which requires the calculation of a large

number of excitations, we are forced to restrict the value of the mass ratio to α = 0.005.

This value is an order of magnitude larger than the actual value (α ≈ 0.00054), but we

are still able to make some general deductions which are relevant to realistic systems. For

the zero angular momentum states we need only consider the Hamiltonian

[−A0 − αB0 + V ] Ψ00
n (u, v, w) = E00

n Ψ00
n (u, v, w), (4.82)

where the L = 0 operators are defined

A0 =
4

w2(u2 − v2)

�
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�
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∂
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+
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�
(1− v2)

∂
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��
. (4.84)

The solution technique is outlined in appendix G, and the results are discussed in the
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next section.

4.6 Non-adiabatic effects in H+
2

In this section we will analyse the non-adiabatic effects in H+
2 and show that the Born-

Oppenheimer approximation is robust for realistic values of transferred momentum. The

adiabatic approximation is however found to be less accurate in the vicinity of the nodes of

the nuclear wavefunction, but this effect is dependent on the mass ratio α and is extremely

small.

An instructive way of characterising the non-adiabatic effects is to compare the numer-

ical solutions obtained from directly solving the exact Hamiltonian with those obtained

from the expansion in the electronic basis. We therefore calculate the high energy dissoci-

ated states of the molecule using both methods and show that there is agreement (within

numerical error) between the solutions. Using these solutions we can then determine the

matrix elements which lead to the largest transition probabilities, and we find that the

probability of electronic excitation is of the order α2.

We begin with the calculation of the final states in the basis of adiabatic electronic

states for α = 0.005. The two degenerate solutions with E > −0.25, calculated in the 1σg

and 2σg basis, are illustrated in Fig. 4.5. We can express the final solution in the form

Ψεm
f (θ, φ, w) =

X
n

Xεm
n (w)Φn(θ, φ;w). (4.85)

The solution in Fig. 4.5(a) corresponds to the nuclei moving in the potential well created

by the 1σg state, with a correspondingly large nuclear amplitude Xε1
1 associated with

the 1σg state, but only a small admixture of Xε2
2 associated with the 2σg potential well.

Conversely, the degenerate solution in Fig. 4.5(b) corresponds to the nuclei moving in the

2σg state and has a large nuclear amplitude Xε2
2 associated with the 2σg state.

We next consider the wavefunctions obtained from attempting a numerical solution of

the exact Hamiltonian (Eq. 4.73), using a finite difference method on a three dimensional

grid (appendix G). A particular high energy dissociated state of the molecule, with L = 0,

is illustrated in Fig. 4.6. To allow a direct comparison with the nuclear amplitudes

obtained in the electronic expansion, we have integrated out the electronic coordinates

to obtain the nuclear amplitudes X1 and X2 associated with the 1σg and 2σg states. We

represent the wavefunction of the final state in the form

Ψf (θ, φ, w) =
X
n

Xn(w)Φn(θ, φ;w), (4.86)

and calculate the nuclear amplitudes numerically using the expression
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Figure 4.5: Nuclear amplitudes obtained from the Born-Huang expansion. The amplitudes Xε1
1

(blue line) and Xε2
2 (black line) are associated with the 1σg and 2σg electronic states respectively.

Xn(w) = 〈Ψf (θ, φ, w)|Φn(θ, φ;w)〉. (4.87)

It is also useful to define the overlaps O1 and O2 with the 1σg and 2σg states, i.e,

On(w) =
|Xn(w)|2P
n′ |Xn′(w)|2

. (4.88)

The state illustrated in Fig. 4.6 is calculated with α = 0.005, for an energy E > −0.25,

which lies just above the dissociation energy of the 2σg state. This wavefunction has been

obtained without any bias towards a particular basis set and there are two points that

are noteworthy.

The first point is that the overlaps, O1(w) and O2(w), in Fig. 4.6 illustrate how

the adiabatic approximation breaks down close to the nodes in the nuclear amplitude.

Within a region of order α of these nodes the overlap with the 1σg state dips sharply, and

higher electronic states such as 2σg and 3σg appear. This issue is well known[45] and is a

general feature of exact molecular wavefunctions. The affected regions correspond to low

probability nuclear configurations for which the electronic and nuclear coordinates can

no longer be decoupled adiabatically. The nature of the wavefunctions in these regions is

not entirely clear but the effect this has on the matrix elements is very small and can be

safely ignored.

The second point is that the overlap O1 with the electronic 1σg state is unity until w ≈
4, where it rapidly falls to zero and the overlap O2 with the 2σg state rises equally rapidly
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Figure 4.6: Nuclear amplitudes obtained
from the approximate numerical solution
of the exact Hamiltonian. The nuclear
amplitudes X1 (blue line) and X2 (black
line) of high energy (E > −0.25) states
are illustrated. The overlap O1 with the
1σg state (blue line) and the overlap O2

(black line) with the 2σg state (black
dotted line state) is also illustrated. The
wavefunction is a linear combination of
the nuclear amplitudes Xε1

1 and Xε2
2 as-

sociated with the potentials ε1 and ε2 re-
spectively.

from zero to unity. The main electronic component of the exact solution is therefore 1σg

close to w = 0, but changes to 2σg as the nuclear wavefunction passes through a node,

where it remains out to infinite inter-nuclear separation. At first sight this feature is

rather surprising and appears to resemble an electronic transition as the nuclei dissociate.

However, further analysis reveals that this behaviour is actually just a consequence of the

degeneracy of the final molecular state. It is clear that the wavefunction illustrated in

Fig. 4.6 is simply a linear combination of the degenerate solutions shown in Fig. 4.5:

Ψf = c1Ψε1
f + c2Ψε2

f . (4.89)

The rapid change in the overlaps O1 and O2, observed in Fig. 4.6, is caused by the

different exponential behaviour of Ψε1
f and Ψε2

f close to w = 0. We will now consider how

the matrix elements for electronic excitations are calculated.

There are two processes which facilitate the excitation of electrons, namely the centre

of mass recoil (CMR) and non-adiabatic corrections (NAC), and it is necessary to dis-

tinguish between these. The CMR mechanism for electronic excitation appears in both

atoms and molecules, and occurs due to mixing of the electronic and the nuclear coordi-

nates in the centre of mass frame. The NAC mechanism only occurs in molecules and is

caused by the response of the electrons to the dynamic motion of the nuclei.

To calculate the transition probabilities we require the matrix elements associated with

transferring momentum q and energy ~ω to the molecule, which we assume is initially

in its ground state Ψ0 (no angular momentum and lowest vibronic state). We need only

consider the interaction of the neutron with the proton at R1 because the two nuclei are

identical and the two contributions average to the same result. The probability of exciting

the molecule from the ground state to Ψf is

Pq(Ef ) = |〈Ψ0(θ, φ, w)|eiq·(
1
2
r2− m

2M+m
r1)|Ψf (θ, φ, w)〉|2. (4.90)
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Figure 4.7: The nuclear amplitudes, Xi

and Xf , associated with the initial and
final states in a high energy scattering
process. In this case the realistic value
of α = 0.00054 has been used. The fi-
nal state illustrated corresponds to the
two nuclei dissociating in the potential
well ε2. Then the electronic transition
1σg → 2σg is related to the overlap of the
ground state with the small 1σg compo-
nent Xε2

1 (w) of the final state (top right
figure).

The CMR contribution arises from the term m
2M+m

q · r1. The amount of electronic exci-

tation resulting from CMR in H+
2 should be similar to that found in the hydrogen atom

and we will neglect this term. The NAC contribution arises from the term q
2
·r2, which is

expressed in the spheroidal coordinate system as q
2
w cos(γ), where γ is the angle between

q and r2. We are therefore only interested in the matrix element

〈Ψ0(θ, φ, w)|ei
q
2
w cos(γ)|Ψf (θ, φ, w)〉. (4.91)

To obtain a large transition amplitude we require that the final state oscillates with

a frequency roughly equal to q
2
w and has a significant overlap with the ground state,

which resembles a Gaussian centred at w ≈ 2. When an electronic transition occurs the

nuclei simultaneously begin to vibrate in the potential well associated with the excited

state. Because the time scale of the neutron-nucleus interaction is too short for the

nuclear configuration too change appreciably, only transitions between nuclear states with

a sizeable overlap are possible (Franck-Condon principle).

In Fig. 4.7 a realistic value of α = 0.00054 has been used to calculate the initial and

final state in a high energy scattering process. The final state is a high energy dissociated

state associated with the potential well ε2. The overlap with the nuclear ground state is

large but, because of the orthogonality of the electronic states, only the very small Xε2
1

component associated with the 2σg state contributes to the matrix element. In fact, the

probability of electronic excitation via CMR and NAC are of the same order of magnitude,

and are roughly proportional to4 (αq/∆)2.

4This can be derived from perturbation theory, by expanding in the parameter αq.[16, 46]
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4.7 Breakdown of the adiabatic approximation in H+
2

From the calculation of high energy dissociated molecular states, we can observe the

gradual breakdown of the adiabatic approximation. The magnitude of the non-adiabatic

corrections can be characterised in terms of the mass ratio, α, and the transferred momen-

tum, q. The non-adiabatic corrections to the molecular wavefunctions are proportional

to the hybridisation between the different electronic modes, which is of the order αq/∆.

By comparing the adiabatic separation of the molecular wavefunctions, with an exact

separation of the molecular wavefunctions (see appendix B), we can see explicitly how the

adiabatic approximation breaks down

The exact separation of the electronic and nuclear degrees of freedom has a simple

interpretation; the molecular wavefunction, Ψ(R, r), is interpreted as a joint probability

density amplitude for the nuclear and electronic coordinates. It can therefore be decom-

posed exactly5 into the product of a conditional probability amplitude of the electronic

coordinates, Φ(r; R), and a marginal probability amplitude for the nuclear coordinates,

X(R).

The exact separation[47] leads to a set of coupled equations which define the proba-

bility amplitudes X(R) and Φ(r; R). We will once again concentrate on the L = 0 states

of H+
2 , and employ the Hamiltonian, Eq. 4.58, which is represented in the bi-spherical

polar coordinate system. To simplify matters we define Ψ̃ ≡ r2Ψ and enforce the param-

eterisation Ψ̃ = X(r2)Φ(r1, γ; r2). We then obtain the following set of coupled equations

for X(r2) and Φ(r1, γ; r2): �
−α d

2

dr2

+ ε(r2)− E
�
X(r2) = 0�

−α ∂2

∂r2
2

− α

X(r2)

dX(r2)

dr2

∂

∂r2

− α

r2
2 sin(γ)

∂

∂γ

�
sin(γ)

∂

∂γ

�
+HBO − ε(r2)

�
Φ(r1, γ; r2) = 0.

(4.92)

For convenience, we can also recast the equation for X(r2) into a first order Riccati

equation. We define

χ(r2) =
1

X(r2)

dX(r2)

dr2

. (4.93)

The normalisation condition for the nuclear wavefunction, X(r2), is then subsumed into

the boundary condition for χ(r2) at r2 = 0. The coupled equations for the nuclear and

electronic probability amplitudes are

5This separation is unique, up to a choice of phase for the electronic and nuclear wavefunctions. A
particular choice of phase, which is in general an arbitrary function of the nuclear coordinate, amounts
to a choice of gauge.
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−α
�
dχ

dr2

+ χ2

�
+ E − ε(r2) = 0�

−α ∂2

∂r2
2

− αχ ∂

∂r2

− α

r2
2 sin(γ)

∂

∂γ

�
sin(γ)

∂

∂γ

�
+HBO − ε(r2)

�
Φ(r1, α; r2) = 0. (4.94)

The nuclear and electronic wavefunctions can be expressed, via the Born-Huang expan-

sion, as

X(r2) =
ÊX

n

|Xn(r2)|2

Φ(r1γ; r2) =
X
n

Xn(r2)

X(r2)
Φn(r1, γ; r2). (4.95)

Whilst these equations are not necessarily advantageous numerically, they do highlight

the non-adiabatic effects which are present in the exact molecular wavefunctions. The

nuclear wavefunction, which is the sum of positive definite quantities, is nodeless6.

Using the solutions obtained from the Born-Huang expansion, we can approximate the

exact nuclear wavefunctions. The nuclear probability amplitude, X(r2), and the nuclear

potential, ε(r2), are illustrated in Fig. 4.8(a). These approximations are for the expansion

in the 1σg and 2σg basis, for α = 0.005. The hybridisation between the two electronic

states is proportional to αq/∆, where ∆ is the energy gap between the electronic states.

The 1σg component of the molecular wavefunction is roughly X1(r2) ∼ sin(qr2/
√
α) and

we may therefore approximate the nuclear amplitude to be

X(r2) ∼
s

sin2

�
qr2√
α

�
+O

�
α2q2

∆2

�
. (4.96)

When there is a node in X1(r2) the nuclear amplitude is X(r2) ∼ αq/∆. This leads to

a sharp peak in χ(r2) which results in a spike in the nuclear potential, ε(r2), at each of

the nodes[45]. Close to these nodes the difference between the adiabatic nuclear potential

and the exact nuclear potential is dramatic and the adiabatic approximation breaks down

completely, as illustrated in Fig. 4.8(b). In the adiabatic limit, α→ 0, the regions where

the adiabatic approximation breaks down shrink to zero and the adiabatic approxima-

tion becomes exact. However, as α or q are increased, the expansion of these regions is

proportional to αq/∆ and non-adiabatic effects can become large.

At very high energies the potential can be treated as a constant V0 and the final states

are well represented by plane waves of the form exp(iqr2/
√
α). In fact, the Compton

profile, which is obtained via the impulse approximation, can be recovered in this limit[48].

6This is a general feature which occurs because the nuclear amplitudes, Xn(R), cannot all have a node
at the same point.
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(a) The nuclear amplitude, X(r2) (black line),
and the nuclear potential, ε(r2) (blue line), cal-
culated in the basis of 1σg and 2σg.

(i)

(ii)

(b) Breakdown of the adiabatic approximation.
(i) The nuclear potential (dashed line) and the
nuclear amplitude (solid line). (ii) The width of
the spike in the nuclear potential is proportional
to αq/∆.

Figure 4.8: Non-adiabatic effects in the exact molecular wavefunctions for H+
2 .

In the case of a molecule the impulse approximation relates the response function to the

momentum distribution, in the centre of mass frame, of the struck nucleus.

The conclusion we can make based on the calculations of this chapter is that the

expansion of the wavefunction in the basis of adiabatic electronic states gives a reliable

measure of the NAC contribution to electronic excitations. This contribution is dependent

on the small admixture of Xε2
1 in the nuclear state associated with the potential well ε2.

The subsequent non-adiabatic correction to the matrix elements can be approximated

from perturbation theory, and is therefore proportional to α2q2/∆2, which is expected to

be small in all cases considered.

4.8 Conclusion

We have performed a detailed investigation of the electronic excitations occurring in high

energy neutron scattering events. Starting from the simplest model systems we have

explicitly calculated the response functions and determined the amount of electronic exci-

tation which occurs for large values of transferred momentum. We have then investigated

the non-adiabatic effects which lead to electronic excitation in hydrogen molecules and

concluded that these effects would not be observable, within experimental error, for the

energies obtainable in neutron Compton scattering experiments.

This has implications for the neutron Compton scattering experiments performed on
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materials such as NbH2 and PdH2, which have produced anomalous measurements of

the neutron cross sections. In particular, we can rule out the possibility that electronic

excitations are responsible for the reduced ratio of cross sections such as σH/σNb and

σH/σPd. Our conclusion, therefore, is that the origin of the anomalous measurements

probably resides in some other aspect of the experiments[14, 15].
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Perovskite oxide interfaces
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Chapter 5

Perovskite oxide interfaces

An impressive variety of exotic properties have recently been observed at atomically pre-

cise interfaces between perovskite oxides. Many of these properties are not realised at

interfaces between conventional semiconducting materials and, therefore, it may prove

possible to utilise perovskite oxide interfaces in new technological applications. The ex-

otic properties originate, in part, from the extremely rich phases found in complex oxides,

which tend to be dominated by strong interactions among the electrons. At an oxide

interface, the close proximity of these different phases can drastically alter the interfacial

properties at the nanoscale. Additional complexity is also introduced at an interface be-

cause of the artificially broken symmetry, which can result in polar discontinuities, lattice

distortions, interdiffusion, and electronic reconstructions. Already, a variety of intriguing

properties have been observed at interfaces between perovskite oxides, including: a high

mobility two-dimensional electron gas[49, 50] between two band insulators, magnetism[51]

between two non-magnetic materials, an electronic reconstruction[52] between a band in-

sulator and a Mott-Hubbard insulator, and an orbital reconstruction[53] between two

strongly correlated materials.

Not only is it possible to create new properties at an interface, which are distinct

from the bulk phases of either material, but it is also possible to control these properties

through electrostatic doping; with an applied field, the charge in the interfacial layers can

be tuned to investigate the disorder free1 phase diagram of the system. These interfaces

may therefore advance fundamental research into the phase transitions in oxide materials.

Interfaces with first row transition metal oxides are particularly well studied because

the ground state properties of the constituent materials are extremely diverse, and can be

very sensitive to changes in doping, strain, and applied magnetic fields. These materials

will be the focus of the second part of this thesis where two interfaces will be investi-

1In a chemically doped system, the disorder introduced through chemical substitution can distort the
phase diagram.
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gated: the interface between the ferromagnetic metallic manganite La2/3Ca1/3MnO3 and

the cuprate superconductor YBa2Cu3O7, and the interface between the band insulators

LaAlO3 and SrTiO3.

In this chapter we briefly review the most fundamental concepts that are relevant to

the perovskite oxides; these concepts provide the foundations for building detailed models

of specific materials.

In chapter 6 we introduce impurity theory techniques, which are later employed to

model the two interfaces under investigation. A simple model, involving non-interacting

electrons, of the symmetry breaking at an interface is solved. This model highlights

the physical ideas which are crucial in the more complicated models, for real interfaces,

which are introduced later. The use of models involving non-interacting electrons obvi-

ously requires justification: their relevance is discussed in more detail, as the models are

developed, in later chapters.

In chapter 7 we introduce the interface between a cuprate and a manganite and dis-

cuss some of the properties of these extremely complicated materials. Experimental ob-

servations, of an orbital reconstruction and unusual magnetic properties, at the cuprate-

manganite interface are also discussed. In chapter 8 we attempt to provide a theoretical

interpretation for these experimental observations, using a simple impurity model of the

cuprate-manganite interface. The results are then compared, with reasonable success,

with experiment.

In chapter 9 we discuss the extraordinary properties of the high mobility interface

between the band insulators LaAlO3 and SrTiO3. Finally, in chapter 10 we introduce an

impurity model for this interface. The model highlights the effects of the interfacial polar

discontinuity, and exhibits interesting charging phenomena.

5.1 First row transition metal oxides

Interest in transition metal oxides has been renewed since the discoveries of high tem-

perature superconductivity (HTSC) in the cuprates[54] in 1986, and the colossal magne-

toresistance (CMR) effect in the manganites[55] shortly thereafter. In addition, there are

other examples of interesting properties in materials such as the cobaltates, which are

potentially useful for their thermoelectric properties[56], the vanadates, which are consid-

ered to be the prototypical systems exhibiting the metal-insulator transition[57], and the

titanates, which exhibit ferroelectric properties. It is this remarkable variety of physical

phenomena[58], the complex interplay between the many competing interactions, and the

rich assortment of phases which makes these materials so interesting both theoretically

and technologically.
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The most important issues which must be considered when modeling the transition

metal oxides are: the lifting of the degeneracy of the 3d electronic states due to symmetry

and Jahn-Teller effects, and the complicated exchange interactions which arise from the

strong electronic correlations. These issues will be the main topic of this chapter.

The first row transition metal oxides comprise of the elements from Ti with 22 elec-

trons, to Cu with 29, each of which contains an unfilled 3d shell which is five-fold degen-

erate in a spherically symmetric potential. In many transition metal oxides the transition

metal cation is surrounded by six closed shell oxygen neighbours which form an octahe-

dron, such as in the perovskite crystal structure illustrated in Fig. 5.2(a). The five-fold

orbital degeneracy of the 3d states is lifted by the crystal field of the surrounding negatively

charged oxygen ions, which for the perovskite structure results in the triply degenerate

t2g and doubly degenerate eg states illustrated in Fig. 5.1. The energy level splitting can

be understood by considering a single 3d electron in the potential produced by the six

neighbouring oxygen ions of charge Ze. From the oxygen ions located at r = ±ax̂ the

symmetry breaking potential is

δVx =
Ze√

r2 + a2 − 2ax
+

Ze√
r2 + a2 + 2ax

≈ Ze

�
2

a
+

35

4a5

�
x4 − r4

5

��
, (5.1)

where we have expanded up to fourth order in powers of r/a. If we also include the

potentials from the oxygen ions at r = ±aŷ and r = ±aẑ then the total perturbing

potential is

δV ≈ Ze
�

6

a
+

35

4a5

�
x4 + y4 + z4 − 3

5
r4
��

, (5.2)

which can be reexpressed in terms of spherical harmonics:�
x4 + y4 + z4 − 3

5
r4
�

=
16

3

Ê
2π

35

r4

8
(Y 4

4 + Y −4
4 ) +

4

15

√
πr4Y 0

4 . (5.3)

An effective Hamiltonian can be constructed from the matrix elements for the 3d states,

〈X32(r)Y m
2 |δV |X32(r)Y m′

2 〉, and the eigenfunctions can then be expanded in terms of the

five 3d spherical harmonics. This requires the following formula which reduces the product

of two spherical harmonics to one:

Y m1
l1
Y m2
l2

=
X
l

Ì
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1l200|l1l2l0〉〈l1l2m1m2|l1l2l(m1 +m2)〉Y m1+m2

l , (5.4)

where we have used the Clebsch-Gordan coefficients associated with the coupling of two
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Figure 5.1: The orbitals corresponding to the transition metal eg and t2g bands, and the oxygen
2p band.

angular momenta. Using this expression the effective Hamiltonian matrix may be rewrit-

ten

Hcubic =
2Ze〈r4〉

105

0BBBBBBBBB@
1 0 0 0 5

0 −4 0 0 0

0 0 6 0 0

0 0 0 −4 0

5 0 0 0 1

1CCCCCCCCCA , (5.5)

where the radial integral is defined

〈r4〉 =
Z ∞

0
drr4X2

32(r). (5.6)

The eigenvectors of the effective Hamiltonian form the doubly degenerate eg orbitals,

dx2−y2 =

Ê
1

2
(Y 2

2 + Y −2
2 ) =

1

4

Ê
15

π
(x̂2 − ŷ2) (5.7)

d3z2−1 = Y 0
2 =

1

4

Ê
5

π
(3ẑ2 − 1), (5.8)
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O

M

A

(a) The perovskite structure AMO3 (b) layered perovskites

Figure 5.2: The perovskite structures found in transition metal oxides; M is a transition metal
element such as Mn, Cu, ..., and A is a larger element such as La, Sr, Ca, ...

and the triply degenerate t2g orbitals:
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Ê
15

π
(x̂ŷ) (5.9)
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Ê
1

2
(Y 1
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15

2π
(ŷẑ) (5.10)

dzx = i

Ê
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2
(Y 1

2 − Y −1
2 ) =

1

4

Ê
15

2π
(ẑx̂). (5.11)

The crystal field splitting between these two states is

∆E =
5Zq

3a5
〈r4〉 = 10Dq. (5.12)

We can understand this splitting from the shape of the orbitals; the lobes of the dx2−y2

and d3z2−r2 states point directly towards oxygen ions in the xy-plane and along the z-axis

respectively, and so have a higher electrostatic energy than the t2g orbitals whose lobes

point directly between oxygen ions.

In practice, the magnitude of the energy splitting ∆E is usually obtained experi-

mentally. The example considered involved a single 3d electron which feels a spherically

symmetric potential from the closed shells of neighbouring oxygen ions and the on-site

transition metal element. For more than one electron the situation is more complicated

and the rules of addition for angular momenta and spin must be used to determine the

appropriate multiplets. Fortunately, this simple calculation is also valid for an Mn3+ ion
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Cubic Tetragonal

Figure 5.3: The energy level split-
ting of a single 3d electron in a
crystal field of the surrounding oxy-
gen ions. The cubic crystal field
splits the five-fold degenerate 3d lev-
els into the three-fold degenerate
t2g and doubly degenerate eg levels.
The Jahn-teller interaction further
reduces the symmetry to that of a
tetragonal crystal field and removes
the degeneracy of the eg energy lev-
els.

containing a single eg electron which, due to the large ferromagnetic coupling with the

t2g spins, may be treated as a single 3d hole. The calculation is also valid for the Cu2+

cation, which may also be regarded as having a single 3d hole, and for the Ti3+ cation

which has a single 3d electron.

We have so far considered cubic symmetry, for which the lattice spacing is identical

in the x, y and z directions (a = b = c), but if the lattice spacing in the z direction is

increased (a = b 6= c) then the symmetry is tetragonal. In this case there is a further

splitting of the energy levels as illustrated in Fig. 5.3. This energy splitting is realised in

the two dimensional layered perovskites illustrated in Fig. 5.2(b), which are relevant to

the HTSC cuprates. Alternatively, in most three dimensional perovskites the eg energy

levels are split due to the Jahn-Teller effect.

5.2 The Jahn-Teller effect

When the coordinates of the oxygen ions are treated as dynamic variables they are subject

to a reaction due to the electronic states of the magnetic ions, resulting in a distortion of

the lattice which removes the remaining orbital degeneracy. This removal of the orbital

degeneracy due to the interaction between the electronic orbitals and the lattice distortion

is known as the Jahn-Teller effect. This effect is present because the increase in energy

is proportional to the second power of the lattice distortion, whereas the energy level

splitting between the orbital states is linearly proportional to the lattice distortion.

In many of the manganites and cuprates the degeneracy of the eg orbitals is removed

by a distortion of the surrounding octahedra of oxygen anions. If we consider a single eg

electron surrounded by an oxygen octahedra and denote the displacements of the oxygen
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by (X, Y, Z) and the electronic coordinates x, y and z, then the change in the potential is

δV = −1

2

�
9

a4

�
[x2(X1 −X4) + y2(Y2 − Y5) + z2(Z3 − Z6)]. (5.13)

The terms of lower order, such as xXi, do not contribute to the energy level splitting

because the corresponding matrix elements are zero. There are also terms which are

antisymmetric with respect to inversion through the origin, but these terms also do not

contribute to the energy splitting. The remaining symmetric terms can be decomposed

into the normal modes of the octahedron, six of which are symmetric (Fig. 5.4). Of these

six modes only Q1, Q2 and Q3, which correspond to displacements of the oxygens parallel

to the Mn-O-Mn bonds, contribute to the energy level splitting. In terms of these modes

the change in the potential is

δV = −
Ê

2

3

�
9

a4

� "Ê
3

2
(x2 − y2)Q2 +

1

2
(2z2 − x2 − y2)Q3

#
. (5.14)

The electronic coordinates can be replaced with their operator equivalents. This is simply

an application of the Wigner-Eckart theorem which in its simplest form states that the

matrix elements of vector operators are proportional to those of the angular momentum

operators. The result is

δV = −
Ê

2

3

�
9

a4

�
α〈r2〉

"Ê
3

2
(L2

x − L2
y)Q2 +

1

2
(3L2

z − L(L+ 1))Q3

#
. (5.15)

The matrix elements are easily evaluated in the eg basis:

δV = −3

Ê
2

3

�
9

a4

�
α〈r2〉

24Q2

�
0 1

1 0

�
+Q3

�
1 0

0 −1

�35 . (5.16)

Finally, the energy level splitting due to the distortion can be conveniently expressed in

terms of the Pauli matrices:

HJT = −A(Q2σx +Q3σz) +
1

2
Mω2(Q2

2 +Q2
3), (5.17)

where the second term is the increase in potential energy due to the distortion, the mass

of the anion is M, and the frequency of the normal mode is ω. This Hamiltonian is easily

solved in the polar coordinates Q3 = Q cos(θ) and Q2 = Q sin(θ), leading to the energy

eigenvalues

E = ±AQ+
1

2
Mω2Q2. (5.18)
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X1

Z1

Z2

Y2

X2
Y1

(a) The normal mode Q2 of the oxygen ions
surrounding a transition metal ion. This mode
makes the dx2−y2 orbital energetically favourable.

X1

Z1

Z2

Y2

X2
Y1

(b) The normal mode Q3 of the oxygen ions
surrounding a transition metal ion. This
mode makes the d3z2−r2 orbital energetically
favourable.

Figure 5.4: The normal modes which lead to a Jahn-Teller splitting of the energy levels.

Then, minimising the energy with respect to Q, the optimal distortion is found to be

Q = |A|/Mω2. The distortion is independent of the value of θ and and therefore stabilises

an orbital of the general form

|θ〉 = cos

�
θ

2

�
|d3z2−1〉+ sin

�
θ

2

�
|dx2−y2〉. (5.19)

This demonstrates that the linear Jahn-Teller effect splits the eg energy levels and sta-

bilises one of the real symmetry orbitals, and higher order terms are required to stabilise

a unique orbital. The wavefunctions are multi-valued in the coordinate θ which results in

a Berry phase: a geometrical phase which is acquired when a fast variable (the electron)

moves adiabatically through a path in the parameter space of a slow variable (the lattice).

The distortions for different values of theta are:

θ Q

0 3Z2 −R2

π/3 Z2 −X2

2π/3 3X2 −R2

π X2 − Y 2

4π/3 3Y 2 −R2

5π/3 Y 2 − Z2

The Jahn-Teller distortion described above is relevant to the Mn3+ and Cu2+ configura-

tions. The t2g electrons also experience a Jahn-Teller distortion, but it is less significant

because the electronic orbitals do not point directly towards the oxygen anions.
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In a lattice the oxygen anions simultaneously participate in the distortions of two

neighbouring octahedra, and therefore it is necessary to consider cooperative Jahn-Teller

distortions[59, 60]. This results in a distribution of bond lengths that can be quantified

by the ratio ∆dM−O/〈dM−O〉, which is about 0.5% in YTiO3 and about 15% in LaMnO3.

For low hole doping these distortions tend to be static, whilst at higher hole doping it

can be dynamic and the distortion moves around with the charge carriers, thus creating

polarons.

5.3 Exchange interactions

The electronic properties of transition metal oxides can be quantified in terms of the

exchange interactions of the electrons. These are derived from the Schrodinger equation

which, when expressed in terms of field operators, may be written as[61]

H =
Z
drψ̂†(r)H0(r)ψ̂(r) +

1

2

Z Z
drdr′ψ̂†(r)ψ̂†(r′)V (r, r′)ψ̂(r′)ψ̂(r), (5.20)

where H0(r) is a single particle operator including the kinetic energy term and V (r, r′) is

the inter-particle coulomb interaction. The single particle operator is

H0(r) = −~2∇2
r

2m
+
X
i

V (r−Ri). (5.21)

The field operators can be expanded in terms of a complete basis of single particle states,

ψ̂(r) =
X
iγσ

ψiγ(r)ciγσ, (5.22)

where ψiγ(r) is a Wannier state centred on the nucleus at Ri, and ciγσ is the corresponding

spin dependent annihilation operator. For first row transition metal oxides it is convenient

to use Wannier states constructed from products of X32(r) with the cubic harmonics2. In

terms of creation and annihilation operators, the Hamiltonian is

H = −
X
iγσ

tγ1γ2i1i2 c
†
i1γ1σci2γ2σ +

1

2

X
iγσ

〈i1γ1i2γ2|
e2

|r− r′|
|i3γ3i4γ4〉c†i1γ1σ1

c†i2γ2σ2
ci4γ4σ2ci3γ3σ1 ,

(5.23)

where we have introduced the hopping matrix element

2Wannier states on different sites are constructed to be orthogonal. This involves taking a linear
combination of orbitals on different sites and finding the ‘most localised’ orthogonal combinations.
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tγ1γ2i1i2 =
Z
drψi1γ1(r)H0ψi2γ2(r). (5.24)

These matrix elements involve the overlap of the wavefunctions on the transition metal

sites, with those on the oxygen sites, and are defined in terms of Slater-Koster parameters[62].

They therefore depend on both the length and angle of the M-O-M bonds. The electronic

correlation matrix elements are defined

〈i1γ1i2γ2|
e2

|r− r′|
|i3γ3i4γ4〉 =

Z Z
drdr′ψ†i1γ1(r)ψ†i2γ2(r

′)
e2

|r− r′|
ψi4γ4(r

′)ψi3γ3(r). (5.25)

Most of the terms in the expression above can be safely ignored. The most important

contribution is from the Hubbard U term, which applies to two electrons sharing the same

site i and the same orbital γ:

HU =
1

2

X
σ

〈iγiγ| e2

|r− r′|
|iγiγ〉c†iγσc

†
iγσciγσciγσ = Uniγ↑niγ↓. (5.26)

This term is very large in free ions, but is reduced to some extent in transition metal

oxides due to the mixing of the transition metal 3d and oxygen 2p orbitals. The Hubbard

interaction is still the largest interaction and is responsible for the antiferromagnetic

interactions between ions via the superexchange interaction. Another term which is often

large is the Hund coupling which is the interaction between two electrons sharing the same

site, but occupying different orbitals:

HH =
1

2
〈iγ1iγ2|

e2

|r− r′|
|iγ1iγ2〉

X
σ1σ2

c†iγ1σ1
ciγ1σ1c

†
iγ2σ2

ciγ2σ2

−1

2
〈iγ1iγ2|

e2

|r− r′|
|iγ2iγ1〉

X
σ1σ2

c†iγ1σ1
ciγ1σ2c

†
iγ2σ2

ciγ2σ1

= K0
γ1γ2

nγ1nγ2 − 2J0
γ1γ2

�
Sγ1 · Sγ2 +

1

4
nγ1nγ2

�
, (5.27)

where the last equality makes use of the spin operators,

Szi =
1

2
(c†i↑ci↑ − c

†
i↓ci↓)

S+
i = c†i↑ci↓ S−i = c†i↓ci↑. (5.28)

J0 is of the order 1eV in transition metal oxides and therefore the Hund coupling term

favours parallel spins for electrons sharing the same site, but in different orbitals. This

term is important in several transition metal oxides including the manganites, and is re-

sponsible for the ferromagnetic alignment of the spins of t2g and eg electrons. There is also
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the analogous direct exchange interaction J which favours parallel spins on neighbouring

sites, and is much smaller than U or J0 for eg orbitals:

HJ =
1

2
〈iγjγ| e2

|r− r′|
|iγjγ〉

X
σ1σ2

c†iγσ1
ciγσ1c

†
jγσ2

cjγσ2

−1

2
〈iγjγ| e2

|r− r′|
|jγiγ〉

X
σ1σ2

c†iγσ1
ciγσ2c

†
jγσ2

cjγσ1

= K0
γ1γ2

nγ1nγ2 − 2J0
γ1γ2

�
Sγ1 · Sγ2 +

1

4
nγ1nγ2

�
. (5.29)

5.4 Charge-transfer and Mott-hubbard insulators

The electronic hopping is described by the tight-binding Hamiltonian,

H = −t
X
〈ij〉σ

c†iσcjσ. (5.30)

From this Hamiltonian we would expect to obtain a metal at half filling. In transition

metal oxides, however, the strong electronic correlations result in a splitting of the energy

band into an upper band and a lower band, and an insulator is often observed at half

filling. These insulators may be classified in terms of the charge transfer energy ∆, which is

the energy required for the excitation of an electron from an oxygen ligand to a transition

metal ion (dnL → dn+1), and the energy U required to transfer an electron from the

lower Hubbard band to the upper Hubbard band (dndn → dn−1dn+1). If U > ∆ the

transition metal oxide is referred to as a Mott-Hubbard insulator[63], with a Mott gap of

magnitude U in the density of states, whereas if ∆ > U it is classified as charge transfer

insulator[64], with an effective charge transfer gap ∆ (Fig. 5.5). The perovskite oxides

which we investigate are all charge transfer insulators, and the charge transfer gap, ∆, is

an important parameter in our analysis.

5.5 Superexchange

The properties of Mott insulators can be understood by considering the superexchange

interaction between electrons on neighbouring lattice sites. The superexchange interaction

can be derived from the one-band Hubbard model[65]:

H = −t
X
〈ij〉σ

�
c†iσcjσ + h.c.

�
+ U

X
i

ni↑ni↓. (5.31)

If we consider strong electronic correlations (U/t � 1), then we can define an effective
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LHB UHB
P

LHB UHB
P

(a)

(b) Figure 5.5: (a) The energy levels of
the upper and lower Hubbard bands
for a Mott-Hubbard insulator with
gap U . (b) The energy levels for a
charge-transfer insulator which has
an effective gap equal to ∆.

Hamiltonian which acts predominantly in the singly occupied Hilbert space. The Hamil-

tonian may be written H = H0 + H1, where H1 contains all of the terms which mix

singly and doubly occupied states. We can then perform a canonical transformation, as

discussed in appendix C, to eliminate H1 up to a specified order in perturbation theory. If

we follow through with this procedure, and consider a nearly half filled band by applying

the condition 1− n� 1, then we obtain the t-J model,

Ht−J = −t
X
〈ij〉σ

(1− niσ)c†iσcjσ(1− njσ) + J
X
〈ij〉

�
Si · Sj −

1

4
ninj

�
. (5.32)

where J = 4t2/U is the strength of the superexchange interaction[66] which favours

antiparallel alignment of neighbouring spins so that electrons can exchange sites by briefly

doubly occupying one of the sites. In the transition metal oxides the superexchange

interaction is mediated by the oxygen atoms and is fourth order in the hopping amplitude,

t, between copper and oxygen:

J =
4t4

∆2

�
1

∆
+

1

U

�
. (5.33)

The t-J model is often used to describe the superconducting phase of the cuprates, and

is therefore of considerable interest. When there is orbital degeneracy, such as in the

manganites and the titanates, the superexchange interaction takes a very complicated

form which accommodates the orbital anisotropy. When there is a single electron on each

site the t-J model reduces to the Heisenberg model,

H =
J

2

X
〈ij〉

Si · Sj. (5.34)

which clearly prefers an antiferromagnetic ground state. Interestingly, according to Na-

gaoka’s theorem, the motion of a single hole in the J = 0 limit of the t-J model is enough
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to destroy the antiferromagnetism, and replace it with ferromagnetism. For non-zero val-

ues of J the motion of a finite density of holes creates a ferromagnetic interaction which

can destroy the antiferromagnetism for a small enough ratio of J/t.

5.6 Interfaces

For the Perovskite oxides, the basic properties introduced in this chapter are very general,

and are relevant to all of the materials we consider later in this investigation. When con-

sidering an interface between two perovskite oxides we must consider the most important

interactions for each material, and how these interactions compete at the interface; decid-

ing which interactions are dominant at the interface is a crucial step towards constructing

an appropriate model. In addition, at an interface there is a discontinuity in the chemical

potentials and a breaking of the translational symmetry. This can lead to all manner

of complications such as: lattice distortions, polar discontinuities, charge transfer and

lattice polarisation; which can drastically alter the interfacial properties. In the following

chapter we focus on the broken translational symmetry and its effects on the electronic

properties at an interface.



Chapter 6

Impurity theory models of interfaces

Throughout this investigation we shall employ impurity theory to construct simple models

of perovskite oxide interfaces. The models introduced are essentially for non-interacting

particles; the electronic correlations, such as the Hubbard U term, are therefore not incor-

porated into the models. Whilst this may seem to be a rather uncontrolled approximation,

we will argue in later chapters that there is still considerable value in working in this way.

In chapter 8, for the case of the cuprate-manganite interface, we argue that the non-

interacting model actually provides a reasonable description of the ferromagnetic metallic

phase of the manganite. In chapter 10, when we investigate the interface between LaAlO3

and SrTiO3, we do not attempt to model the subtleties of the electronic correlations; we

are primarily interested in the charging phenomena, which has interesting consequences

that are likely to be independent of the electronic correlations.

The impurity theory technique is convenient because it allows us to find exact solu-

tions to known problems, when local impurities are added. We shall employ two types

of impurity to model interfaces: electronic hopping impurities, which cancel electronic

hopping between neighbouring sites thereby creating a surface, and atomic impurities,

which lower the potential on specific atomic sites. The resulting analysis has a similar

style to the scattering theoretical technique, which has been employed to model atomic

reconstructions at semiconductor surfaces[67, 68].

We begin this chapter by introducing the resolvent, which is used throughout the

impurity theory calculations. The resolvent, which contains information about the charge

distribution in different layers, is used to analyse the electronic structure at interfaces.

We then apply the techniques of impurity theory to the simplest conceivable model of

an interface. Despite the simplicity of this model, it captures the basic physics which

is crucial for the more detailed models considered later. Before introducing theoretical

techniques we will consider some of the issues which can occur at an interface.

106
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Figure 6.1: The charge transfer
at an interface; the difference in
chemical potentials on either side
of the interface leads to a transfer
of charge across the interface. At
the simplest level we can imagine
each atomic layer parallel to the
interface to be a sheet of uniform
charge ρj , which implies a con-
stant electric field between ad-
jacent layers. The electric field
is determined from the relation
dE/dx = −ρ(x) and the elec-
tric potential is then determined
from dφ/dx = E. Infinitely far
from the interface the electro-
static potential energy e∆φ ex-
actly compensates for the differ-
ence in chemical potentials ∆µ.

6.1 Charge transfer at an interface

For semiconductor materials the physics of a simple interface can be understood in terms

of band bending. If we consider two independent semiconductor materials, both with

different chemical potentials, there will be a transfer of charge across the interface until

an electric potential is built up to compensate the difference in chemical potentials. The

simplest example is to consider uniformly charged atomic layers which produce a uniform

electric field. This case is illustrated in Fig. 6.1.

The charge transfer can be visualised as band bending in the vicinity of the interface,

as illustrated in Fig. 6.2, which often results in a doped region close to the interface1.

A similar situation arises in the perovskite oxide interfaces which we consider in later

chapters; the difference in chemical potentials can result in a doped region, next to the

interface, which has different properties to the bulk. This is indeed the case for the

cuprate-manganite interface investigated later. At a polar interface an additional compli-

cation arises from the sudden termination of the polar layers, which results in a diverging

electric potential. When there are sufficient polar layers the electric potential can become

larger than the band gap in one of the materials. In this case, the diverging electric po-

tential can be neutralised with an ‘electronic reconstruction’, which dopes the interfacial

layers with electrons obtained from the valence band[69]. A good example of this is the

interface between LaAlO3 and SrTiO3, which is considered in chapter 9.

1This can sometimes result in a quantum well next to the interface, with discrete energy levels, creating
a quasi two dimensional electron gas.
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ΔEc

ΔEv

ΔEc
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Figure 6.2: (a) The en-
ergy levels of the conduc-
tion bands (Ec), the valence
bands (Ev), and the Fermi
levels (Ef) of two isolated
semiconductor materials. (b)
At the interface the two ma-
terials must be in equilib-
rium; there is a transfer of
charge across the interface
to make the chemical po-
tential constant throughout,
which results in ‘band bend-
ing’. This often leads to
a small doped region next
to the interface containing
charge carriers.

When we consider the interface between two perovskite oxides the situation is compli-

cated by the strong electronic correlations, which drastically alter the energy bands. It is

therefore not possible to describe a generic perovskite oxide interface; each different com-

bination of compounds must be considered independently, and it this uniqueness which

makes these interfaces particularly interesting. The properties of the interface can be

investigated by performing ab initio electronic structure calculations using density func-

tional theory. Detailed electronic structure calculations are undoubtedly of considerable

value; however, it is sometimes useful to have much simpler model calculations which ig-

nore some of the finer details of the interface, but nevertheless capture the most important

properties. In the following chapters we present two such models, both of which utilise

impurity theory and resolvents to determine the electronic properties of the interface.

6.2 The resolvent

To model an interface using impurity theory, and to extract physically meaningful quan-

tities from our models, we must first become familiar with resolvents. The resolvent is

defined as

G(z) = [z −H]−1. (6.1)

This quantity is extremely simple in the eigenbasis of H. The matrix elements are simply

G(z)kk′ =
δkk′

z − εk
. (6.2)
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The unitary matrix which diagonalises H is constructed from the eigenvectors a(k)
n :

Unk = a(k)
n where

X
n′
Hn′a

(k)
n′ = εka

(k)
n . (6.3)

Then the resolvent is represented in the original, non-diagonal, basis as

G(z)nn′ =
X
kk′
UnkGkk′U †k′n′ =

X
k

a(k)
n a

(k)∗
n′

z − εk
. (6.4)

In our analysis, the diagonal basis will be in reciprocal space, and the non-diagonal basis

will be in real space.

6.3 The density of states

The resolvent contains a lot of information about the system, including the density of

states. We can take the trace of the resolvent to obtain

Tr G(z) =
X
k

1

z − εk
, (6.5)

which contains a simple pole whenever z = εk. If we integrate around a closed contour

containing all of these simple poles then, using the residue theorem, we deduce that the

number of states is given by

N =
Z
C

dz

2πi
f(z − µ)Tr G(z) =

Z
C

dz

2πi
f(z − µ)

X
k

1

z − εk
=
X
k

f(εk − µ), (6.6)

provided that the contour C contains only the poles at z = εk and none of the poles of

the Fermi distribution f(z − µ) (the Matsubara frequencies). We can also calculate the

total energy,

E =
Z
C

dz

2πi
f(z − µ) z Tr G(z) =

X
k

εkf(εk − µ). (6.7)

The appropriate contour is illustrated in Fig 8.4. For a general real function g(z) the

following relationship is easily verified:Z
C

dz

2πi
g(z) 7→

Z ∞
−∞

dε

2πi
[g(ε− iδ)− g(ε+ iδ)] =

Z ∞
−∞

dε

π
Im g(ε− iδ). (6.8)

Applying this idea to the electron number we obtain

N =
Z ∞
−∞

dε

π
f(ε− µ)Im Tr G(ε− iδ). (6.9)
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Im (z)

Re (z)
C

C

Figure 6.3: The Contour of inte-
gration, C, from which we deduce
the the total occupation num-
ber, N , and the total energy, E.
The poles of the resolvent, which
correspond to bound states, re-
side on the real axis, whilst the
Matsubara frequencies reside in
the complex plane. The contour
is chosen so that it captures all
of the poles along the real axis,
but none of those in the complex
plane.

In the limit δ → 0, the contour collapses around the poles of the resolvent and we can

then determine the density of states,

ρ(ε) =
1

π
lim
δ→0

Im Tr G(ε− iδ) =
X
k

δ(εk − ε), (6.10)

where we have employed an identity for the Dirac delta function:

δ(ε− εk) = lim
δ→0

Im
1

π

1

ε− iδ − εk
. (6.11)

Then we can write the electron number and the energy in terms of the density of states:

N =
Z ∞
−∞

dερ(ε)f(ε− µ) (6.12)

E =
Z ∞
−∞

dερ(ε)εf(ε− µ). (6.13)

6.4 Single particle correlation functions

We will often be interested in single particle correlation functions 〈c†ncn′〉, represented in

the coordinate basis. In the original, non-diagonal, basis the single particle operator is

c†ncn′ =
X
kk′
Unkc†kck′U

†
k′n′ . (6.14)

We can evaluate the thermal average in the diagonal basis:

〈c†kck′〉 = f(εk − µ)δkk′ . (6.15)
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Then the single-particle correlation is

〈c†ncn′〉 =
X
k

Unkf(εk − µ)U †kn′ =
X
k

a(k)∗
n f(εk − µ)a

(k)
n′ , (6.16)

which is related to the resolvent,

〈c†ncn′〉 =
Z
C

dz

2πi
f(z − µ)G(z)n′n. (6.17)

This relationship, between the correlation functions and the resolvent, is useful when

require quantities such as the number of electrons occupying a particular site.

6.5 Impurity theory

Impurity theory is a useful technique for solving a reference system H0, for which the

solution is known, with the addition of a local impurity H1:

H = H0 +H1. (6.18)

By local we mean that we can project H1 onto a finite dimensional subspace using a

projection operator,

P =
NX
i=1

|i〉〈i|, (6.19)

where the summation is over the N basis states of the relevant subspace. Mathematically,

the locality of the impurity translates into the equation PH1 = H1P = H1, which will be

used to drastically simplify the problem. The impurity technique utilises the resolvent,

which for the reference system is defined

G0(z) = [z −H0]−1. (6.20)

The resolvent for the system with the impurity present is defined

G(z) = [z −H0 −H1]−1 = [(G0(z))−1 −H1]−1 = G0(z) + G0(z)Σ(z)G0(z), (6.21)

where the matrix Σ(z) has been defined

Σ(z) = H1 +H1G0(z)H1 +H1G0(z)H1G0(z)H1 + ... = H1[I − G0(z)H1]−1. (6.22)
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Any new poles appearing in the resolvent are contained in Σ(z), which therefore contains

the information about any new bound states created by the impurity. Because the impu-

rity H1 is local, Σ(z) is also local and satisfies PΣ(z) = Σ(z)P = Σ(z). The matrix Σ(z)

can also be written in the form

Σ(z) = H1[I − GP0 (z)H1]−1 = [H−1
1 − GP0 (z)]−1, (6.23)

which contains the projected resolvent of the reference system,

GP0 (z) = PG0(z)P . (6.24)

The local matrix Σ(z) is calculated from a finite dimensional inverse; then using Σ(z) we

can solve the impurity problem. The bound state energies are found from the poles of

Σ(z), which are solutions to the equation

Det||H−1
1 − GP0 (E)|| = 0. (6.25)

To find out detailed local information, such as the density of states on the impurity sites,

we can make use of the projected resolvent,

GP(z) = GP0 (z) + GP0 (z)Σ(z)GP0 (z) = [(GP0 (z))−1 −H1]−1. (6.26)

The projected resolvent is used in chapter 10, whilst investigating the interface between

SrTi3 and LaAlO3. Alternatively, to obtain information about non-local properties2, we

can choose to calculate the matrix elements of the complete resolvent,

G(z)nn′ = G0(z)nn′ +
X
i,i′
G0(z)niΣ(z)ii′G0(z)i′n′ . (6.27)

The complete resolvent is used in chapter 8, whilst investigating a cuprate-manganite

interface. Depending on the nature of the problem we may wish to calculate the com-

plete resolvent (using Eq.6.27), the projected resolvent (using Eq. 6.26), or simply the

energy of any new bound states (using Eq. 6.25). We apply these techniques throughout

this investigation of perovskite oxide interfaces, starting with a simple model of the one

dimensional chain with a single impurity atom.

6.6 The one dimensional chain

To see how resolvents are utilised it is instructive to consider the tight-binding Hamiltonian

2Although the impurity is strictly local, its effects are clearly non-local.
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H = −t
X

<nn′>

c†ncn′ . (6.28)

We will consider the one-dimensional chain, with nearest neighbour hopping. The Hamil-

tonian is diagonalised by applying a Bloch transform:

c†k =
1√
N

X
n

eiknc†n ck =
1√
N

X
n

e−ikncn. (6.29)

The Hamiltonian, in reciprocal space, is simply

H =
X
k

εkc
†
kck. (6.30)

The matrix elements of the Hamiltonian are Hkk′ = δkk′εk. Finally, we calculate the

resolvent G = [z −H]−1 and obtain the matrix elements

Gkk′ =
δkk′

z + 2t cos(k)
. (6.31)

6.6.1 The density of states for the one dimensional chain

To determine the density of states on a particular lattice site we first need to transform

the resolvent into coordinate space, and then make use of Eq. 6.10. We perform the

inverse Bloch transform:

Gnn′(z) =
1

N

X
kk′
eiknGkk′(z)e−ik

′n′ =
1

N

X
k

eik(n−n′)

z + 2t cos(k)
→
Z π

−π

dk

2π

eik(n−n′)

z + 2t cos(k)
. (6.32)

In the last step we simply took the thermodynamic limit (N →∞). We can evaluate this

integral if we introduce the complex variable x = eik, so that

G(z)nn′ =
I
C

dx

2πix

xn−n
′

z + t(x+ 1
x
)
. (6.33)

The integral is to be performed around the unit circle in the complex plane, in a counter-

clockwise direction. The poles are located at

x± =
−z ± (z2 − 4t2)

2t
. (6.34)

We can see that x−x+ = 1, so in polar coordinates x+ = reiθ and x− = 1
r
e−iθ, then

one root lies inside and one root lies outside the unit circle. We must be particularly

careful when both poles lie on the unit circle, when r = 1. We can also make use of the
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Im(x)

Re(x)

Z>2tZ>2tZ<-2tZ<-2t

C

Figure 6.4: The contour of inte-
gration, C, around the unit cir-
cle, and the poles of the inte-
grand of Eq. (6.35). The arrows
indicate the motion of the poles
in the complex x plane as z is
increased from minus infinity to
plus infinity. When −∞ < z <
−2t, or when 2t < z < ∞, one
pole is trapped inside the con-
tour. In the region −2t ≤ z ≤ 2t
both poles lie on the unit-circle
and it is necessary to evaluate the
poles for a complex argument,
z − iδ, which pushes the pole
on the lower half-circle inside the
contour. Finally, we then take
the limit δ →∞.

observation that the transformation x 7→ 1
x

leads to Gnn′(z) = Gn′n(z). Therefore

G(z)nn′ =
I
C

dx

2πi

x|n−n
′|

t(x− x+)(x− x−)
. (6.35)

The evaluation of the integral depends on which pole is enclosed in the contour C. The

possibilities are illustrated in Fig. 6.4 and it is easily verified that if z < 2t the pole at

x− is enclosed, yielding

G(z)nn′ = − (x−)|n−n
′|

(z2 − 4t2)
1
2

, (6.36)

whereas if z > 2t the pole at x+ is enclosed, yielding

G(z)nn′ =
(x+)|n−n

′|

(z2 − 4t2)
1
2

. (6.37)

Both of these quantities are real, which implies that the density of states is zero for

energies lying outside of the main band. When −2t < z < 2t the poles lie on the contour

of integration and we must recall that the argument, z, of the resolvent is a complex

number. Therefore, when we calculate G(ε− iδ) in the density of states formula, Eq. 6.10,

the pole which originated on lower half of the contour is shifted inside the contour, as

illustrated in Fig. 6.4. In the limit δ → 0, the resolvent just below the branch cut is

G(z)nn′ =

�
− z

2t
− i (4t2−z2)

1
2

2t

�|n−n′|
(−i) (4t2 − z2)

1
2

. (6.38)
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Finally, the density of states on the site n is

ρn(ε) =
1

π
lim
δ→0

Im G(ε− iδ)nn =
1

π(4t2 − ε2)
1
2

. (6.39)

As expected, due to periodicity, the charge of the electrons is spread out equally over

the entire chain.

6.7 A simple impurity model of an interface

At an interface, the difference in chemical potentials and the subsequent band bending

can lead to states which are bound to the interface, decaying exponentially into the bulk.

This scenario is directly relevant to both of the interfaces which are investigated in the

following chapters, and it is therefore instructive to consider a simple example. We will

consider the one dimensional Hamiltonian

H = −t
∞X
n=1

�
c†n+1cn + c†ncn+1

�
−∆c†1c1. (6.40)

This Hamiltonian describes a semi-infinite chain, with an impurity atom at one end. The

impurity atom lowers the energy at the site n = 1, causing a bound state to peel off

the bottom of the bulk state energy band. Physically, the loss of hybridisation at the

interface is characteristic of a metal-insulator interface, or the interface between a metal

and a layered compound, whilst the impurity, which lowers the potential in the interfacial

layer, reflects the difference in the chemical potentials of the two materials.

The Hamiltonian can be solved in three steps simple steps, as illustrated in Fig. 6.5,

using the techniques of impurity theory: i) we calculate the dispersion relation and the

resolvent for the one dimensional infinite chain ii) we use impurity theory to cut the

infinite chain to form a ‘semi-infinite’ chain iii) we use impurity theory, again, to place

the impurity atom at the end of the chain, and calculate the energy of the bound state

which is formed.

Step one is straightforward; The resolvent for the one dimensional infinite chain, in

real space, may me written

G0(z)nn′ =
X |n−n

′|

t(X − 1
X

)
, (6.41)

where

X = − z

2t
+

È
|z2 − 4t2|

2t
. (6.42)
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n=0 n=1
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(b)

V(x)
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Figure 6.5: The three step impu-
rity theory calculation, for electrons
bound to an interface. (a) We cal-
culate the resolvent for the infinite
chain and use impurity theory to cut
the chain and obtain the modified
resolvent. (b) We place an impurity
atom at the end of the chain which
lowers the potential, and creates a
bound state which decays exponen-
tially into the bulk.

The parameter X is multi-valued and the phase in front of the square root is therefore

dependent on the value of z. To obtain agreement with the analysis of the previous section

the phases are determined as follows; when z < −2t the phase is −1, when z > 2t the

phase is +1, and when z lies below the branch cut, such that −2t < z < 2t, the phase is

−i. To proceed with the second step of the calculation we define the impurity

H1 =

�
0 t

t 0

�
. (6.43)

This impurity simply cancels the hopping between the sites n = 0 and n = 1. Since we

have taken the thermodynamic limit, the two ends of the chain are infinitely far apart

and therefore completely independent of each other. We will simply disregard one end of

the chain and examine the effects of an impurity potential placed on the remaining end.

The calculation of Σ(z) = [H−1
1 − GP0 (z)]−1 is straightforward:

Σ(z) =

24� 0 1
t

1
t

0

�
−

�
G0(z)00 G0(z)01

G0(z)10 G0(z)11

�35−1

= t

24 −X 1

1 −X

35 . (6.44)

The modified resolvent, using Eq. 6.27, is then

G(z)nn′ = G0(z)nn′ +
1X

i,i′=0

G0(z)niΣii′(z)G0(z)in′

=
X |n−n

′|

t(X − 1
X

)
+

1

t(X − 1
X

)2

�
X |n−1|+|n′| +X |n|+|n

′−1| −X |n|+|n′|+1 −X |n−1|+|n′−1|+1
�
.

(6.45)

The resolvent for the semi-infinite chain, which is valid when n, n′ ≥ 1, is then
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G(z)nn′ =
X |n−n

′| −Xn+n′

t(X − 1
X

)
. (6.46)

The matrix elements of the resolvent connecting sites at opposite ends of the chain are

now identically zero. The third and final step of our calculation is to add the impurity

H1 = −∆ which, by lowering the potential at the site n = 1, produces a bound state. If

we now choose the reference system to be the semi-infinite chain, by using Eq. 6.46 for

G0, then the modified resolvent is

G(z)nn′ = G0(z)nn′ + G0(z)n1Σ(z)G0(z)1n′ , (6.47)

where

Σ =
t

X − t
∆

, (6.48)

which gives

G(z)nn′ =
X |n−n

′| −Xn+n′

t(X − 1
X

)
+

Xn+n′

t(X − t
∆

)
. (6.49)

The resolvent can now be used to extract information about the electronic structure of the

interface. The resolvent contains a single pole, corresponding to a state which is bound

to the interface. The energy of this state is the solution of det ||H−1
1 −GP0 (E)|| = 0, which

gives

− 1

∆
− G0(ε)11 = − 1

∆
+
X

t
= 0, (6.50)

resulting in the following energy for the bound state:

E = −∆− t2

∆
, (6.51)

which is only relevant when ∆ > t since

√
E2 − 4t2 = ∆− t2

∆
> 0. (6.52)

We find that the impurity atom produces a bound state at the surface, but only if the

potential energy gained is enough to compensate for the loss of hybridisation energy. This

idea is important in the real interfaces which are investigated in subsequent chapters. In

all cases we find a natural competition between the impurity potential at the interface,

which binds electrons to the interface, and the potential barrier created by the loss of

hybridisation, which effectively repels electrons from the interface.
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Figure 6.6: The analytical structure
of the resolvent for the impurity
model of the interface. The pole on
the real axis corresponds to a bound
state of energy E = −∆ − t2/∆,
whilst the branch cut, running be-
tween z = −2t and z = 2t, cor-
responds to the continuum of bulk
states. The contour C is used to
evaluate the number of electrons,
and picks up the residue at z = E.

6.8 Extracting information from the resolvent

Typically, we will be interested in the charge, ρn, in each layer. We use the formula

ρn =
Z ∞
−∞

dεf(ε− µ)ρn(ε), (6.53)

where f(ε− µ) is the Fermi-Dirac distribution. To determine the charge in each layer

we integrate along the contour illustrated in Fig. 6.6. The bound state is located on the

real axis at the binding energy E, and there is also a branch cut running between z = −2t

and z = 2t, which accommodates the continuum of bulk states. When there is a bound

state the density of states becomes a Dirac Delta function, located at the binding energy

E. The amount of charge in each layer is then proportional to the residue, evaluated at

the binding energy. The charge in the n-th layer is therefore

ρn = Res
ε=E
G(ε)nn ∝ X2n(E) = exp

�
−2n

ξ

�
. (6.54)

The charge (and the wavefunction) decays exponentially into the bulk, with a bound state

length scale

1

ξ
= log

�
∆

t

�
. (6.55)

In later chapters we find that, even for complicated interfaces, the presence of an impurity

potential in an interfacial layer often creates states which are bound to the interface and

decay exponentially into the bulk. At an interface the parameters ∆ and t compete with

each other, and dictate the properties of the bound states.
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6.9 Summary

In this chapter we have introduced the techniques of impurity theory and applied them

to a simple model of an interface. Using this model we have shown how a local impurity,

located at a surface or interface, can induce a bound state which decays exponentially into

the bulk. In later chapters an analogous model, which displays the same characteristics,

will be adopted to represent a cuprate-manganite interface. For the cuprate-manganite

interface we are interested in the number of electrons present in the interfacial layers,

which can be deduced using impurity theory. A second model, this time for the interface

between SrTiO3 and LaAlO3, also exhibits bound states at the interface which decay

exponentially into the bulk. For this second interface we are interested in the confinement

of electrons close to the interface. In both cases it is also necessary to consider the charge

transfer across the interface and the consequent screening effects, which are not included

in the simple model used in this chapter.



Chapter 7

A cuprate-manganite interface

In the following two chapters we investigate the electronic properties at the interface be-

tween ferromagnetic La2/3Ca1/3MnO3 (LCMO) and the high temperature superconductor

YBa2Cu3O7 (YBCO). Several experimental investigations, which are designed to probe

the interfacial cuprate and manganite layers, have revealed unexpected properties at the

YBCO-LCMO interface. The interfacial cuprate layer is observed to have two active eg

orbitals, rather than the single active orbital which is found in the cuprate superconduc-

tors, which signifies an orbital reconstruction. The magnetic properties of the interface

are also intriguing, as there is some evidence of antiferromagnetic correlations between

the cuprate and the manganite.

In the following two chapters we explain how the unusual properties of the YBCO-

LCMO interface may be caused by spin injection1 from the manganite into the cuprate[71].

In particular, we examine how the injected spins could cause an orbital reconstruction and

change the magnetic properties of the interfacial cuprate layers. This explanation is found

to be consistent with experimental observations. Before we consider the YBCO-LCMO

interface we will give a brief overview of the rich variety of phases for each of the inde-

pendent materials, and discuss the properties which make them particularly interesting.

The strongly correlated electronic motion in the cuprates leads to a variety of intriguing

phenomena, such as: high temperature superconductivity, the pseudogap, an anomalous

metal, and stripes. These phases are realised as the doping of the CuO2 planes is varied,

from electron doped to hole doped, and the result is an exceedingly rich phase diagram.

Several different phases are relevant at a cuprate-manganite interface because, as charge is

transferred from the manganite to the cuprate, the doping of the CuO2 planes varies as a

function of their proximity to the interface. To describe this rich behaviour it is necessary

1Spin injection is a general feature of interfaces involving a ferromagnetic material. Basically, the spin
polarised electrons from the ferromagnetic material flow into the neighbouring material, and result in an
accumulation of spin which can drastically alter the properties of the interface. This idea is hoped to
have technological applications in spintronic devices[70].
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to employ the three band Hubbard model, which contains the electronic interactions in

the all important CuO2 planes.

In this chapter we introduce the three band Hubbard model, and its simplifications,

as a first step towards deciding on an appropriate model for the interfacial cuprate layers.

We also introduce models appropriate to each of the cuprate phases, and briefly discuss

the Zhang-Rice singlet[72]: the mobile charge carrier which participates in the high tem-

perature superconductivity. It is then shown that the electron doped CuO2 planes, which

we will include in our model of a cuprate-manganite interface, can be described by the

t-J model.

The orbital degeneracy in manganites, coupled with the strongly correlated motion of

electrons, leads to phenomena which are as rich and diverse as those found in the cuprates.

These phenomena include the Colossal magnetoresistance (CMR) effect, a ferromagnetic

metallic phase, and many complicated charge ordered phases. These phases, which are

activated at different levels of doping, are the result of a large number of competing

interactions, which can be magnetic, electronic, or structural. It is believed that it is the

complex interplay between all of these different interactions which gives rise to the CMR

effect.

In this chapter, several different models are described which qualitatively reproduce

most of the phases observed in the LCMO phase diagram. Although one might expect

several phases to be relevant at the interface, as is the case for the cuprates, we find that

only the ferromagnetic metallic phase is realised. This phase is dominated by the double

exchange mechanism and the large Hund’s coupling between the t2g and eg electrons. A

reasonable model for the electronic structure can then be obtained by considering a simple

double exchange model of the two eg orbitals, assuming that the spin degree of freedom

is removed by the strong Hund’s coupling.

We conclude this chapter by looking at the two experiments which have motivated

this investigation. The first experiment involves x-ray absorption spectroscopy (XAS),

performed at the YBCO-LCMO interface, which indicates that both of the eg orbitals

are active in the interfacial cuprate layers. The second experiment involves polarised

neutron reflectometry (PNR), performed on YBCO-LCMO superlattices, which yields, as

one possible magnetic profile, antiferromagnetic correlations between the cuprate and the

manganite.

Then, in Chapter 8, we propose a simple model of the interface based on the double-

exchange mechanism. To solve this model, and hence determine the electronic structure

at the interface, we utilise impurity theory. We are then able to provide a theoretical

interpretation of the magnetic properties, and the electronic properties, which have been

observed at the YBCO-LCMO interface.
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7.1 The cuprates

Although we are primarily interested in the properties of YBCO, it is nevertheless possible

to talk about the more general class of materials, the cuprates, which all demonstrate

remarkably similar phases as the doping is changed. The literature associated with the

various properties and phases of these materials is vast2 and there are still many unresolved

issues, so it is only possible to give an overview of some concepts which are relevant to

the physics of the interface.

The high-TC properties of the cuprates were first discovered in 1986 by Bednorz and

Muller[54], with the discovery of La2−xSrxCuO4 which for the optimal doping x ≈ 0.15 has

a Tc of 30 K, a value sufficiently high to cast doubt on a plausible explanation from BCS

theory. This was quickly followed by the subsequent discovery of YBa2Cu3O7−x (YBCO)

by Wu et al[75] in the following year, with a Tc of about 93 K for the optimally doped

compound with x ≈ 0.10. Among the other compounds discovered are Bi2Sr2CaCu2O8+x

with a TC up to 94 K, and Ti2Ba2Ca2Cu3O10+x with a TC as high as 125 K. These com-

pounds are composed of distinct layers, unlike the typical BCS compounds, and contain

CuO2 planes perpendicular to the c-axis which contain the mobile charge carriers and are

believed to be responsible for the superconductivity.

These compounds form in layered perovskite structures, as illustrated in Fig. 7.1. The

ideal perovskite structure AMO3 consists of the relatively large cation A and the smaller

B cation, which is surrounded by six oxygen anions forming an octahedron. The cuprates

do not have this ideal perovskite structure, but are usually close to being tetragonal, or

form in layered perovskite structures. The structures must be electrically neutral, which

results in the individual layers being charged. The CuO2 planes of the parent compound

are formally composed of Cu2+ and O−, and therefore have an overall negative charge,

whilst the interleaved layers have a net positive charge to compensate. For doped systems

the dopants normally lie in the interleaved layers, as opposed to the CuO2 layers, and are

either substitute cations such as Sr2+ for La3+, or are additional oxygen ions (which are

added to the CuO chains in YBCO).

In the parent compound we consider the electronic states to be ionic with the electrons

localised around the ions, except in the CuO2 planes and CuO chains where there is some

degree of hybridisation between the Cu 3d states the the O 2p states. The formal valence

configuration of Cu2+ consists of a single hole in the Cu crystal field split 3d shell, which

resides in the x̂2− ŷ2 state. The O 2p states are also split by the crystal field, but have a

formal valence configuration of O2− which corresponds to a closed shell. Materials such

as La2CuO4 can be doped by substituting Sr2+ for La3+ to form La2−xSrxCuO4, which

2See, for example, the reviews [73, 74, 58].
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Figure 7.1: The crystal structures of two cuprate superconductors

removes an electron from the CuO2 plane and leaves it with n = 1 + x holes per unit cell.

In YBa2Cu3O7−δ the doped material is obtained by adding oxygen into empty sites along

the CuO chains, and although the exact doping of the CuO2 planes is unknown, it can be

approximated from an Ewald summation to be n = 1 + 1−2δ
3

, if we assume that the holes

are evenly distributed throughout the three Cu layers.

For comparable levels of hole doping in the CuO2 planes the phases of the different

cuprate superconductors are remarkably similar, and the generic cuprate phase diagram

is illustrated in Fig. 7.2. Below approximately 300 K the parent compound corresponds

to an antiferromagnetic Mott insulator, from which the superconducting state emerges as

holes (or electrons) are doped into the system. The hole doped cuprate YBCO is obviously

of particular interest, but the properties of the electron doped cuprates are actually more

relevant at the YBCO-LCMO interface. Therefore, both the electron doped cuprates and

the hole doped cuprates are of interest in this investigation.

7.1.1 The superconducting state

Despite considerable effort, and numerous reseach articles, there is still no general consen-

sus on the form of an appropriate theory for the superconducting phase of the cuprates.

In the BCS theory[76, 77] of conventional metals, the mechanism responsible for the su-

perconductivity is well understood. The electron-phonon interaction mediates an attrac-

tive interaction between electrons near the Fermi-surface, and these electrons then form
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Figure 7.2: The generic phase
diagram for the cuprates, for
both hole doped (in this case
La2−xSrxCuO4) and electron
doped (Nd2−xCexCuO4) sys-
tems. The x-axis denotes the
average carrier concentration
of electrons/holes found in
a CuO2 unit cell. A wide
variety of phases are present
including: antiferromagnetic
(AF), superconducting (SC),
pseudogap, anomalous metal
and Fermi liquid. The asymme-
try of the electron/hole phase
diagrams, including the larger
superconducting and smaller
antiferromagnetic regions on
the hole doped side, indicates
that the models for the electron
doped and hole doped cuprates
are qualitatively different.

Cooper pair bound states which have a binding energy of 2∆ (the BCS energy gap) and

carry the supercurrent. However, it is clear that the BCS theory cannot account for the

high critical temperatures associated with the cuprates, and there is much experimental

evidence that highlights important differences. This can be seen in the isotope effect[78],

whereby TC is only slightly affected after replacing 16O with 18O, and ARPES measure-

ments which show nodes in the superconducting gap consistent with d-wave symmetry[79].

7.1.2 The pseudogap

In the underdoped compounds, at temperatures above the superconducting transition

temperature, various measurements have provided evidence for the existence of a pseu-

dogap, the magnitude of which appears to be maximal along the (0, π) direction but

disappears along the (π, π) direction. The pseudogap appears to be similar to the d-wave

gap observed in the superconducting state, which is suggestive of a possible relationship

between the two phenomena.

There is evidence of a pseudogap at a temperature T ∗ > TC , which first appears at

the crossover between the normal state and the pseudogap state. Neutron scattering

measurements[80] indicate that the pseudogap is associated with a spin channel, whilst

specific heat[81], ARPES[82], and tunnelling spectroscopy measurements[83] indicate that

the gap also exists in the charge channel. As the temperature is reduced from the pseudo-
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gap temperature T ∗ to below TC , the Fermi surface contracts into Fermi arcs [84]. These

segments of Fermi surface are holelike and several theories have been suggested to describe

these phenomena: the existence of an RVB-flux phase[85], the truncation of the Fermi

surface due to Umklapp scattering[86], and the existence of disordered stripe domains[87].

It has also been suggested that there exists a quantum critical point[88] where the pseu-

dogap transition temperature T ∗ reaches zero for a particular level of doping, and the

transition is associated with a broken symmetry. Whilst undoubtedly interesting, the

pseudogap is not relevant to our investigation of the cuprate-manganite interface.

7.1.3 The electronic structure of the cuprates

On a microscopic level it is presumed that something akin to the BCS pairing theory can

also be applied to the cuprates, despite the fact that the underlying pairing mechanism is

still not understood. Because of the close proximity of the superconducting phase to the

antiferromagnetic Mott insulating phase it is widely believed that the pairing mechanism

is of magnetic origin, and therefore a lot of work focuses on the theory of highly correlated

electrons in the Hubbard and t-J models.

The parent compound is an antiferromagnetic Mott insulator which can be represented

by the Hubbard model for the CuO2 planes. It is normally argued that the three band

model can be reduced to a single band model. This leads to the t-J model which describes

the hopping of charge carriers in the lightly hole doped system, and includes the antifer-

romagnetic superexchange interaction between neighbouring spins. The charge carriers in

this system are the Zhang-Rice singlets, illustrated in Fig. 7.5, which are bound states of

holes on neighbouring copper and oxygen sites. Because of the superexchange interaction

the ground state of the parent compound is the Néel state, and as holes are added by

doping, these holes are assumed to hop in an antiferromagnetic background of copper

spins. Understanding the motion of holes in a Mott insulator is therefore considered an

important step towards understanding the superconductivity.

In an ARPES experiment performed on the antiferromagnetic parent compound, a

single electron is excited by the incident photon, thereby creating a photohole in the CuO2

plane. This experiment is therefore a practical realisation of a hole in an antiferromagnetic

background, which makes comparisons between the calculations based on the t-J model

and ARPES measurements particularly meaningful.

The spectral function for a single hole in an antiferromagnetic background has been

calculated theoretically, using the self consistent Born approximation[89, 90, 91]. To

obtain agreement between theory and experiment it is necessary to include the parameters

t′ and t′′ for longer range hopping. The spectral function calculated from the resulting t-

t′-t′′-J model is in good agreement measurements obtained using ARPES. The bandwidth
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Figure 7.3: The dispersion of
a single hole in the t-t′-t′′-J,
calculated in the self consis-
tent Born approximation, com-
pared with ARPES data for
Sr2CuO2Cl2. Experimental data
are taken from [92] (open cir-
cles), [93] (open squares), and
[94] (open triangles). The self
consistent Born approximation
(solid circles) is fitted to the t-
t′-t′′-J dsipersion (solid line).

is significantly reduced from the free electron value because of renormalisation of the

quasiparticles due to interactions with the spin background. The bandwidth is even

smaller than the one dimensional analogue where spin-charge separation leads to separate

dispersions for spinons and holons.

Whether the single band Hubbard and t-J models reliably capture the physics of the

CuO2 planes is not entirely clear. In the next section it is shown how, by performing a

canonical transformation on the three band Hubbard model, a different picture emerges

for the hole doped cuprates.

7.1.4 Microscopic models of the cuprates

The appropriate model, and interaction parameters, for the cuprates can be deduced from

band structure calculations and experimental observations. The accepted model, which

describes the CuO2 planes, is the three band Hubbard model. This model can be further

simplified by performing canonical transformations, to yield models appropriate to the

electron doped and hole doped cuprates. As can be deduced from the asymmetry of the

cuprate phase diagram, these models are subtly different.

7.1.5 Band structure calculations

The antiferromagnetic insulating state observed in the parent compounds indicates that

electronic correlations are very important in the cuprates. Therefore, the independent

electron model, which predicts a metal at half filling, cannot be expected to predict the

correct properties of the more exotic states of the cuprates. However, the normal state of

the optimally doped material is metallic and band structure calculations should provide

some useful information about the most important electronic configurations. The band

structure calculations for YBCO incorporate the Hartree-Fock terms which account for

the mean electronic correlations induced by the coulomb interaction.
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Figure 7.4: (a) The non-interacting electron
band structure calculations suggests that the
cuprate layer is metallic, and is described by
three bands: a non-bonding band, a bonding
band, and an antibonding band. (b) When
electronic correlations are included the anti-
bonding band splits into an upper and lower
Hubbard band, and the cuprate layer becomes
a charge transfer insulator. (c) The hybridisa-
tion of the bonding band with the upper Hub-
bard band creates a triplet band and a Zhang-
Rice singlet band. In the hole doped com-
pounds the holes reside in the Zhang-Rice sin-
glet band, whilst in the electron doped com-
pounds the electrons reside in the upper Hub-
bard band.

The bands associated with the CuO2 planes involve the Cu 3dx2−y2 orbital hybridising

with the O 2px and O 2py orbitals. The overlap between adjacent CuO2 planes is very

small and the dispersion is consequentially almost independent of kz, which corresponds

to charge carriers which are mostly confined to the individual planes. The three bands

associated with the CuO2 layers which may be thought of as bonding, antibonding and

non-bonding, are illustrated in Fig. 7.4. In YBCO there are also bands which are associ-

ated with the CuO chains. Both bands are essentially one-dimensional and the dispersions

are almost independent of both kx and kz, which corresponds to charge carriers confined

to the chains.

For YBCO the calculations do not take into account the non-stoichiometric nature of

the oxygen doping in the chains, which implies that the disorder present due to oxygen

vacancies is not accounted for. The strong electronic correlations will also change the elec-

tronic properties substantially, but the main features of the band structure calculations,

such as the approximate hybridisation parameters and the two dimensional nature of the

CuO2 planes, should remain intact. This gives a strong indication that a good model of

the CuO2 planes should contain the essential physics associated with the various phases

of the cuprates3.

3The superconducting transition temperature TC varies in the presence of different types of cation
disorder[95], and tends to increase as the number of cuprate layers in each unit cell is increased from
N = 1 to N = 3. This variation in TC is believed to be caused by the various distortions of the ideal
CuO2 plane in each of the HTSC materials.
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7.1.6 The three band Hubbard model

Experimental considerations allow us to simplify the model of the cuprates considerably.

Electron Energy Loss Spectroscopy (EELS) measurements indicate that additional holes

reside on the oxygen atoms, but not the copper atoms. X-ray Photoemission Spectroscopy

(XPS) indicates that the copper is essentially CuO2+, and X-ray Absorption Spectroscopy

(XAS) indicates that the 3ẑ2 − 1 orbital has only minor fluctuations.

A minimal model capable of describing the electronic properties of the CuO2 planes

must therefore include the oxygen px and py orbitals, and the copper 3dx2−y2 orbitals. The

parent compound consists of Cu2+ which contains a single hole in the outermost shell,

and O2− for which the outermost shell is filled and is subsequently doped with holes. It

is therefore much easier to think in terms of holes rather than electrons. The appropriate

model is the three band Hubbard model:

H = Hε +HU +HT (7.1)

Hε = εd
X
i,σ

ndiσ + (εd + ∆)
X
i,δ,σ

npi+δ/2,σ (7.2)

HU = Ud
X
i

ndi,σn
d
i,σ̄ + Up

X
i,δ

npi+δ/2,σn
p
i+δ/2,σ̄ + Upd

X
i,δ,σ,σ′

ndi,σn
p
i+δ/2,σ′ (7.3)

HT =
X
i,σ

�
Tpdd

†
i,σ(pi+y/2,σ − pi+x/2,σ − pi−y/2,σ + pi−x/2,σ)

+Tpp
�
p†i+y/2,σpi+x/2,σ − p

†
i−x/2,σpi+y/2,σ + p†i−y/2,σpi−x/2,σ − p

†
i+x/2,σpi−y/2,σ

�
+ h.c.

i
,

(7.4)

where di,σ annihilates a copper 3dx2−y2 hole of spin σ at site i and pi±x(y)/2,σ annihilates

an oxygen 2px(2py) hole at the neighbouring i ± x(y)/2 site. The approximate values

of the interaction parameters can be obtained from band structure calculations [96], and

their values are: Ud ∼ 8, Up ∼ 4, Upd ∼ 1, ∆ ∼ 3, Tpd ∼ 1 and Tpp ∼ 0.5.

The coulomb interactions modify the non-interacting energy bands: The coulomb in-

teraction on the copper site splits the antibonding band into the upper and lower Hubbard

bands illustrated in Fig. 7.4, and the hybridisation with the upper Hubbard band then

splits the bonding band into a triplet band and the Zhang-Rice singlet band.

The three band Hubbard model is thought to contain all of the interactions which are

necessary to describe the cuprate phase diagram in Fig. 7.2, but is much to complicated to

work with. However, this model can be simplified considerably by performing a canonical

transformation to eliminate double occupancy of the copper sites.



CHAPTER 7. A CUPRATE-MANGANITE INTERFACE 129

+

-

+--

-

+

+

+ +
-

-

Figure 7.5: On the left is the CuO2 plane, which is characterised by the electronic dx2−y2 , px and
py states. On the right is the Zhang-Rice singlet, which is formed by the hybridisation between
a copper dx2−y2 state with the surrounding oxygen px and py states. Reciprocal space has been
translated by (π, π) to give the phases depicted.

7.1.7 Hole doped cuprates

To capture the essential physics of the three band model it is necessary to retain the

parameters U ≡ Ud, ∆ and V ≡ Tpd. It is also convenient to translate reciprocal space by

(π, π) to remove the awkward phases associated with the dx2−y2 and O 2p orbitals. The

zero of energy can be chosen to coincide with the oxygen level (so that εp = 0), which

eliminates the non-bonding band from consideration. The simplified Hamiltonian is then

H = H0 +H1

H0 = −∆
X
iσ

ndiσ + U
X
i

ndiσn
d
iσ

H1 = V
X
iσ

[d†iσPiσ + P †iσdiσ], (7.5)

where the non-orthogonal annihilation operator Piσ =
P
〈ij〉 pj annihilates an electron on

the oxygen site j neighbouring the copper site i. The hopping parameter V is assumed

to be much smaller than both ∆ and U , then a perturbation expansion in powers of V is

appropriate. An effective Hamiltonian can be obtained with a canonical transformation,

keeping terms up to second order in the hopping amplitude V, and including the fourth

order superexchange interaction. We define an operator S which satisfiesH1+[S,H0] = 0,

and obtain an effective Hamiltonian Heff = H0 + V 2

2
[S,H1]. It has been observed in EELS
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Figure 7.6: The motion of Zhang-Rice singlets, in an RVB state consisting of dimerised copper
spins. The t-J-X Hamiltonian hops the singlet over several different ranges, which suggests that
the t, t′ and t′′ terms are already implicitly included.

experiments that the holes which are doped into the parent compound reside on the oxygen

ions, and the charge on the copper is conserved. This feature can be incorporated into

the effective Hamiltonian by enforcing the constraintX
σ

d†iσdiσ = 1. (7.6)

The model which is relevant to experiments is then found to be[97, 98]

Heff = X
X
〈ij〉σ

X
〈ij′〉σ′

d†iσp
†
j′σ′pjσdiσ′ − t

X
〈ij〉σ

X
〈ij′〉

p†jσpj′σ +
J

2

X
〈ii′〉

Si · Si′ , (7.7)

where X = UV 2

∆(U−∆)
, t = V 2

U−∆
and J = 4V 4

∆3 + 4V 4

∆2U
. According to Nagaoka’s theorem

the ground state of a single hole in the infinite U Hubbard model on the square lattice is

ferromagnetic, and the superexchange interaction must be included to obtain the low spin

state. Interestingly, the t-J-X model does not have such a ground state. The motion of a

single hole in the t-X-J model has been investigated numerically and it is found that even

when J = 0 the ground state is a low spin state, but the long range order of the Néel state

is not observed. This is suggestive of a resonating valence bond (RVB) state[99] which

is constructed from dimers of the background copper spins. In this picture, the Zhang-

Rice singlets hop in a background of dimerised copper spins, rearranging the dimers as

they pass by. This also has the appeal that longer range hopping of the singlet emerges

naturally from such a state, which would in principal lead to effective t′ and t′′ hopping

parameters in accordance with the t-t′-t′′-J model.
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7.1.8 Electron doped cuprates

To determine a suitable model for the electron doped cuprates we return to the Hamil-

tonian given by Eq. 7.5. To deal with the strong correlations induced by U it is again

useful to perform a canonical transformation. The procedure works in much the same

way as before, but in this case the restrictions are quite different: In the electron doped

cuprates the parent compound again consists of Cu2+ and O2− states and as electrons are

doped into the system they reside on the copper sites, thereby forming some Cu+ states.

The charge on the oxygen is therefore conserved so that p†iσpiσ = 0, and the effective

Hamiltonian is found to be

H2 = −V
2

∆

X
〈ii′〉σ

(1− niσ)d†iσdi′σ(ni′σ − 1) +
J

2

X
〈ii′〉

Si · Si′ . (7.8)

The effective Hamiltonian for the electron doped cuprates is the t-J model which explains

the large antiferromagnetic portion of the phase diagram. The hole motion between copper

sites is via intermediate oxygen sites, which gives rise to a double exchange mechanism

similar to that observed in the manganites. This model is used to describe the CuO2

layer at the YBCO-LCMO interface which, it is argued, is doped with electrons from

the manganese. The close proximity with the manganese also introduces ferromagnetic

interactions and an orbital degree of freedom into the problem, as will be explained in

chapter 5.

7.2 The manganites

The manganites have been subject to intensive study in recent years4, due largely to their

remarkable colossal magnetoresistance (CMR) properties, which could potentially lead

to new technological applications. The manganites have also attracted a lot of attention

because of the high spin polarisation of charge carriers in the ferromagnetic metallic phase,

a property which could be utilised in spin injection devices. Additionally, the manganites

also have extremely rich phase diagrams which result from the complex interplay between

spin, charge, orbital and lattice degrees of freedom. These phases have been identified

experimentally and the phase competition at the phase boundaries leads to interesting

phenomena.

The manganites are composed of trivalent cations R, divalent cations A, and MnO6

octohedra. They can be classed in terms of the layered compounds R1−xA1+xMnO4 and

R2−2xA1+2xMn2O7 which have one and two consecutive MnO2 layers respectively, and the

cubic perovskite compounds R1−xAxMnO3 which have an infinite number of consecutive

4See, for example, [100, 101, 58].
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Figure 7.7: The phase diagram[102]
of La1−xCaxMnO3, for x = 0 (Mn3+)
up to x = 1 (Mn4+). As the
doping and temperature are var-
ied a rich variety of phases are
observed: Canted antiferromagnetic
(CAF), charge ordered (CO), ferro-
magnetic metal (FM), ferromagnetic
insulator (FI), and antifrromagnetic
(AF). The ’1/8 phenomena’ is also
observed: Many of the transitions
occur at characteristic doping levels
that are, approximately, multiples of
1/8.

MnO2 layers. The cubic perovskite structures lead to the most interesting properties,

many of which are generic and appear in compounds with different cations R and A.

We will discuss the basic properties of this class of manganites, but focus mainly on

La1−xCaxMnO3 (LCMO) which has a very large magnetoresistance effect, and a diverse

phase diagram which ranges over all Ca doping levels 0 ≤ x ≤ 1.

7.2.1 Charge and orbital order

A wide variety of charge, spin and orbital order is observed in the manganites R1−xAxMnO3

as the relative number of Mn3+ and Mn4+ ions is varied by changing the doping concen-

tration x. Early studies were performed on LCMO in the 1950’s which utilised neutron

diffraction techniques to provide a comprehensive determination[103, 104] of the magnetic

order and charge order across the whole doping range 0 < x < 1. Probing the orbital

order is more difficult and the particular orbital configurations are usually inferred from

xray diffraction measurements of lattice distortions, although direct measurements have

been performed[105] using resonant x-ray spectroscopy (RXS). The full phase diagram

for La1−xCaxMnO3, obtained using resistivity and magnetisation data[102], is illustrated

in Fig. 7.7 and the various states which occur can be classified for the different values of

x as follows:

• x = 0(RMnO3): The parent compound consists of Mn3+ ions with one eg electron

per site, and due to the strong electronic correlations this state is a Mott insulator.

Below 780K the Jahn-Teller lattice distortion appears with the concomitant stag-

gered orbital order with d3x2−r2 and d3y2−r2 orbitals aligned alternately in the x-y
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plane, and uniformly along the z-axis. Below 140K the structure exhibits A-type

antiferromagnetic order, where the spins align ferromagnetically in the x-y plane,

but antiferromagnetically along the z-axis.

• x ∼ 0.1: As holes are doped in to RMnO3 the spins align ferromagnetically but

the material remains an insulator. In this region of the phase diagram some of the

theoretically predicted properties are observed experimentally, such as spin canting

and phase separation.

• 0.125 < x < 0.5: The ferromagnetic metallic state is observed, for which the mag-

netic moment is almost perfectly polarised indicating that the Hund coupling is

larger than the bandwidth. Long range charge/orbital ordering is not observed,

suggesting that the orbital state may be an orbital liquid or disordered. Above

the curie temperature the electrical resistivity shows insulating behaviour, and the

CMR effect is also observed close to the Curie temperature.

• x ∼ 0.5: Depending on the particular cations R and A, a charge ordered state may

be observed below the charge and orbital ordering temperatures. In LCMO the CE-

type antiferromagnetic order is established which has a unit cell 2
√

2a× 2
√

2b× 2c.

Charge order is also established with a unit cell
√

2a×
√

2b×c, and the orbital order

has a unit cell 2
√

2a ×
√

2b × c. The charge is stacked along the z-axis, a feature

which is difficult to explain theoretically.

• 0.5 < x < 0.7: An A-type antiferrmagnetic structure is observed, but is different

to that observed in LaMnO3. Close to the Néel temperature there is a contraction

along the z-axis corresponding to uniform dx2−y2 orbital order

• x ∼ 2/3 It is believed that in LCMO a bi-stripe arrangement may be stabilised

which consists of pairs of charge stripes, separated by some distance from other

pairs.

• 0.7 < x < 1: A C-type antiferromagnetic structure is observed. The MnO6 octa-

hedron are elongated along the z-axis corresponding to occupation of the d3z2−r2

orbitals.

• x = 1(AMnO3): There are no eg electrons and the material is a Mott insulator.

The antiferromagnetic interactions among the t2g electrons stabilises the G-type

antiferromagnetic order below approximately 140K.
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a) b)

c) d)

Figure 7.8: The charge and or-
bital ordered states found in the
manganites: (a)The A-AF phase
observed when x = 0: The spins
are aligned ferromagnetically in
the x-y plane, but antiferromag-
netically along the z-axis with
3x̂2 − 1/3ŷ2 − 1 orbital order.
(b)The CE-AF phase observed
when x = 0.5. (c) The A-AF
phase observed when 0.5 < x <
0.7: The x̂2 − ŷ2 orbital is ener-
getically favourable and the spins
align ferromagnetically in the x-y
plane, but antiferromagnetically
along the z-axis. (d) C-AF phase
observed when 0.7 < x < 1:
The 3ẑ2 − 1 orbital is energet-
ically favourable and the spins
align antiferromagnetically in the
x-y plane, but ferromagnetically
along the z-axis.

7.2.2 Colossal magnetoresistance

Much of the interest in the manganites is due to the observation of a ‘colossal’ MR

ratio ∆R/R = (RH − R0)/RH (R0 is the resistance without a magnetic field and RH is

the resistance in a magnetic field). This property could have technological applications,

similar to those of artificially created giant magnetorestance spintronic devices which

utilise the spin of the electron as well as the charge.

Some of the early magnetoresistance investigations are shown in Fig. 5.4(a), which

contains several plots. Plot (a) contains three plots; the first plot shows the strong

dependence of the magnetisation on the strength of the applied field, the second shows

the effect that these fields have on the resistivity, and the final plot shows the MR ratio as

a function of temperature. Below approximately 240K there is a substantial increase in

the magnetisation in the presence of a relatively small magnetic field, which is not present

when the field is absent. This is indicative of a ferromagnet with domains of magnetisation

pointing in different directions, and it is the removal of the domain walls which leads to a

finite average magnetisation. Above 240K there is a transition to the paramagnetic phase,

which still exhibits a significant spin polarisation in the presence of a magnetic field. At

around the same temperature there is also a sudden increase in the resistivity, which

has a strong dependence on the applied field, and as the field is increased the resistivity

falls dramatically: this is the MR effect. The size of the effect is shown by the MR
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ratio which peaks at around 240K. From this data it can be seen that the ferromagnetic-

paramagnetic transition coincides with the metal-insulator transition suggesting that the

ferromagnetism is closely related to the metallic behaviour, an idea originally suggested

by Zener[106] who introduced the double exchange mechanism. The fact that the MR

ratio peaks close to the ferromagnetic-paramagnetic transition suggests that both phases

must be important in the MR effect, and most of the recent MR work focuses on the

paramagnetic phase. Plot (c) shows the CMR effect in thin films of La2/3Ca1/3MnO3 at

200K which exhibits an MR ratio of about 1500%. This can be increased to over 100000%

at 77K using a variety of optimisation techniques, whilst in thin films of Nd0.7Sr0.3MnOδ

at 60K an MR ratio of over 1000000% has been achieved.

The simple intuitive picture which qualitatively explains the MR effect is based the

double exchange mechanism, which implies that eg electrons are much more mobile when

the t2g spins are aligned by a magnetic field. This idea unfortunately does not give quanti-

tative agreement with the observed metal insulator transition temperature or the observed

MR ratios. Better agreement is obtained if the interplay between the double exchange

mechanism and the Jahn-Teller effects is considered, which leads to the formation of Jahn-

Teller polarons which become self trapped[107] above the Curie temperature, TC . This is

consistent with the isotope effect[108] observed in manganites, where TC is found to be

dependent on the mass of the oxygen ions. There is also evidence of phase separation[100]

in the manganites, which offers an alternative explanation for the CMR effect based on

the competition between the ferromagnetic metallic phase and the charge/orbital ordered

phases. In this scenario one finds hole rich ferromagnetic clusters, which are dominated

by the double exchange interaction, and hole depleted antiferromagnetic clusters, which

are dominated by the superexchange interaction.

7.2.3 Ferromagnetic-antiferromagnetic transition

The magnetisation in an applied field is illustrated in plot (b) of Fig. 7.9. Several levels of

Ca doping are investigated in the vicinity of a ferromagnetic-antiferromagnetic transition

which occurs at below 160K when x ∼ 0.5. The inset is a plot of 1/M vs T. According to

the Curie-Weiss law, if there are magnetic correlations then the magnetic susceptibility

obeys χ ∝ 1/(T − Θw); for a ferromagnetic the Weiss temperature Θw equals the Curie

temperature TC and is positive, whilst for an antiferromagnet Θ is negative and is related

to the Neel temperature TN so that Θw = −TN . Using the relationship χ ∝ M/H, 1/M

should be proportional to T − Θw, which is indeed the case close to room temperature

indicating the existence of ferromagnetic correlations, but there are no precursors of the

sharp transition to the antiferromagnetic phase which is first order and is accompanied

by a change in the lattice parameters. This demonstrates that the phase transition is
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(a)

(b)

(c)

Figure 7.9: Magnetoresistance studies of LCMO. (a) Magnetisation, resistivity and magnetore-
sistance of La0.75Ca0.25MnO3 as a function of temperature at various fields[109]. The inset
shows ρ at low temperatures. (b) The magnetisation of La1−xCaxMnO3 at 4T measured on
warming[109]. The inset shows 1/M vs T , and the straight lines indicate Θw > 0 at each level
of doping. (c) The colossal magnetoresistance of thin films of La2/3Ca1/3MnO3 at 200K which
reveal an MR ratio[110] of about 1500%.

simultaneously magnetic (the spin correlations change), electronic (the resistivity changes)

and structural (the lattice changes). This interplay between the spin, charge and lattice

degrees of freedom is responsible for the complicated phase diagram.

7.2.4 Microscopic models of the manganites

The rich assortment of the phases observed in the manganites are created by many com-

peting interactions, involving both the electrons and the lattice, each of which becomes

dominant at a different level of hole doping. The important considerations in the man-

ganites are: the motion of the electrons via the oxygen 2p orbitals and the degenerate eg

orbitals, the interactions between eg electrons and the localised t2g spins, the interactions

between the eg electrons and the lattice, and the strong exchange interactions which arise

from the strong local coulomb interactions between the eg electrons. Fortunately, it is

not usually necessary to model all of these interactions, particularly for the ferromagnetic

metallic phase which occurs at the YBCO-LCMO interface.
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7.2.5 Orbital degeneracy and pseudospin

To understand the charge and orbital order in the manganites it is useful to introduce

pseudospin operators. This is particularly convenient for orbitally degenerate systems

such as the manganites and the titanates.

The Mn3+ ion in LaMnO3 has three electrons occupying the high spin state of the t2g

orbitals, whilst the remaining electron occupies one of the doubly degenerate eg orbitals.

The orbital of the eg electron at site i may be expressed as a linear combination of the

dx2−y2 and d3z2−r2 orbitals:

|θi, φi〉 = cos

�
θi
2

�
|d3z2−r2〉+ eiφi sin

�
θi
2

�
|dx2−y2〉, (7.9)

where θi and φi are angles in the orbital space, which can be varied to change to any

preferred basis. This state is an eigenstate of a pseudospin operator:

T i =
1

2

X
σγγ′

d†iγσσγγ′diγ′σ, (7.10)

where the operator diγσ annihilates an eg electron at site i of spin σ and orbital γ, and

the σ are the Pauli matrices. When θ = 0 and φ = 0, the eigenstates of the operator T z

with eigenvalues 1/2 and −1/2 are the states |d3z2−r2〉 and |dx2−y2〉 respectively.

The pseudospin representation allows for a systematic change of the orbital basis by

varying the angles θ and φ. This can be a particularly useful feature when considering

how the orbital degeneracy is broken by the electronic and magnetic interactions in the

orbitally ordered states. When Φ = 0 and 0 ≤ θ < 2π the different symmetry orbitals,

which are observed in the orbitally ordered states, are obtained:

θ |a〉 |b〉
0 3ẑ2 − 1 x̂2 − ŷ2

π/3 ẑ2 − x̂2 3ŷ2 − 1

2π/3 3x̂2 − 1 ŷ2 − ẑ2

π x̂2 − ŷ2 3ẑ2 − 1

4π/3 3ŷ2 − 1 ẑ2 − x̂2

5π/3 ŷ2 − ẑ2 3x̂2 − 1

It is also possible to have more interesting choices involving complex orbitals which main-

tain the cubic symmetry. The particular choice of basis depends on the problem under

investigation and is dictated by the symmetry. In this investigation, of the cuprate-

manganite interface, it is convenient to use the dx2−y2 and d3z2−r2 basis, which is also

relevant to the cuprate layers.
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Figure 7.10: (a) In the dou-
ble exchange process an electron
from the oxygen hops onto an
Mn4+ ion, and an electron of the
same spin hops from an Mn3+

ion to into the vacancy on the
oxygen. (b) The large Hund’s
rule coupling forces the eg elec-
tron spin to be parallel to local
t2g spins during the double ex-
change process. (c) The over-
lap between the d3z2−r2 state and
and the neighbouring pz state is
equal to the Slater-Koster pa-
rameter pdσ. (d) The overlap be-
tween the dx2−y2 state and and
the neighbouring pz state is zero,
implying that an electron in the
dx2−y2 state does not hop along
the z-axis.

The concept of pseudospin is particularly useful because it suggests an analogy between

the superexchange interactions in orbital systems, and the superexchange interactions in

spin systems. In the t-J model of the cuprates the hole motion frustrates the long range

antiferromagnetic order, whilst in the analogous orbital t-J model of the manganites, the

hole motion competes against local orbital order, and eventually destroys the long range

orbital order.

7.2.6 Double exchange

In order to explain the ferromagnetic metallic phase occurring in the manganites Zener

proposed the double exchange mechanism[106], which offers an intuitive explanation of

the reduced resistivity observed in the ferromagnetic phase. Using LCMO as an example,

the valence of the Mn ions depends on the Ca doping according to the chemical formula

La1−xCax(Mn3+
1−xMn4+

x )O3, and the magnetic moments are almost perfectly aligned when

x = 1/3. This corresponds to two thirds of Mn sites with one eg electron and one third

with an empty eg band. An electron may transfer from the Mn3+ site to the Mn4+ site

via the intermediate oxygen anion in a second order process proportional to t20/∆, where

t0 is the hopping matrix element between the relevant 3dσ and O 2pσ orbitals.

The geometrical properties of the eg orbitals means that the hopping amplitudes be-

tween the different eg orbitals are anisotropic. The electronic states are orthogonal Wan-

nier states which are centred on each site, and in the nearest neighbour approximation we

only count the contribution from the central site. We then need to calculate the overlap
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of each eg orbital with the neighbouring oxygen 2p orbitals along each of the bond direc-

tions. For simplicity we will focus on the cubic symmetric phase which is relevant to the

ferromagnetic metallic phase.

The hopping amplitudes can all be expressed in terms a single Slater-Koster [62] pa-

rameter pdσ which is defined as the matrix element between the manganese d3z2−r2 state

with the neighbouring oxygen pz state, as illustrated in Fig. 7.10. From simple symmetry

considerations it is clear that the matrix element between the dx2−y2 and the oxygen pz

orbital vanishes, and so an electron in the dx2−y2 does not hop along the z-axis. By anal-

ogy, the only other non-zero matrix elements involve d3x2−r2 and px, and d3y2−r2 and px.

To determine the hopping amplitudes in the x and y directions we use the relationships

|d3x2−r2〉 = −1

2
|d3z2−r2〉+

√
3

2
|dx2−y2〉

|d3y2−r2〉 = −1

2
|d3z2−r2〉 −

√
3

2
|dx2−y2〉. (7.11)

We can then determine matrix elements such as

〈d3z2−1|pz〉 = −pdσ. (7.12)

The double exchange process requires two hops and is therefore proportional to t0 =

(pdσ)2/∆Mn, where ∆Mn is the cost of transferring an electron from an oxygen site to

create an additional Mn3+ site in the intermediate state. The matrices which represent

the double exchange hopping amplitudes between the two eg states are then

tγγ
′

jj′ = t0

�
−1

4

√
3

4√
3

4
−3

4

�
, t0

�
−1

4
−
√

3
4

−
√

3
4
−3

4

�
, t0

�
−1 0

0 0

�
, (7.13)

where the position of the j-th ion is rj = rjprime±ax̂, rj = rjprime±aŷ and rj = rjprime±aẑ
respectively. The value of pdσ, and hence also t0, obviously depends on the distance

between the oxygen ion and the manganese ion. The above analysis can also be applied

more generally to an arbitrary angle of the Mn-O-Mn bond, which depends on Jahn-Teller

distortions and the size of the cations R and A: smaller cations lead to larger deviations

from the ideal 180◦ Mn-O-Mn bond and to lower values of t0.

Due to the strong Hund coupling the double exchange process is strongly suppressed

if the moments of the two Mn ions are not parallel, and therefore this process favours

ferromagnetism. The t2g and eg spins can occupy either an S = 2 or S = 1 state but,

because JH is much larger than the bandwidth, only the S = 2 state will be present and

the eg and t2g spins will be therefore be parallel. The hopping amplitude will depend

on the relative orientation of spins on neighbouring sites, as illustrated in Fig. 7.10. An
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eg spin has SU(2) symmetry so that two adjacent spins at sites i and j with relative

orientation theta can be related through a rotation,

| ↑i〉 = cos

�
θ

2

�
| ↑j〉+ sin

�
θ

2

�
| ↓j〉. (7.14)

The energetics are controlled by the matrix elements between the initial state |di〉| ↑i〉
and the final state |dj〉| ↑j〉:

Hθ =

�
−JHS t cos

�
θ
2

�
t cos

�
θ
2

�
−JHS

�
, (7.15)

where t is the hybridisation between the two sites. The minimum energy, which is found

by diagonalising the above matrix, is

E0 = −JHS − t cos

�
θ

2

�
. (7.16)

The energy is obviously minimised when θ = 0, which corresponds to the spins on neigh-

bouring sites all being parallel. Therefore, the combination of double exchange and a

strong Hund’s rule coupling induces ferromagnetism in the manganites.

The superexchange interaction between neighbouring t2g orbitals favours antiparallel

spins on neighbouring sites, and it has been shown by De Gennes[111] that the competition

between double exchange and superexchange between the orbitals can cause a canting of

the spins in La1−xCaxMnO3 when the carrier concentration is small.

7.2.7 Constructing a Hamiltonian

A complete model of the manganites would incorporate all of the interactions among the

Mn 3d and O 2p states. Constructing an appropriate model which captures the most

important interactions, but is simple enough to investigate, is a difficult task. A single

Mn3+ ion in a 3d4 state has a degeneracy of 210. This degeneracy is reduced through the

formation of LS multiplets, the lowest of which has a degeneracy of 25. This degeneracy

is further reduced by the crystal field splitting due to the surrounding oxygen anions,

resulting in the cubic symmetric eg and t2g states. The lowest energy states are then

the high spin t32ge
1
g configurations which have a degeneracy of 10. In addition, to obtain

quantitatively accurate results would require the inclusion of the three O 2p states which

hybridise with the Mn 3d states. To simplify matters the standard procedure is to assume

that the O sites can be integrated out and replaced with effective interactions between

neighbouring Mn sites. This idea is similar to that of replacing the Cu and O orbitals

in the cuprates with the symmetric Zhang-Rice singlets, thereby producing an effective

Hamiltonian for only the Cu sites. To further simplify the model it is also useful to
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concentrate on the eg orbitals and treat the t2g orbitals as localised spins.

A very general model of the manganites includes the interactions between the itinerant

eg electrons, the nearest neighbour interactions between localised t2g electrons, the inter-

action between eg and t2g electrons and the electronic coupling with Jahn-Teller phonons:

H = Heg +Ht2g +Heg−t2g +Hel−ph, (7.17)

where the interactions among the eg electrons are controlled by

Heg = εd
X
iγσ

d†iγσdiγσ +
X
〈ij〉γγ′σ

�
tγγ
′

ij d
†
iγσdjγ′σ + h.c.

�
+Hel−el. (7.18)

The creation operator d†iγσ is for an electron at site i, with spin σ, and orbital label γ

(d3z2−r2 or dx2−y2 in our chosen basis). The most important electronic interactions which

arise in Hel−el are U and U ′ which represent the intra orbital and inter orbital coulomb

repulsions respectively. The other large energy J is associated with the Hund’ coupling:

Hel−el = U
X
iγ

niγ↑niγ↓ + U ′
X
i

nianib + J
X
iσσ′

d†iγσd
†
iγσ′diγσ′diγσ. (7.19)

The interactions among the t2g electrons are controlled by

Ht2g = JAF
X
〈ij〉

Sti · Stj. (7.20)

The interaction between nearest neighbour t2g electrons is proportional to JAF , which is

positive. The spin on each site is S = 3/2, so the spins are treated classically and result

in an antiferromagnetic interaction. The final term controls the interactions between eg

electrons and t2g electrons:

Heg−t2g = JH
X
i

Sti · Si. (7.21)

The interaction parameters for LaMNO3 have been estimated from photoemission spec-

troscopy (PES) and x-ray absorption spectroscopy (XAS) experiments to be[112] U =

7.8eV, ∆ = 4.5eV and t = −1.8eV for LaMnO3, and U = 7.5eV, ∆ = 2eV and t = −1.5eV

for CaMnO3. In La1−xSrxMnO3 the Hund’ coupling between eg and t2g spins is estimated

from optical spectra[113, 114] to be 3JH/2 ∼ 2-3.5eV. The antiferromagnetic interac-

tions between t2g spins is estimated from mean field calculations of the Néel temperature

TN = 120K in CaMnO3 to be JAF ∼ 1meV. The Hund coupling parameter JH is negative

and therefore leads to a ferromagnetic on-site interaction between eg and t2g spins: it is

larger than the crystal field induced energy gap and the spins are therefore parallel. The

large Hund coupling also enforces single occupancy of each orbital, thereby performing



CHAPTER 7. A CUPRATE-MANGANITE INTERFACE 142

the role of the coulomb repulsion U .

The interactions between the eg electrons and the Jahn-Teller phonons is described by

Hel−ph = −2g
X
i

(Q2iT
x
i +Q3iT

z
i ) +

kJT
2

X
i

(Q2
2i +Q2

3i). (7.22)

There are two alternative approaches which have been followed in the literature to model

the various orbital/charge ordered states which are observed experimentally as a function

of electron doping. The first approach incorporates the Jahn-Teller phonons in a two or-

bital model, whilst the second approach focuses on the superexchange interactions among

the eg electrons.

7.2.8 The two orbital model

The first approach is to incorporate the two eg orbitals, together with their interactions

with the t2g spins and the Jahn-Teller phonons, but excludes the Coulomb terms Hel−el

with the justification that the large Hund coupling prohibits double occupancy. The

resulting Hamiltonian is then

H = εd
X
iγσ

d†iγσdiγσ +
X
〈ij〉γγ′σ

�
tγγ
′

ij d
†
iγσdjγ′σ + h.c.

�
+ JAF

X
〈ij〉

Sti · Stj − JH
X
i

Sti · Si

−2g
X
i

(Q2iT
x
i +Q3iT

z
i ) +

kJT
2

X
i

(Q2
2i +Q2

3i). (7.23)

This model reproduces[115] the A-type AF state for x = 0 and the G-type AF state for

x = 1. It also produces C-type AF, ferromagnetic metallic and A-type (dx2−y2) states for

some region of the parameter space, and the charge ordered state for large Jahn-Teller

coupling.

7.2.9 The orbital t-J model

An alternative approach is to incorporate the coulomb terms into the Hamiltonian, but

excludes the Jahn-Teller interactions. An effective Hamiltonian can then be obtained via a

canonical transformation which eliminates double occupancy on the Mn sites, thus defin-

ing an effective Hamiltonian which contains all of the superexchange interactions[116].

This is analogous to the derivation of the t-J model from the Hubbard model, and the

reduction of the three band Hubbard model of the cuprates. The resulting Hamilto-

nian contains a large number of terms and can be most conveniently represented using

pseudospin. The Hamiltonian takes the form
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Heg = Ht +HJ . (7.24)

The first term simply hops the electrons in the singly occupied subspace:

Ht =
X
〈ij〉σγγ′

tγγ
′

ij

�
d̃†iγσd̃jγ′σ + h.c.

�
, (7.25)

with

d̃iγσ = diγσ(1− niγσ)(1− niγσ)(1− niγσ) (7.26)

The second term can be written

HJ = −2J1

X
〈ij〉

�
3

4
ninj + Si · Sj

��
1

4
ninj − τ li τ lj

�
−2J2

X
〈ij〉

�
1

4
ninj − Si · Sj

��
3

4
ninj + τ li τ

l
j + τ li + τ lj

�
, (7.27)

with

τ li = cos
�

2πnl
3

�
T zi − sin

�
2πnl

3

�
T xi . (7.28)

with (nx, ny, nz) = (1, 2, 3). The effects of the t2g spins can be taken into account in a

mean field sense by redefining the energies. The J1 term describes the interaction involving

two parallel spins occupying the same site in the intermediate state, whilst the J2 term

describes the interaction with two antiparallel spins in the intermediate state. The orbital

t-J model produces many of the observed magnetic and orbital structures[116], with the

exception of the charge ordered CE state.

7.2.10 Superexchange

The superexchange interaction in the orbitally degenerate manganites is complicated by

the pseudospin interactions, which leads to a rich variety of ordered states . The su-

perechange tends to be dominated by the interactions among the eg states. This is be-

cause the O 2pσ orbitals, which point directly towards the Mn ions, have vanishing matrix

elements with the t2g orbitals due to their symmetry properties. The only contribution

comes the O 2pπ orbitals which point away from the Mn ions and consequentially have

a very small matrix element. This results in a very weak antiferromagnetic interaction

between neighbouring t2g electrons which is only significant for the G-type antiferromag-

netic phase close to x = 1, when there are no eg electrons. The other ordered states
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Figure 7.11: The exchange interactions
between neighbouring Mn sites, assum-
ing diagonal hopping (tγγ

′

ij = δγγ′t0): (a)
If both spins are aligned then coulomb
repulsion prevents hopping and leads
to no energy gain. (b) This antifer-
romagnetic spin configuration pays the
coulomb repulsion in the intermediate
state and leads to a moderate energy
gain. (c) The ferromagnetic spin configu-
ration with staggered orbital order bene-
fits from the Hund coupling and obtains
the greatest energy gain. (d) This an-
tiferromagnetic spin configuration pays
the Hund coupling in the intermediate
state and leads to a moderate energy
gain.

are controlled by the complicated spin/pseudospin interactions among the eg electrons,

which are described by the orbital t-J model. The largest energy gain J1 arises when two

electrons briefly occupy the same site in the intermediate state, with parallel spins and

therefore different orbitals; this interaction clearly favours staggered orbital order and

parallel spins. When this term is absent the J2 term favours uniform orbital order and

antiferromagnetic spins.

Both the two orbital model, and the orbital t-J model produce orbitally ordered states

which are similar to those observed experimentally, and it would therefore appear that

the Jahn-Teller coupling and the superexchange interactions are cooperative mechanisms

which both favour orbitally ordered ground states.

7.2.11 Ferromagnetic metallic phase

In the region 0.125 < x < 0.5 La1−xCaxMnO3 is in the ferromagnetic metallic state.

The nature of this state was originally explained by Zener using the double exchange

mechanism[106]. As a consequence of the large Hund’ coupling combining with the double

exchange mechanism, as illustrated in Fig. 7.11, a gap is opened between the bands of

opposite spin polarisation. The charge carriers close to the Fermi energy are therefore

almost fully spin polarised, resulting in a half metal (which conducts spins of only one

spin polarisation). When the magnetic moments of the t2g ions are perfectly aligned, such

as in a high magnetic field, the eg electrons are fully spin polarised due to the large Hund’

coupling and the spin degree of freedom is eliminated.

The absence of any Jahn-Teller distortion indicates that there is no clear orbital or-

dering, and hence both orbitals can be considered to be active. In this regime the long
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range orbital order is destroyed by the motion of charge carriers and it is assumed that

an orbitally disordered state, possibly an orbital liquid[117], is formed. This phase may

arise due to geometrical frustration, or due to large quantum fluctuations which prevent

the formation of the orbitally ordered states observed in the rest of the phase diagram.

A relatively large concentration of charge carriers is required for the system to become

metallic due to the tendency for holes to become localised in orbital polarons. The sim-

plest model one can construct for the ferromagnetic metallic phase captures the motion

of spin polarised charge carriers, which hop via the double exchange mechanism:

H =
X
〈jj′〉γγ′

�
tγγ
′

jj′ d
†
jγdj′γ′ + h.c.

�
=
X
kγγ′

εγγ
′

k d†kγdkγ′ , (7.29)

where ε̂k is a 2× 2 matrix in the eg orbital subspace:

ε̂k =
t0
2

�
− (Cx + Cy + 4Cz)

√
3 (Cx − Cy)√

3 (Cx − Cy) −3 (Cx + Cy)

�
, (7.30)

where Cα = cos(kα). The hopping matrices are

tγγ
′

ij = t0

�
−1

4

√
3
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3

4
−3

4

�
, t0

�
−1

4
−
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3
4

−
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3
4
−3

4

�
, t0

�
−1 0

0 0

�
. (7.31)

where the position of the j-th ion is rj = ri±ax̂, rj = ri±aŷ and rj = ri±aẑ respectively.

The dispersion is found by diagonalising ε̂k:

E±k = −t0
�
Cx + Cy + Cz ±

q
C2
x + C2

y + C2
z − CxCy − CxCz − CyCz

�
. (7.32)

The large Hund coupling enforces single occupancy of each orbital, thereby performing

the role of the coulomb repulsion U , which can therefore be safely ignored. The inter

orbital coulomb repulsion parameter U ′ is too large to be ignored and will have an effect

on the simple double exchange model mentioned above. A possible resolution to this

problem can be found if we consider the ground state to be a Gutzwiller projection of the

non-interacting ground state, which involves projecting out the states with two electrons

in the eg orbitals. The Gutzwiller projection operator is defined PGutz =
Q
j(1 − ηnjnj),

and the Gutzwiller projected state is obtained by applying the projection operator to the

Fermi sea, |FS〉, obtained for the ground state of the non-interacting model. Therefore

|Ψ〉 =
Y
j

(1− ηnjnj)|FS〉 = PGutz|FS〉, (7.33)

where η is a variational parameter chosen to minimise the expectation value for the energy:
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E(Ψ) =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (7.34)

Physically, the Gutzwiller projection restricts the motion of the electrons to avoid double

occupancy of any particular atom, so that most of the hopping energy can be gained

without incurring the large energy penalty U ′. The hybridisation matrix element t is

renormalised by an amount which is dependent on the number of electrons5. For x = 1/3

each manganese atom has 2/3 electrons on average and consequentially the electronic

motion would be substantially reduced by the Gutzwiller projection, leading to an increase

in the effective electronic mass and a significant renormalisation of the hopping parameter

t.

In the next chapter we examine the cuprate-manganite interface, with the manganite

La2/3Ca1/3MnO3 in the ferromagnetic metallic phase. We therefore make use of the double

exchange model, and use it to determine the electronic structure on the manganite side

of the interface.

7.3 The YBCO-LCMO interface

Atomically sharp interfaces between LCMO and YBCO can be created using techniques

such as pulsed laser deposition and high pressure oxygen sputtering. The interfaces are

formed in superlattices which comprise of alternating YBCO-LCMO layers of varying

thicknesses. The properties of very thin layers vary drastically from the properties of

the bulk, with suppression of the Curie temperature in LCMO, and suppression of the

superconductivity transition temperature TC in YBCO.

The quality of these structures can be investigated using a variety of experimental

probes. The atomic positions can be visualised with scanning transmission electron mi-

croscopy (STEM) in a Z-contrast image, whereby the intensity of the signal is related to

the atomic number of the target atom and is proportional to Z2. Z-contrast images at

the YBCO-LCMO interface[118] are illustrated in Fig. 7.12(a). The brightest points on

the YBCO side of the interface therefore correspond to Ba atoms, followed by Y atoms,

and on the LCMO side, the La atoms show up the brightest. From these images two

different types of interface structure can be observed. By far the most common structure

is illustrated in Fig. 7.12(b), where the interfacial layers are BaO-MnO2-LaO and the last

CuO layer is not present on the YBCO. Less common is the slightly irregular structure

where the last CuO layer is present and the interfacial layers are BaO-CuO-LaO-MnO2.

5At half filling t is renormalised by a factor 2Zd(1−2d), where Z is the number of nearest neighbours
and d is the fraction of sites that are doubly occupied. This is, essentially, the probability that an electron
is able to hop from a doubly occupied site to a neighbouring singly occupied site.
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(a) STEM Z-contrast image of an YBCO-LCMO
interface[118]. The dark rows correspond to the
CuO chains, and the first LaO layer and a column
of Ba/Y are highlighted for clarity.

Mn

O

Cu

Y

Ba

La

(b) The most common crystal structure found
at the interface, with the interfacial layers BaO-
MnO2-LaO

Figure 7.12: Structural characterisation of an YBCO-LCMO interface.

There are three main concerns when creating an interface: the effects of lattice strain

due to the different lattice parameters of the two materials, the magnitude of the surface

roughness which breaks the translational symmetry, and interdiffusion of the different

chemical elements which leads to chemical disorder. The effects of lattice strain are small

due to the well matched lattice parameters of LCMO, with a cubic lattice parameter

of 3.86 Å, and YBCO with lattice parameters a = 3.82 Åand b = 3.89 Å. The surface

roughness is also relatively small as illustrated in the Z-contrast images. A useful method

for analysing the extent of interdiffusion is to perform high spatial resolution electron

energy loss spectroscopy (EELS) in conjunction with scanning transmission electron mi-

croscopy (STEM) measurements[118]. Using this method it is possible to characterise the

elemental constituents of each atomic layer. The proportion of each different element as

a function of distance from the interface is illustrated in Fig. 7.13(b), and it can be seen

that the interface is indeed very sharp and the elemental composition reaches the bulk

composition within a couple of atomic layers.

7.4 Experimental investigations of the YBCO-LCMO

interface

There are various experimental techniques which have been employed to probe the in-

terface between cuprates and manganites, and we will focus on two which have been
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8 nm

(a) STEM Z-contrast image of an YBCO-LCMO
superlattice[119]

(b) EELS performed at an YBCO-LCMO
interface[118]. The integrated intensity, after
normalisation, for La (open circles), Ba (solid
squares) and Mn (solid circles) as a function of
distance from the interface.

Figure 7.13: STEM and EELS measurements at an YBCO-LCMO interface.

particularly important to our investigation of the electronic structure at the interface

between La2/3Ca1/3MnO3 (LCMO) and YBa2Cu3O7 (YBCO). The first technique is x-

ray absorption spectroscopy (XAS) which is a particulary useful probe of the occupation

of different orbitals in the 3d bands of both materials. Using this technique it is be-

lieved that a change in the electronic valence states has been observed in the interfacial

YBCO layers. The second technique is polarised neutron reflectometry which is sensi-

tive to periodic magnetic profiles and has been applied to YBCO-LCMO superlattices.

The reflectivity curves exhibit a structurally forbidden Bragg peak, and the reconstructed

magnetic profiles are suggestive of a magnetic moment in the interfacial YBCO layers. A

brief introduction to these techniques will be given, followed by an explanation of what

has been learnt from their application to the YBCO-LCMO interface.

7.4.1 X-ray absorption spectroscopy at the YBCO-LCMO in-

terface

We will summarise the results obtained, by Chakhalian et al, for x-ray absorption spec-

troscopy (XAS) and x-ray linear dichroism (XLD) measurements at an YBCO-LCMO

interface[53]. The application of XAS to probe orbital occupancies is discussed in ap-

pendix E. The experiments were performed on epitaxial trilayers and superlattices of

the optimally doped high temperature superconductor YBa2Cu3O7, combined with the

ferromagnetic La1−xCaxMnO3 at a doping level x = 1/3. To separate the interfacial elec-
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Figure 7.14: From
[53].(A)Schematic of the ex-
perimental setup used in to
obtain the XAS and XLD data
in TEY and FY modes. Data
sensitive to interfacial Cu (Mn)
atoms were taken in TEY mode
with photon energies near the
Cu (Mn) edge, on samples with
LCMO (YBCO) capping layers.
C indicates the axis of the film,
H is the applied field; h and v
denote the linear polarisation
state of the incident x-ray.
(B)Atomic positions near the
YBCO-LCMO inerface, and the
MnCuO10 cluster used for exact
diagonalisation calculations[53].

tronic structure from surface and bulk contributions, the experiments were performed on

heterostructures with different capping layers, making use of the shallow probing depth

of XAS and XLD in total electron yield (TEY) mode to ensure that only layers directly

beneath the capping layers contributed to the signal (Fig. 7.14). The photon energies

were tuned to the appropriate absorption edge, so that the capping layers would not effect

the signal apart from an overall attenuation factor.

Measurements were performed at the Cu L3 edge in bulk-sensitive fluorescence yield

(FY) mode and interface-sensitive TEY mode; the absorption spectra for YBCO are

illustrated in Fig. 7.15(a), and the absorption spectra for LCMO are illustrated in Fig.

7.15(b). The bulk-sensitive absorption spectra show agreement with previous XAS data

at the Cu L3 edge of optimally doped YBCO. The main absorption peak at around 931eV

is associated with the intra-ionic transition 2p63d9 → 2p53d10. The shoulder on the right

hand side of main peak is attributed to the inter-ionic transition 2p63d9L → 2p53d10L,

where L denotes a hole on the oxygen ligand6. This is a signature of the Zhang-Rice singlet,

a bound state consisting of a localised hole on a copper ion, hybridised with holes on the

neighbouring oxygen ions: the higher energy of this transition is due to the hybridisation

energy lost from destroying the Zhang-Rice singlet with the excited electron. The high

absorption of x-rays polarised in the plane parallel to the CuO2 sheets also demonstrates

that the majority of the holes occupy the dx2−y2 orbital. This is a generic feature of the

6The energy of this transition is higher because the Cu-O hybridisation energy of the Zhang-Rice
singlet state is relinquished in the final state: this hybridisation energy corresponds, approximately, to
the gap between the main peak and the right hand shoulder.
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(a) XAS from YBCO (b) XAS from LCMO

Figure 7.15: From [53]: XAS spectra from either side of the YBCO-LCMO interface.

cuprate superconductors.

The interface-sensitive data show a shift of the main absorption peak with respect to

the bulk by ∼ 0.4eV, and the disappearance of the high-energy shoulder. The shift in the

absorption peak indicates a change in the Cu valence state, which is caused by a transfer

of charge across the interface, forming a charged double layer. This is characteristic for

heterostructures of materials with different work functions. A comparison with reference

materials containing Cu+ and Cu2+ yields a rough estimate for this charge transfer of 0.2e

per copper ion. Since numerous XAS measurements of YBCO and other high temperature

superconductors demonstrate that the peak position is independent of doping, the shift

cannot be attributed to a change in the hole density alone and indicates a significant

change in the electronic states at the interface.

The absorption is almost equal for polarisation parallel and perpendicular to the CuO2

layers. This is an indication that the number of holes occupying d3z2−r2 and dx2−y2 states is

comparable at the interface, whereas in the bulk the holes are predominantly found in the

dx2−y2 state. This can be interpreted as an ‘orbital reconstruction’. Measurements were

repeated over a range of temperatures from 30K to 300K, and in the over-doped regime

by Ca substitution, and the peak position and polarisation dependence were found to be

unaffected. The charge transfer and ‘orbital reconstruction’ can therefore be considered

as robust characteristics of the YBCO-LCMO interface.

The XAS spectra near the Mn L2 and L3 edges on the LCMO side of the interface

are also shown in Fig. 7.15(b). The spectra are much broader than those taken near

the Cu L3 edge, because the five Mn d orbitals are all partially occupied and result in a

complicated multiplet splitting of the absorption peak. The peak intensity is independent
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of polarisation dependence, and is interpreted as evidence of roughly equal numbers of

holes in the d3z2−r2 and dx2−y2 states in bulk metallic LCMO. A change in the valence

state is also expected on the LCMO side of the interface to compensate for the charge

transfer to the YBCO side, but due to the broad spectra, a corresponding shift in the

absorption peak is difficult to determine.

7.4.2 Orbital reconstruction

One interpretation of these results involves an orbital reconstruction of the electronic

states at the interface. The calculation is performed on the MnCuO10 cluster illustrated

in Fig. 7.14 using the full set of Cu d orbitals and interaction parameters from the

literature. The Mn ion is represented by a single d3z2−r2 orbital with a classical Hund’s

rule coupling to the t2g spins. To simulate the difference in LCMO and YBCO work

functions the on-site energy of the Mn hole was tuned, and the number of holes on the

copper sites is plotted against the energy of the Mn site in Fig. 7.16. For a large on-site

energy of the Mn hole, the hole resides mainly on the Cu site, and as the on-site energy

is reduced the hole moves to the Mn site. The orbital reconstruction is viewed as being

static, and hence the hybridisation between the Cu site and the Mn site is of the order t20,

where t0 is related to the Slater-Koster intergrals[62] such that t0 = (pdσ)2. This causes

a very sharp transition between the two configurations, and the intermediate state where

the hole is delocalised between the Cu site and the Mn site only occurs at a very specific

energy.

In the next chapter we offer an explanation based on the double exchange mechanism.

The resulting orbital reconstruction is dynamic and is a consequence of the metallicity in

the manganite ‘spilling’ into the cuprate. The double exchange between the cuprate and

the manganite necessarily utilises the d3z2−r2 states in the cuprate to enhance the mobility

of the electrons across the interface. The occupancy of the two orbitals is determined by

tuning the chemical potential in the manganite. Because the energy scale of this process

is of the order of t0, we find a robust orbital reconstruction at the interface, with partial

occupation of the d3z2−r2 states in the cuprate.

7.4.3 Polarised neutron reflectometry at the YBCO-LCMO in-

terface

We will now summarise the results obtained, by Stahn et al, for polarised neutron reflec-

tometry (PNR) measurements on superlattices composed of alternating layers of YBCO

and LCMO[120]. The technique, and its application to the YBCO-LCMO interface, is

introduced in the appendix. PNR is used to probe the magnetic potential Vm and the nu-
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Figure 7.16: Calculation per-
formed on a CuMnO10 cluster by
J. Chalhalian et al[53]. The to-
tal number of holes, as measured
from the full 3d10 shell, calcu-
lated as a function of the on-site
Mn hole energy. The insets show
the orbital level scheme at the
interface, including bonding (B)
and antibonding (AB) ‘molecu-
lar orbitals’ formed by hybridised
Cu and Mn d3ẑ2−1 orbitals.

clear potential Vn in the direction normal to the surface to deduce possible depth profiles.

Reflection occurs at the interfaces of a multilayer, so Bragg’s law for a one dimensional

crystal can be applied to obtain the conditions for constructive and destructive interfer-

ence. Because the magnetic potential is expected to be spatially uniform and confined to

the LCMO layers, an extinction rule disallows all even order Bragg peaks.

The experiments were performed on superlattices of [LCMO(98 Å)/YBCO(98 Å)]

and [LCMO(160 Å)/YBCO(160 Å)]. Resistivity and superconducting quantum interfer-

ence device (SQUID) magnetisation measurements revealed a ferromagnetic transition

temperature Tmag ≈ 165K and a superconducting transition temperature TSC ≈ 75K,

both of which are substantially reduced from their bulk values of TLCMO
mag ≈ 270K and

T Y BCOSC ≈ 93K respectively.

The results for the specular reflectivity are shown in Fig. 7.17(a), together with the

integrated intensities for the first two Bragg peaks which are shown in Fig. 7.17(b). Above

Tmag the second Bragg peak is absent, in accordance with the extinction rule, but as T

is reduced below Tmag the second, structurally forbidden, Bragg peak appears. This peak

is associated with the magnetic interactions at the interface caused by the onset of the

ferromagnetic phase in the LCMO layers, and indicates that the magnetic profile is no

longer confined to the LCMO layers, but has extended into the YBCO layers. Below

TSC weight is transferred from the specular to the off-specular reflectivity, which is an

indication of SC induced in-plane magnetic roughness.

The polarised specular reflectivities are also measured and the results are shown in

Fig. 7.17(c), together with the simulated results in Fig. 7.17(d). To determine the

magnetic profile, the unit cell is broken down into 96 sublayers, and the iterative scheme

is used to reproduce the observed reflectivities at the surface of the superlattice. Of the

many magnetic profiles implemented, only two reproduced the observed spectra. The first
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(a) Unpolarised specular refectivity from an
YBCO-LCMO superlattice in an external field
H = 100Oe (field cooled).

(b) T dependence of the first (red) and sec-
ond (blue) Bragg-peak intensities, integrated over
qx(©) and at qx = 0(×, scaled by 6).

(c) The measured polarised specular reflectivity
at 15K and 200K in an external field H = 100Oe
(field cooled)

(d) The simulated specular reflectivity

(e) The two magnetic profiles which are consis-
tent with the measured reflectivity. Model 1 ex-
hibits antiferromagnetic correlations across the
interface, whilst model 2 exhibits a magnetic dead
layer.

Figure 7.17: from [120]Polarised neutron reflectometry (from [120]) performed on an YBCO-
LCMO superlattice.
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Figure 7.18: The inverse proximity ef-
fect at a superconductor-ferromagnet
interface, obtained from [123]. The
magnetic moment is plotted against
the distance, in units of the correla-
tion length ξ, from the interface.

profile displays antiferromagnetic correlations across the interface, with a sizeable moment

on the YBCO side of the interface. The second possibility is a magnetic ‘dead layer’ on

the LCMO side of the interface, where there is no magnetic moment in the LCMO layers

close to the interface. These magnetic profiles are illustrated in Fig. 7.17(e). Several

physically meaningful profiles are excluded, such as a conventional magnetic proximity

effect[121] where the magnetisation decays exponentially into the SC layer.

The second profile consisting of a magnetic ‘dead layer’, a feature which has previously

been observed in interfaces with manganites, is not easy to justify in this case. The cause

of the magnetic dead layer is usually attributed to chemical interdiffusion[122] but, as the

EELS measurements at the interface demonstrate, the interfaces are atomically sharp and

the extent of the interdiffusion is therefore small and is limited to the first few atomic

layers.

The first profile which corresponds to antiferromagnetic correlations across the inter-

face is the one we pursue in this investigation. The presence of antiferromagnetic correla-

tions at a superconductor-ferromagnet interface is not unreasonable and is often explained

by the inverse proximity effect [123], which creates the magnetic profile illustrated in Fig.

7.18. The antiferromagnetic correlations arise from the formation of Cooper pairs which

involve one electron in the superconductor and one electron from the ferromagnet. The

length scale of the Cooper pairs, and hence of the antiferromagnetic correlations, is about

one coherence length.

However, the inverse proximity effect can be ruled out at the YBCO-LCMO interface,

due to the very short pair coherence length perpendicular to the interface, which for

YBCO is ξc ≈ 0.24nm[124] and is less than the Cu-Mn separation. In the next Chapter

we propose an explanation for the antiferromagnetic correlations, which is based on the

idea that the metallicity of the manganite spreads into the cuprate layer at the interface

and spin polarises the holes.



Chapter 8

Model of a cuprate-manganite

interface

After examining the experimental evidence for an orbital reconstruction[53] and antifer-

romagnetic correlations[120] at the interface, in this chapter we propose an explanation.

The central idea is that the spin polarised metallicity of the manganite ‘spills’ out into

the interfacial cuprate layer and polarises the spin of the holes. Through this process the

electrons are able to maximise their kinetic energy by delocalising, both into the bulk

manganite, and into the interfacial cuprate layer.

The microscopic details of this theory are worked out first, and justified on the basis

that the difference in chemical potentials between the two materials leads to a flow of

charge across the interface from the manganite into the cuprate. It is then argued that

the hybridisation energy is sufficient to overcome the crystal field splitting between the

two styles of orbital in the cuprates, which therefore leads to an orbitally disordered state

in the interfacial cuprate layer.

To put this theory on a more solid foundation we introduce a simple model which

captures the electronic structure of the bulk manganite with a single cuprate capping

layer. We employ impurity theory to deal with the broken spatial symmetry caused by the

presence of the interface, and to implement the crystal field splitting and charge transfer

in the cuprate layer. The impurity method is also useful for determining the occupation of

the two styles of orbital, and qualitative agreement with the XLD experiments is obtained.

In addition, the solution to our model reveals some unexpected bound states in the

interfacial layers. These states reside in the interfacial cuprate and manganite layers, but

become degenerate with the bulk states from the manganite and decay into the bulk. As

a consequence, the coherent peaks in the spectral function are seen to ‘disappear’ at the

Fermi energy. Finally, it is proposed that this last feature may be observed in ARPES

performed on cuprate-manganite interfaces.

155
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8.1 Charge transfer across the interface

To predict the anticipated behaviour we first need to characterise the two materials, and

then analyse the likely changes at the interface. This is slightly complicated by the fact

that it is easier to understand the cuprate using holes and the manganite using particles

(electrons).

The cuprate involves a doped parent compound: this parent involves an active Cu2+

ion which is one hole away from the passive closed shell Cu+ configuration, with the hole

residing in the eg orbitals. The crystal field energy of having four close negative oxygen

neighbours in the x-y plane and only one more distant oxygen neighbour in the z direction

stabilises the hole in the dx2−y2 orbital with an energy saving of about half an electron-

volt (eV), which can be inferred from polarised XAS measurements[125]. The interesting

observation of the XAS experiments is that this crystal field appears to be overcome at the

interface, where roughly equal amounts of both dx2−y2 and d3z2−r2 are observed. Where

does this half an eV come from? YBa2Cu3O7 is doped with holes, stoichiometrically 1/3

of a hole per copper atom. Most of these holes are thought to reside on oxygen atoms,

forming Zhang-Rice singlets in the important CuO2 planes.

The manganites also have a parent compound: This compound, LaMnO3, has an active

Mn3+ ion. In terms of electrons, there are four in the d-shell which, due to the strong

Hund’s coupling, have parallel spins. Three fill the crystal field preferred t2g shell and

the fourth is in the doubly degenerate eg shell, analogous to the cuprates. It is the lifting

of the orbital degeneracy and the choice of magnetism which are the relevant physical

issues. In the parent compound the degeneracy is lifted by a Jahn-Teller distortion,

with a subsequent A-type antiferromagnetic order. In the doped compound the double

exchange phenomena is dominant, and the experimentally relevant material is a saturated

ferromagnet at low temperatures, with all spins aligned. About 1/3 of the eg electrons have

been removed and the motion of the remaining electrons, via double-exchange, stabilises

the ferromagnetism. It is the electronic motion which provides an energy scale of one eV

or more.

Initial considerations of the interface involve trying to establish how to mesh the

two pictures of the different materials energetically: At the most trivial level, we can

compare the work functions. As one might naively guess from the chemistry, there is a

flow of electrons from the manganite into the cuprate until an electric field builds up to

compensate the difference in isolated chemical potentials.

There is good evidence that in the spatially accessible region of the cuprates all the

Zhang-Rice singlets have disappeared and naively one might consider the cuprates to

have reverted to their parent compound. However, things might not be so simple: The

energy gap in the cuprates is less than one eV and so the difference in chemical potential
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might also overcome this gap and further dope the cuprates with electrons. Such an

eventuality would convert some of the Cu2+ into passive Cu+, which would be analogous

to the electron doped systems, Nd2−xCexCuO4. An energy shift is indeed observed in the

interfacial XAS spectra, and this could be explained quite naturally using this idea and

its consequences.

To analyse the interface system more carefully we can resort to the atomic limit to

quantify the relevant interactions and their energy scales. If we accept the irrelevance

of the Zhang-Rice singlets, then there are two important electronic energies: for the

cuprates the cost of converting Cu2+ into Cu+ with an electron is one energy, denoted

ECu, and for the manganites the cost of converting Mn4+ into Mn3+ with an electron

is the other, denoted EMn. Ignoring all chemical bonding we would start out with the

chemical potential at EMn and if ∆µ =EMn−ECu > 0 then we would expect charge flow

at the interface and the cuprates would metallise until a charge balance is achieved. This

flow of charge would also provide an electric field which reduces EMn and raises ECu,

making the subsequent doping less likely.

The largest chemical bonding phenomenon to incorporate into the atomic picture is

double-exchange: originating in the manganites, this term refers to the motion of an eg

orbital across an intermediate oxygen atom, exchanging the relative positions of Mn3+

and Mn4+ ions. The intermediate state finds both ions in an Mn3+ configuration and the

intrinsic energy scale is t2Mn/∆Mn where tMn is the hopping matrix element between oxygen

p-states and Manganese eg-d-states, and ∆Mn is the energy cost of transferring an electron

from the oxygen to the manganese. This interaction is strong, being a sizeable fraction of

an eV, and metallises the manganites, driving the system into a saturated ferromagnet.

Interestingly, there is an analogous interaction in the electron doped cuprates. A Cu2+

and Cu+ ion can also exchange with a transfer of an electron. The intermediate state now

finds both ions in the Cu+ configuration and the intrinsic energy scale is t2Cu/∆Cu where

tCu is the hopping matrix element between oxygen p states and copper eg states, and ∆Cu

is the energy cost of transferring an electron from the oxygen site to the copper. Unlike

manganese, this interaction only weakly influences the spin state of the copper system

through the Nagaoka interaction which can safely be ignored. Although one might expect

tMn ≥ tCu since the copper d-shell is marginally smaller, the facts that ∆Mn 6= ∆Cu, and

the oxygen electrons are more strongly bound in manganites, makes the two energy scales

different. Still we expect the double-exchange in both systems to be similar and a sizeable

fraction of an eV.

At the interface there are essentially two possibilities; either the energy gap EMn−ECu

is larger than the double-exchange induced bandwidth, or it is not. If the gap is retained

then the copper remains an insulator and if not the whole system metallises. It is this
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Figure 8.1: Metallisation of the cuprate layer. (a) In the electron doped cuprates the superex-
change interaction is dominant in the cuprate layers. (b) At the cuprate-manganite interface, the
mobile charge carriers maximise their kinetic energy by delocalising in both the cuprate layer,
and in the bulk manganite. The antiferromagnetic superexchange interaction is then overcome
by the ferromagnetic double exchange interaction.

second case that appears the most likely experimentally. There is a strong double exchange

interaction between the interfacial manganese and copper ions, which utilises the d3z2−r2

orbital, and the spin polarised electrons from the manganite can therefore pass into the

cuprate. Since we expect the charge carriers to be spin polarised, the physical picture

simplifies: in the manganites the eg electrons all have spins parallel to the ferromagnetic

t2g background and in the interfacial cuprate layer all the holes are expected to have

parallel spins to this background. Electrons from the manganite can cross seamlessly

into the cuprates annihilating a hole, and the resulting Cu+ can readily either hop back

or move around in the cuprate using double-exchange, as illustrated in Fig. ??. At its

simplest one can consider the ferromagnetic metal in the manganites to ‘spill’ out onto

the cuprate with the only complication that the local energy difference, ∆µ, exists and

decides relative electron densities. In the manganites the cubic symmetry, manifested in

the occupancies of dx2−y2 and d3z2−r2 orbitals, is maintained and one might assume that

this property is weakened in the cuprates but not eradicated, leading to the next issue of

the effects which control this occupancy.

The crucial experimental observation which requires to be understood is why the

orbital occupancy in the cuprate interface is essentially random and not heavily biased as it

is in the parent compound and the superconducting systems. The crystal field, stemming

from the four oxygens in the x-y plane and only one along the z-axis, is retained and offers

an energy of half an eV or so and this energy must be overcome. The double-exchange

provides a compensatory bias; double exchange within the cuprate layers employs d3x2−r2
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Figure 8.2: A schematic illustra-
tion of the density of states in
the manganite and the cuprate.
(a) away from the interface the
manganite is a half metal and
the cuprate layer consists of the
oxygen non-bonding (NB), Zhang-
Rice singlet (ZR) and triplet (T)
bands, and the copper dx2−y2 up-
per Hubbard (UHB) and lower
Hubbard (LHB) bands. (b) At the
interface the difference in chemi-
cal potentials is compensated by
charge transfer across the inter-
face, which raises the chemical po-
tential in the cuprate up to the
upper Hubbard band. Only the
electrons with parallel spin to the
manganite hybridise with the bulk
manganite states.

and d3y2−r2 orbitals which ‘average’ to form the dx2−y2 symmetry, whereas the inter copper-

manganese double-exchange employs the d3z2−r2 orbital. The energy scale of the double

exchange is competitive with the cuprate crystal-field and, to overcome both the crystal

field and antiferromagnetic superexchange correlations, we require a sizeable fraction of

Cu+ ions. This would lead to a reconstruction of the density of states at the interface, as

is shown in Fig. 8.2.

The physical picture that we are offering should now be clear: we expect the inequality

∆µ > 0 to be satisfied, so that charge is forced into the cuprates at a level where it can

compete and hopefully dominate the crystal-field energy and antiferromagnetic correla-

tions. In accordance with experimental observations, this would require the use of both

types of orbital, and would also require there to be an antiferromagnetic moment across

the interface.

8.2 Double exchange model of the interface

To analyse the interface we propose a simple Hamiltonian based on the double-exchange

interaction. To capture the metallic behaviour in both materials we include a single

cuprate capping layer attached to a semi-infinite lattice representing the bulk manganite.

In principle the double-exchange interactions may spread to the second CuO2 layer due

to direct exchange between two Cu sites, but the energy gained is small because there is

no oxygen ion to facilitate double exchange between the first and second layers, so that a
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Figure 8.3: The doping of the
CuO2 layers as a function of
their distance from the interface.
Close to the interface the charge
transfer results in CuO2 layers
with variable levels of doping.
Far from the interface the chem-
ical potential lies in the Zhang-
Rice singlet band and the asso-
ciated cuprate layers are super-
conducting. As we move closer
to the interface the cuprate lay-
ers change from being optimally
hole doped, to underdoped, to
a Mott insulator. Finally, in
the interfacial cuprate layer we
find the orbitally reconstructed
state, which is observed experi-
mentally.

description involving a single CuO2 layer should be reasonable. In the first cuprate layer

we investigate the idea that the crystal field energy is overcome by the double exchange

mechanism which allows the ferromagnetic spins from the manganite into the cuprate

layer. In further layers we expect the antiferromagnetic interaction to induce an antifer-

romagnetic phase analogous to the parent compound, whilst the bulk superconductivity

is only expected to be recovered in further layers once the Zhang-Rice singlets reappear.

This idea is in Fig. 8.3 using a simple band-bending picture.

The length scale over which the cuprate layers are affected by the manganite is con-

trolled by the difference in chemical potentials of the two materials; electrons flow from

the manganite until a compensatory electric potential is created to balance the differ-

ence in isolated chemical potentials. In principle one should use Poisson’s equation to

determine when the potentials balance, but we opt for a simpler approach and introduce

the parameter Γ to control both the electrostatic potential and the difference in chemical

potentials. The value that Γ will take is not simply the difference between the isolated

chemical potentials: it must also incorporate the electrostatic potential in the first layer

due to the charge flow from the manganite which electron dopes the cuprate, and should

therefore be determined self consistently.

In the manganites we assume that the orbitally degenerate double exchange model is

valid: this seems reasonable because the absence of Jahn-Teller distortions and orbital

ordering suggests that the electronic motion is the dominant interaction. The model for

the manganites is therefore
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HMn =
X
〈jj′〉γγ′

�
tγγ
′

jj′ d
†
jγdj′γ′ + h.c.

�
=
X
kγγ′

εγγ
′

k d†kγdkγ′ , (8.1)

where ε̂k and the hopping matrices t̂jj′ are defined in Chapter 7. We know that there are

2/3 electrons per site on average, which will result in a significant renormalisation of the

bare bandwidth tMn = t0. We assume that the renormalisation can be represented by a

Gutzwiller projection, whereby the electrons avoid each other to avoid the intra-orbital

coulomb energy U ′.

In the cuprate layer, the kinetic energy of spin polarised electrons from the manganite

is assumed to overcome both the crystal field energy splitting, and the antiferromagnetic

correlations induced by superexchange interactions. The model of the cuprate layer must

therefore describe the double exchange mechanism of the spin polarised electrons in the

crystal field split eg states. This model is analogous to that used for the manganites, but

with the energy splitting ∆ between the d3z2−r2 and dx2−y2 states, which we know from

photoemission experiments to be about half an eV. The relevant Hamiltonian for a single

cuprate layer is

HCu =
X
jγ

εγγ0 d†jγdjγ +
X
〈jj′〉γγ′

�
tγγ
′

jj′ d
†
jγdj′γ′ + h.c.

�
, (8.2)

where the hopping is restricted to nearest neighbours in the x-y plane. The energy level

splitting is represented by the matrix

ε̂0 =

�
−Γ 0

0 ∆− Γ

�
. (8.3)

The parameter Γ has also been included to account for the lower chemical potential relative

to the manganite. In the electron doped cuprates the value of tCu is reduced from its bare

value, as the electrons avoid each other to avoid the strong local coulomb interaction

U . However, when the cuprate layer becomes ferromagnetic at the cuprate-manganite

interface, the electrons avoid each other more effectively, and tCu should be comparable

in size to tMn.

The parameters Γ, tM and tC depend on the amount of charge transferred into the

cuprate layer, and should in principal be determined self consistently. Since we are only

intending to make qualitative comparisons with experiment this would introduce an un-

necessary complication, and would only obscure the simple physical picture that we are

offering. We therefore make some reasonable simplifications; we assume that the hopping

amplitude is roughly equal in the cuprate layer and in the manganite, and can be repre-

sented by the single parameter t. We also elect to choose ‘by hand’ some reasonable values
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for both t and Γ. We choose Γ > t, which implies that the loss of hybridisation at the

interface is compensated by the gain in potential energy. This ensures that a significant

amount of charge is transferred across the interface, possibly into states which are bound

to the interfacial cuprate layers. We also choose ∆ < t, so that the crystal field splitting

is overcome by the double exchange mechanism.

We require a model for a single cuprate layer in metallic contact with the bulk man-

ganite. To do this we make use of impurity theory (which in this context is also referred

to as the scattering theoretical method[67, 68]), which is a very convenient method for

solving a known Hamiltonian H0 with a local impurity H1.

8.2.1 Representing the interface as an impurity

To apply impurity theory to the cuprate manganite interface we take the bulk manganese

as the reference system and treat the cuprate layer as a local impurity which changes

the energies of occupying either orbital. The calculation is a three step process: i) We

calculate the resolvent associated with the bulk manganite, ii) We use impurity theory

to modify this resolvent to describe a semi-infinite lattice, iii) We use impurity theory

to modify the surface layer to represent a CuO2 layer with the introduction of Γ and ∆.

The resolvent can then be used to calculate the density of states for each orbital in any

layer parallel to the surface. Step one: the reference Hamiltonian which describes the

bulk manganite is

H0 =
X
〈jj′〉

�
tγγ
′

jj′ d
†
jγdj′γ′ + h.c.

�
=
X
kγγ′

εγγ
′

k d†kγdkγ′ , (8.4)

with

ε̂k =
t0
2

�
− (Cx + Cy + 4Cz)

√
3 (Cx − Cy)√

3 (Cx − Cy) −3 (Cx + Cy)

�
. (8.5)

The dispersion relations for the two bulk bands are given by

E±k = −t
�
Cx + Cy + Cz ±

q
C2
x + C2

y + C2
z − CxCy − CxCz − CyCz

�
, (8.6)

where Cx, Cy and Cz represent cos(kx), cos(ky) and cos(kz) respectively. The resolvent

for the bulk manganite may be represented as a 2× 2 matrix,

Ĝ0(z)kk′ = δkk′ [z − ε̂k]−1

=
δkk′

Det||z − ε̂k||

�
z + 3

2
(Cx + Cy) −

√
3

2
(Cx − Cy)

−
√

3
2

(Cx − Cy) z + 1
2
(Cx + Cy + 4Cz)

�
, (8.7)
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where, for convenience, the energy has been represented in units of t. The expression for

the resolvent in reciprocal space may be very simple, but to add localised impurities we

need to represent it in real space. This turns out to be relatively straightforward for this

system because the impurities are independent of x and y, which means that the problem

is quasi one dimensional. Therefore, in analogy with the one dimensional case, we express

the resolvent in the form

Ĝ0(z)kk′ =
δkk′

A+ 2BCz

�
B −C
−C 1

B
(A+ 2B + C2) + 2Cz

�
, (8.8)

where we have introduced the parameters

A = z2 + 2z(Cx + Cy) + 3CxCy (8.9)

B = z +
3

2
(Cx + Cy) (8.10)

C =

√
3

2
(Cx − Cy). (8.11)

We elect to represent only the z coordinate in real space so that we may manipulate and

analyse individual layers parallel to the interface. This is accomplished by performing the

one dimensional Bloch transform of Eq. 8.8:

Ĝ0(z)k‖k′‖nn′ =
X
kzk′z

eikznĜ0(z)kk′e
−ik′zn′

= δk‖k′‖

Z π

−π

dkz
2π

eikz(n−n′)

A+ 2BCz

�
B −C
−C 1

B
(A+ 2B + C2) + 2Cz

�
, (8.12)

which is a function of the two dimensional Bloch wave vector k‖ = (kx, ky) and the layer

index n. The label k‖ will henceforth be dropped to simplify the notation. The integrals

involved can be determined using complex analysis and are of an identical form to those

encountered when calculating the resolvent for the one dimensional chain (which reflects

the one dimensional nature of this problem). After performing these integrals we obtain

the layer representation of the resolvent

Ĝ0(z)nn′ =

�
0 0

0 1

�
δnn′

B
+

�
1 C

B
C
B

C2

B2

�
R|n−n

′|

R− 1
R

(8.13)

R =

�
− A

2B
+

È
|A2 − 4B2|

2B

�
. (8.14)

The two branch cuts of the resolvent correspond to the two z-projected bulk bands of
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the manganite, which merge into a single band whenever kx = ky. The parameter R is

multi-valued and the phase in front of the square root is therefore dependent on the value

of z. When z is real and to the left of the lower band or to the right of the upper band

the phase is +1, when z is in the band gap the phase is −1, and when z− iδ is just below

the lower(upper) band the phase is +i(−i).
The resolvent of the bulk manganite, Eq 8.13, contains a single pole when B = 0. This

is actually a pathological point where the eigenstate is composed of only the x̂2−ŷ2 orbital

which, because it does not hybridise with the 3ẑ2− 1 orbital, is bound to a single layer in

the x-y plane (other layer bound states will appear once we incorporate the cuprate layer).

This state appears throughout the analysis, but is not really relevant to our investigation.

To produce a surface we apply impurity theory to cancel the hopping between two

adjacent layers in the z direction. This is equivalent to replacing the periodic boundary

conditions along the z-axis with open boundary conditions, thus breaking the translational

symmetry.

Step two: we use impurity theory to modify the resolvent to represent a semi-infinite

crystal lattice. The impurity required for this step is represented as a 2× 2 matrix which

cancels the hopping between the 3ẑ2 − 1 orbitals in the first two layers:

H1 =

�
0 1

1 0

�
. (8.15)

The basis states for this impurity are the 3ẑ2−1 orbitals in the first two layers. To modify

the resolvent we then require the local matrix Σ(z), which is given by

Σ(z) =

�
−G0(z)00

00 1− G0(z)00
01

1− G0(z)00
10 −G0(z)00

11

�−1

=

�
−R 1

1 −R

�
. (8.16)

In the resolvent G0(z)γγ
′

nn′ the superscript γ refers to the orbital, the subscript n is a layer

index. The modified resolvent is then

G(z)γγ
′

nn′ = G0(z)γγ
′

nn′ +
1X

i,i′=0

G0(z)γ0
niΣ(z)ii′G0(z)0γ′

i′n′ . (8.17)

After a fair amount of algebra the resolvent can be written in a compact form,

Ĝ0(z)nn′ =

�
0 0

0 1

�
δnn′

B
+

�
1 C

B
C
B

C2

B2

�
R|n−n

′| −Rn+n′+2

R− 1
R

. (8.18)

The resolvent for the semi-infinite lattice contains no new poles, implying that the presence

of the surface simply modifies the amplitudes of the three dimensional k states.

Step three: we use impurity theory to modify the surface (which has been translated
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from n = 1 to n = 0 for simplicity) so that it resembles a cuprate layer. The electrons

reduce their energy by visiting the cuprate layer where the reduced chemical/electrostatic

potential is represented by Γ and the crystal field splitting between the x̂2− ŷ2 and 3ẑ2−1

orbitals is represented by ∆. We make the resolvent of the semi-infinite crystal lattice (Eq

8.18) our reference, and then the impurity which modifies the surface layer is represented

by a simple 2× 2 matrix:

H1 =

�
−Γ 0

0 ∆− Γ

�
. (8.19)

We should note that the basis states for this second impurity are the x̂2− ŷ2 and 3ẑ2− 1

orbitals in the surface layer. For the second impurity the matrix Σ(z) is

Σ(z) =

�
−Γ− G0(z)00

00 −G0(z)01
00

−G0(z)10
00 ∆− Γ− G0(z)11

00

�−1

=
1

D

�
B(∆− Γ)

�
Γ− B

R

�
−Γ(∆− Γ)C

−Γ(∆− Γ)C Γ
�
B
R
− (∆−Γ)

R
+ (∆−Γ)C2

B

� � , (8.20)

where D = det||I − G0H1|| and is defined by Eq. 8.31. We then modify the resolvent a

second time:

G(z)γγ
′

nn′ = G0(z)γγ
′

nn′ +
1X

i,i′=0

G0(z)γin0Σ(z)ii′G0(z)i
′γ′

0n′ . (8.21)

After a fair amount of algebra the resolvent of the bulk manganite with a CuO2 capping

layer may be written compactly as

Ĝ0(z)nn′ =

�
0 0

0 1

�
δnn′

Bn

+

�
1 C

Bn
C
Bn′

C2

BnBn′

� 
R|n−n

′| −Rn+n′

R− 1
R

+
Rn+n′

λ− 1
R

!
(8.22)

Bn = B + δn0(Γ−∆) (8.23)

λ =
(Γ−∆)C2

BB0

+ Γ. (8.24)

By introducing the second impurity a new term has appeared in the resolvent. This term,

which contains the λ−1/R in the denominator, contains a single pole for each state which

is bound to the interface. This concludes the calculation of the resolvent. This simple

analytical function provides a great deal of information about our model of the interface.

In fact, our task now is simply to extract the information we require from this resolvent.
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8.2.2 Extracting information from the resolvent

The resolvent can be used to determine the layer resolved partial density of states for each

of the orbitals, and will provide exactly the information we require to make deductions

about the relative occupations of dx2−y2 and d3z2−r2 states in the cuprate layer. For the

orbital γ in the j-th layer, the partial density of states is

ργn(ε,k‖) =
1

π
lim
δ→0

Im G(ε− iδ)γγnn. (8.25)

The cuprate layer breaks the translational symmetry along the z-axis, which therefore im-

plies that the density of states will contain both a coherent part, which arises because some

of the electrons bind to the cuprate layer to reduce their energy, and an incoherent part

which appears as a consequence of the three dimensional nature of the bulk manganite.

The distinction between these two contributions can occasionally become blurred when a

bound state becomes degenerate with a bulk state, thereby creating a clear resonance in

the density of states.

The coherent contribution to the density of states appears at energies for which the

resolvent has a simple pole. At these points the density of states becomes a Dirac delta

function, with a weight Z that can be determined by calculating the residue at the binding

energy E:

ργn(ε,k‖) = Zγ
n(E,k‖)δ(ε− E), (8.26)

with

Zγ
n(E,k‖) = Res

ε=E
G(ε)γγnn. (8.27)

The coherent states are two dimensional bound states which are quantised along the z-

axis and are therefore localised at the interface, decaying exponentially into the bulk. The

incoherent part of the density of states is only nonzero when the energy sits on a branch cut

in the complex plane. The density of states then forms a continuous distribution between

the branch points. The incoherent states are three dimensional bulk states which are not

quantised along the z-axis, and are therefore not normalisable. At the interface these

states have an enhanced amplitude, because of the impurity, which becomes especially

pronounced when there is a resonance.

To extract information about the cuprate manganite interface we need to examine the

analytic structure of the resolvent (Eq 8.22), and understand how this structure relates to

the states of the system. The poles in the resolvent occur at the points where λ = 1/R,

which can be cast into an equivalent fourth order polynomial equation:
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which obviously has four solutions corresponding to possible bound states. Further anal-

ysis of the resolvent also reveals branch cuts and branch points which arise because of the

multi-valued nature of R. The branch cuts represent the continuum of bulk states ema-

nating from the manganite. The four branch points defining the edge of the continuum

states are located at

z±1 = −(Cx + Cy + 1)±
q
C2
x + C2

y − CxCy − Cx − Cy + 1

z±2 = −(Cx + Cy − 1)±
q
C2
x + C2

y − CxCy + Cx + Cy + 1. (8.29)

The poles of the resolvent move around the complex z-plane as kx and ky are varied, but

can never sit directly on a the branch cut. Instead, they may acquire complex values and

lead to a resonance in the continuum of bulk states. We can track these resonances by

calculating the change in the density of states caused by the impurity[126]. The method

for determining the resonances is outlined in appendix D. The change in the density of

states is

∆ργn(ε,k‖) =
1

π

dδ

dε
, (8.30)

where the phase shift of the scattered waves is defined by δ(ε) = arg(D(ε)). To find the

resonances at the cuprate-manganite interface we can look at the change in the density

of states caused by replacing the surface layer of the semi-infinite crystal lattice with the

cuprate layer. We then obtain

D(ε) = det||I − G0H1|| =
B0(1−Rλ)

B
, (8.31)

and therefore

tan δ = ±
√

4B2 − A2

A+ 2B/λ
, (8.32)

where the positive and negative signs correspond to the upper and lower bands respec-

tively. If we define an energy ε0 such that Re D(ε0) = 0, and expand D(ε) in the vicinity
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of this point, we obtain a Lorentzian form centered at ε0:

∆ρ(ε,k‖) ≈
Γ0

2π

1

(ε− ε0)2 + Γ2
0/4

. (8.33)

The half width Γ0, which is related to the inverse lifetime of an electron in the cuprate

layer, is defined

Γ0 =
2Im D(ε0)

Re D′(ε0)
, (8.34)

where the prime denotes differentiation with respect to ε. The sign of Γ0 is positive

for a resonance, and negative for an antiresonance. There are two situations where the

resonances at the cuprate-manganite interface become large. Firstly, when a pole sits on

one of the branch points there is a square root divergence in the density of states. The

points where these resonances occur are solutions of the equation

 
1
2

(∆± 1) (Cx + Cy) + 1 + Γ (Γ−∆± 1)

2Γ−∆± 1

!2

=
3

4
(Cx − Cy)2 +

�
1± 1

2
(Cx + Cy)

�2

,

(8.35)

where the ± sign corresponds to a resonance on the branch point z±1 or z±2 . The second

type of resonance occurs along the symmetry axis kx = ky, for which there is no hybridi-

sation between the two orbitals, and is associated with an electron of dx2−y2 character

becoming trapped in a layer.

8.2.3 The spectral function

To understand the properties of the interface we must choose appropriate values of the

crystal field splitting ∆ and the potential difference Γ; we choose ∆ = 0.5t and Γ = 2.5t,

in accordance with our requirements that Γ > t and ∆ < t. We can then examine the

locations of the poles in the complex z-plane, as kx and ky are traced along the path

(kx = 0, ky = 0) → (kx = π, ky = 0) → (kx = π, ky = π), as is illustrated in Fig. 8.4.

Only the poles which lie on the first Riemann sheet correspond to bound states and, as can

be seen from the illustration, there are initially three bounds states, one of which exists

in the band gap. Further along the path the poles collide with the branch points and

move to the second Riemann sheet, creating clear resonances in the density of states. The

resonances can be visualised by plotting the spectral function, A(ε,k‖), which is related

to the density of states:

ργn(ε,k‖) =
1

2π
Aγn(ε,k‖). (8.36)



CHAPTER 8. MODEL OF A CUPRATE-MANGANITE INTERFACE 169

Im(z)

Re(z)
C

C

Figure 8.4: A schematic illustration of
the locations of the poles (of the resol-
vent) in the complex plane, along the
path (kx = 0, ky = 0) → (kx = π, ky =
0) → (kx = π, ky = π). z1 always lies
on the real axis and corresponds to a
bound state. Initially, z2 corresponds to
another bound state, whilst z3 lies on the
second Riemann sheet and is irrelavant.
As kx is increased both z2 and z3 become
degenerate at the branch point and cre-
ate a resonance in the density of states,
which decays as the poles pass onto the
second Riemann sheet. When kx = π
and ky is increased these poles move to-
wards the branch cut and create a per-
fect resonance when (kx = π, ky = π).
Initially, z4 corresponds to a bound state
in the band gap. As kx is increased
this pole moves into the branch point,
creating a resonance, and finally passes
through to the second Riemann sheet
where it becomes irrelevant.

This quantity is approximately determined in an ARPES experiment and provides a means

of comparing experimental data with theory. The first thing we notice when observing

the spectral function is the presence of three distinct bound states. The two low lying

states clearly reside in the cuprate layer (Fig. 8.5(a)), benefitting from the lower potential

energy, and decay rapidly into the bulk. Because of orthogonality, the third bound state

(Fig. 8.5(c)), which exists in the band gap, must be associated with the manganite.

This is indeed verified by the large spectral weight which is present in the manganite,

penetrating more than five layers into the bulk. The origin of this state is a little more

subtle: the band gap appears because of the hybridisation between the 3ẑ2−1 and x̂2− ŷ2

orbitals, and the loss of this hybridisation energy at the surface induces a bound state in

the band gap.

In the cuprate layer resonances are observed in the spectral function at the edges of

the lower band, close to (π/2, 0), as illustrated in Fig. 8.5(a). The resonance at the

bottom edge is caused by the degeneracy of the bulk states with a state bound to the

cuprate layer, whilst the resonance at top edge is caused by the degeneracy of the bulk

states with a state bound to the manganite layer. Whenever kx = ky there is a resonance

in the cuprate layer which corresponds to a simple pole in the spectral function (Fig.

8.5(b)). This resonance is not associated with any impurity, but is simply a consequence

of the two dimensional nature of electrons occupying the x̂2 − ŷ2 orbitals which become
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(a) Resonances at the edges of the lower band, in
the interfacial cuprate layer, appearing close to
(π/2, 0). Also visible are the low energy states,
which are bound to the cuprate layer.
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(b) The resonance at the point (π, 3π/2), which is
close to the perfect resonance appearing whenever
kx = ky.
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(c) The state which is bound to the interfacial
manganite layer, appearing in the band gap close
to (π, π/2)
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(d) An antiresonance in the middle of the lower
band, appearing in the interfacial manganite layer
close to (3π/2, 0)

Figure 8.5: Resonances and bound states, appearing in the spectral function Aγn(ε,k‖), in the
interfacial layers.
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(a) The spectral function Aγn(ε,k‖) of the dx2−y2

state (black line) and the d3z2−r2 state (blue line),
in the cuprate layer.
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(b) The spectral function Aγn(ε,k‖) of the dx2−y2

state (black line) and the d3z2−r2 state (blue line),
in the interfacial manganite layer.

Figure 8.6: The spectral functions of the interfacial cuprate and manganite layers along the path
(0, 0)→ (π, 0)→ (π, π). Resonances are observed in the cuprate layer in the vicinity of (π/2, 0)
and (π, π), whilst antiresonances are observed in the manganite layer close to (π, π, π/2).
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Figure 8.7: Energy bands and
resonances, along the path
(0, 0) → (π, 0) → (π, π),
in the interfacial cuprate and
manganite layers (with Γ =
2.5 and ∆ = 0.5). The
plot shows the two dimen-
sional states bound to the in-
terface (solid lines), the res-
onances (blue circles) in the
bulk density of states, and the
incoherent background of z-
projected bulk bands (dotted
lines).

trapped in individual layers. We can solve the equations exactly in this case and find

one pole of d3z2−r2 character with energy ε = −(Cx + Γ + 1/Γ) and an occupation of

Zx2−y2
0 = 1 − 1/Γ2 (for Γ > 1). The other pole corresponds to a fully occupied state of

dx2−y2 character, which has an energy ε = −(3Cx+ Γ−∆). Finally, the restructuring of

the density of states in the cuprate layer also leads to antiresonances in the manganite

layers (Fig. 8.5(d)).

The spectral function is mapped out, along the path (kx = 0, ky = 0) → (kx =

π, ky = 0) → (kx = π, ky = π), in Fig. 8.6. Fig. 8.6(a) displays the formation of

bound states and resonances which dominate the electronic properties of the cuprate

layer, whilst Fig. 8.6(b) shows how these resonances interfere with the bulk manganite

bands, drastically altering the density of states. We can also identify the emergence and

subsequent disappearance, as kx and ky are varied, of the bound state in the manganite

band gap.

A more complete picture of the bound states, resonances and anti-resonances can be

seen by looking at the energy bands which are mapped out in Fig. 8.7. The z-projected

density of states (for which the density of states with specific values for kx and ky, but

arbitrary kz, is proportional to the density of points) associated with the bulk manganite

is also illustrated.

8.3 Comparing theory with experiment

Having analysed this simple model of the cuprate-manganite interface in some detail, we

can now consider what this model has to say about the interfacial magnetic profile and

the orbital reconstruction in the cuprate layer. Experimentally, the occupation of dx2−y2
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(a) Interfacial CuO2 layer
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(b) Interfacial MnO2 layer

Figure 8.8: Charges, ρx
2−y2 (solid line) and ρ3z2−r2 (dashed line), occupying the interfacial

cuprate and manganite layers. In these calculations Γ = 2.5t and ∆ = 0.5t

states and d3z2−r2 states was found to be roughly equal in the interfacial cuprate layer.

We can easily find out if our model agrees with these observations by determining the

charge, ργn, in each orbital, in each layer:

ργn =
Z ∞
−∞

dε
Z dk‖

4π2
f
�ε
t
− µ

t

�
ργn

�ε
t
,k‖

�
, (8.37)

where we have introduced the Fermi-Dirac distribution f(ε − µ), which we evaluate at

zero temperature. The plots in Fig. F.1 shows the results for the occupation of dx2−y2

and d3z2−r2 states in the interfacial cuprate and manganite layers.

At low doping the electrons in the cuprate layer bind to the interface using the two

dimensional x̂2 − ŷ2 orbital, thereby benefitting from the lower potential energy without

losing any hybridisation energy. As the doping is increased electrons start to bind to the

interface using the 3ẑ2− 1 orbital. Because of the narrow bandwidth of the d3z2−r2 states

in the two dimensional cuprate layer, these states are filled faster than the dx2−y2 states

at intermediate energies.

For the experimental system, there are 2/3 eg electrons per site in the bulk manganite,

which corresponds to a chemical potential of µ = −1. From this we can immediately deter-

mine that the occupation numbers in the CuO2 layer are ρx
2−y2

0 ≈ 0.63 and ρ3z2−r2
0 ≈ 0.83.

This corresponds to about 1/3 of the holes occupying the 3ẑ2−1 orbital and 2/3 occupying

the x̂2−y2 orbital, which is not too far off the ratio inferred from XLD measurements[53].

The fraction of Cu+ can also be estimated to be approximately 0.46, which is slightly

larger than the rough approximation of 0.2, determined experimentally. In practice, the

amount of charge in the cuprate layer can be tuned by varying Γ, but the relative occu-
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pation of the two orbitals remains approximately the same. An important observation

from our calculations is that the reduction in charge in the interfacial manganite layer

is very small, at about 0.02e per manganese ion, and the manganite therefore remains

relatively unaffected by the presence of the interface. This validates the assumption that

the manganite is still in the ferromagnetic metallic phase close the interface.

The magnetic moment on each copper site is proportional to the number of holes,

per copper site, in the CuO2 layer; from the double exchange model we find that µCu ≈
−0.54µB: where µB is the Bohr magneton. The experimental magnetic profile exhibits a

magnetic moment on the YBCO side of the interface, which penetrates several layers (≈
20Å) from the interface; a crude estimate of the total magnetic moment is µCu ≈ −2NµB,

which is not unreasonably different from our prediction. However, the double exchange

model, which is based upon the assumption that the magnetic moment is limited to a

single cuprate layer, cannot accommodate the spread of the magnetic moment throughout

multiple cuprate layers.

the magnetic moment per manganese ion in the interfacial MnO2 layer consists of

contributions from the three parallel t2g spins and the itinerant eg spins: for the double

exchange model we find that µMn ≈ 3.64µB, which is very close to the bulk magnetic

moment of 3.66µB. On the LCMO side of the interface, the experimental magnetic profile

exhibits a reduction in the magnetic moment, relative to the bulk value, which penetrates

several layers (≈ 20Å) from the interface. The total reduction is roughly δµMn ≈ 3µB

which is not in accordance with our prediction.

Although we cannot obtain good quantitative agreement with the neutron reflectome-

try experiments, it is nevertheless clear that our model does provide a rationale for there

being antiferromagnetic correlations across the interface. It also demonstrates that the

charge in the interfacial manganite layers is close to the bulk value; the properties of the

manganite should therefore be unaffected by the interface.

8.4 Fermi surfaces at the cuprate-manganite inter-

face

By analysing the analytic properties of the resolvent we found that our model predicted a

rich variety of bound states and resonances in the interfacial cuprate and manganite layers.

The Lorentz broadened spectral weight, evaluated at the Fermi energy, is illustrated in

Fig. 8.9. The plots are almost identical apart from a slight redistribution of spectral

weight, and a small signal from the kx = ky resonance which occurs at different points in

the cuprate and manganite layers. Interestingly, if we were to consider measuring the layer

resolved spectral weight using two dimensional ARPES, then the spectral weight would



CHAPTER 8. MODEL OF A CUPRATE-MANGANITE INTERFACE 175

(a) Interfacial CuO2 layer (b) Interfacial MnO2 layer

Figure 8.9: The Lorentz broadened spectral functions of the interfacial cuprate and manganite
layers, evaluated at the Fermi energy.

decay rapidly when the bound states become degenerate with the three dimensional bulk

states. We could therefore choose to interpret this result as a two dimensional, but

discontinuous, Fermi surface.

Because of the nature of the charge transfer, we would expect the interfacial cuprate

layers to be doped, to varying degrees, with electrons. This would lead to a distinct

change in the Fermi surface topology in each layer, until the bulk properties are recovered

several layers from the interface. The basic picture that we suggest, in cuprate layers

close to the interface, is as follows:

• Far from the interface the bulk properties of YBCO are recovered and the cuprate

layers are optimally doped with holes. The Fermi surface of the hole doped com-

pound is fitted to the t-t′-t′′-J model to agree with high resolution ARPES performed

on untwinned samples.

• Closer to the interface the layers are doped with electrons, bringing them into the

underdoped regime. A contraction of the hole-like Fermi surface would be expected,

with a reduced spectral weight due to the reduction in the number of mobile charge

carriers.

• Next to the interface the Mott insulating parent compound should be recovered, and

therefore the Fermi surface should be absent. There may also be an electron doped

cuprate layer with a hole-like Fermi surface corresponding to that of the square

lattice above half filling.
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• The interfacial cuprate layer is heavily doped with electrons and displays the coher-

ent peaks associated with the bound state in the band gap. These peaks have the

appearance of a disappearing Fermi surface as they interact with the bulk states

emanating form the manganese and decay into the bulk.

• On the manganite side of the interface the three dimensional nature of the electronic

states would give rise to an incoherent background. The weight of the incoherent

background should be largest at the band edges due to the Van-Hove singularities.

We have superimposed these Fermi surfaces in Fig. 8.10 to give a clearer idea of

what we are envisioning. In theory, one could perform ARPES on a thin layer of YBCO

superimposed on LCMO and attempt to observe the superposition of Fermi surfaces in

the interfacial layers. This simple idea would, unfortunately, be extremely difficult to

realise.

The preparation of high quality YBCO samples is complicated by the natural twinning

(domains orthogonal to each other with respect to the CuO chain orientations) of YBCO

crystals, and by the difficulty associated with creating a high quality cleaved surface.

These problems would be even more severe if a high quality surface is required close to

an interface. Reliable ARPES measurements have been performed on YBCO[127], but

the situation is complicated by the presence of an intense peak from a surface state which

dominates over the bulk signal. Putting aside these important issues, we would expect

that for a thin YBCO layer superimposed on LCMO there would be a discernible signal

from the interfacial layers, and an incoherent background from the bulk manganite states.

The strength of the signal from each layer is dictated by the electron escape depth, which

means that the signal from subsequent layers reduces rapidly as a function of the depth

from the YBCO surface. We would therefore expect the signals from each layer to be

superimposed with an appropriate weight.

8.5 Summary

In this chapter we have formulated a simple model of a cuprate-manganite interface. This

model is based on just two parameters: the crystal field splitting ∆/t and the potential

difference Γ/t. The main prediction of this model is that under the condition Γ > t, there

is a significant flow of charge carriers into the interfacial cuprate layer. Then, when ∆ < t,

the double exchange mechanism overcomes the crystal field splitting, leading to a partial

occupation of the 3ẑ2−1 orbital, which is consistent with XAS data. In addition, the spin

polarisation of the charge carriers leads to a small magnetic moment in the cuprate layer,

which is consistent with PNR data. The model also predicts states which are bound to
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Figure 8.10: A schematic of the su-
perposition of Fermi surfaces from
different layers, which may result
from ARPES performed at a cuprate-
manganite interface. The continuous
solid lines represent the Fermi sur-
faces of the hole doped layers at 30%
and 20% hole doping, whilst the dis-
continuous solid lines represent the
coherent states, residing in the band
gaps of the manganite, which are
bound to the interfacial layers. The
shaded regions contain the incoher-
ent background, which is caused by
the three dimensional bulk states em-
anating from the manganite.

the interface and lie in the three dimensional band gap. These states form a distinct, but

discontinuous, two dimensional Fermi surface. We have also indicated that, if we were

able to perform ARPES at the interface, the distribution of charge in the cuprate would

lead to an interesting superposition of Fermi surfaces, although the practical realisation

of this experiment would probably be prohibitively difficult.



Chapter 9

The interface between STO and LAO

The interface between SrTiO3 (STO) and LaAlO3 (LAO) has been subject to several

intriguing experiments which probe the electronic and magnetic properties of the interface

on the nanoscale. As a result, a lot of interest has been generated by the discovery of

a high mobility two dimensional electron gas, magnetism, and superconductivity. These

properties demonstrate that the STO-LAO interface displays exotic properties, which are

unique to the interface, and are not found in either of the bulk materials which are both

non-magnetic and insulating. In addition, it is also possible to control the doping of

the STO by applying electric fields across the interface, so that the STO can be tuned

through phase transitions1. This ability, to control the diverse physical properties of the

STO-LAO interface, clearly illustrates the huge potential of perovskite oxide interfaces in

general.

Both STO and LAO are band insulators and are well understood. However, at the

interface there is a polar discontinuity, and this is thought to cause an electronic recon-

struction. The STO is therefore doped with electrons which partially occupy the titanium

t2g orbitals, leading to to a variety of different phases.

In this chapter we give a very brief introduction to the titanates and the three-fold

degeneracy of the t2g orbitals. It is the two dimensional nature of the electronic orbitals,

and the strong local coulomb repulsion between electrons occupying the same site, which

are the most important considerations at the interface. We also examine the chemical

and electronic properties of the interface, obtained from EELS measurements, and we

look at the experimental evidence for a two dimensional electron gas, superconductivity,

and magnetism.

In the final chapter we introduce a simple model of the STO-LAO interface. This

model includes the effects of electronic screening, which stabilises the interfacial electronic

1This property can been exploited in field effect devices. In these devices charge is forced into the
interfacial STO layers, from the LAO, by varying the applied field.
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reconstruction, and the two dimensional orbital physics, which governs the electronic

motion. To solve this model, and therefore obtain information about the nature of the

electronic reconstruction at the interface, we again utilise impurity theory. We find that

our model strongly supports the experimental evidence for a two dimensional electron

gas, and predicts a threshold for photoemission for two electronic states bound to the

interface.

9.1 The titanates

At the STO-LAO interface the interfacial STO layers are doped with electrons and the

resulting electronic interactions can be understood by considering the titanates. The ti-

tanates are a class of light transition metal oxide which forms in the perovskite crystal

structure R1−xAxTiO3, where R is a trivalent cation, A is a divalent cation, and conse-

quentially Ti is in the mixed valence state Ti3+/Ti4+. The parent compound is a Mott-

Hubbard insulator which passes through a metal-insulator transition as holes are added

through substition of R cations with A cations[128]. In the titanates the orbital degree

of freedom, which has a three-fold degeneracy, is responsible for a variety of anomalous

electrical, magnetic and optical properties.

In the series RTiO3, as the radius of R decreases the octahedra rotate, bending the

Ti-O-Ti bond and resulting in a smaller hopping matrix element t. This effects the

properties of the respective compounds; the ground state of YTiO3 is a ferromagnet

with a Curie temperature TC = 30K, whilst for LaTiO3 the ground state is the G-type

antiferromagnetic order with a Neél temperature TN = 145K.

In the titanates the electronic motion, which is essentially two dimensional, involves the

three-fold degenerate t2g states and the oxygen 2p states. Due to symmetry considerations,

which are illustrated in Fig. 9.1, there is no hybridisation between the t2g orbitals and

the 2pσ orbitals. Therefore, if we consider the dxy orbital, then the hybridisation along

the x-direction is with the py orbital, and the hybridisation along the y-direction is with

the px orbital. The transfer matrix element involves tpdπ, which is significantly smaller

than tpdσ. Along the z-axis there is no hybridisation between dxy and pz, and the only

non-zero hybridisation involves higher energy oxygen states which can safely be ignored.

The hopping between the t2g and the oxygen 2p orbitals is illustrated in Fig. 9.1. The

Hamiltonian for the titanates may be written in the general form

H = εd
X
iγσ

d†iγσdiγσ +
X
〈ij〉γγ′σ

�
tγγ
′

ij d
†
iγσdjγ′σ + h.c.

�
+Hel−el, (9.1)

where the electronic correlations are represented by Hel−el. These correlations lead to a
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orbitals
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metry of the orbitals the dxy orbital does not hy-
bridise with any of the 2pσ orbitals in the x-y
plane, or along the z-axis.

+

-

+
-

+
-

++
-
-

+

-

++
-
-

-
+

+-

(b) The hybridisation between the t2g
orbitals

and the oxygen 2pπ orbitals. The dxy orbital
hybridises with both the 2pπ orbitals in the x-
y plane, but, because of symmetry, does not hy-
bridise with the 2pπ orbitals along the z-axis.

Figure 9.1: Hybridisation in the titanates.

complicated set of superexchange interactions[129] which, in analogy to the manganites,

encourage orbitally ordered states. In reality, the degeneracy of the t2g states is removed

by both the spin-orbit coupling, and a weak Jahn-Teller distortion. The size of the energy

level splitting is believed to be larger than the energy gained from quantum fluctuations

of the orbital states, which suggests that the ground state should be orbitally ordered,

rather than an orbital liquid. Orbital order has indeed been observed using resonant x-ray

spectroscopy (RXS)[130] and polarised neutron scattering[131].

9.2 LaAlO3 and SrTiO3

LaAlO3 (La3+Al3+O2−
3 ) is a conventional band insulator with a gap of about 5.6eV be-

tween the filled O 2p bands hybridised with Al p bands and and unfilled Al 3s, 3p and

La 5d conduction bands. SrTiO3 (Sr2+Ti4+O2−
3 ) is also a band insulator with a band gap

of 3.2eV between filled O 2p bands and unfilled Ti 3d conduction bands[132]. The lattice

constant for LaAlO3 is estimated to be a = 3.79Å, whilst for SrTiO3 it is estimated to be

a = 3.92Å, which implies a lattice parameter mismatch of about 4%.

Despite the fact that SrTiO3 is a paraelectric, the crystal lattice of SrTiO3 makes it

susceptible to a ferroelectric transition. In fact, the transition can be realised under a

variety of circumstances: under tensile or compressive strain[133, 134], under an exter-

nal electric field[135], at a surface[136], or with isotope substitution[137]. In addition,

upon doping with oxygen vacancies, SrTiO3 becomes a high mobility metal, or even a
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Figure 9.2: From [138](left) The
ideal n-type STO-LAO interface.
(middle) The charge distribution
of the unreconstructed interface
leads to a diverging electric po-
tential. (right) Above a thresh-
old thickness the charge distribu-
tion reconstructs, removing the
diverging potential. The diver-
gence can be removed by trans-
ferring half the charge from the
surface to the interfacial TiO2

layer.

superconductor at low temperatures.

9.3 The LaAlO3-SrTiO3 interface

LAO consists of alternating layers of (LaO)−1, which is negatively charged, and (AlO2)+1,

which is positively charged. The situation in STO is quite different, with alternating

layers of SrO and TiO2, both of which are charge neutral. If, when considering the STO-

LAO interface, we treat the individual layers as flat sheets of charge, then the result is

a polar catastrophe[138]: a divergent electric potential on the LAO side of the interface,

as illustrated in Fig. 9.2. This situation, which is a general feature of a polar interface,

quickly becomes energetically unfavourable as the number of LAO layers increases. To

avoid a polar catastrophe there must be a redistribution of charge to remove the divergence

in the electric potential. In a conventional semiconductor this redistribution is achieved

through an atomic reconstruction, which changes the interface stoichiometry and usually

leads to interface roughening and diffusion. However, in perovskite oxide interfaces, it is

possible to achieve a suitable redistribution of charge with an electronic reconstruction: in

this case the necessary charge is accommodated by the mixed valence states, such as Ti3+

and Ti4+, of the transition metal ions. Whether the redistribution of charge is actually

achieved via an electronic reconstruction, as opposed to an atomic reconstruction, is

thought to depend on the sample preparation. In non-annealed samples oxygen vacancies

diffuse across the interface, resulting in very high mobilities in the interfacial layers. In

annealed samples, without the oxygen vacancies, the charge transfer is believed to occur

above a threshold thickness of the LAO layer. This is consistent with an electronic

reconstruction, whereby the diverging electric potential eventually forces the doping of

the STO. The mobilities achieved in annealed samples are significantly less impressive

than in the non-annealed samples.
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Figure 9.3: From [139]. EELS performed at the STO-LAO interface. (a) AlO2/LaO/TiO2 inter-
face showing the fraction of Ti3+. (b) AlO2/SrO/TiO2 interface showing the fraction of Ti3+.
(c) AlO2/LaO/TiO2 interface showing the fraction of oxygen vacancies. (d) AlO2/SrO/TiO2

interface showing the fraction of oxygen vacancies.

The nature of the STO-LAO interface depends on the terminating layer of STO; the

interface is expected to be p-type, when the terminating layer is SrO, or n-type, when the

terminating layer is TiO2. The p-type interface, which is believed to be dominated by

the oxygen vacancies arising from an atomic reconstruction, is an insulator. The n-type

interface is reported to be conducting[49], with electrons residing in the Ti dominated

3d conduction band. Atomic resolution EELS measurements[139] on annealed samples

show the chemical compositions of the n-type and p-type interfaces. The fraction of Ti3+

and the fraction of oxygen vacancies are also determined, by comparing with appropriate

reference materials. Significantly, the measurements reveal a significant density of Ti3+

states, confined to within a few nanometres of the n-type interface, but a relatively low

density of oxygen vacancies. This can be contrasted with the p-type interface which shows

only a small fraction of Ti3+, but has a larger fraction of oxygen vacancies. The properties

of the n-type interface are therefore consistent with an electronic reconstruction.
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9.3.1 The two dimensional electron gas

The resistance profile of the n-type STO-LAO interface has been determined[140] using a

conducting tip atomic force electron microscope (CT-AFM). In samples prepared without

annealing (Fig. 9.4(a)) the resistance profile consists of two parts: the bulk STO substrate,

which is conducting due to the high diffusion coefficient of oxygen vacancies which extend

into the bulk, and the interface, which has much lower resistance than the bulk. The non-

annealed samples are estimated to have a remarkably high sheet carrier density nsheet = 3×
1017 cm−2 at room temperature. In annealed samples (Fig. 9.4(b)) the oxygen vacancies

are eliminated and the result is a high mobility electron gas confined to within about

7nm of the interface. The sheet carrier density of the annealed sample is substantially

reduced, and estimated to be nsheet = 5×1014 cm−2 which is consistent with an electronic

reconstruction (nsheet = 3× 1014 cm−2).

9.3.2 Magnetism at the interface

A large negative magnetoresistance has been observed at the STO-LAO interface[51], at

temperatures below 1K. It has been speculated that the negative magnetoresistance is

an artefact of the Kondo effect [141] arising from interactions between itinerant electrons

and localised magnetic moments; as a consequence of the finite Zeeman splitting between

spin up and spin down energy levels, under an applied field, the spin-flip scattering with

localised moments is suppressed at the Fermi level. The large negative magnetoresistance

can therefore be attributed to an enhancement of the coherent motion of electrons due to

the ferromagnetic alignment of the spins.

It has been pointed out that, to account for the large magnetoresistance, the Kondo

effect would require a large fraction of localised magnetic moments: approximately 10%,

as observed in interfaces doped with magnetic ions such as Cr3+[142]. These moments are

thought to arise as a result of the charge transfer associated with the polar discontinuity.

However, this result is still unexpected since electrons doped into STO typically occupy

hybridised spd bands, rather than localised 3d orbitals with a spin-1/2 localised moment.

Theoretical calculations[132] predict that the doped electrons occupy 3d dominated con-

duction bands and make the interfacial TiO2 layer a ferromagnetic metal.

The mobility of STO-LAO interfaces delta-doped with magnetic cations such as Mn

and Co has also been reported[143]. Interestingly, the insertion of a single 2% Mn doped

unit cell of STO (STO/Mn-STO/LAO) radically alters the carrier density and mobility

of charge carriers. This observation not only suggests that the electron gas is confined to

within about one unit cell of the interface, but also indicates that the insertion of a small

number of magnetic impurities can drastically alter the scattering between electrons and
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(a) Non-annealed interface[140] (a) Temperature dependence of the sheet resistance Rsheet. (b) CT-
AFM resistance mapping around the interface. (c) Schematic illustration of the sample and CT-AFM
scans. (d) CT-AFM scan ∼ 500µm away from the interface.

(b) Annealed interface[140] (a) Temperature dependence of the sheet resistance Rsheet. (b) CT-AFM
resistance mapping around the interface. (c) High resolution CT-AFM scan. (d) Resistance profile
across the interface.

Figure 9.4: Resistance profiles of the STO-LAO interface.

localised moments in the interfacial layers.

9.3.3 Electronic phase diagram of the interface

The superconductivity observed at the STO-LAO interface[145] indicates that the ground

state is sensitive to small changes in the carrier concentration. This property has since

been utilised in field effect devices[144], constructed from SrTiO3 and LaAlO3, for which

the concentration of charge carriers is modulated by applying an electric field. The re-

sulting phase diagram is illustrated in Fig. 9.5.

As the gate voltage is varied between -300V and 320V the system transits from an

insulating ground state to a superconducting ground state, with a maximum critical tem-
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Figure 9.5: Electronic phase diagram of
the STO-LAO interface[144]. The criti-
cal temperature TBKT is plotted against
gate voltage, revealing the supercon-
ducting region of the phase diagram.
The solid line approaches the quantum
critical point using the scaling relation
TBKT ∝ (V − Vc)zν , with zν = 2/3.
Also plotted is the normal sheet resis-
tance, measured at 400K, as a function
of gate voltage.

perature of ∼310mK. Close to the quantum critical point the dependence of the transition

temperature on the applied field, which is itself proportional to the carrier density, is con-

sistent with a Kosterlitz-Thouless [146] transition for a thin film superconductor.



Chapter 10

Model of the interface between STO

and LAO

In this chapter we investigate the charge bound to an interface between SrTiO3 and

LaAlO3. We employ an elementary model which incorporates just two pieces of physics:

We include the charging energy of the surface, which compensates the long range coulomb

interactions caused by the polar discontinuity, and we include the three t2g orbitals. The

strong local Coulomb interactions are omitted, in spite of their obvious importance, but

we find that the model still displays rich behaviour which must be considered when more

sophisticated models are developed.

We find three different types of behaviour, depending on the doping of the t2g orbitals.

At very low doping we find a phase where only the orbital which delocalises in the plane

parallel to the interface is occupied. The state extends exponentially into the bulk and

the chemical potential tends to the bottom of the band. At intermediate doping we find

a phase in which all of the orbitals are occupied and the previously occupied orbitals

become trapped, next to the interface, in a finite number of layers. This coincides with

the opening of a gap between the energy of the interface electrons and the energy of the

bulk states. Finally, at higher doping the gap closes and all orbitals extend exponentially

into the bulk.

10.1 Modelling the interface

The early first row transition metal oxides are dominated by t2g electrons which occupy the

x̂ŷ, ŷẑ and ẑx̂ orbitals. These states have the lowest crystal-field energy and are therefore

the only states which justify consideration. The electrons move via the hybridisation

with the intermediate oxygen ions, but have only a weak effective hopping energy of less

than 0.1eV. The orbitals are essentially two dimensional and the hopping is therefore very

186
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anisotropic, with electrons of each type delocalising in an appropriate two dimensional

plane of the crystal. This property has some consequences at the interface; the x̂ŷ orbitals

move in the plane parallel to the interface and do not notice it, whereas the ŷẑ and ẑx̂

orbitals move in planes perpendicular to the interface, and crash into it.

10.1.1 Screening

The classical coulomb problem amounts to solving Poisson’s equation:

d2

dx2

∂E

∂ρ(x)
= ρ(x). (10.1)

The energy, E(ρ(x)), is a local density approximation for the energy of the electrons as a

function of their density, ρ(x):

E =
Z
ρ(x)φ(x)dx. (10.2)

If there is a small perturbation away from an otherwise uniform density, then the

problem linearises and we find an exponential screening length. However, at an interface

the energy dependence is dictated by the behaviour of E(ρ) at the bottom of the energy

band. At the bottom of the band, in d dimensions, we may expand the energy as

εk =
dX
i=1

αik
2
i + · · · (10.3)

The corresponding charge density is

ρ(ε) ≈
Z dk

(2π)d
δ

 
ε−

dX
i=1

αik
2
i

!
=

dY
i=1

α
−1/2
i

Z dq

(2π)d
δ(ε− q2)

∝
Z
qd−1dqδ(ε− q2) ∝ ε

d
2
−1. (10.4)

We therefore find that

E(ρ) ∼ ρ1+ 2
d ⇒ ∂E

∂ρ
∼ ρ

2
d . (10.5)

In two dimensions the screening leads to an exponential decay of the charge density,

whilst in three dimensions the screening is far less effective, such that ρ(x) ∼ 1/x6.

In the STO we employ two dimensional orbitals and would therefore expect to find an

exponential decay of the charge density on the STO side of the interface. However, we

find that the inequivalent screening from electrons in the different orbitals results in a

charge distribution which differs from this simple result.
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10.1.2 Mean field Hamiltonian for the interface

We place the interface perpendicular to the z-axis and restrict attention to the t2g orbitals.

The largest electronic hopping terms are between equivalent orbitals, so we include only

the diagonal hopping elements in our model. The local coulomb interactions between

electrons occupying the same atom are the largest energies, and they must be expected

to lead to strong coupling physics. In this investigation we ignore the local coulomb

interactions, but deal with the hopping and charging actively. We employ the following

tight-binding Hamiltonian for the electronic hopping:

H0 = −t
X
〈jj′〉xσ

x†jσxj′σ − t
X
〈jj′〉yσ

y†jσyj′σ − t
X
〈jj′〉zσ

z†jσzj′σ, (10.6)

where xjσ annihilates a dyz electron with spin σ, yjσ annihilates a dzx electron with spin

σ and zjσ annihilates a dxy electron with spin σ. The notation 〈jj′〉x denotes nearest

neighbours perpendicular to the x-axis, 〈jj′〉y denotes nearest neighbours perpendicular

to the y-axis and 〈jj′〉z denotes nearest neighbours perpendicular to the z-axis. The z

electrons are constrained to lie in planes parallel to the interface and are oblivious to it,

whilst y and z electrons lose hybridisation at the surface and consequentially avoid it to

some extent, treating it as a potential barrier. However, if their is sufficient charging to

compensate for the loss of hybridisation, electrons will be bound to the interface.

We assume that the system retains both spin and charge symmetry and consequentially

that the most important variation is in the charge densities per layer. Therefore

ρ‖n = 2〈z†jnσzjnσ〉 ρ⊥n = 2〈x†jnσxjnσ〉 = 2〈y†jnσyjnσ〉, (10.7)

where n labels the layer and jn is any site in the n-th layer. The total density is therefore

ρn = ρ‖n + 2ρ⊥n . (10.8)

To model the long range coulomb interactions we adopt a capacitor-like view of layers of

uniformly distributed charge. The polar nature of the LAO side of the interface can be

accommodated with a single residual positive charge ρ0, which lowers the potential for the

charge carriers on the STO side of the interface. Using this model for the polar interface,

which is illustrated in Fig. 10.1, the charging energy per atom in a layer is found to be

E1 =
∆

2

 ∞X
n=1

ρ0ρn(n− λ)−
∞X
n=1

ρn

∞X
m=n+1

ρm(m− n)

!
, (10.9)

where ∆ sets the scale for the coulomb interaction, ρ0 is the positive charge density in the

LaAlO3 and λ is the effective position of the positive charge. The appropriate value for ∆
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STOLAO
Figure 10.1: Model of an electronic re-
construction at the polar STO-LAO in-
terface. The positive charge, ρ0, from
the LAO is screened by the exponentially
decaying electronic charges, ρ1 · · ·ρN , in
the TiO2 layers of the STO. The result,
is a lowering of the potentials in the
TiO2 layers by ∆1 · · ·∆N . In the limit
N → ∞, the charge, ρN , tends to zero,
whilst the potential, φ, tends to the bulk
value.

is subtle and can be chosen to include the screening effects of lattice polarisation, which

are known to be quite large[147], by incorporating an effective dielectric constant[148].

The Coulomb energy will be treated in mean field theory. We write the energy as a

functional of the charge densities, E ≡ E(ρn), and minimise the energy with a unitary

transformation. The effective mean field Hamiltonian is then

Hmf =
X
n

∂E1

∂ρn
ρ̂n + E1 −

X
n

∂E1

∂ρn
ρn. (10.10)

Each layer feels an effective potential of the form

∂E1

∂ρn
=

∆

2

 
ρ0(n− λ)−

∞X
m=n+1

ρm(m− n)−
n−1X
m=1

ρm(n−m)

!
. (10.11)

In the limit that the number of layers becomes infinite, the potential is only physical if

ρ0 =
∞X
m=1

ρm, (10.12)

so that the charge bound to the interface exactly compensates the associated positive

trapping charge. Defining

∆n = ∆
∞X

m=n+1

ρm(m− n) (10.13)

we can then rewrite the effective potential as

∂E1

∂ρn
= −∆

2
λρ0 +

∆0

2
−∆n. (10.14)

Finally, we find that the Hamiltonian is
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Hmf = −∆

2
λρ2

0 +
1

2
∆0ρ0 +

1

2

∞X
n=1

∆nρn +Heff , (10.15)

where

Heff = H0 −
∞X
n=1

∆n

X
jnσ

�
x†jnσxjnσ + y†jnσyjnσ + z†jnσzjnσ

�
. (10.16)

The above Hamiltonian must be solved, subject to the constraint that the total charge

in a layer perpendicular to the interface is ρ0, self consistently for all layer densities ρn.

There are essentially two parameters in the model: the relative strength of the coulomb

interaction, ∆
t
, and ρ0, the charge density. In this investigation we study the phase

diagram over both of these quantities.

10.1.3 The z-electrons

The analysis of the z-electrons is straightforward, since each layer has its own local poten-

tial. The dispersion of the z-electrons therefore corresponds to that of the square lattice,

so we simply fill up all of the states in each layer, up to a global chemical potential. The

formulae for the occupation number and the total energy for the square lattice may be

written in the form

N2(ε) = 1− 2

π

Z 1

0

dx

s
ln

�
1 + s

1− [1− ε
4
] s

2

2
+ s

�
ε
4

+ [1− ε
4
]2 s

2

4

� 1
2

�
(10.17)

E2(ε) = −16

π

Z 1

0

dx

s2

�
1−

�
ε

4
+ [1− ε

4
]2
s2

4

� 1
2

�
+

16

π

Z 1

0

dx

s2

�
1

s
− s

2

�
ln

�
1 + s

1− [1− ε
4
] s

2

2
+ s

�
ε
4

+ [1− ε
4
]2 s

2

4

� 1
2

�
, (10.18)

with

s = sin
�πx

2

�
. (10.19)

The occupation number and the total energy are depicted in Fig. 10.2. These formulae

are valid for ε ≥ 0, but for negative energies we use the symmetries N2(−ε) = 1
2
−N2(ε)

and E2(−ε) = E2(ε). The charge on each layer is

ρ‖n = 2N2

�
µ

t
+

∆n

t

�
(10.20)
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and the energy from a single plane is

ε‖n = 2
�
tE2

�
µ

t
+

∆n

t

�
+ ∆nN2

�
µ

t
+

∆n

t

��
. (10.21)
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(a) The occupation number for the square lattice.
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(b) The total energy for all of the electronic states
in the square lattice.

Figure 10.2: Occupation number and total energy for the square lattice.

10.1.4 The x- and y-electrons

The calculation for the number of x and y electrons, moving in the planes perpendicular

to the interface, is more involved. The symmetry remains parallel to the interface and

can be incorporated using a one dimensional dispersion. The number and total energy

formulae for the one dimensional chain are

N1(ε) = 1− 1

π
cos−1

� ε
2

�
(10.22)

E1(ε) = − 1

π
[4− ε2]

1
2 . (10.23)

The occupation number and the total energy are depicted in Fig. 10.3. These formulae

are valid for ε ≥ 0, but for negative energies we use the symmetries N1(−ε) = 1
2
−N1(ε)

and E1(−ε) = E1(ε).

The symmetry perpendicular to the interface is broken, by both the interface and by

the lowering of the effective potentials in each layer by ∆n, and bound states are created

close to the interface. To obtain the energies of these bound states we first require the

resolvent for the semi-infinite plane. This is similar to the resolvent for the semi-infinite
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(a) The occupation number for the one dimen-
sional chain.
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(b) The total energy for all of the electronic states
in the one dimensional chain.

Figure 10.3: Occupation number and total energy for the one dimensional chain.

chain, which was derived in chapter 6, but with the dependence on the momentum parallel

to the interface, k‖, implicitly included. We find

G0(z̃)nn′ =
X |n−n

′| −Xn+n′

X − 1
X

, (10.24)

where we have suppressed the label k‖ to simplify the notation. In analogy with the one

dimensional case, X is given by

X = − z̃
2

+

È
|z̃2 − 4|

2
. (10.25)

The energy is measured in units of t and, because of the electronic motion parallel to the

interface, is also renormalised to z̃ = z − 2 cos(k‖). The positive charge on the LAO side

of the interface lowers the potential in the n-th layer by ∆n. We can model this effect by

employing impurity theory, which can be used to place a unique impurity on each layer

to lower the potential by the appropriate amount. The lowering of the potentials also

leads to electronic states which are bound to the interface, and impurity theory will also

be used to investigate these states.

We begin by considering N TiO2 layers, next to the interface, which are effected by the

positive charge in the LAO. To calculate the electronic properties around the interface we

only require the projected resolvent, which will provide us with the local charge and orbital

character of each of the N layers. The projected resolvent for the modified system, i.e the

semi-infinite plane in the presence of the impurity potential H1, is given (from chapter 6)

by



CHAPTER 10. MODEL OF THE INTERFACE BETWEEN STO AND LAO 193

GP(z̃) = [(GP0 (z̃))−1 −H1]−1. (10.26)

The impurity potential lowers the potential in each layer by the appropriate amount:

H1 =

0BBBBBBBBB@
−∆1 0 0 · · · 0 0

0 −∆2 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −∆N−1 0

0 0 0 · · · 0 −∆N

1CCCCCCCCCA . (10.27)

To determine the projected resolvent for the complete system, using Eq. 10.26, we first

require the projected resolvent for the reference system, GP0 . When we invert this, we

obtain

(GP0 (z̃))−1 =

0BBBBBBBBB@
z̃ 1 0 · · · 0 0

1 z̃ 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · z̃ 1

0 0 0 · · · 1 1
2

�
z̃ +
√
z̃2 − 4

�
1CCCCCCCCCA , (10.28)

where the energy is measured in units of t. Except for the last term, this resolvent is of

a simple form that corresponds to an open chain consisting of N sites. The fact that the

N-th layer is connected to the bulk simply means that the last term is changed from z̃

to 1
2

�
z̃ +
√
z̃2 − 4

�
, and when a large number of layers are included this change obviously

becomes insignificant. The projected resolvent for the modified system, in the presence

of the impurity, is

GP(z̃) =

0BBBBBBBBB@
z̃ + ∆1 1 0 · · · 0 0

1 z̃ + ∆2 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · z̃ + ∆N−1 1

0 0 0 · · · 1 1
2

�
z̃ +
√
z̃2 − 4

�
+ ∆N

1CCCCCCCCCA
−1

. (10.29)

To obtain GP(z̃) we need to invert this tri-diagonal matrix. Fortunately, because of the

simple form of this matrix, we can conveniently perform the inversion using the formula1

GP(z̃) =
Adj((GP0 (z̃))−1 −H1)

Det||(GP0 (z̃))−1 −H1||
. (10.30)

1We are simply utilising the general formula A−1 = Adj(A)/Det||A||.
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We can use this formula to calculate the diagonal matrix elements, GP(z̃)nn, which will

provide the necessary information necessary for calculating the charge and orbital char-

acter in each of the N layers. We obtain

GP(z̃)nn =
1

z̃ + ∆n − sn − rn
, (10.31)

where we have introduced the parameters sn and rn. The values of these parameters for

a particular n are determined using following recurrence relations

sn(z̃) = z̃ + ∆N −
1

sn+1(z̃)
with sN(z̃) =

1

2

�
z̃ +
√
z̃2 − 4

�
+ ∆N (10.32)

rn(z̃) = z̃ + ∆N −
1

rn−1(z̃)
with r1(z̃) = z̃ + ∆1. (10.33)

So sn is determined iteratively, starting from sN , whilst rn is determined iteratively,

starting from r1. Incorporating an arbitrarily large number of impurity potentials using

this method is straightforward and we can therefore approach the limit N → ∞. The

energies, E, of the bound states correspond to the poles of GP(z̃), which appear whenever

Det||(GP0 (E))−1 −H1|| = s1s2 · · · sN = 0. (10.34)

Equivalently, but more conveniently, we can instead solve

s1(E) = 0. (10.35)

Once we have determined the energies, we then need to find the number of x- and y-

electrons occupying each layer. The resulting charge, ρ⊥n , can determined from the diag-

onal components of the resolvent. The charge in the n-th layer is

ρ⊥n =
Z π

−π

dk‖
2π

Z ∞
−∞

dεf
�ε
t
− µ

t

�
ρn

�ε
t
− 2 cos(k‖)

�
=
Z π

−π

dk‖
2π

H
�
E

t
+ 2 cos(k‖)−

µ

t

��
Res
ε
t
=E
GPnn

�ε
t

��
= 2N1

�
µ

t
− E

t

�
1

dsn
dz̃

�
E
t

�
+ drn

dz̃

�
E
t

�
− 1

, (10.36)

where f(ε − µ) is the Fermi-Dirac distribution, which is evaluated at zero temperature,

and E is the energy of the state bound to the interface. In principle there could be several

poles in the resolvent, each corresponding to a bound state, but we find that only one

such state exists in our calculations. If we sum up the contributions from all of the layers,
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taking the limit N →∞, then the total energy of the ŷẑ and ẑx̂ orbitals combined is

ε⊥ = 4
�
tE1

�
µ

t
− E

t

�
+ EN1

�
µ

t
− E

t

��
. (10.37)

10.1.5 Self consistent determination of the charge distribution

To determine the charge distribution on the STO side of the interface, we must determine

the self consistent charge distribution of the x-, y- and z-electrons, subject to the constraint

that the total charge is conserved. In practice we must therefore self consistently solve

Eqs. 10.20, 10.36, 10.35 and 10.13. The chemical potential is tuned so that the total

charge, given by Eq. 10.12, is conserved. We then determine µ, E, ρ‖n and ρ⊥n , as ρ0 and
∆
t

are allowed to vary. We place all of the residual charge on the layer at N + 1 and use

the approximation that there is zero charge on layers farther from the interface. We self

consistently solve the charge distribution for a few hundred layers, which ensures that the

approximation is reasonable.

The chemical potential is plotted against the total charge, for ∆ = 0.5t, in Fig.

10.4(a). For a wide range of doping a gap opens between the energy of the electrons at

the interface and the chemical potential of the bulk. At both low and high doping the

chemical potential reduces to the bulk value of -4t. In the low doping region there are only

z-electrons which exhibit the classical exponential decay into the bulk, as illustrated in

Fig. 10.4(b). Physically the electrons provide a balance between the coulombic attraction

to the interface and Pauli exclusion which repels them from the higher density regions.

As the doping is increased a transition occurs; when the gain in potential energy , ∆n, is

sufficient to compensate for the loss of hybridisation energy, then a bound state is formed

at the interface (Fig. 10.4(c)). Initially, this bound state is much longer range than the

cloud of z-electrons,and therefore replaces the z-electrons at long distances. As the doping

is increased further the number of z-electrons in more distant layers falls rapidly to zero,

and the z-electrons are then confined to a finite number of layers (Fig. 10.4(d)). Finally,

a second transition occurs at high doping: the x- and y-electrons are no longer extended

enough to screen the z-electrons, which again decay exponentially into the bulk (Fig.

10.4(e)). The complete dependence of the charge in each layer, plotted as a function of

total charge, ρ0, is illustrated in Fig. 10.5.

10.2 Relevance to experimental systems

To make deductions about the experimental systems we choose the parameters to be

ρ0 = 0.5 and ∆ = 20t. The charge distribution is illustrated in Fig. 10.6; we find that

the x- and y-electrons hold in place a single layer of z-electrons! From the electronic
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(a) The chemical potential µ plotted against the
total charge ρ0, for ∆ = 5t.
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Figure 10.4: Electronic transition at the STO-LAO interface.
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reconstruction there are approximately 0.25 electrons, per titanium atom, in the x̂ŷ or-

bitals, whilst the remaining 0.25 electrons are found to occupy the ŷẑ and ẑx̂ orbitals.

The sheet conductivity depends solely on the z-electrons, and our results would therefore

be consistent with a two dimensional electron gas, confined to within one unit cell of the

interface. Interestingly, density functional theory calculations have also revealed a similar

feature[149].

Also of possible relevance to experiments is the intriguing region where the chemical

potential drops below the energy of the bulk states; electrons are bound to the interface by

a finite energy, which amounts to the analogue of a work function: it costs a finite amount

of energy to release these electrons into the bulk, and there should be a corresponding

threshold for photoemission.

With regards to the magnetism, the fact that U � t would lead us to expect itinerant

magnetism close to the interface. We are therefore unable to make deductions about

the effect of electronic correlations on the conductivity of the interfacial layer, and an

investigation of these effects would require the inclusion of electronic correlation terms.

Such models have been used to investigate similar polar interfaces, and yield a variety of

magnetic and orbitally ordered phases[150, 148].

10.3 Summary

We have self-consistently determined the effects of the competition between the coulomb

attraction to the STO-LAO interface, and the Pauli exclusion of electrons from high

density regions. By explicitly incorporating the planar t2g orbitals and the braking of

translational symmetry caused by the interface, we have captured the interaction between
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Figure 10.6: When ρ0 = 0.5 and ∆ = 20t the z-electrons are confined to a single interfacial
layer, whilst the x- and y-electrons decay exponentially into the bulk.

the bound states of x- and y-electrons and the interfacial z-electrons. We find that the x-

and y-electrons screen the residual charge at longer distances, whilst the z-electrons are

confined to the interfacial layer and account for half of the total transferred charge. This

is particularly interesting because it suggests that conductivity measurements would be

probing a single layer of electrons in the x̂ŷ orbitals.



Chapter 11

Conclusions

In this thesis we have performed detailed investigations of two different topics: neutron

Compton scattering from hydrogen and Perovskite oxide interfaces.

In part one of this thesis we have investigated the anomalous measurements of the

hydrogen cross section: which were obtained with the VESUVIO neutron spectrometer,

at the ISIS pulsed neutron source, in neutron Compton scattering experiments. We have

briefly reviewed some of the possible explanations for these anomalous measurements,

including the main theoretical and experimental issues surrounding the results.

In our attempt to explain the anomalous measurements we have performed a focused

theoretical investigation: to determine whether electronic excitation could be responsible

for the unexpected results. To gain a detailed understanding of the mechanisms which

facilitate electronic excitation, in neutron-nucleus collisions, the excitation spectra have

been calculated for several simple systems. We have examined separable systems, which

are straightforward to understand because analytic solutions are readily obtainable. The

response function of the four body problem, which is intended to be analogous to the H2

molecule, is an original result that clearly demonstrates the convolution of probabilities

occurring in separable systems. This system also demonstrates the weakness of the CMR

effect at realistic energy transfers. For the hydrogen atom, the probability that the elec-

tron remains in its ground state, at energy transfers of 100eV, is found to be less than

one percent; this is in agreement with previous results. The calculation of the probabili-

ties associated with electronic dissociation, in a high energy neutron-nucleus collision, is

an original result. However, to excite these high lying modes requires incident neutrons

with energies far in excess of those which are relevant to the experiments on VESUVIO.

Finally, we have investigated the non-adiabatic effects in H+
2 . These effects have been

studied previously, but our approach is differentiated by the fact that we employ a non-

perturbative method to obtain the molecular wavefunctions. We have carefully extracted

the translational and rotational degrees of freedom from the shape coordinates, so that we
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could attempt accurate numerical solutions. We found that the adiabatic approximation

is reliable, at the energies of the experiments, and we also find that the non-adiabatic

effects, which facilitate electronic excitation during nuclear dissociation, are very small.

From this investigation we conclude that electronic excitations are very unlikely to be

responsible for the anomalous experimental results. At present, there are no other theo-

retical arguments that offer a satisfactory explanation for the results and an alternative

line of investigation may be required. There are still experimental issues which need to be

resolved and it may, therefore, be important to consider the limitations of the experiment

when acquiring data at large scattering angles.

In the second part of this thesis we have looked at two Perovskite oxide interfaces: the

interface between the high temperature superconductor YBa2Ca3O7 and ferromagnetic

La2/3Ca1/3MnO3, and the interface between the band insulators LaAlO3 and SrTiO3. We

have used impurity theory to construct simple models of these interfaces.

We have carefully examined two particularly intriguing experiments performed on the

cuprate-manganite interface. Using the knowledge gained from these experiments we

have proposed an explanation for the orbital reconstruction and the magnetic moment

observed in the interfacial layers, and we have constructed a simple model to illustrate

the consequences of our theory. Using our model we predict a sizeable orbital recon-

struction, which is in reasonable agreement with experiment, and a magnetic moment in

the interfacial cuprate layer, which is comparable but slightly less than would naively be

inferred from experiment. Whilst studying our model of the cuprate-manganite interface

we also discovered states which bind to the interface and reside in the gap between the

two bulk manganite bands. These states become degenerate with the bulk bands to form

resonances, which gives the appearance of a discontinuous two dimensional Fermi surface;

we have indicated how this distinctive feature might show up in ARPES performed at the

interface.

Finally, we have looked at the novel properties of the interface between LaAlO3 and

SrTiO3, paying particular attention to the two dimensional electron gas which is confined

to within a few atomic layers of the interface. This state is believed to result from the

avoidance of the polar catastrophe via a transfer of charge across the interface. We have

constructed a simple model of the charging phenomena at the interface, which we have self

consistently solved for the charge distribution in the titanate layers. Into our model, we

have incorporated the two dimensional orbital physics of the titanates, and we have found

that the model displays interesting physics: at low doping the electrons move exclusively

in the plane parallel to the interface; for intermediate doping the electrons moving parallel

to the interface screen the residual charge at short distances, and are therefore trapped in

a finite number of layers, whilst the charges moving perpendicular to the interface screen
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the charge at longer distances; at high doping the electrons moving parallel to the interface

again screen the charge at longer distances. The STO-LAO interface corresponds to the

case of intermediate doping and, as a result, we find that the electrons moving parallel to

the interface are trapped in a finite number of layers. We have therefore shown that the

effect of charging at the interface is to reduce the width of the conducting region at the

interface. This is consistent with the experiments that reveal a narrow two dimensional

electron gas at the interface.

The effects of the local coulomb interactions between electrons are not considered in

our model oft the STO-LAO interface, and we would expect these to lead to interesting

magnetic properties. To investigate these properties would require a more complicated

model which incorporates the local coulomb interactions. The results obtained from

our model could therefore provide useful intuition when more sophisticated models are

developed.
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Appendix A

The method of integral

representations

The solution of ordinary differential equations by obtaining an integral representation is

often useful, as these representations are often easier to manipulate and have a larger

radius of convergence. For the solution of the equation

L̂zu(z) = 0, (A.1)

where L̂z is a linear differential operator, we seek a solution of the form

u(z) =
Z
C
K(z, t)v(t)dt, (A.2)

where C is an arbitrary contour in the complex plane, and K(z, t) is the required integral

Kernel. To find a solution we require that there exists an operator Mt such that

L̂zK(z, t) = M̂tK(z, t), (A.3)

so that we may write

L̂zu(z) =
Z
C

[L̂zK(z, t)]v(t)dt =
Z
C

[M̂tK(z, t)]v(t)dt. (A.4)

We also require that M̂t has an adjoint operator M̂ † so that we may perform an integration

by parts, and transfer the operator onto the function v(t):

L̂zu(z) =
Z
C
K(z, t)M̂ †

t v(t)dt+ [Q(K, v)]∂C . (A.5)

The contribution from the boundary after performing the integration by parts is a function

of z and t which must be evaluated at the end points of the contour ∂C. The solution

to Eq. A.1 is then found by choosing the contour such that the boundary term vanishes,
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and then solving the differential equation

M̂ †
t v(t) = 0, (A.6)

so that the integrand also vanishes. The technique is useful when Eq. A.6 is easier to

solve than Eq. A.1. The success of this method depends on choosing a suitable integral

kernel, and some of the most useful examples are:

i) When the coefficients of the differential operator L̂z are linear functions of z, the

solution can be found by using the Laplace kernel :

K(z, t) = ezt. (A.7)

This is useful for solving equations such as the confluent hypergeometric differential equa-

tion.

ii) When the coefficients of the derivatives dn/dzn is a polynomial of degree n the

solution may be found by using the Euler kernel :

K(z, t) = K(z − t) = (z − t)β, (A.8)

where β is a complex number. This technique is useful for functions such as the hyperge-

ometric differential equation.

iii) When the differential equation is of the form

L̂z = znH1

�
z
d

dz

�
+H2

�
z
d

dz

�
(A.9)

the Mellin kernel can be used to obtain a solution

K(z, t) = K(zt). (A.10)

iv) For Bessel’s equation it is often useful to employ the kernel

K(z, t) =
�z

2

�
et−

z2

4t . (A.11)



Appendix B

The exact nuclear and electronic

wavefunctions

The standard method for separating the nuclear motion from the electronic motion is

the Born-Oppenheimer approximation. In this scheme it is assumed that an adiabatic

separation can be made, resulting in a molecular wavefunction of the form

Ψmol(R, r) ≈ X(R)ΦR(r), (B.1)

which is simply the product of a nuclear wavefunction X(R) and an electronic wavefunc-

tion ΦR(r) which depends parametrically on the nuclear coordinates. The normalisation

is such that

〈ΦR|ΦR〉 = 1 (B.2)Z
dR|X(R)|2 = 1. (B.3)

The wavefunction can be associated with a marginal probability density amplitude,

|Ψmol(R, r)|2 ≈ |X(R)|2|ΦR(r)|2 7→ P (R)P (r|R). (B.4)

This interpretation of the nuclear and electronic wavefunctions suggests that it should

be possible to obtain the exact marginal probability density amplitude. The equations

for the exact nuclear and electronic wavefunctions can be determined by variationally

minimising the expectation value of the energy of the molecular Hamiltonian with respect

to both ΦR and X(R). The molecular Hamiltonian is defined

Hmol = HBO −
NX
α=1

~2∇2
α

2Mα

. (B.5)
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The Born-Oppenheimer Hamiltonian for the electronic states is defined

HBO =
NeX
i=1

~2∇2
ri

2me

+
NeX

i>j=1

1

|ri − rj|
+

NX
α>β=1

ZαZβ
|Rα −Rβ|

−
NeX
i=1

NX
α=1

Zα
|Rα − ri|

. (B.6)

The expectation value for the energy is then minimised under the normalisation con-

straints on the nuclear and electronic wavefunctions[151]. The constraints are managed

by introducing the Lagrange multipliers E and Λ(R):

Z
dR〈ΦR(r)|Hmol|ΦR(r)〉 − E

Z
dR(|X(R)|2 − 1)−

Z
dRΛ(R)(〈ΦR|ΦR〉 − 1). (B.7)

When the above expression is minimised variationally, first with respect to ΦR(r) and

then with respect to X(R), the following set of coupled equations are found for the exact

nuclear and electronic wavefunctions

"
HBO −

NX
α=1

~2∇2
α

2Mα

+
NX
α=1

X∗(R)(−i~∇αX(R))

Mα|X(R)|2
· (−i~∇R)

#
ΦR(r) = Λ(R)ΦR(r) (B.8)

"
NX
α=1

[−i~∇R + Aα(R)]2

2Mα

+ 〈ΦR|HBO|ΦR〉+
NX
α=1

~2〈∇αΦR|∇αΦR〉
2Mα

−
NX
α=1

A2
α(R)

2Mα

#
X(R) = EX(R). (B.9)

The term Aα(R) is like a vector potential, and is defined

Aα(R) = 〈ΦR|∇α|ΦR〉. (B.10)

The solution to the coupled equations results in an exact molecular wavefunction of the

form

Ψmol(R, r) = X(R)ΦR(r), (B.11)

which is uniquely defined up to an R dependent phase:

X(R) 7→ eiθ(R)X(R) ΦR(r) 7→ e−iθ(R)X(R). (B.12)

The term Aα can usually be made to disappear through an appropriate choice of the

phase, except when there is a degeneracy in the electronic energy surfaces. In this case a
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geometric phase is introduced into the nuclear Hamiltonian.



Appendix C

Operator perturbation theory

Operator perturbation theory is a technique which is used extensively in problems involv-

ing strongly correlated electrons, for which the Hamiltonain is often of the form

H = H0 + λH1, (C.1)

where H0 is the reference Hamiltonian, and H1 is an interaction term which is propor-

tional to a small parameter λ. The idea is to use perturbation theory to derive an effective

Hamiltonian H̃ that lifts the degeneracy of the reference Hamiltonian H0, and obtain a

simpler model which still includes the interesting physics of the full Hamiltonian. A Uni-

tary transformation is applied to the eigenstates, which creates the effective Hamiltonian

H̃ in the new basis:

H̃ = eλSHe−λS, (C.2)

where eλS is has the general form of a unitary transformation, which is defined by the

anti-Hermitian operator S. This transformation transforms the eigenstates, whilst leaving

the eigenvalues unchanged:

H̃eλS|ψ〉 = EeλS|ψ〉. (C.3)

The effective Hamiltonian can be expanded as a Taylor series in λ:

dH̃
dλ

= eλs[S,H]e−λS (C.4)

d2H̃
dλ2

= eλs[S, [S,H]]e−λS, (C.5)

which leads to the expansion
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H̃ = H + λ[S,H] +
λ2

2
[S, [S,H]] + ... (C.6)

Then we group together the terms in powers of λ:

H̃ = H0 + λ(H1 + [S,H0]) +
λ2

2
(2[S,H1] + [S, [S,H0]]) + ... (C.7)

We now look for an operator S which satisfies the equation

H1 + [S,H0] = 0 (C.8)

which eliminates the first order term in λ. The effective Hamiltonian in the new basis is

then

H̃ = H0 +
λ2

2
[S,H1] + ... (C.9)

which is second order in the parameter λ. The interpretation of the operators in the new

basis is subtle, as the original operators are mixed by the transformation

d̃†iσ = e−λSd†iσe
λS = d†iσ − λ[S, d†iσ] + ... (C.10)

which can lead to hybridisation effects being included in the new operators.



Appendix D

Resonances

Apart from creating new bound states, an impurity can also lead to resonances and

antiresonances in the density of states. These often appear when a new state induced by

the impurity becomes degenerate with the bulk states and leads to a Lorentzian shaped

peak in the density of states. These resonances can be derived from the density of states

formula[126]:

ρ(ε) =
1

π
Im Tr [ε− −H]−1 =

1

π
Im Tr

d log(ε− −H)

dε
, (D.1)

where we have used the abbreviation ε− = ε − iδ. Then, using the matrix identity

det |A| = exp(Tr log(A)) we can rewrite the density of states as

ρ(ε) =
1

π
Im

d log(det |ε− −H|)
dε

. (D.2)

We can separate the impurity part of this matrix equation by rewriting the term [ε−−H] =

[ε− −H0][I − [ε− −H0]−1H1], so that

ρ(ε) =
1

π
Im

d

dε

�
log(det |ε− −H0|) + log(det |I − [ε− −H0]−1H1|)

�
. (D.3)

The change in the density of states caused by the impurity is then

∆ρ(ε) = ρ(ε)− ρ0(ε) =
1

π
Im

d log(det |I − [ε− −H0]−1H1|)
dε

=
1

π
Im

d log(D)

dε
, (D.4)

where we have written the determinant D = det |I − [ε− −H0]−1H1|. We now introduce

the phase shift, δ, of the scattered wave:

tan(δ) =
Im D

Re D
, (D.5)

so that δ = Arg(D). Then using the identity log(D) = log |D|+ iarg(D), we obtain
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∆ρ(ε) =
1

π

dδ

dε
. (D.6)

In the vicinity of a point for which Re D(ε0) = 0, we may write D(ε) ≈ iIm D + (ε −
ε0)Re D′+i(ε−ε0)Im D′. Then we can approximate the size of the resonance/antiresonance

to be

∆ρ(ε) ≈ Γ

2π

1

(ε− ε0)2 + Γ2

4

. (D.7)

The resonance/antiresonance is a Lorentzian with half width Γ = 2Im D(ε0)/Re D′(ε0). If

Γ is positive we find a resonance, and if Γ is negative we find an antiresonance. Resonances

appear when we investigate the cuprate-manganite interface.



Appendix E

X-ray absorption spectroscopy

X-ray absorption spectroscopy (XAS) is extensively used to probe the unoccupied states

of specific elements in materials; by tuning the incident photon energy to an absorption

edge of a particular element it is possible to extract a great deal of information about the

absorbing atom, such as its local geometry and bonding characteristics, its dependence

on oxidation state, and the density of unoccupied electronic states. With the use of high

energy synchrotron radiation sources even more refined measurements are possible. These

make use of linearly polarised and circularly polarised soft x-rays to uncover properties

related to charge, spin and orbital states of the absorbing atom. This technique is par-

ticularly effective in the transition metal oxides because the interaction between the core

hole created by the x-ray and the valence electrons is much larger than the bandwidth,

which means that the absorption process is excitonic and may be understood in terms

of simple atomic-like transitions. The allowed transitions are then highly constrained by

the dipole selection rules which decide the transition probabilities between states, and the

resulting spectra are therefore greatly simplified.

The transmission mode of XAS, which measures the number of incident photons and

the number of transmitted photons, is not always practical because the absorption of

x-rays by matter is very strong, and consequentially the technique can only be applied

to very thin samples. There are however two other modes of operation illustrated in Fig.

E.1, which measure the decay products of the absorption process. In fluorescence yield

mode the incident x-ray excites a core electron to an unoccupied state above the Fermi

surface, leaving behind a core hole which interacts strongly with the valence electrons.

This strong interaction can cause the decay of a valence electron, which fills the hole and

releases its excess energy by emitting a photon, which is then detected. The number of

photons detected is proportional to the number of core holes created. The advantage of

fluorescence yield (FY) mode is that there is no limitation on the thickness of the sample,

and the probing depth is ∼ 2000Åwhich makes FY mode bulk sensitive. The final, and
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Figure E.1: A schematic
illustration of the two
different modes used in
XAS. i) The incident x-
ray excites an electron
from below the fermi sur-
face into an unoccupied
state. The hole left be-
hind is later filled by
an electron, which can
give up its extra energy
through two possible pro-
cesses: (ii) through the
transfer of some of its en-
ergy to an Auger electron
which leaves the sample
and is detected as a loss
of charge in TEY mode,
(iii) through the emission
of an x-ray which is de-
tected in FY mode.

most common mode of detection is total electron yield mode. In total electron yield (TEY)

mode, when the core hole is filled by a valence electron, the excess energy is transferred

to an Auger electron which is excited from an occupied state and can escape the sample.

The sample is grounded through a pico-amperemeter, which measures the current required

to neutralise the sample after the absorption process. Only electrons which are close to

the surface will escape from the sample without suffering inelastic collisions, and electrons

further away will usually transfer some of their energy to secondary electrons. The number

of secondary electrons is much larger than the original number of Auger electrons, which

amplifies the signal, which is proportional to the absorption coofficient. The penetration

of TEY mode is only in the range ∼ 40Å−100Åwhich makes it more sensitive to the

surface.

The absorption amplitude of incident x-rays, with polarisation ε̂, is given by Fermi’s

golden rule:

µ(ω) ∼
X
f

|〈ψi|e−ik·rε̂ · p|ψf〉|2δ(~ω + Ei − Ef ). (E.1)

This is simplified by using the dipole approximation (k ·r � 1), which is accurate because

the wavelength of the incident x-rays is much larger than the size of the atom. The

momentum operator can be replaced by using the commutator relation p = m/i~[r, Ĥ],

so that the absorption amplitude may be written
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µ(ω) ∼ ω
X
f

|〈ψi|ε̂ · r|ψf〉|2δ(~ω + Ei − Ef ). (E.2)

If we consider the simplest case of a single electron in an unclosed shell of an atom, the

initial and final states may be written as the product of a radial wavefunction and an

angular wavefunction, so that the transition matrix element in the above expression is

〈ψi|ε̂ · r|ψf〉 =
Z ∞

0
drr3Rn,lRn′,l′

Z
dΩY m

l ε̂ · r̂Y m′

l′ (E.3)

=
Z ∞

0
drr3Rn,lRn′,l′

Z
dΩY m

l

�
εzY

0
1 +
−εx + iεy√

2
Y 1

1 +
εx + iεy√

2
Y −1

1

�
Y m′

l′ . (E.4)

For circularly polarised x-rays the polarisation vector is ε̂±1 = (∓1/
√

2,−i/
√

2, 0), whilst

for linearly polarised x-rays ε̂0 = (0, 0, 1). Then denoting the dipole operator as P̂q = ε̂q ·r̂,

the angular part of the matrix element can be expressed in terms of Clebsch-Gordan

coefficients:

〈lm|P̂q|lm〉 =
Z
dΩY m

l Y
q

1 Y
m′

l′ =

Ì
3(2l + 1)

4π(2l′ + 1)
〈l100|l′0〉〈l1mq|l′m′〉. (E.5)

The Clebsch-Gordan coefficients vanish unless the angular momentum addition criteria are

satisfied, which enforces the selection rules for x-ray induced dipole transitions: ∆m = q

and ∆l = ±1. Obviously spin is also conserved in the transition. We will consider a

situation which is of relevance for the XAS experiment on an YBCO-LCMO interface. If

we consider the transition 2p63d9 → 2p53d10 in the cubic crystal field environment, then

in the initial state there is a single hole in an eg state, whilst in the final state there is

a single hole in a 2p state. The determinantal wavefunctions differ by just two orbitals,

and the matrix element is proportional to the matrix element between these two orbitals.

The correct symmetry orbitals are just linear combinations of the spherical harmonics so,

using the selection rules we have just derived, we can deduce the dipole transition matrix

elements for linearly polarised x-rays with polarizaton vector ε̂0 = êz:

|〈pz|P̂0|dx2−y2〉|2 = 0 |〈pz|P̂0|d3z2−r2〉|2 =
1

5π
. (E.6)

All other matrix elements are zero. We can see from these simple (and very approximate)

results that for x-rays polarised along the z-axis, the transition to the dx2−y2 state is

strongly suppressed. Alternatively, for polarization along the x-axis, i.e, ε̂0 = êx, we find

|〈px|P̂0|dx2−y2〉|2 =
3

20π
|〈px|P̂0|d3z2−r2〉|2 =

1

20π
. (E.7)
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The transition to the dx2−y2 state is then no longer suppressed, and accounts for most of

the absorption.



Appendix F

Polarised neutron reflectometry

Polarised neutron reflectometry (PNR) is a powerful technique for probing the magnetic

and nuclear potentials of surfaces and interfaces, and is now a widely used technique for

studying magnetism. Similar information about the structure can be obtained in x-ray

reflectivity, but because the neutron spin interacts with the magnetic field, the reflectivity

of polarised neutrons can also be used to create depth profiles of the magnetism.

In neutron optical processes the scattered waves interfere with the incident wave,

resulting in both constructive and destructive interference. In general, waves can only

interfere if they have the same frequency, so that the coherent scattering only involves

elastic processes. Because the state of the sample remains unchanged in these elastic pro-

cesses, the coherent state wavefunction is (rigorously[18]) represented by a single particle

Schrodinger equation: �
−

~2∇2
rn

2mn

+ v(rn)

�
ψ(rn) = Eψ(rn) (F.1)

The interaction between the neutrons, and the material through which they propagate,

is composed of a nuclear interaction Vn involving the scattering length b, and a magnetic

interaction Vm between the neutron spin and the magnetic field created by the electrons:

V = Vn + Vm =
2π~2

mn

Nb− µn ·B. (F.2)

The nuclear interaction described is an average interaction: the number of atoms per unit

volume is N and their mean scattering length is b. The term B is the magnetic field

induced by the orbital current density and the spin current density of the electrons, in

addition to the applied field B0.

The neutron refractive index of a medium can be defined in the usual way, i.e, as the

ratio of the wave vectors k and k′, inside and outside of the medium respectively:

216
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LCMO

YBCO

H

(a) Polarised specular reflectivity from an
YBCO/LCMO superlattice. The momentum
transferred to the neutron is q

(b) The coherent wavefunction accounts for both
reflection and refraction of the neutron at each
layer in the medium.

Figure F.1: Polarised neutron spectrometry from a YBCO/LCMO superlattice.

n =
k′

k
=

s
1− λ2

π
ρb, (F.3)

where the scattering length density is defined ρ = Nb and λ = 2π/k is the wavevector

of the incident neutron. There is also a critical angle given by θc ≈
È

ρ
π
, below which

the neutrons are totally reflected. In practice the refractive index is slightly less than

one, such that (1− n) ∼ 10−6, and consequentially the critical angle is very small and is

typically measured in terms of milli-radians per Ångstrom.

In this investigation we consider possible magnetic profiles of an YBCO-LCMO super-

lattice, which are obtained using PNR. For a medium with translational symmetry in the

x-y plane, we can determine the coherent wavefunction by dividing the medium into thin

layers, and then calculating the reflection and refraction at the interface between each of

these layers. As the number of layers increases we approach the exact solution for the

coherent wavefunction, from which we can self consistently determine the reflectivity and

magnetic depth profiles of the medium.

The neutron wave function, which satisfies the single particle Schrodinger equation

with translational invariance in the x-y plane, is simply

Ψ(r) = ψ(z)eik‖·r‖ , (F.4)

where ψ(z) satisfies a one dimensional equation
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�
d2

dz2
+

2mn

~2
(E − V )− k2

‖

�
ψ(z) = 0. (F.5)

We next divide the medium into thin layers of thickness dj, and with a constant potential

Vj:

Vj =
2π~2

m
Nj(bj + pj), (F.6)

where a magnetic scattering length pj has been defined so that the average value of −µn ·
Beff , in the j-th layer, is equal to (2π~2/m)Njpj. Then the neutron can be represented

as a plane wave with a layer dependent wave vector. If we focus on an arbitrary layer j,

as depicted in Fig. F.1(b), the general solution is

ψ(z) = ije
ikzj(z−

dj
2

) + rje
−ikzj(z−

dj
2

). (F.7)

Here we have used ij and rj to denote the coefficients of the incident and reflected waves

respectively, evaluated midway through layer j, and their values must be chosen so that

both ψ(z) and dψ(z)/dz are continuous at the layer boundaries. The wave vector in layer

j is

kzj =
�

2mn

~2
(E − Vj)− k2

‖

� 1
2

. (F.8)

The first layer (j = 1) is the region above the free surface (i.e the vacuum), and the last

layer (j = N) is the region below the last layer of the sample. There is no reflectance

from this end layer since dN =∞, which implies that the reflectance rN is zero. Then the

reflectance r1 associated with the first layer can be found by iterating backwards, starting

from the last layer.

The measured quantity is the reflectivity R = |r1/i1|2. The reflectivity is conveniently

characterised in terms of the momentum transfer q = k′z − kz = 4π sin(θ)/λ, which is

conjugate to the coordinate z normal to the surface. Then the reflectivity R(q) is related

to the depth profile of the superlattice, which can be reconstructed using the iterative

method. The calculation of the reflectivity does however involve a loss of phase infor-

mation, and as a consequence this method must be used in conjunction with additional

knowledge of the materials under investigation to look for consistent depth profiles.

With polarised neutrons it is possible to extract more detailed information about the

magnetic properties of the sample by separately measuring the spin-flip and non spin-

flip scattering. The reflectivities for non spin-flip scattering are denoted R++ and R−−,

and the reflectivities for spin-flip scattering are denoted R+− and R−+. The interaction

between the neutron and the sample depends on the orientation of the neutrons spin
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relative to the magnetic field; if the spin polarisation is parallel to the magnetic field it

will be unaffected, if spin polarisation is not parallel to the magnetic field it will precess

around B, and if there are magnetic domains the spin polarisation will be quenched. A

simple consequence of this dependence on polarisation can be seen if we consider the case

when the spin polarisation is parallel to the magnetic field. The potential for the up

and down spin configurations becomes V ± = (2π~2/m)Nb ± µB, and the corresponding

refractive indexes are n±; this implies that the magnetic medium is birefringent and the

reflectivity is different for each spin configuration. The reflectivity curves obtained for

each of these processes can be reproduced using the iterative technique to deduce the

appropriate magnetic depth profile.

The methods discussed are concerned with the specular reflectivity, but it is also

useful to make measurements of the off-specular reflectivity. The off-specular beam is a

consequence of broken translational symmetry in the x − y plane, which may be caused

by diffusion, roughness or the formation of magnetic domains. The direction of the off-

specular beam relates to the repeat distances in the x and y directions.



Appendix G

Numerical solution of the exact

Hamiltonian

The molecular wavefunctions representing the L = 0 states of H+
2 can be calculated

directly from the exact Hamiltonian using the finite difference technique. To obtain a nu-

merical solution it is first necessary to transform to a more practical system of coordinates,

and to redefine the wavefunction in a manner which simplifies the boundary conditions.

Once this is done, the next step is to devise a scheme which uses the orthogonality and

normalisation of the wavefunctions to obtain a spectrum of solutions with different en-

ergies. Finally, the Hamiltonian is represented on a discrete grid using finite difference

equations for the derivatives, and a self consistent solution is found which satisfies the

boundary conditions. The Hamiltonian to be solved is given in spheroidal coordinates as

H0 = −A0 − αB0 + V, (G.1)

where A0 is the operator representing the L = 0 electronic Hamiltonian and B0 is the

operator representing the motion of the nuclei in the L = 0 state. These terms are defined

A0 =
4

w2(u2 − v2)

�
∂

∂u

�
(u2 − 1)

∂

∂u

�
+

∂

∂v

�
(1− v2)

∂

∂v

��
(G.2)

B0 =
2

w2

∂

∂w

�
w2 ∂

∂w

�
− 4

w2(u2 − v2)

�
w
∂

∂w
+ 1

��
−u(u2 − 1)

∂

∂u
+ v(1− v2)

∂

∂v

�
+

2(u2 + v2)

w2(u2 − v2)

�
∂

∂u

�
(u2 − 1)

∂

∂u

�
+

∂

∂v

�
(1− v2)

∂

∂v

��
(G.3)

V =

�
2

w
− 8u

(u2 − v2)w

�
. (G.4)
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The boundary conditions require careful consideration. The domain of Ψ is defined to be

1 ≤ u ≤ ∞ − 1 ≤ v ≤ 1 0 ≤ w ≤ ∞. (G.5)

The boundary conditions for the electronic coordinates require a regular solution which

satisfies Ψ ∼ α + βu when u → 1, Ψ ∼ exp(i
√
Ewu/2) when u → ∞, and Ψ ∼ α′ + β′v

when v → ±1. These conditions can be satisfied with a sensible parameterisation of the

coordinates: we choose u = cosh(θ) and v = cos(φ), which results in the following domain

for Ψ:

0 ≤ θ ≤ ∞ 0 ≤ φ ≤ π 0 ≤ w ≤ ∞. (G.6)

The boundary conditions therefore require that Ψ ∼ α + β(1 + θ2/2) when θ → 0. We

also choose Ψ → 0 when θ → ∞, which is approximately satisfied for sufficiently large

θ because the electronic wavefunction decays exponentially far from the nuclei. These

boundary conditions can then enforced by imposing the symmetric boundary condition

Ψ(θ) = Ψ(−θ) when θ → 0, and the antisymmetric boundary condition Ψ(θmax − θ) =

−Ψ(θ − θmax) when θ →∞.

The analysis of the φ dependence is similar, and the regular solution corresponds to

Ψ ∼ α′ + β′(1 − φ2/2) when φ → ±1. Symmetric boundary conditions would also be

applicable in this case, but there is still the remaining degeneracy of the bonding and

antibonding solutions. The two styles of solution can be separated by recognising that

the bonding solution can be obtained by imposing antisymmetric boundary conditions at

the midpoint of the two nuclei (φ = π/2), and the antibonding solution is obtained by

imposing antisymmetric boundary conditions at the midpoint.

The boundary condition for the nuclear coordinate when w = 0 becomes trivial if we

define a new wavefunction Ψ̃ = w2Ψ, which effectively changes the measure to be used in

the normalisation of the wavefunction. The wavefunction Ψ̃ clearly vanishes when w = 0,

which implies that antisymmetric boundary conditions are appropriate.

At infinite internuclear separation the boundary conditions must be appropriate for

both the bound states and the dissociated states of the molecule. There are a finite number

of bound states which form a discrete spectrum and decay exponentially for large values

of w, and a continuum of dissociated states which oscillate when w is large. To calculate

the wavefunctions we elect to quantise the system in a finite box, so that each subsequent

state of increasing energy has an additional node within the box. Both the bound states

and the dissociated states can be found by imposing antisymmetric boundary conditions

when w →∞. For the dissociated states, this boundary condition enforces a node in the
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nuclear wavefunction at the edge of the finite box1.

The only way of obtaining the high energy states using the finite difference method is

to ensure orthogonality, with all states of lower energy, at each step. This imposes a severe

constraint on our ability to calculate high energy states, especially when the mass ratio,

α, is very small and the number of states within a set energy range is very large. For this

reason we choose α ≥ 0.005, which is an order of magnitude larger than is appropriate to

the real system.

After applying the parameterisation u = cosh(θ) and v = cos(θ) and defining Ψ̃ =

w2Ψ, we obtain

A0 =
4

w2(sinh2(θ) + sin2(φ))

�
1

sinh(θ)

∂

∂θ

�
sinh(θ)

∂

∂θ

�
+

1

sin(φ)

∂

∂φ

�
sin(φ)

∂

∂φ

��
(G.7)
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− cos(φ) sin(φ)
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2(sinh2(θ)− sin2(φ))

w2(sinh2(θ) + sin2(φ))

�
1

sinh(θ)

∂

∂θ

�
sinh(θ)

∂

∂θ

�
+

1

sin(φ)

∂

∂φ

�
sin(φ)

∂

∂φ

��
(G.8)

V =

�
2

w
− 8 cosh(θ)

(sinh2(θ) + sin2(φ))w

�
, (G.9)

where it is understood that the operators now act on Ψ̃. We must then solve the eigenvalue

problem

H0Ψ̃n = EnΨ̃n. (G.10)

The eigenvalues can be determined by requiring that the solutions are normalised. To

illustrate this idea it is best to use a simple example: suppose we wish to use the finite

difference technique to find the excitation spectrum of the equation

d2y(x)

dx2
= Ey(x). (G.11)

This equation can be represented on a finite grid by the (second order) finite difference

equation

y(x+ h)− 2y(x) + y(x− h)

h2
= Ey(x), (G.12)

1Whilst this boundary condition is only approximate, i.e the exact nuclear wavefunction is known to
be nodeless, the error is small and of the order of α.
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which can be rearranged to give

y(x) =
y(x+ h) + y(x− h)

2 + h2E
. (G.13)

If we assume that we have an approximate value for the energy E ′ ≈ E+∆E, and expand

the normalisation condition 〈y|y〉 = 1 about the exact energy E we obtain

〈y|y〉 ≈
Z  

(y(x+ h) + y(x− h))2

(2 + h2 (E + ∆E))2

!
dx

≈
Z  

(y(x+ h) + y(x− h))2

(2 + h2E)2

!
dx− 2∆Eh2

Z  
(y(x+ h) + y(x− h))2

(2 + h2E)3

!
dx = 1. (G.14)

This allows us to predict the energy step required to find the correct energy:

∆E ≈
R � (y(x+h)+y(x−h))2

(2+h2E)2

�
dx− 1

2h2
R � (y(x+h)+y(x−h))2

(2+h2E)3

�
dx
. (G.15)

If this method is used to solve Eq G.11 iteratively, then the ground state (which has no

nodes) will be obtained. This is because the finite difference method converges to the

solution with low frequency components. In order to find the excitations we must ensure

that a particular solution yn with energy En is orthogonal to any states of lower energy,

which means that we must first find the n − 1 states of lower energy. Then, at each

iteration step, we perform the Gram-Schmidt process to remove the n − 1 lower energy

components from the wavefunction yn.

The solutions to Eq G.10 are found using the method just described, using the correct

measure for Ψ̃:

J(w, θ, φ) =
w

8
(sinh2(θ) + sin2(φ)) sinh(θ) sin(φ). (G.16)

The normalisation is therefore

〈Ψ̃|Ψ̃〉 =
Z ∞

0
dw

Z ∞
1

dθ
Z π

2

0
dφ|J(w, θ, φ)||Ψ̃(θ, φ, w)|2. (G.17)

The solutions presented in section 4.6 are for α = 0.005. They are performed on a grid

of size Nw × Nθ × Nφ, where Nw = 200, Nθ = 20 and Nφ = 12. The grid spacing used

is hw = 0.1, hθ = 0.1 and hφ = π/24, and the finite difference equations used are sixth

order in these parameters.



Appendix H

Numerical solution of the

Born-Huang equations

The Born-Huang matrix equations for the L = 0 states of H+
2 , obtained from the expansion

of the molecular wavefunctions into the basis of electronic states, leads to a set of coupled

ordinary differential equations; these can be solved using the Runge-Kutta technique. The

matrix equation for the non-adiabatic states is

ĤX̃m

n = Em
n X̃

m

n (H.1)

with the matrix elements

Ĥn′n′′ = − Û〈Φn′|αB0|Φm′′〉+ δm′m′′εm′(w), (H.2)

where the first tem is an operator which may be expanded asÛ〈Φn′|αB0|Φm′′〉 = δn′n′′

�
−α 2

w

d

dw

�
w
d

dw

��
+ µn′n′′

d

dw
+ νn′n′′ . (H.3)

The diagonal terms represent the standard Born-Oppenheimer approximation, but with

minor corrections to the electronic energy surfaces, whilst the off-diagonal matrix elements

give rise to the non-adiabatic coupling between electronic states:

µn′n′′ =

*
Φn′

�����B3 +
∂

∂w

�����Φn′′

+
= µn′′n′ (H.4)

νn′n′′ =

*
Φn′

�����−B1 − B2 + B3
∂

∂w

�����Φn′′

+
= νn′′n′ . (H.5)

The operators B1 and B2 are Hermitian, and B3 is anti-Hermitian:
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B3 =
4

w(sinh2(θ) + sin2(φ))

�
cosh(θ) sinh(θ)
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− cos(φ) sin(φ)

∂

∂φ
+
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�
∂
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. (H.8)

The non-adiabatic matrix equation (Eq. H.1) defines a set of coupled ordinary differential

equations which can be solved using the Runge-Kutta method. To illustrate how this

method is applied it is helpful to use a simple example: suppose we wish to solve the

equation

d2y(x)

dx2
= Ey(x). (H.9)

If we write y1 = y and y2 = dy/dx as components of a vector the above equation can be

transformed into a system of first order differential equations:

dy1(x)

dx
= y2(x)

dy2(x)

dx
= Ey1(x). (H.10)

Then the problem is reduced to that of solving the following generic style of equation:

dy(x)

dx
= f(x, y). (H.11)

To obtain an accurate solution in a small number of steps the Runge-Kutta method uses

the derivatives at intermediate points to calculate the next step. The intermediate points

are chosen to give agreement with Taylors theorem up to a specified order. We define the

quantities

k1 = hf(x+ a1h, y(x))

k2 = hf(x+ a2h, y(x) + b21k1)

k3 = hf(x+ a3h, y(x) + b31k1 + b32k2)

...

(H.12)

and express the next step as linear combination of these quantities:
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y(x+ h) = y(x) + w1k1 + w2k2 + w3k3 + ... (H.13)

The parameters a1, a2, a3, ... and b21, b31, b32, ... and w1, w2, w3, ... are chosen so that Eq.

H.13 agrees with Taylors theorem. At second order the next step requires two terms:

y(x+h) = y(x)+hw1f(x+a1h, y(x))+hw2f(x+a2h, y(x)+b21hf(x+a1h, y(x))) (H.14)

= y(x) + hw1f(x, y) + hw2f(x, y) + h2w1a1fx(x, y) + h2w2a2fx(x, y)

+h2w2b21f(x, y)fy(x, y) +O(h3), (H.15)

where fx and fy denote the partial derivatives of f . The corresponding Taylor series is

y(x+ h) = y(x) + hy1(x) +
h2

2
y2(x) +O(h3)

= y(x) + hf(x, y) +
h2

2
(fx(x, y) + f(x, y)fy(x, y)) +O(h3), (H.16)

where yn represents the nth derivative of y. Equating the two expressions for y(x + h)

gives

w1 + w2 = 1

w1a1 + w2a2 = 1
2

w2b21 = 1
2

. (H.17)

One particular solution is w1 = 0, w2 = 1, a1 = 1, a2 = 1/2 and b21 = 1/2, which results

in the midpoint method

k1 = hf(x+ h, y)

k2 = hf(x+ h
2
, y + k1

2
)

y(x+ h) = y(x) + k2

. (H.18)

This method simply uses the derivative at the midpoint to integrate the solution forwards,

using the initial conditions for y1(0) and y2(0). Returning to Eq. H.1, the simplest

calculation involves just the 1σg and 2σg states:

Ĥ =

�
−α 2

w
d
dw

�
w d
dw

�
+ ε1 + µ11

d
dw

+ ν11 µ12
d
dw

+ ν12

µ21
d
w

+ ν21 −α 2
w

d
dw

�
w d
dw

�
+ ε2 + µ22

d
dw

+ ν22

�
(H.19)



APPENDIX H. NUMERICAL SOLUTION OF THE BORN-HUANG EQUATIONS227

X̃
m

n = (X̃m1
n , X̃m2

n ). (H.20)

This can be written as a set of first order coupled differential equations:

dy1

dx
= y3

dy2

dx
= y4

dy3

dx
=

1

2α− µ12

�
(ε1 − En,m + ν11)y1 +

�
µ11 + ν12 −

2α

w

�
y3

�
dy4

dx
=

1

2α− µ21

�
(ε2 − En,m + ν22)y2 +

�
µ22 + ν21 −

2α

w

�
y4

�
(H.21)

y =

 
X̃m1
n , X̃m2

n ,
dX̃m1

n

dw
,
dX̃m2

n

dw

!
. (H.22)

All that is required to run the Runge-Kutta algorithm are the initial conditions y1(0) = 0,

y2(0) = 0, y3(0) = a and y4(0) = b. There exist two linearly independent solutions, and the

constants a and b determine both the particular linear combination and the normalisation.

However, a simple WKB analysis shows that the two solutions are associated with the two

electronic energy surfaces and both increase exponentially at the origin, but with different

exponents. Thus, numerical errors stabilise the solution with the largest exponent for

almost all values of a and b. To circumvent this problem it is also necessary to employ a

Newton-Raphson root finder to tune the initial conditions for the second solution.

The solutions to the non-adiabatic equations with the 1σg and 2σg electronic states

are presented in section 4.6, where a sixth order Runge-Kutta algorithm was used.
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B. Hjörvarsson, J. Öhrmalm, and J. Mayers, Europhys. Lett. 46, 617 (1999)

[7] T. Abdul-Redah, R. M. F. Streffer, C. A. Chatzidimitriou-Dreismann,
B. Hjörvarsson, E. B. Karlsson, and J. Mayers, Physica B 824, 276 (2000)

[8] E. B. Karlsson, T. Abdul-Redah, R. M. F. Streffer, B. Hjörvarsson, J. Mayers, and
C. A. Chatzidimitriou-Dreismann, Phys. Rev. B 67, 184108 (2003)

[9] C. A. Chatzidimitriou-Dreismann and T. Abdul-Redah, J. Chem. Phys. 113, 2784
(2000)

[10] C. A. Chatzidimitriou-Dreismann, T. Abdul-Redah, and R. M. F. Streffer, J. Chem.
Phys. 116

[11] C. A. Chatzidimitriou-Dreismann, C. K. M. Vos, and T. Abdul-Redah, Phys. Rev.
Lett. 91, 057403 (2003)

[12] E. B. Karlsson and S. W. Lovesey, Phys. Rev. A 61, 062714 (2000)

[13] J. Mayers and T. Abdul-Redah, J. Phys.: Condens. Matter 16, 4811 (2004)

[14] R. A. Cowley, J. Phys.: Condens. Matter 15, 4143 (2003)

[15] R. A. Cowley and J. Mayers, J. Phys.:Condens. Matter 18, 5291 (2006)

[16] S. W. Lovesey, C. D. Bowman, and R. G. Johnson, Z. Phys. B - Condens. Matter
47, 137 (1982)

[17] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed., Course of theoretical
physics, Vol. 3 (Butterworth-Heinemann, 1977)

228



BIBLIOGRAPHY 229

[18] V. F. Sears, Neutron Optics (Oxford University Press, Oxford, 1989)

[19] E. Amaldi, O. D’Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, and E. Segrè, Proc.
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