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Partitioning strategies for the Block Cimmino algorithm

Tony Drummond1, Iain S. Duff2,3, Ronan Guivarch4, Daniel Ruiz4 and Mohamed Zenadi4

ABSTRACT
In the context of the Block Cimmino algorithm, we study preprocessing strategies to
obtain block partitionings that can be applied to general linear systems of equations
Ax = b. We study strategies that transform the matrix AAT into a matrix with a block
tridiagonal structure. This provides a partitioning of the linear system for row projection
methods because Block Cimmino is essentially equivalent to Block Jacobi on the normal
equations and the resulting partition will yield a two-block partition of the original matrix.
Therefore the resulting block partitioning should improve the rate of convergence of block
row projection methods such as block Cimmino.
We discuss a way of obtaining a partitioning using a dropping strategy that gives more
blocks at the cost of relaxing the two-block partitioning. We then consider obtaining
a partitioning by using hypergraph partitioning that works directly on the matrix A to
reduce the interconnections between blocks.
We give numerical results showing the performance of these techniques both in their
effect on the convergence of the Block Cimmino algorithm and in their ability to exploit
parallelism.

Keywords: sparse matrices, unsymmetric matrices, iterative methods, Cuthill McKee,
hypergraph partitioning
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1 Introduction

The benefit of the block Cimmino algorithm that we describe in Section 2 for solving sparse
linear systems is that the solution process reduces to the solution of a sequence of much smaller
independent systems within a very simple iterative scheme. It is therefore possible to extend
techniques suitable for these smaller systems, for example sparse direct methods, to these much
larger systems. The Achilles heel of such an approach is that the iterative method is effectively a
block Jacobi method on the normal equations and so can suffer from slow convergence.

In this paper, we examine how novel partitioning schemes can be used to accelerate this
convergence while, at the same time, improving the capability of the method in exploiting
parallelism.

After our description of the algorithm in Section 2, we indicate, in Section 3, why we target
orderings to block tridiagonal form and how this can be used to reduce the iteration count of
block Cimmino. We then discuss two algorithms for obtaining such a form in Section 4. In
Section 5, we describe a different approach to obtaining a partitioning with similar properties.

We then describe experiments contrasting these approaches and show their efficacy on real
problems in Section 6. We present our conclusions in Section 7.

2 Block Cimmino method

We consider a block projection method for the solution of the linear system of equations

Ax = b, (2.1)

where A is a nonsingular large sparse unsymmetric matrix of order n although we note that the
approach can also be used when the system is rectangular.

The blocks are obtained by partitioning the system (2.1) into p strips of rows, with p ≤ n, as
in: 

A1

A2

...
Ap

x =


b1

b2

...
bp

 . (2.2)

The block Cimmino method projects the current iterate simultaneously onto the manifolds
corresponding to the strips and takes a convex combination of all the resulting vectors.

A general study of the convergence of this method and of other related block-row and
block-columns methods can be found in Elfving (1980). A block SSOR algorithm of this type
introduced in Kamath and Sameh (1988), is accelerated using conjugate gradients. They study
its robustness compared to some preconditioned conjugate gradient methods of the Yale package
PCGPACK. There has been much prior work on block SSOR as well as comparisons with block
Cimmino (Arioli, Duff, Noailles and Ruiz 1992b, Bramley 1989, Bramley and Sameh 1992, Ruiz
1992). More recent work on accelerating the algorithm can be found in Duff, , Guivarch, Ruiz
and Zenadi (2013) where the system is augmented so that the partitions are orthogonal. The
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solution of the original system then reduces to solving a much smaller but denser positive definite
system. Our aim, in this paper, is to focus on preprocessing and partitioning strategies of the
original system (2.1) to bring it to the form (2.2).

If the matrix A is ill conditioned then there are some linear combinations of rows that are
almost equal to zero and, as mentioned by Bramley and Sameh (1992), these linear combinations
may occur inside the blocks or across the blocks after row partitionings of the form (2.2).
Assuming that the projections in the block Cimmino algorithm are computed exactly on the
subspaces (say by using a direct method), then the rate of convergence of the block Cimmino
algorithm depends only on the conditioning across the blocks. If we consider additionally
Conjugate Gradient acceleration of the block Cimmino method (Arioli et al. 1992b, Bramley
and Sameh 1992), the convergence behaviour of the resulting method is directly linked to the
spectrum of the n × n matrix ERJ formed as the sum of the previously mentioned projections,
and given by

ERJ =

p∑
i=1

Ai
T
(
AiAi

T
)−1

Ai , (2.3)

assuming, for simplicity, that the block-rows Ai have full row rank. An efficient implementation
of Block Cimmino requires a combination of a robust method for computing the projections and
a partitioning strategy that minimizes the ill-conditioning across the blocks.

Let us see now how the ill-conditioning across the blocks can be expressed. Consider that
the matrix is partitioned as in (2.2), and let the QR decomposition of the blocks Ai

T be given by

Ai
T = QiRi, i = 1, . . . , p where Ai is an mi × n matrix of full row rank

Qi n×mi, Qi
TQi = Imi×mi

Ri mi ×mi, Ri is a nonsingular upper triangular matrix;

then:

ERJ =

p∑
i=1

Ai
T
(
AiAi

T
)−1

Ai

=

p∑
i=1

QiQi
T

= (Q1 · · ·Qp)(Q1 · · ·Qp)
T

(2.4)

But, from the theory of the singular value decomposition (Golub and Kahan 1965, Golub
and Van Loan 2013), the nonzero eigenvalues of (Q1 · · ·Qp)(Q1 · · ·Qp)

T are also the nonzero
eigenvalues of (Q1 · · ·Qp)

T (Q1 · · ·Qp).
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Thus, the spectrum of the matrix ERJ is the same as that of the matrix

Im1×m1 Q1
TQ2 · · · · · · Q1

TQp

Q2
TQ1 Im2×m2 Q2

TQ3 · · · Q2
TQp

... . . . ...

Qp
TQ1 · · · Imp×mp


(2.5)

where the Qi
TQj are matrices whose singular values represent the cosines of the principal angles

between the subspaces R(Ai
T ) and R(Aj

T ) (Björck and Golub 1973). These principal angles
(Golub and Van Loan 2013, pages 584-585) are also defined successively by

cos(Ψk) = max
u∈R(Ai

T )
max

v∈R(Aj
T )

uTv

‖u‖ ‖v‖

=
uT
k vk

‖uk‖ ‖vk‖

(2.6)

subject to

uTup = 0 p = 1, . . . , k − 1

vTvp = 0 p = 1, . . . , k − 1,

k varying from 1 to mij = min(dim(R(Ai
T )), dim(R(Aj

T ))). The vectors
{
u1, . . . ,umij

}
and{

v1, . . . ,vmij

}
are called the principal vectors between the subspacesR(Ai

T ) andR(Aj
T ).

Note that the principal angles satisfy 0 ≤ Ψ1 ≤ · · · ≤ Ψmij
≤ π/2, and that having Ψk =

π/2, k = 1, . . . , mij , is equivalent to R(Ai
T ) being orthogonal to R(Aj

T ). Intuitively, the
wider the principal angles between the subspaces, the closer ERJ is to the identity matrix, and
thus the faster the convergence of the conjugate gradient acceleration should be.

Nevertheless, even the knowledge of the principal angles between every pair of subspaces
would not in general give us any a priori information about the spectrum and the ill-conditioning
of the resulting matrix ERJ . We will therefore focus in the following on particular partitionings
for which there exists a strong relationship between these principal angles and the spectrum of
the iteration matrix.

3 Block tridiagonal structures and two-block partitioning

If the block rows Ai are nearly mutually orthogonal, i.e. AAT is strongly block-diagonally
dominant, we can expect that the method will converge very quickly, if the projections are
computed accurately. Conversely, the structure of AAT tells us about the orthogonality of the
subspaces represented by block partitions of A. If the block (i, j)th entry of AAT is zero then
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the subspaces corresponding to the blocks Ai and Aj are orthogonal. Thus, if AAT is block
tridiagonal, the blocks of A are such that the even numbered blocks are orthogonal as are also
the odd-numbered blocks. Thus if we solve the projected subproblems accurately (using say a
direct method) then we also solve the subproblems corresponding to the odd and even numbered
blocks accurately. The partition of A is thus of the form

[A] =


B1

B2

 , (3.7)

where B1 =

{⋃
i

Ai / i odd

}
and B2 =

{⋃
i

Ai / i even

}
. The partitioning in equation (3.7)

is called a two-block partitioning. We denote by m1 and m2 the number of rows in B1 and B2

respectively. We call the block of smaller size, say B2 in the above example, the interface block.
With such a partitioning, because of the structural orthogonality between the blocks Ai

within B1 and within B2 respectively, the matrix ERJ in (2.3) can be considered as P1 + P2,
where P1 = PR(B1

T ) and P2 = PR(B2
T ), where each of these two projectors is in fact a sum of

independent projectors acting on orthogonal subspaces.
It was shown by Elfving (1980) that, with such a two-block partitioning, the spectrum of

matrix ERJ is
λk = 1 + cos Ψk

λk = 1− cos Ψk−m2

λk = 1

k = 1, . . . ,m2

k = m2 + 1, . . . , 2m2

k = 2m2 + 1, . . . , n

where {Ψk}m2

1 are the principal angles betweenR(B1
T ) andR(B2

T ).
On the one hand, matrices in this form can be easily partitioned into sufficient blocks to utilize

all the processors of the target machine (provided the matrix A is large enough in comparison
with the size of the tridiagonal substructure). On the other hand, the above expression for the
spectrum tells us that the block Cimmino algorithm with conjugate gradient acceleration in
general works better for small interface block sizes (e.g. small m2) and, in exact arithmetic,
takes not more than 2m2 steps for convergence.

The idea of exploiting such sparsity structures appropriately in row-projection methods
has already been widely studied and discussed. For instance, Kamath and Sameh (1988)
have developed a three-block partitioning strategy of this type which they have exploited with
their block SSOR algorithm accelerated with conjugate gradients (Bramley 1989, Bramley
and Sameh 1992). In Arioli et al. (1992b), some particular scalings used in conjunction
with two-block partitioning strategies are also investigated. These scalings help to open the
principal angles between the two subspaces R(B1

T ) and R(B2
T ) and can be related to oblique

projections associated with some ellipsoidal norms. Finally, the potential for parallelism in
distributed memory environments of the block Cimmino method accelerated with the block
conjugate gradient algorithm is investigated and discussed in detail by Drummond (1995) (Arioli,
Drummond, Duff and Ruiz 1994, Arioli, Drummond, Duff and Ruiz 1995a).
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4 Preprocessing Strategies

As discussed in the previous section, the main idea behind the so called two-block partitioning
strategy is to exploit structural orthogonality between the subspaces R(Ai

T ) defined by the
partitioning (2.2). We have indicated that this structural orthogonality can be analysed on the
basis of the sparsity pattern of the normal equations matrix AAT . For example, for two-block
partitionings of the type described above, the sparsity pattern of matrix AAT is block tridiagonal,
with diagonal blocks of a size corresponding to the number of rows in each block Ai defined by
the partitioning (2.2).

This simple remark can be used to define a preprocessing strategy that will enable the
construction of two-block partitionings for sparse matrices with any type of sparsity structure.
The idea is to permute first the rows of the matrix A, based on permutations that transform the
normal equations matrix AAT into block tridiagonal form. We thus determine a permutation
matrix P such that

B = PAATPT (4.8)

has a block tridiagonal form. To this end, we exploit an implementation of the Cuthill-McKee
Algorithm (see for instance Cuthill and McKee (1969), Duff, Erisman and Reid (1986), George
(1971)) for ordering symmetric matrices. We then solve the row-wise permuted system of
equations

Âx = b̂ (4.9)

with Â = PA, and b̂ = Pb, using the block Cimmino algorithm. From the block tridiagonal
structure of the matrix B, the block row partition (2.2) of Â is defined with blocks of rows with
each block determined by the size of the diagonal blocks in the block tridiagonal structure of B,
or by the number of rows in a contiguous subset of these diagonal blocks. The row partitioning
we obtain from this still has the properties of the two-block partitioning described in Section 3.

This preprocessing strategy I for general sparse matrices exploits only the sparsity structure
in the normal equations matrix AAT and not the values contained in this matrix. We should
mention and will illustrate it explicitly by the experiments in the following sections that, for
very general sparsity patterns, the block tridiagonal structure obtained with the Cuthill-McKee
Algorithm has diagonal blocks with very differing sizes leading to a partitioning with a poor
degree of parallelism because of unbalanced tasks in the block-row projections. From the
discussion in Section 2, we recall also that the main objective when defining the partitioning
is to minimize the effects of ill-conditioning across the blocks, which simply means keeping
the principal angles between every pair of subspaces as open as possible. Strict orthogonality
between every second block of rows is only one step in this direction; we may also try to take
into account in some way the angles themselves when defining the reorderings and partitionings.

The preprocessing strategy II that we introduce now will take into account the values in
the matrix AAT as well as the sparsity structure of that matrix in an attempt to define a
reordering/partitioning strategy with numerical properties close to that of two-block partitioning
but with more flexibility for building the blocks and potentially much better parallelism.

5



In this preprocessing strategy, the matrix AAT , is first normalized through:

C = AAT

D = diag(C)

S = D−
1
2CD−

1
2 .

The entries in the normalized matrix S correspond to the cosine of the principal angle between
every pair of rows (in other words, the degree of collinearity between any pair of rows), and
we may expect that if such a cosine is relatively small, then the corresponding pair of rows are
almost orthogonal and can be considered so. Our next step in this preprocessing strategy is then
to keep only the nonzero entries in S which are above a given tolerance value τ in absolute value,
viz

F = filter(|S|, τ),

and to permute the resulting matrix F into block tridiagonal form using the Cuthill-McKee
algorithm as before

B̂ = PFPT (4.10)

and solve (4.9) by using the row partitioning for Â defined by the block tridiagonal structure of
B̂.

In practice, we do not want to form AAT but we first ensure that the diagonal entries will
be one by scaling the original matrix A so that the rows have 2-norm equal to one. This can
be accomplished by using the HSL routine MC77 (Ruiz 2001). Of course, since numerical
values have been dropped from the normal equations matrix, we cannot expect that the resulting
partition will provide two subsets of structurally orthogonal blocks of rows but, if the values
dropped are sufficiently small, we may expect that the numerical properties of the resulting
iteration matrix will be relatively close to that of the “strict” two-block partitioning case.
Additionally, since the filtered matrix F has less entries than the original normal equations matrix
C, the resulting block tridiagonal permuted matrix B̂ will surely have a smaller bandwidth than
B and this may help to define a partitioning on A with more blocks, better balanced projections,
and a higher degree of parallelism. In the following section, we will experiment and compare
these two preprocessing strategies with another strategy that we will now describe.

5 Using a hypergraph partitioning

A main aim of the partitioning strategies that we have just described is to decouple the blocks to
reduce the number of block Cimmino iterations. We now look at a way to do this more directly.

We use the hypergraph partitioning scheme of Çatalyürek and Aykanat (1999a). Their code,
PaToH (Çatalyürek and Aykanat 1999b), finds a row permutation that will make the partitions
less interconnected. PaToH provides permutations so that the reordered matrix is in bordered
block diagonal form. We notice that, with the matrix in this form, the overlap is only within
the boundary columns that PaToH is trying to minimize. One can input to PaToH the desired

6



number of partitions and so can easily compare the effect of using PaToH with the partitionings
that we have just described.

Another benefit of using PaToH is that the columns causing the interconnection between
blocks are clearly identified and we use this in our approach for augmenting the system to
explicitly generate a blocking where the blocks are orthogonal to each other (Duff et al. 2013).

6 Partitioning Experiments

In this section, we perform some experiments with the block Cimmino solver using Block-CG
acceleration (Arioli, Duff, Ruiz and Sadkane 1995b, Arioli et al. 1995a) and focus on the effects
of the preprocessing strategies on the performance. We have therefore chosen a fixed block size
for the Block-CG acceleration and stop the iterations on the basis of a normwise backward error
(Arioli, Duff and Ruiz 1992a)

ωk =
‖Ax(k) − b‖∞

‖A‖∞‖x(k)‖1 + ‖b‖∞

of less than 10−12. A small value for ωk means that the algorithm is normwise backward stable
(Oettli and Prager 1964) in the sense that the solution x(k) is the exact solution of a perturbed
problem where the max norm of the error matrix is less than or equal to ωk.

In Section 6.1, block Cimmino is used to solve the SHERMAN3 linear system from the
Harwell-Boeing matrix collection (Duff, Grimes and Lewis 1997). Section 6.2 contains the
results from experiments of runs of block Cimmino on the bayer01 problem from the sparse
matrix collection at the University of Florida (Davis 2008). We then perform some experiments
with a parallel implementation in Section 6.3.

6.1 Solving the SHERMAN3 problem

The matrix SHERMAN3 is a symmetric matrix of order 5005. This matrix comes from the
discretization of partial differential equations extracted from a three dimensional oil reservoir
simulation model on a 35× 11× 13 grid using a seven-point finite difference approximation.

The original pattern of matrix SHERMAN3 is shown in Figure 6.1. In the first experiment,
a trivial block-row partition of the linear system is used, with eight equal-sized blocks of rows.
This results in blocks of 625 rows except for the last one of 630.

The spectrum of ERJ from the original matrix with a straightforward partitioning as shown
in Figure 6.1 is given in Figure 6.2. This shows a large cluster of eigenvalues around 1 but a few
trailing eigenvalues associated with bad conditioning (smallest eigenvalue of the order of 10−8).

Since the block Cimmino method is numerically independent of any column permutations,
after the row-partitioning of the system, we also perform in all cases some column permutations
to group together columns belonging to the same subsets of row-partitions in order to ease the
communication phase in the algorithm when merging the results from the different projections.
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Figure 6.1: Sparsity pattern of the SHERMAN3 matrix. The matrix has been partitioned
into 8 blocks of rows.

Figure 6.2: Eigenvalue spectrum of ERJ for the SHERMAN3 problem.
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(a) (b)

Figure 6.3: (a) Permuted normal equations from SHERMAN3 using the Cuthill-McKee algorithm. (b) Matrix

SHERMAN3 after row permutations following the preprocessing strategy I and with additional column grouping.

Figure 6.4: Normalized nonzero entries in the normal equations matrix from SHERMAN3. On the x-axis, the

entries are displayed in increasing order of their absolute numerical value (given on the y-axis).
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By doing so, we improve the parallel execution of the block Cimmino method. We do not
illustrate this in the following because it is not very important for discussing and comparing
the different preprocessing and partitioning strategies, and we refer to Drummond (1995) for
more technical details on the distributed memory implementation of the block Cimmino method
accelerated with a block-CG algorithm.

In the second round of experiments, the preprocessing strategy I from Section 4 is used. From
the block tridiagonal structure of the permuted normal equations matrix of SHERMAN3, the
matrix is partitioned into blocks of rows. Figure 6.3-b shows the pattern of matrix SHERMAN3
after row permutation following the preprocessing strategy I, using a level set algorithm, Cuthill-
McKee, to permute the normal equations matrix into block tridiagonal form, as indicated in
Figure 6.3-a. The partitioning shown is a two-block partitioning, and columns belonging to
the same subsets of blocks have been grouped together as mentioned before. The block-row
partitions have been defined using the block tridiagonal structure in the normal equations matrix.
As in the first set of experiments described above, we again aim at obtaining 8 blocks of about
625 rows each.

The sparsity pattern of the permuted SHERMAN3 matrix after completion of preprocessing
strategy II is shown in Figure 6.5-b. In this case we dropped the normalized entries of the
normal equations matrix that are below 0.2. We plot in Figure 6.4 all the entries of the normal
equations, where we see that dropping at 0.2 will remove less than the half of entries. The matrix
with the entries dropped was permuted using the ordering from the Cuthill-McKee algorithm.
The associated block-row partition, indicated in Table 6.1, has been defined from the block
tridiagonal structure of the matrix B̂ in (4.10), as described in Section 4, with the aim of again
obtaining 8 blocks of about 625 rows each whenever possible.

In the case of the hypergraph partitioning we use two different imbalance parameters, a
weak balancing which tolerates partitions up to 8 times larger than other partitions, and a strong
balancing which tolerates up to 50% imbalance.

Also, we notice that the matrix B̂ in Figure 6.5-a has a smaller bandwidth than the matrix in
Figure 6.3-a. Thus the preprocessing strategy II offers more degrees of freedom to define the row
partitions than strategy I, since they are of smaller size. Therefore, we can define more partitions
while maintaining a good balance between the number of rows in each partition.

The spectrum of ERJ for strategies I and II are shown in Figures 6.6 and 6.7, respectively.
Notice that compared to the spectrum of ERJ arising from the original matrix the spectrum
presents a better clustering of the eigenvalues. In strategy I the largest eigenvalue is 2 which
confirms a two-block partitioning. However in strategy II we get a largest eigenvalue only
slightly larger than 2 and thus we call strategy II a near two block partitioning. The
convergence results in Table 6.2 illustrate the effect of the better clustering of eigenvalues
obtained with strategy II.

The second column of Table 6.2 shows convergence results from the runs of the block
Cimmino method using different partitioning strategies. These results should be multiplied by
the block-size – 8 in our case – to obtain the number of matrix-vector operations, we show them
in the last column to easily compare the amount of work. We note that the uniform partitioning

10



(a) (b)

Figure 6.5: (a) Sparsity pattern of matrix B̂ in (4.10), obtained after removing nonzero entries less than 0.2

from the normalized SHERMAN3 normal equations matrix, and using the Cuthill-McKee algorithm to permute

the resulting matrix into block tridiagonal form. (b) Matrix SHERMAN3 after row permutations following the

preprocessing strategy II and with additional column grouping.

Figure 6.6: Eigenvalue spectrum of ERJ for the permuted SHERMAN3 problem arising
from using strategy I.
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Number of rows in each partition

Original Matrix A 625 625 625 635 629 628 784 454

Preprocessing strategy I 625 625 625 635 629 628 784 454

Preprocessing strategy II (drop 0.1) 625 625 625 744 707 669 628 382

Preprocessing strategy II (drop 0.2) 625 625 625 627 641 671 630 561

Preprocessing strategy II (drop 0.4) 637 637 637 637 637 637 637 546

PaToH partitioner (weak balancing) 1019 396 1015 400 544 544 544 543

PaToH partitioner (strong balancing) 626 626 626 625 626 625 626 625

Table 6.1: Description of the 8 block-row partitions obtained for matrix SHERMAN3 in the
different sets of experiments.

Figure 6.7: Eigenvalue spectrum of ERJ for the permuted SHERMAN3 problem arising
from using strategy II with a drop at 0.2.

requires the highest number of iterations for convergence since neither the structure of the matrix
nor the value of the matrix entries were taken into account.

However, when we take into account both the value of the entries and the structure of the
matrix as in strategy II, we are able to reduce the iteration count to 68 when dropping at 0.2
compared to 102 when using strategy I. We examine further the effect of dropping on the
convergence by showing counts for dropping at 0.1 and 0.4. We see that, as we increase the
dropping value from 0.1 to 0.2, we get a finer partition with the higher values in the blocks.
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However, as we increase the dropping value more (to 0.4) we start to lose these connections
resulting in an increase in iteration count.

Using PaToH, we can reduce the iteration count to 52 when we use loose balancing and
tolerate some large partitions. By doing this, we have larger partitions and are able to reduce the
interconnections between them. We notice that effect when tightening the balancing where the
iteration count rises to 74.

6.2 Solving the bayer01 problem

We now look at these strategies on a larger problem, bayer01. This matrix was obtained from
Bayer AG by Friedrich Grund and is available from the sparse matrix collection at the University
of Florida (Davis 2008). It is of order 57735 and has 277774 nonzero entries. We show the
pattern of the matrix in Figure 6.8 where we have superimposed 16 uniform partitions.

Figure 6.8: Nonzero pattern of the matrix bayer01.

Number of iterations Matrix-Vector operations

Original Matrix A 190 1520

Preprocessing strategy I 102 816

Preprocessing strategy II (drop 0.1) 73 584

Preprocessing strategy II (drop 0.2) 68 544

Preprocessing strategy II (drop 0.4) 89 712

PaToH partitioner (weak balancing) 52 416

PaToH partitioner (strong balancing) 74 592

Table 6.2: Convergence of SHERMAN3 in the three different sets of experiments.
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Figure 6.9: Spectrum of block Cimmino iteration matrix for bayer01 with 16 uniform
partitions.

If we run the block Cimmino algorithm on the matrix partitioned as in Figure 6.8 then the
resulting spectrum of the iteration matrix is shown in Figure 6.9. We see that, while there is a
good clustering of the eigenvalues around the value 1, just as we have noticed with the matrix
SHERMAN3, the matrix is still quite badly conditioned. Indeed, many small eigenvalues are
present and these eigenvalues will increase the iteration count when using the conjugate gradient
acceleration.

If, however, we first reorder the matrix using PaToH and then partition it, we get the spectrum
for the iteration matrix shown in Figure 6.10 where we note that the intermediate eigenvalues
have been shifted towards 1 thus improving the clustering of eigenvalues in the iteration matrix.
The reduction in the number of small eigenvalues is expected to improve the convergence.

Table 6.3 summarizes the partitioning information after applying the different strategies. As
there are 16 partitions, we show only the smallest, the largest and the ratio between the largest
and the smallest partition. We notice that when using strategy I we are constrained by the size
of the level sets so that size balancing of the partitions is quite difficult, and the largest partition
is more than 2.5 times the size of the smallest partition. As expected, by using strategy II we
obtain better load balancing between partitions and this improves as we increase the dropping
parameter. In the case of PaToH, weak balancing gives the greatest freedom for partitioning,
and our largest partition is nearly 8 times larger than the smallest. If we constrain this freedom
by strengthening the balancing, we obtain a partition with almost equal-sized blocks.

We show in Table 6.4 the convergence results for the matrix bayer01. We notice a similar
behaviour as with the SHERMAN3 matrix where the preprocessing strategy II improves the
iteration count when dropping until a certain threshold. However, the preprocessing strategy I
is worse than just partitioning the original matrix. This behaviour was seen on several problems
which makes this strategy unreliable. Finally, using PaToH both with weak and strong balancing
gives better results.
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Figure 6.10: Spectrum of block Cimmino iteration matrix for bayer01 with 16 partitions
obtained using the hypergraph partitioner PaToH.

Smallest partition Largest partition Ratio

Original Matrix A 3608 3615 1.002

Preprocessing strategy I 1673 4342 2.595

Preprocessing strategy II (drop 0.05) 1448 4017 2.774

Preprocessing strategy II (drop 0.1) 3318 3660 1.103

Preprocessing strategy II (drop 0.2) 3522 3634 1.032

PaToH partitioner (weak balancing) 952 7597 7.98

PaToH partitioner (strong balancing) 3608 3609 1

Table 6.3: Information on the 16 block-row partitions obtained for matrix bayer01 using
different strategies.

6.3 Parallel Experiments

In this section we solve some standard test problems with a parallel version of our method.
This version uses a distributed Block-CG acceleration where the partitions are distributed
over multiple processes. All these processes solve the problem in a distributed manner and
communicate only for dot product and matrix-vector computations. The matrix-vector part,
performed by MUMPS is also in parallel and uses supplementary cores that are not being used
within the distributed Block-CG acceleration.

We list in Table 6.5 the linear systems that we will solve in parallel. We saw that PaToH
partitioning gives better results compared to other partitioning strategies. Thus, we only do runs
with PaToH in this section. We indicate the block-size used during the Block-CG acceleration, a
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Number of iterations Matrix-Vector operations

Original Matrix A 256 2048

Preprocessing strategy I 459 3672

Preprocessing strategy II (drop 0.05) 270 2160

Preprocessing strategy II (drop 0.1) 204 1632

Preprocessing strategy II (drop 0.2) 343 2744

PaToH partitioner (weak balancing) 52 416

PaToH partitioner (strong balancing) 105 840

Table 6.4: Convergence of bayer01 with the different partitioning strategies.

block-size of 1 is simply the classical CG acceleration. We will compare the effect of balancing
when using PaToH, and see whether the lower iteration count of weak balancing compensates
for its poorer balance of partition sizes.

Problem Size Nonzeros Application Partitions Block-size

N1: torso3 259,156 4,429,042 3D model of torso 16 1

N2: CoupCons3D 416,800 17,277,420 structural problem 32 1

N3: cage13 445,315 7,479,343 DNA electrophoresis 256 1

N4: Hamrle3 1,447,360 5,514,242 Circuit Simulation 64 4

Table 6.5: Linear systems from the University of Florida Sparse Matrix Collection.

In the previous section, we noticed that weak balancing gave faster convergence but with
a poorer balance on partition sizes. The drawback of such a strategy is that a large partition
will take longer to factorize than others and therefore stall other processes until it finishes. To
illustrate this, we did some runs on the cage13 problem with a 32 core machine. In this case,
we varied the balancing parameter and partitioned the matrix into 256 partitions. With weak
balancing, the factorization took about 19 seconds and the Block-CG converged in 16 iterations
in about 5 seconds. Using strong balancing, the factorization took about 10 seconds and the
Block-CG converged in 17 iterations in about 4 seconds. We notice here that the size of partitions
affected the factorization and slowed it down whereas it did not change the iteration count by
much. However, in the cases where the iteration count is dramatically reduced, we might gain
from the Block-CG phase more than what we lose in the factorization phase.

The following runs are on a machine with nodes having two quad-core Nehalem processors
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and 36GB of memory for both processors. In all cases we will use the 8 cores of each node and
increase the number of nodes. This way we test for 1, 8, 16, 32 and 64 mpi-processes.

Factorization Block-CG
Cores 1 8 16 32 64 128 1 8 16 32 64 128

N1 46.89 12.11 8.68 3.37 1.74 1.24 21.57 6.34 4.43 2.94 1.56 1.32

N2 83.27 14.41 8.78 6.11 3.18 1.73 272.21 63.49 36.89 22.88 13.50 9.37

N3 77.09 28.15 16.04 9.16 6.58 4.68 41.67 13.64 8.14 4.33 2.67 1.53

N4 34.8 6.67 4.33 2.01 1.62 1.05 3905.0 773.0 422.4 22.13 149.52 130.13

Table 6.6: Parallel results showing the elapsed time in seconds for the factorization of the augmented systems and

the Block-CG acceleration.
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Figure 6.11: Parallel results of the factorization of augmented systems and Block-CG acceleration
speedups.

We show in Table 6.6 the time spent in seconds to factorize the augmented systems and the
time taken for the Block-CG to converge.These results are also shown in Figures 11(a) and 11(b).

In these runs we have performed a strong scaling analysis showing the speedups when a
single system is solved on an increasing number of processors. As we see in both plots in
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Figure 6.11, we obtain a good speedup on all four problems. However, the speedup is not
uniform. The speedup is very good for each problem until the number of processors is equal
to the number of block partitions when it becomes somewhat poorer. The reason for this lies in
the fact that our algorithm exploits parallelism at two-levels. As we start increasing the number
of processors, the size of the subproblems decrease and the increasing instances of MUMPS
obtain a speedup from the fact that they are factorizing smaller problems as well as the fact that
the work in the block conjugate gradient algorithm is split across more processors. When we
increase the number of processors further, the number of instances of MUMPS does not increase
but, as it is a parallel code, it will be able to use more processors to effect the factorization and
solution of the subproblems. However, the conjugate gradient iterations are still constrained by
the number of partitions and so do not fully exploit the extra processors. Further discussion on
this aspect of our work is outwith the scope of this paper.

7 Conclusions

The results of our work shows that preprocessing the original system of equations to obtain
a different partitioning of the system can have a profound effect on the convergence of the
block Cimmino algorithm resulting in a more robust and efficient implementation. Indeed, a
good preprocessing strategy can minimize the ill-conditioning between the different blocks. Our
Strategy I did this by enforcing a two-block partitioning but it was not very good at obtaining
a good blocking of the original matrix. We thus tried Strategy II which did much better with
respect to a regular partitioning but at the cost of losing to a controlled extent the two-block
partitioning. Although this did better than Strategy I, it was still not a robust approach and did
not always provide an improvement over a straight partitioning of the original system. It also
required the selection of a dropping parameter that was dependent on the problem being solved
and so was hard to choose in advance. We thus examined a strategy that uses a hypergraph model
to partition the original system with the aim of directly reducing the interconnection between
block partitions. We use the PaToH software to effect this partition and found that it compared
very favourably to our strategies based on the normal equations and was also more robust in that
it always produced partitions better than a uniform partition of the initial matrix. It was also
possible to use PaToH to obtain a well balanced partition (that is with sublocks of roughly equal
size).

For the experiments using a parallel version of our code, we thus chose only to examine
the performance of the partitioning using PaToH and we found that it is usually better to use
a strong balancing strategy to avoid bottlenecks from having disparately sized tasks. Although
the speedup is not uniform, it is in general very good at obtaining parallelism from both the
partitioning of the problem and from a parallel sparse direct solver.

Our implementation of the Block Cimmino method uses Block Conjugate Gradients to
accelerate its convergence rate. In order to exploit parallelism, we have developed an MPI
implementation of our Block Cimmino with Block CG acceleration. We have used strong and
weak partitioning strategies to define the subblock sizes (number and choice of rows in A in
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each subblock). We observed that forcing a more balanced workload distribution produced
better speedups, even if the overall iteration count was higher. Future multi-level hybrid parallel
systems may be able to exploit more non-uniform block sizes and dynamically adjust the
number of processing elements to the size of the block in a manner that reduces the iteration
count, minimizes load imbalance, and produces better resource utilization. Our experiments
have indicated that the block Cimmino computational scheme sets a very good stage for future
numerical schemes to be run on heterogeneous multi-level parallel systems.
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