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Abstract 

The Coulomb gas formalism is employed to construct contour integral 

representations of two-point correlation functions on the torus for the N=l 
superconformal unitary discrete series, characterized by the single integer 

p. (For the particular case of the Tricritical Ising Model, these include the 

energy and vacancy density operators.) Modular and monodromy proper­

ties of the superconformal blocks are examined and the generalization to 

superconformal theories of Verlinde's results on modular transformations 

and the fusion algebra discussed in some detail. For p odd the relevant 

modular matrix is (with respect to a particular basis) symmetric and uni­

tary, as in ordinary rational conformal theory. However for p even, there 

appears to be an obstruction due to the Ramond vacuum state. 
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1 Introduction 

The Dotsenko-Fateev Coulomb gas1) technique is one of the more efficient ways 

of explicitly computing correlation functions of primary fields in two-dimensional 

conformal field theory, particularly on higher genus Riemann surfaces. 

There is of course by now a considerable body of important work on the 

basic properties and structure of rational conformal field theories 2- 10). As 

far as explicit results on the torus are concerned, minimal model, 11
•
12

) SU(2) 

WZWN and parafermion models 13) and superconformal theories 14) have all 

been considered using the Coulomb gas prescription. In particular, in ref. 14), 

hereinafter referred to as (I), some examples of two-point conformal blocks in 

both the N = 1 and N = 2 discrete unitary series were constructed and their 

monodromy and modular properties briefly discussed. 

As is well-known, introducing Feigin-Fuks screening operators to make corre­

lation functions background charge neutral (on the torus), one obtains contour 

integral representations of the conformal blocks. In the N = 1 superconformal 

case, one-contour examples corresponding to Ramond primary field correlation 

functions < c/>1,2c/>1,2 > with the four possible spin structures were considered in 

(I). For the special case of the Tricritical Ising Model (TIM), i.e. c = 7/10, this 

is the leading magnetic spin operator. 

In the present paper we wish, firstly, to complete and extend some of the 

considerations contained in (I) to include correlation functions involving double 

contour integrals, such as the Neveu-Schwarz primary c/>1,3 and superdescendent 

c/>f.,3• (Again specializing to the TIM, these are the energy and vacancy density 

operators respectively.) The results presented here are obtained in the same 

way as in (I), the details however are rather more involved as one might have 

anticipated. Secondly, in the context of these N = 1 superconformal models, we 

shall discuss the generalization of Verlinde's results on the connection between 

fusion rules and modular transformations. The organization of this paper is as 

follows. 

In the next section, expressions for the conformal blocks corresponding to 

< c/>1,3c/>1,3 > are given. It is perhaps to be emphasized that the Coulomb gas 

method remains somewhat at the level of a prescription (although, as has been 

demonstrated in some conformal theories at least, the Felder cohomological con­

struction 10) provides a derivation); it is therefore neccessary to check null-state 

decoupling, that the conformal blocks on the torus behave correctly when the 
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latter degenerates, as also in the factorization limit, and that one indeed has 

consistency with the fusion rules. 

In section 3, the monodromy properties are established and the Verlinde 

operators 2) acting on two-point functions are constructed. The modular trans­

formations are obtained in section 4 and as a check, the Verlinde operators 

around the a- and b- homology cycles are seen to be related under conjugation 

by the matrix of S-transformations. 

General results regarding the relation between modular matrices and the 

fusion algebra 2•5) have been obtained under the simplifying technical assumption 

that the (extended) left and right chiral algebras consist of generators with 

integer conformal weight only. Nevertheless, in the superconformal case, as 

we shall discuss, the Verlinde conjecture continues to be satisfied (although a 

proof, along the lines of say ref.2), is beyond the scope of this paper). This 

in itself is probably not particularly surprising since essentially the proof of the 

conjecture utilises rather general conformal and duality properties of a canonical 

basis constructed from characters, or more generally from conformal blocks (and 

the construction indeed generalises to the superconformal models considered 

here). The conformal blocks provide, in the language of vector bundles, a basis 

for holomorphic sections of a vector bundle Vg,n over moduli space M 9 ,n of a 

genus g surface with n punctures (for the most part g = 1 and n = 2 in this 

paper). In the superconformal case because of the different possible boundary 

conditions around the a- and b-cycles, it is as usual necessary to work with a 

spin covering of moduli space and some care has to be exercised that one is in fact 

working with a complete canonical'basis. Given that the b-cycle monodromy 

operator 4>(b) is in fact the fusion matrix Nf5 (generalised now to take into 

account the Neveu-Schwarz and Ramond sector dependence), conjugation of 

4>(b) gives the a-cycle monodromy operator 4>(a) and consequently leads to the 

fusion rules being diagonalised by the modular matrix S - more or less as in 

the usual conformal situation. However, in superconformal models the question 

of whether the modular transformation matrix S is symmetric (and unitary) is 

somewhat more delicate (whereas in usual rational conformal theory it follows 

as a simple corollary of the diagonalisation). In fact the modular matrix can fail 

to be symmetric and unitary essentially because of the Ramond vacuum state. 

By considering some examples and employing different bases of conformal 

blocks, we argue as just mentioned that the Verlinde conjecture extends to 

the N = 1 superconformal unitary discrete series characterized by the single 
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integer p. Furthermore, for p odd, the existence of a canonical or Verlinde 

basis (to be defined below) appears to be a sufficient condition for the modular 

matrix S acting on the space of superconformal characters to be symmetric 

(and unitary). However, as we shall discuss in detail, for p even there appears 

to be an obstruction due to the Ramond vacuum: the modular matrix is not 

unitary and symmetric (in the Verlinde basis) because of the existence- for even 

p only - of the Ramond vacuum state at the self-symmetric point of the Kac 

table (~, 9). In section 5 we give a generalization of the Verlinde formula to 

superconformal models. By way of clarification we briefly discuss the p = 4 case 

specifically in the light of our results. This is known to correspond to special 

points on the critical line of the Ashkin-Teller model or equivalently a Z2 orbifold 

of the c = 1 rational Gaussian model at radius .J3 and :/{-. Recently, a proof of 

the Verlinde formula generalised to fermionic rational conformal field theories 

has been advanced20); to the extent that these authors also conclude that the 

modular matrix is not in general unitary we are in agreement. 

Finally monodromy and modular invariance are used to construct correlation 

functions for the diagonal N = 1 superconformal invariant of the discrete unitary 

series in section 6. Although several computational details are relegated to 

appendices, this paper is not meant to be self-contained in the sense that we 

rely on (I) for notation and indeed for many other details only alluded to below. 

For readers interested specifically in the discussion (sections 4 and 5) of the 

generalization of Verlinde's results, a cursory reading of section 3 should suffice 

whereas section 2 (apart perhaps from notational orientation) can be omitted 

altogether. 

2 Two-Point Conformal Blocks 

Conformal blocks for the Ramond correlation function < 4>1,24>1,2 > were ob­

tained in (I). Expressed as a single contour integral in a s-channel basis, they 

are 

Gf(r,s) 

where a± are the 'charges' defined in (I) and v = 1, 2, 3, 4 denotes the spin 

structure or sector of states labelled by ( r, s) propagating around the torus. The 
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contours ci, i = 1, 2 provide a linearly independents-channel basis of conformal 

blocks. C1 encircles the point Z1 and the inner radius (representing the torus 

as an annulus) while C2 encircles z2 and winds around the outer radius. The 

contours are closed (by ensuring they wind around as many times as necessary) 

curves on a branched cover of the torus. The one-dimensional lattice difference 

part r"(r, s) = r"().) and r"( -r, s) = r"(~), is given by 

1 · ( }1
2 1) ) (}l+nN)

2 2 .(}ljt)( "'- "'- ) r"().) = e'"l!" 2N-I2 64,., 2:(-)np(61,.,+64,~> q 4N e 7rl N -TZ1-TZ2+<X-Z 

"'( 7 )3/2 
nEZ 

- 1 . c "2 1 ) c ) <5.+nN)2 2 . <>.-y;t> c "'- "'- ) r"().) = et"l!" 2N-I2 64,., 2: ( _ )np 61,.,+64,., q 4 N e "l!"t N -TZ1-TZ2+<X-Z 

T/( 7)3/2 nEZ 

(2.2) 

with >. = r(p + 2) - sp and ~ = -r(p + 2) - sp and N = 2p(p + 2). The integer 

p labels the discrete unitary superconformal series (p = 3 corresponds to the 

TIM). The range of (r, s) in equation (2.1) is 0 ~ s ~ r ~ p -1 with r- sE 2Z 

in theN- S sector (v = 3, 4) while in the R sector (v = 1, 2) it is 0 ~ s ~ r -1 

for 0 ~ r ~ [ 9] and 0 ~ s ~ r + 1 for [ ~] ~ r ~ p- 1 with r - s E 2Z + 1. As 

mentioned in (I), it is necessary to allow r, s = 0 because of mixing of the blocks 

under modular transformations; one has to show that the additional conformal 

blocks that this gives rise to actually do vanish. 

Thrning to the field 4>1,3 we shall regard the components of the supermultiplet 

i.e. primaries and superdescendents (which recall are in fact primary under the 

Virasoro sub-algebra) separately and thus have to consider three possible cases, 

namely 

(a) < </>(1, 3)</>(1, 3) >,(b) < 4>8 (1, 3)4>8 (1, 3) > and (c) < 4>(1, 3)4>8 (1, 3) >. 

Since a 1,3 = -a_, two screening operators have to be inserted to satisfy charge 

neutrality of the correlation function. We may immediately write the expression 

for the conformal block corresponding to case (a) in the s-channel basis as (only 

even sectors v = 2, 3, 4 are non-vanishing) 

Gi'j(r, s) = 1 dz 1 dw < 1/J(z),P(w) >v< e-ia_rp(zl)e-ia_cp(z2 )eia_rp(z)eia_rp(w) > 
le, le; 

1 d 1 d ( lh(zl- z2)lh(z- w)0~(0)2 )
2a:. 

le, z le; w 01(z1 - z)01(z1- w)01(z- z2)fh(w- z2) 

0~ (0) Ov(z - w) Ov(O)l/2 {r"(r, 8 ) _ ( _ r864,.,r"( -r, 8 )} (2.3) 
01(z- w) Ov(O) 

where r"(>.) is given by equation (2.2) except that the coupling to the charge is 

now 
.(>. + nN) 

exp[27rz VN ( -a_z1 - a_z2 + a_z + a_w)]. (2.4) 
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An elementary check that equation (2.3) has at least the correct structure is 

provided by the degeneration limit, q = e2-rrir ---+ 0, of the two-point function in 

which a four-point function on the sphere should be recovered. Indeed, perform 

the conformal transformation to plane co-ordinates zi = 2~ilnxi, z = 2~ilnx 
and w = 2~ilny. Including the Jacobian factors associated with the external 

lines (~88z ~88z )6.1 •3 where the conformal dimension ~13 = 2a2 -1/2, it is a simple 
2>1 2>2 ' -

matter to obtain the result 

where 

G~)r, s) ---+ q6.~·-fs(xlx2)-a(xl- x2)2a: 
1 dxxa-lf2(x- x2)b' (x1 - x Y' 
le; 
£. dyya-l/2(y- x2l (xl - yy' (x- y)d(x + y) 

3 

a(r, s) = [(r + 1)a+ + (s + 1)a_]a_ 

and b' = c' = - 2a~, d = 2a~ - 1. 

(2.5) 

The torus contours GiG; degenerate in this limit to Pochhammer contours on 

the plane. Further, it can be verified that this expression coincides with 

< R6.2rxo-f3r,• (O)N 6.1 , 3 (xt)N 6.1 , 3 ( x 2 )R6.13r,• ( oo) > 

computed on the sphere. To see this note that (up to a constant) 

< £T(0)1j;(x)1j;(y)£T(oo) >= ( x +)~ 
x -y xy 

a fact which may be deduced either from the operator product expansions, or by 

computing this four-point function itself employing the Coulomb gas formalism 

for the c = 1/2 Ising model. 

In a similar fashion one gets for the remaining combinations: 

3 · ( )1
2 

1 ) 4 6-N-S c 2 2 Gi;(r, s) + e-t1r lN-12 Gij(r, s)---+ q r,• -I6(xlx2)-a(xl- X2) a_ 

1 dxxa(x- x2)b' (xl- x)c' 
le; 

£. dyya(y- x2)b' (x1- yy' (x- y)d 
3 

(2.6) 

which is to be compared with< N6. 2rxo-f3r,.(O)N6.1 ,3 (xt)N6.1,3 (x2)N6.13r,• >. The 

result for G~i(r, s) - Gi;(r, s) is the same as the last equation except for the 

replacement qll~;s+!-cfl6 (implying half odd integral states) and the inclusion 

of an additional factor 1 + (x- y)2 jxy in the integrand. The form of the four­

point function 

< 1/;(0)1j;(x)1j;(y)1j;(oo) >= ( 1 
)[1 + (x- y)

2

] 
x- y xy 
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enables one to recognise this as 

< Nl2ao-~r.• (O)Na1 , 3 (xi)Na1 , 3 (x2)NX~r,•(oo) > 

Note that we are working with the particular combinations 

so that in q-expansions the descendent states above each primary (or superde­

scendent) always have integer level spacing. This will be important later when 

we discuss the extension of Verlinde's results to the superconformal situation. 

Next, we turn to the counting of the number of conformal blocks. Since 

there is only one type of screening operator Q _ occuring in the present two con­

tour problem, there are three independent configurations of s-channel contours 

possible: C1C1, C2C2, or C1C2. In fact from a-cycle monodromy considera­

tions (see fig.l and section 3) it is clear that blocks G'fi(r, s) with contours C1C1 

(i.e. i = j = 1) are associated with the (r, s + 2) intermediate states. On the 

other hand the c2c2 blocks have as intermediate states (r, s- 2), whereas the 

C1 C2 blocks have ( r, s) intermediate states. We have to show that the only non­

vanishing blocks are in accord with the number of intermediate states predicted 

by the fusion rules 1 

Nr,s X N1,3 f"V Nr,s-2 + N:.s + Nr,s+2 

Nr~s X Nl,3 f"V N:.s-2 + Nr,s + N:.s+2 

Rr,s X Nl,3 f"V Rr,s-2 + Rr,s + Rr,s+2 (2.7) 

The arguments for this are similar tq those given in (I) for the one contour case. 

Firstly note that all G11 (r = 0, s) blocks vanish trivially. To see that the blocks 

G11 (r, s = 0) also vanish it is easier to work instead in at-channel basis defined by 

contours cJjj (this is clearly sufficient because the contours cicj and cicj each 

comprise a linearly independent set). C1 encircles the points Z1 and Z2 while C2 

winds around the inner and outer radius of the annulus such that a closed curve 

results. The essential point is that for s = O, there are competing contributions 

in r~~(r, 0) and f 11
( -r, 0) which cancel at each order in a q-expansion. This is 

easy to see in the degeneration limit. For instance for G'fT3(r, 0) at leading order 

in the q --+ 0 limit 

G~j(r, 0) r-v 1_ dxxa(r,O)(x- l)b' (z- x )c' 
le; 

1 As written, equation {2.7) holds fors =f 1, 2 on the L.H.S. H s = 1, only the (r, s + 2) tenns 
on the R.H.S. are present and fors= 2 the (r, s- 2) tenns are absent. 
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i- dyya(r,O)(y- 1)"' (z- yy' (x- y)d 
Cj 

[ (x:) -r/2 (x:) +r/2] (2.8) 

Performing the change of variables x -+- z I x and y -+- z I y in the first term in 

square brackets above, the factor (xylz)-r/2 -+- (xylz)+r/2 while the remaining 

factors in the integrand are invariant. Since under this transformation C1 -+­

C1 and C2 -+- C2 the integral of the sum of the two terms in square brackets 

vanishes. More generally, the same conclusion is reached directly on the torus 

by performing the change of variables z = z1 + z2 - u and w = z1 + Z2 - v in 

Gij(r, o) and observing that rv(r, o) __. rv( -r, o) while the rest of the integrand 

and the contours ci and cj remain unchanged. 

Consider the s-channel crt3'\r, s = 1) blocks next, again in the degenera­

tion limit. Examining (2.6), one sees that there is no branch or pole at oo since 

2- a(r, 1) - b1
- c1

- d is a positive integer for either the x or y integral; hence 

the C1C2 and C2C2 blocks vanish. A similar result holds for the G~~2 (r,s = 1) 
12 

blocks as can be seen from equation(2.5). 

For consistency with the fusion rules equation (2.6), we require to show 

that the G22 (r, s = 2) blocks are zero. One may convince oneself that this is 

indeed the case by examining the singularity structure of the degeneration limit 

expressions; consider for instance the v = 2 sector, equation (2.4). This is the 

sum of two terms one of which is the following (the other is given by x f-+ y) 

1 dx 1 dyxa(r,2)+1/2(x- z)"' (1- xt' ya(r,2)-l/2(y- z)"' (1- y)c' 
le; Jci 

d d X d y d 
x2y2(1 +- )2(1 +- )2 (2.9) 

y X 

where we have simply rewritten the ( x- y )d factor as indicated. Expand the last 

two factors of this expression (we ignore questions of convergence which amounts 

as usual to assuming that one may analytically continue in the parameter d to 

take care of this). Then the singularity at x or y = oo of a generic term in the 

double integral is 

( ) 
1 I I d 2-ar 2 ---b -c --+m-n 

' 2 2 

for x, and 

( ) 
1 I I d 2-ar 2 +--b -c ---m+n 

' 2 2 
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for y, with m, nE Z. If the x-integral has a branch or pole at oo they-integral 

does not and vice versa. The C2C2 blocks therefore vanish as expected. 

There is one remaining consistency check, at least as far as the number 

of blocks is concerned. This is for the particular block G~1 ( 1, 1) - Gf1 ( 1, 1) 

at order q.::.\ 1 • 1 +~-fs. This is the superdescendent of the identity and is the 

null state G _liO > and should therefore decouple. Using a hypergeometric 
2 

representation Fi(a, b', c', d; z) canonical for the point z = 0, for the double 

integral (equation(5.17) ofref.1) we have checked that this combination vanishes 

as z ----+ 0. 

We now turn to case (b). The conformal blocks corresponding to< ~f..3 ~f.. 3 > 
contain a further two 1/J's arising from theN- S vertex operator N.::.\+l/2 (z) and 

are thus given by the expression 

which reduces, upon Wick contracting and including the sum over winding 

modes, to (for even spin structure 11 = 2, 3, 4) 

[
Ov(zl - Z2 )6v(z - w) Ov(zl- z)Ov(w- z2) Ov(zl- w)Ov(z- z2)] 
81(z1- z2 )81(z- w) + 81(z1- z)81(w- z2) - 81(z1- w)81(z- z2) 

[ 0~(0)]
2 

[ 01(z1- z2)81(z- w)OH0)2 
]

2
a:_ 

Ov(O) 81(z1- z)81(z1- w)fh(z- z2)01(w- z2) 

{r"(r,s)- (-t884·"r"(-r,s)} 
(2.10) 

where the coupling to the charge is again given by equation (2.4). The q ----+ 

0 limit of the conformal block can again be straightforwardly obtained; now 

however one has to multiply G(r,s) by a Jacobian factor of (~~).::.\l,s+l/2 to 

get in the Ramond sector 

i dx t dyxa-112(x- x2)b' (x1- xY1 va-112(v- x2t (x1- vY:' (x- v?a:_ 
C; C; 

[
(x1 + x2)(x + y) + (x1 + x)(y + x2) _ (x1 + y)(x- x2)] (

2
.1!) 

(x1 - x2)(x- y) (x1- x)(y- x2) (x1- y)(x- x2) 
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This agrees with < Ra2"
0

_ 13 (O)N%.
1

,
3 

( xi)N%.
1

,
3 

( x2)Ra13 ( oo) > on using for the 

fermionic part 

1 
< u(0)1jJ(xi)V;(x2)1jJ(x)1jJ(y)u(oo) >= [ ..... ] 

.jx1X2XY 

where the expression in square brackets is the same as that in the previous 

equation (2.11). The latter equation can once again be verified to be consistent 

with the operator product expansion. 

Similarly, 

G~i(r, s) + e-i7r(;!--hlGti(r, s) ~ qa~.-s-c/16 (xlx2 )-a(xl - x2)2a:_ -l 

fci dx fci dyxa(x- x2)b'-l(xl- xr'-lya(y- x2)b'-l(xl- yy'-l(x- y)d 

[(xl- x)2(y- x2)2 - (x1- x2)(x1- y)(x2- x)(x- y)] (2.12) 

coinciding with< Na2"
0

_ 13 (0)N%.
1

,
3
(xi)N%.

1
,
3
(x2)Na13 (oo) > as may be seen by 

using the fact that the correlation function < 1jJ(x1)1jJ(x2)1jJ(x3 )1jJ(x4 ) > on the 

sphere is given by P f [:v;_:xJ. 
The remaining combination in the degeneration limit, Gli(r, s)- G[ir, s), 

which now has superdescendents as each of its four external lines, reproduces 

< N~ N~ N~ Nf38 > as expected. However, in as much as it involves a 61/J 
<..>.2ao-/3 <..>.1,3 <..>.1,3 

correlator, its algebraic structure is complicated and we refrain from giving it 

here. 

Counting the number of conformal blocks proceeds as in the previous case 

and makes use of the same arguments. When the trace over states propagating 

around the torus are N- S primaries the number of blocks G3(r, s) + G4(r, s) 

is in agreement with the second of equations (2.7). For G3(r, s)- G4(r, s) and 

G2(r, s) respectively the number of non-vanishing blocks is as predicted by 2 

N!,8 X N~3 "-' Nr,s-2 + N!,s + Nr,s+2 

Rr,s X N~3 ""' Rr,s-2 + Rr,s + Rr,s+2 (2.13) 

Lastly, consider the mixed two-point function case (c) < cP1,3cPf.,3 >;clearly it 

is only different from zero in the odd spin structure sector and the corresponding 

conformal block is given by 

f dz f dw < 1/J(z )1/J( w )1/J(z2) >v=l < e-ia_rp(z1)e-ia_rp(z2)eia_rp(z)eia_rp(w) > 

2 The previous footnote on page 6 pertains here as well. 
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The bosonic part is of course common to the two other cases (a) and (b). An 

expression for the fermionic part can formally be obtained by using a 'regulated' 

propagator in the z; = 1 sector 

< ,P(z ),P( w) >o = 
0~ (0) 01(z- w + v'8) 1 

01(z- w) 01(6) 6 

The methods of (I) then allow one to write the conformal block, well-defined 

in the limit 6 --+ 0, and given by 

where 

r v=l(') "'( )np (nN+>-)
2 

211"i(nN+>-)(z+w-zl-Z2)a-
l\ = L....t - q 4N e .JN 

nEZ 

(It is perhaps worth mentioning that in the first line of (2.14) the expression for 

the 3'1/J correlator within braces is by itself monodromy and modular covariant.) 

In the degeneration limit equation (2.14) becomes 

[

X+ y X+ X2 .y + X2] --- +---
X - y X - X2 y - X2 

(2.15) 

Noting that the five-point function 

< e7( 0 )'I/;( x ),P(y ),P( x2 )e7( oo) > 1 
-[ ...... ] 
VXYX2 

where again the expression in square brackets is as in equation (2.14), one can 

check that (2.14) indeed coincides with 

Furthermore, the number of blocks and intermediate states are consistent with 

the relevant fusion rules. 

As another check on our two-point functions < </>1,3(zl)</>1,3 (z2) >, it is in­

structive to consider the limit z1 --+ z2 in which one expects the conformal blocks 
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to factorize. This is most conveniently analysed in a t-channel basis of contours 

6/51,i5l52,(5262 (see fig.2). In particular one would like to verify that the in­

termediate states occuring in the factorized conformal block are precisely those 

dictated by the fusion rules. Once again we treat the three cases (a), (b) and 

(c) in turn 

1_ dz 1_ dwl(r,s) Jc, Jcj (2.16) 

where I(r, s) denotes the integrand in each of the three expressions (2.4), (2.10) 

and (2.13) above. 

In the first place consider 6161 , in which both the z and w contours encirle 

the points z 1 and z 2• Set z 1 - z 2 = e and change variables z- z 2 = eu, w- z2 = ev 

etc., then as e ~ 0 we have for any of the even sectors v = 2, 3, 4 

(2.18) 

h K( ') 1 "' ( )np6 (>.+nN)
2 

Th' ' h ' ' ' h' h b h W ere A = '1/(r) L.mEZ - 4vq 4N • IS IS t e SituatiOn Ill W IC ot 

screening contours are shrunk to a point and there are no screening charges left 

on the torus. The intermediate state is the identity channel as expected from 

the fusion rules with the character (up to a T independent factor) as residue. If 

we shrink instead only one of the contours, by setting z1 - z2 = e, z- z2 = m 

but w - z2 = v one obtains 

(2.19) 

2 .(>.lit) 
where r(.\) has a charge coupling of e n N a_v. In this limit we recover 

therefore the superdescendent <Pf.,3 channel with < <Pf.,3 ( 0) > as residue. Finally, 

with both screening operators remaining on the torus, one obtains 

Case (b) is similarly handled: we simply state the results (v is again any of the 

even sectors) 

G;,{r, s) ~ <-2("'·'+1/2
) [~(~? r [K(.\)- H"'"' K(~l], 
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and 

As mentioned the remaining case (c) < 4>1,3 4>f.,3 > occurs only for v 1. 

Here, shrinking both contours leads to the expression 

G- v=1 ( ) rv c-(2~1,3+1/2)+1/2 [K( ') _ K( ')] ll r, S " A A 

{oo du {oo dvu2a--1(1- u)-2a:_V2a:_-1(1- v)-2a:_(u- v)2a:_ (U- V+ _1_) 
11 11 UV U- V 

This corresponds to a trivial null state with conformal weight 1/2 and it is easy 

to show (using for instance formulas (5.17) and (5.18) of ref.1) that the double 

integral in fact vanishes. Keeping the next order in the f expansion gives the 

expectation value < G -3/2 > on the torus. 

Shrinking 61 but not 62 yields 

in which the intermediate state is 4>1,3 itself. The remaining situation, with both 

screening operators on the torus, results in 

These results are fully consistent with the fusion rules (2.7) and (2.13). In the 

next section we shall consider some other properties of the correlation functions, 

specifically their transformations under a and b-cycle monodromy. 

3 Monodromy and the Verlinde operators 

In this section we wish to discuss the properties of the conformal blocks under 

monodromy transformations: the point z1 (or z2 ) is transported once around 

either an a- or b-cycle on the torus. This defines the Verlinde operators 4>(a) 
and 4>(b) which implement these transformations on two-point functions. The 

conformal case has been discussed in detail in ref.11). 

Consider first the blocks corresponding to the one-contour Ramond correla­

tion function 

Gf(r, s) (3.1) 
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given explicitly by equation (2.1), with v = 1, 2, 3, 4 and i = 1, 2 labelling 

the s-channel contours C1 and C2 • The a-cycle monodromy transformation 

consists of shifting z1 --+ z1 + 1 and z --+ z + 1 when the contour is C 1 (since 

C1 encircles z1 , the contour itself is dragged onto the second sheet under the 

transformation), while for c2 we only need to shift Zl --+ Zl + 1. The contours 

do not mix of course under the a-cycle transformation, but the spin structures 

v = 3 and 4, and v = 1 and 2 respectively are interchanged while the conformal 

block itself acquires a phase. However the combinations 3 

(3.2) 

and 

(3.3) 

are in fact diagonal. Acting on the+ combination of equation (3 .2) for instance, 

the s-channel Verlinde operator is then 

c/>8 (a )r,r 1 ;s,s1 
2 ·[ ~N-S+~R l e 11"1. - r,.!J intermediate (3.4) 

where the intermediate state has a conformal weight of either ~~s+l or ~~s-l 

depending on whether the contour is taken to be cl or c2 respectively. 

For later purposes, it will be useful to transform the operators c/>8 (a) to a t­

channel basis. Again consider the+ combination of equation (3.2). The operator 

c/>t(a) acts on the basis ar=3(r,s) + e-i7r(;~-i\)ar=4 (r,s), where i = 1,2 refers 

now to C1 and C2 respectively. To compute it, we can open the contours, in 

which case up to irrelevant prefactors (and setting X1 = X, X2 = 1) C1 --+ jrf 
and c2 --+It while cl --+ J; and c2 --+ f~oo· Using formulas (4.13) and (4.14) 

of ref.1 one can relate the s and t-channel bases of open contours, and in this 

way obtain c/>t(a) as a 2 x 2 non-diagonal (in the space of contours) matrix with 

elements 

A..t( )- __ . i!r. ~i1ra:_cos1r(sa:.-rj2)~ ~ 
'f' a CC - -ze 8 e2 • 2 Urr'Uss' 1 1 szn1ra_ 

A..t( ) _ _ _ 2 . i~ ilfa:_ cos1r( ( s + 1 )a: - r /2)cos7r( ( s - 1 )a: - r /2) ~ ~ 
'f' a C C - ze e , 2 Urr1U88J 1 2 szn27ra_ 

2 A..t( ) _ _ _ . i .l!. i.l!.a:_ COS1ra_ ~ ~ 
'f' a c c - -ze 8 e 2 • 2 Urr'UBII' 2 1 nn1ra_ 

A..t( ) . i!r. - i l!.a2 cos1r(sa:- r/2) ~ ~ 
'f' a 6 6 = Ze 8 e 2 - • 2 Urr1 U88J 

2 2 szn1ra _ 
(3.5) 

3For details see (I), in which the phase e-i1r(~-n) was omitted. 
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On the other hand, acting on the combination Gi=2(r,s) + eifcr=1(r,s) one 

obtains 

,~,.t( ) -i1r ~i1ra2 simr(sa:_- r/2) ~ ~ 
'f' a 6 6 = e 8 e2 - . 2 Urr'Oss' 

1 1 szn1ra_ 

,~,.t( ) -i!I i1Ia2 sin1r((s + l)a:_- rj2)sin1r((s - l)a: - r/2) ~ ~ 
'f'a66=-2e 8 e 2 - • 2 Urr'Uss1 

1 2 szn27ra_ 

,1,.t( ) -i!!. i!Ia2 COS1rQ:_ ~ ~ 
'f' a 6261 = e 8 e 2 - • 2 Urr'Uss' szn1ra_ 

,~,.t( ) _ _ _ _;,. -i1Ia:_ sin1r(sa:_- r/2) ~ ~ 
'f' a CC - -e 8 e 2 • 2 u,.1·'Uss' 

2 2 szn1ra_ (3.6) 

The two-contour examples, for instance case (a) < 4>1,3 (z1 )4>1,3 (z2 ) >, can be 

examined in the same manner. Isolating the phases that arise in the s-channel 

conformal block equation (2.3), under z1 --+ z1 + 1 etc. allows one to establish the 

precise intermediate states corresponding to the three respective configurations 

of double contours and these are in agreement with the fusion rules listed in the 

previous section. We shall simply state the results for case (a). When the torus 

trace is over N - S primaries 

G~2 (r, s) + G12(r, s) --+ e27ri[-~~;-s+(~~;-s+I/2)l [G~2 (r, s) + G12(r, s)] (3.7) 

while for the superdescendents 

G3 (r s)- G4 (r s) --+ e27ri[-(~~;:s+I/2)+(~~.-±52 +1/2 )] [c3 (r s)- G4 (r s)] 
11) 11) ' 11) 11) 
22 22 22 22 

G~2 (r,s)- G12 --+ e21ri[-(~~;-s+I/2H~~;-s] [G~2 (r,s)- Gi2(r,s)] (3.8) 

. ( >. 2 1 ) 
In equations (3.7) and (3.8) we have suppressed the phase e-~11" 2N-12 multiplying 

cv=4 (r, s ). Although, unlike the one-contour problem, the two-contour blocks 

are diagonal in spin structure under the action of 4>( a), we continue to use 

the particular combinations above so that the intermediate states are always 

conformal primaries with respect to the Virasoro sub-algebra. 

With Ramond spin structure, 

G~1 (r, s) --+ e21ri[-~~.+~~•±2JG~1 (r, s) 
22 22 

(3.9) 
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Similar expressions hold for the other two cases (b) and (c). Unlike< 4JI,24JI,2 >, 
the a-cycle monodromy in a s-channel basis is diagonal within each sector 

(essentially because of the absence of spin fields in the correlator): 

,,,.B(a)VV1 = e2:rri(-~~~1+~intermediate) {' {' C:VV1 
'+' r,r1 ;s,s1 0 rr'Uss' V (3.10) 

where ~tJ stands for one of the three possibilities: 6.~8-s, 6.~;8 + 1/2 or 6.~8 
and 4J8 (a) is to be regarded as a diagonal 3 x 3 matrix on the space of blocks 

( G1,11 G2,2, G1,2). 

We can transform these operators to a t-channel basis of contours as well 

(using this time the double contour formulae equations ( 5. 8), ( 5.14) of ref.1) and 

cite here the results for case (a) < 4J1,34J1,3 > only. 

(3.11) 

where the trigonometric coefficients a and a (n, m= 1, 2, 3 denote the t-channel 

contour combinations 6262,{5/52 and 6161 respectively) 

- - (' 1 I ) an,m = an,m b ,a- 2bv2,c,d 

are given in equation (5.11) ofref.1), but for completeness we rederive them here 

as well in appendix A (correcting a minor sign error in the previous reference). 

Next we turn to a discussion of b-cycle monodromy, starting again with a dis­

cussion of the simpler one-contour Ramond correlator to illustrate the arguments 

involved. The point z1 is transported once around the b-cycle: z1 ---. z1 + T. 

Following ref.ll), it is convenient to split this transformation into two successive 

steps (fig.3) in which z1 is first shifted to a point z~ on the second sheet with 

Imz~ < Im(z2 + T), and then z~ is shifted to z1 + T. Performing this trans­

formation in as-channel basis the (r, s) state propagating around the torus is 

interchanged with the intermediate state (r, s + 1) corresponding to the contour 

C1 , or (r, s - 1) with s > 1 corresponding to C2 , as suggested by fig.l. This 

can be seen explicitly by performing for the C1 case the shifts z1 ---. z1 + T and 

Z ___. Z + T (since as before the contour C1 which encircles Z1 is dragged along) 

in the integrand of equations (3.1), (2.1) whence 
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(3.12) 

and 

(3.13) 

We have to consider as well the action of the transformation on the contour 

itself. To start with, we may take C1 to encircle clockwise the inner radius 

(representing the torus as an annulus) once and to go around the point z1 (s+1) 

times clockwise. This is a closed contour, and in the degeneration limit (Xi = 
e21riz;) is as shown in fig.4a. By deforming the circle around the origin to one 

with a very large radius, we unwrap one of the circles around x1 so that now 

cl winds around this point s times as depicted in fig.4b. Then as XI ---+ X~, the 

contour is dragged along onto the second sheet and becomes C~ which encircles 

x~ anticlockwise s times and oo once clockwise as in fig.4c. 

Denoting the branch of I(r, s), in the degeneration limit, at x1 as band that 

at x 2 as c, recall that in (I) it was shown that b = c = -a:_ - 1/2,whereas the 

branch of I ( r, s) at the origin is 

{ 
modZ, v = 3,4 r- sE 2Z 

a(r, s) = [(r + 1)a+ + (s + 1)a_J a_- 1 
2 + modZ, v = 1, 2 r - s E 2Z + 1 

The integrand Iv(r, s) has been transformed under monodromy 4 to Iv' (r, s + 1); 

therefore the contour C~ is still closed as the branch at X~ is equal and opposite 

(mod Z) to the transformed branch at oo. 

For definiteness consider the cv=3(r, s) + cv=4 (r, s) combination, equation 

(3.2). The contour C1 is 

whereas after the monodromy operation, the contour c~ is: 

4As is clear from (3.11) and (3.12), nnder b-cycle monodromy v = 3,4 is transformed into 
r/ = 2,1 respectively and vice versa. The e±'f in (3.12) is cancelled by a phase e'flf arising 
from the lh ( z, ;za )- t factor of the v = 1 block only due to the change in time ordering implicit 

in z1 ---t z~. 
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(where only factors in the degeneration limit integrands which determine the 

singularity structure have been made explicit). In the second step, one has to 

complete the monodromy transformation by shifting z~ to z1 + T (or equivalently 

on the plane, x~ back to x1 ) as shown in fig.4d. This entails going around the 

singularity at x 2 either in a clockwise or anticlockwise sense, and thus 

A similar prescription applies to C2 , which encloses z2 and the outer radius 

(of the annulus). We need only shift z1 --+ z1 +r, or what is the same thing, both 

z2 --+ z2 - T and z--+ z- r together. Now the state (r, s) is interchanged instead 

with the intermediate state (r, s -1) and the right hand sides of equations (3.12) 

and (3.13) are replaced by the combinations 

,,.. ,,.. 2 [ -2 ± ,,.. ;,.. -1 ] 
e'fs e'fTa- ["- (r, S- 1) - e T eT["- (r, S- 1) (3.12') 

and 

e=F~e'f~a: [r= 3 (r,s -1)- e-i7r(>.
2

<;~- 12 f2)r= 4 (r,s -1)] (3.13') 

respectively. In this case we take the closed contour C2 (in the degeneration 

limit) to wind ( s - 1) times ( s > 1) around x 2 in an anticlockwise sense and 

once around oo clockwise. Then under x 2 --+ x~, the new contour C~ winds s 

times anticlockwise around x~ while winding once around the origin also in an 

anticlockwise sense: it is still closed by the previous arguments. Therefore (for 

v = 3,4 and v' = 2, 1) 

1 = e-i7r(a(r,s)+b+c) 1oo -ei7r(a(r,s)+b+c) 1oo = -2isimr(a(r, s) + b +c) 1oo 
lc2 :1:2 :1:2 :1:2 

1 = ei7r(a(r,s-1)-1/2) r~ -e-i7r(a(r,s-1)-1/2) r~ = 2isimr( a(r, s) +b) [:!:~ 
le~ lo lo lo 

and hence 

1
oo ( ) b simr(a+b) 1:~:~ ( ) 1 

dXXa r,B (xl-X) (X-X2)C --+ - . . dXXa r,s-l -2 (XI-X )b(X1 -X y .. , 
:1:2 sm1r(a+b+c) o 2 

In the second stage, we require to shift x~ back to x 2 and again in performing 

this operation one has to go past x1 either in a clockwise or anticlockwise sense 

resulting in 
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Since after both steps the contour is now in a mixed basis, it is convenient to 

transform all these formulae to the t-channel using as before equations (3.13) 

and (3.14) of ref.1) which give 

. -sin1ra(r, s)e±~'ll'c -sin1r(a(r, s) + b + c)e±~'ll'b 1 ( . lo:Vl . 1.00) 
sm1r(a(r,s) +c) o :v2 

and 

sin7rb (-e±i'll'a rr +e±i'll'(a+b+c) !00) 
sin1r(a(r,s)+b) lo l:v2 

Using these relations, the action of qi(b) is: 

is given by the matrix qi(b) with matrix elements 5 

. 2 t( ) _ 'f!!!:. ±~im~2 COS'Tret_ ( ) 
4> b 6 6 - e 8 e 2 - • 2 8r' r 8s' s+l + 8.'.•-1 1 1 stn27ra_ , , s>l 

. 2 
t( ) 'f!!!:. ±~im:~2 COS'Tret_ c (c 6 ) 

4> b 6261 =e se 2 -2 • 2 (I 2 /2)Ur',r Us',s+l+ s',s-1 
S'tn'Tra_COS'Tr S a_ - r s>l 

2 
c/>t(b)- - = -e'f~ e'f~a:_ co~ma_ 

C2C2 sin21ra:.cos1r(s'a:.- ~) 

6r',r (sin1r((s' + 1)a:- r/2)6s',s+l + sin1r((s'- 1)a:- r/2)6.,,._1 ) 

s>l 
(3.14) 

The matrices acting on the other combinations of conformal blocks have a 

similar structure. In particular one observes that the first of these equations for 

cpt(b)6161 is, up to a (r, s) independent normalization factor, the superconformal 

fusion algebra 

5For details see ref.17). 
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in accord with Verlinde's result2). The normalization factor can of course be 

eliminated by a change in normalization of the basis, the new basis being defined 

by requiring that the action of the monodromy operator on the identity character 

reproduce the R 1,2 character. 

The discussion of b-cycle monodromy for the two-contour problem proceeds 

in the same way but is somewhat more involved in detail. As mentioned above, 

under I:/J8 (b) the puncture z1 is taken to z1 + T, and it is convenient to split this 

operation into two consecutive steps z1 --+ z~, and then z~ --+ z1 +r. From fig.1, or 

indeed the fusion rule equations (2.7) and (2.13), it follows there are (in general) 

three possible intermediate states depending on which of the three s-channel 

contour combinations cl ell cl c2 or cl c2 are chosen. Explicitly, under6 Zl --+ 

z1 + T as can be seen from equation (2.3), (2.10) or (2.14) corresponding to cases 

(a), (b) or (c) respectively, 

where s = s + 2 for C1C1 ; s = s, s > 1 for C1C2 and s = s- 2, s > 2 for C2C2. 

Consider now the configurations of double contours involved. It is sufficient 

to work in the degeneration limit where one has integrals of the generic type 

The double integral is well defined when C~ and Cy are not both C1 or C2, but 

ambiguity arises when C~ and Cy are both together either C1 or C2. To avoid 

this we adopt the prescription that in the complex y-plane, the Pochammer 

contour Cy( =cl or C2) is taken to exclude the singular point X = y (see fig.5a) 

which becomes a branch point for the remaining integral specified by the contour 

C~. For definiteness let us take both C~ = C1 and Cy = C1 . Then in the first 

step of the monodromy operation, the double contour is shifted onto the second 

sheet as illustrated in fig.6a where C~ encircles now x~ and oo (excluding the 

point x'). 

We would like to rewrite these closed contours as definite line integrals. Be­

fore performing the b-cycle monodromy operation one can write fc., fc
11 

... as 

-4ei1Ta simra sin7rc 1 dx rl dy 
!c1 lo 

6 Shifting as well z ---+ z + r for the C1 C2 combination, and both z ---+ z + r and w ---+ w + r 

for clcl . 
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and then as 

(3.15) 

where 

and the + sign in e±i'id corresponds to choosing the contour Cx to be above 

the point y in the complex x-plane as drawn in fig.5a. The expression in 

braces above can of course be rewritten as the line integrals1) f0z
1 J0x

1
, with the 

x-contour drawn above that of y as in fig.5b. The other combinations of con­

tours are obtained similarly. After performing the first step of the monodromy 

transformation, the resulting contours are 

2cos~d r= dx' fxl dy'I(y', x') 
2 Jx~ Jx~ 

(3.16) 

where 

a' = a(r', s') = a(r, s + 2). Therefore one has that 

l
xl d lx d I( ) =f1rid 211"i(bl+cl+d) sin21r(a + c' +d) 1= d '1xl d 'I( ' ') 

X y X, y ---+ e e . 
2 

X y y , X 
o o szn 1ra x~ :c~ 

(3.17) 

The second step involves shifting z~ to z1 + T which in the degeneration limit 

corresponds to analytically continuing the open contours in fig.6 from x~ back 

to x1 in the process of which we have to go around the point x2 in either a 

clockwise or anticlockwise sense (as illustrated in fig.6b). Thus 

1
= 1x

1 
1 1:1:2 1x 1 1= 1x2 1= 1x dx' dy' ---+ e=f211"ib dx dy + e=fi11"b dx dy + dx dy 

X~ X~ Xl X} X2 X} X2 X2 

(3.18) 

On the right hand side of equation (3.18) the first term is in at-channel basis, 

the third is in a s-channel basis while the second term is mixed. Combining 

all these transformations i.e. (3.15)-(3.18) and taking into account the phase 
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coming from the transformation of the integrand itself, we obtain (employing 

(A.6)-(A.8) to rewrite the whole expression in an s-channel basis) the following 

matrix elements of the operator ql(b) in an s-channel basis. 

±31rib1 sin1r(a1 + d/2) 
6 6 -e sin7r(a' + c' + d/2) r1,r sl,s+2 

±J1rib1 ±i1ra1 sin1r(b') c c 
e e U· I 0 I +2 , ( I + /) r ,T B ,B szn1r a c 

±J1rib1 ±i1r(a+d/2) sin1r(b')sin1r(b' + d/2) c c 
e e , ( ) , ( d/ )Ur1rUs

1 s+2 szn1r a1 + c' szn1r a' + c' + 2 ' ' 

(3.19) 

As in the one contour case one can elect to rewrite these in at-channel basis 

instead, using again the results of ref.1) for the change of bases. We shall not 

give the explicit expressions here, but simply note that in this example as well 

Verlinde's conjecture is satisfied (see appendix D). 

In the next section we go on to examine the modular transformations of the 

various two-point functions introduced so far. 

4 Modular Transformations 

We now wish to establish the transformation properties of the two-point confor­

mal blocks under the modular group, generated by S and T. Again, the conformal 

case has been dealt with in detail in ref.ll). Consider first the Ramond sector 

correlator < c/J1,2c/J1,2 > in the t-channel basis 

Gf(r,s) £; dzi"(r, s) (4.1) 

Under T i.e. T --+ T + 1 the spin structures v = 3 and 4 are interchanged while 

v = 1 and 2 are unchanged. Explicitly, from equations (2.1) and (2.2) one sees 

that under T 

G-v=l,2 21ri(~,..--2c4 )Q-"=1,2( ) 
i --+ e · i r, s 

and 

while 

(4.2) 
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The modular transformation S maps the a- -cycle into b and takes the 

b-cycle to -a. The spin structures v = 2 and 4 are interchanged under S 

while v = 1 and 3 are left invariant. Let us consider the action of S on the 

integrand Iv(r, s) in (4.1). Perform the shifts T -t -1/T, Z1 -t z~ = -z1jT, 
2 2 2 . 

and in addition the change of variable z = -z' jT. (We shall assume that 

I m( -zl/T) > I m( -z2/T) so that S does not change the time ordering of the 

correlation function.) 
"'2 

When v = 3, combining the factors ofT (and the phase e-i1r 2:; (z1+z2- 2z')
2

) 

that arise from modular transforming the 0-functions in equation (2.1), with 

that from the J acobian of the change of variable, and finally from the modular 

transformation of the lattice part equation (2.2) itself, the latter becomes after 

a Poisson resummation 

(4.3) 

where E is a >.-independent phase that will be fixed subsequently. For v = 4, the 

result is a little more complicated and reads 

1 '"" (n±r;p)2 21rin[~-~(z1+Z2-2z')] ( 4.4) 
( )

3/2 L.J q e 
'r/ T nEZ 

Equations (4.3) and (4.4) may be cast into the usual form by making the shift 

n = HA'+ Nk) in equation (4.3) where A' = r'(p + 2)- s'p with r'- s' E 2Z, 

and setting in equation (4.4) n = HA'+ Nk) =f p/2 with now r'- s' E 2Z + 1. 

Dropping the irrelevant Jacobian factors in the last two equations (they are a 

conformal transformation on the external lines of the two-point function), gives 

the S transformation of the integrands 

(4.5) 

and 

(4.6) 
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It is somewhat more convenient for what follows to invert these relations by mul­
tiplying by e-i1r(ra++sa-)(r"a++s"a-) and summing over (r, s) obtaining thereby 

the action of s-1 on the integrands. 

and 

p 2(p+2) 

E E 
r 1=1 •'=1 

r 1-s1E2Z+1 

e-i1r(ra++sa_)(r'a++s'a-) J"'=2(r'' s'l- ~) 
7 

(4.5') 

(4.6') 

where we have suppressed dependence on the arguments zi. Conversely, starting 

from J"=2(r, s) one obtains 

whereas r=1(r, s) ~ r'=1(r', s')' 

with phases C 1 and 'T}-1 and the same summations as in ( 4.5') and ( 4.6') above, 

respectively. 

Now consider the action of Son the contours 61 and 62 which do not mix 

under the modular transformation. In fact for 61, corresponding to the identity 

intermediate state, 61 ~ 6~ with the latter encircling the points -zl/7 and 

-z2/7; therefore one has that 

i · ( )..12 
1 )' I 1 - dz'e-111" 2N-I2 u.,'4J" (r',s'i--) 

c~ 7 
(4.7) 

For v' = 3,4 (i.e. v = 3,2 and r'- s' E 2Z) and v' = 1,2 (i.e. v = 1,4 and 

r'- s' E 2Z + 1) respectively, one can reduce the range of summations (r', s') to 
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the standard ones in the following way. In the v' = 3, 4 case this is achieved by 

first splitting the s' sum into two parts 7 : 

p (p+l 2(p+2)-1) 

r~ s~ + s1~2 
with r'- s' E 2Z, and shifting r' = p- r", s' = p + 2 + s" in the second term. 

Under the shift r(±r', s') = r(=fr", s"), hence the lattice difference parts of the 

conformal block are interchanged. For v' = 4 there is also an overall factor 

( -1 y" s" , coming from a similar factor in front of the second lattice term of 

equation (2.1). The resulting expressions are 

i · J-
12 

1 I 
_

1 

dz' e-ur( 2N -12)6"1
•4 I" (r', s') 

cl 

Next the s' sum is split once more, now into 

p-1 ( r
1 

p+1 ) 

r~ s~ + s1~+1 
and this time the shift r' = p - r", s' = p + 2 - s" performed in the second term. 

Further, changing variables z ---t z1 + z2 - z in the second term, one sees that 

r(±r', s') = r(±r", s") while the other factors are left invariant. Recombining 

the sums one obtains the action of s-1 on the conformal blocks 
p-1 r 1 

12 

G-11=3 2( I ) ~ ~ -i"Ir(L-..!..)6 I 

1 I r,sz1 ,z2 ,T = L....JL....Je 2N 12 .,4 

r 1=1s1=1 

(s-1 )r1s1 G-v1
=314( , 'I- Z1 _ Z2 -~) 

111=3 4 r 8 1 r 's ' ' 
I I T T T 

(4.8) 

where the matrix S;,~3 = (S;,~4 ) is 

4e-1 rs' sr' J simr( rr' a:! - -)sin1r( ss' a:_ - -) 
p(p + 2) 2 2 

(4.9) 

with r'- s' E 2Z. When v' = 1,2 (i.e. v = 1,4) one splits the sum into four 

terms: 

7The only restriction on the s' sum is that it span an interval of 2(p + 2} units (satisfying 
r'- s' E 2Z of course). Thus it may be rewritten as indicated, recalling the fact that the s' = 0 
block vanishes. 
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with the restriction r' - s' E 2Z + 1. Implementing the same shifts from ( r', s') 
to ( r", s") in successive steps as before, one recovers the standard range. 8 The 

final result is 

(

!YJ r 1-1 p-1 r
1+1) 

r?; s?; + r1=F~J E 
(s-1 )r1s1 

v1=2 r,s G-v1=2( 1 '\ Z1 Z2 1) 
1 r ,s --,--, -- . 

T T T 
(4.10) 

The matrix s.-;,;2 in this case is 

4 -1 I I 
€ {r 1 ,s' . ( 1 2 sr ) . ( 1 2 rs ) - stn7r rr a+ - - s'l.n7r ss a_ - - . 

VP(P + 2) 2 2 
(4.11) 

where {rl 81 = (1- -2
1 6P 2zftr1 1!.681 1!.±!) and r'- s' E 2Z + 1. For the remaining spin 

, , 12 ' 2 

structure l/
1 = 1 the modular matrix, s.-;,;1 is, for odd p, symmetric and equal 

to 

47]- 1 sr' r' rs' r' 
-r===='====sin7r( rr' a+ 2 

- - + - )cos1r( ss' a_ 2 
- - - -) J p(p + 2) 2 2 2 2 

(4.12) 

with 1J an (r, s)-independent phase. 

Equations (4.8), (4.9) and (4.10), (4.11) are essentially the modular trans­

formation of superconformal characters15•16). In the ensuing discussion it is con­

venient to deal with the p odd and p even cases separately. Calling S the 4 x 4 

matrix that acts on the following vector of conformal blocks 

(4.13) 

one has that 

with the above matrices as entries i.e. 

(s-1 y1
,s

1 

v1=1 r,s 0 0 0 

0 0 0 
• ( >.12 

1 ) 1 I I 

Sc1c1 = 
€-I7T 2N -12 (s- y •8 

v 1=4 r,s 

0 0 (s-1 y' s
1 

0 v1=3 r,~ 

0 • ( >.
2 

1 >( -1 ) I I € 17T 2N - 12 S T ' 8 

v1=2 r,s 0 0 

8 After the second shift for p even, there is an extra term with r' = ~, s' = r' + 1 (corresponding 

to the Ramond vacuum state) which can be incorporated into the range above by introducing a 

factor ~ in front of the corresponding matrix element. For details see ref.l8). 
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(4.14) 

One can check by direct computation that s-2 = diag( fJ2, e2, e2, e2) (see ap­

pendix B). Using the fact that in the Zl ---+ Z2 limit the cl block factorizes for 

even spin structures as (z1 - z2)-2A1 •2 x Xr,s(T) with the character as residue9_, 

and that 8 2T = T while 8 2(z1 - z2) = -(z1 - z2), the action of 8 2 on blocks 

can only be a phase. In particular e is fixed to be e = e±i1rA1•2 by this argu­

ment. When v = 1, as was obtained in (I), the leading term in the factorization 

limit has vanishing residue and one is left instead with the vacuum expecta­

tion value of the supersymmetry current G _2 on the torus (a function of T 
2 

only by virtue of translation invariance on the torus). The resulting expression 

(z1 - z2 )-2A 1 • 2 +~ x < G _2(0) > fixes TJ to be e±i1r(A1 • 2 -~). 
2 

- . "2 1 - . >-'2 1 
Furthermore, defining 8v'=2 = e~1r(2N-I2)8;,!:2 and 8v'=4 = e-~1r(2N-I2)8;,!:4 , 

for p odd one observes that the matrix 8v'=2 = e-2(8v'=4)t whereas 8v'=1,3 = 

(8v'=1,3f. The unitarity of the 4x4 matrix Sc
1
c

1 
follows directly from the result 

that s-2 =diag( TJ\ e2, e2, e2) and the last two properties. In addition, note that 

clearly it is possible to makeS symmetric (while maintaining unitarity) simply 
- . ( "2 1 ) by redefining the G11=4(r, s) block, multiplying it by the phase e-~71" 2N-12 , 

For even p the situation is a little different for two reasons. Firstly, the 

modular transformation of the v = 1 or odd spin structure sector is, instead of 

equation (4.12), found to be 

(

!-1 r1-1 p-1 r'+l ) 1 
G-v=l( I ) _ "'"' "'"' "'"' "'"' (8 -1 )r',s'G-"'=1( , 'I z1 z2 ) i=l r,szl!z2,T- L....,; L....,;+ L....,; L....,; v'=l r,s i=l r,s --,--,--

T T T r'=l s1=1 r'=!+l s'=~+l 

(4.15) 

Notice that for V= 1 (p even), equation (4.12), and hence the 8-1 terms in 

(4.15), vanish when either (r, s) or (r', s') are equal to(~, P~2 ). This is also con­

sistent with the conjugation relation equation (4.16) below, which when acting 

on the block Gi~l(r, s), has a vanishing L.H.8. for this value of (r, s) because 

qi(a)c
1
c

1 
rv simr(sa: - i) as is evident from equation (3.6). Now, if one com­

putes (8;21 ) 2 for p odd one obtains TJ-2 times the unit matrix as one ought. 

On the contrary, for p even, [8;21 + (1- (- Y)6r,r'6s,s'6r',!6s,,~] 2 =f. TJ-21. This 

9 To be precise there is a numerical factor, independent of (even) spin structure, 

B(! - £L 2,! -a_ 2 ) omitted here. This can be absorbed in the overall normalisation of the 
conformal blocks G(r, s), to be fixed in section 6, such that the factorization limit is in fact as 

stated above. 
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suggests that the Gi~l ( ~, P~2 ) block is zero and should in fact be excluded from 

the state space. Indeed, we have checked that this particular block vanishes at 

leading and first sub-leading order of a q-expansion in the degeneration limit 

(transforming to a s-channel basis). The computation is straightforward but 

tedious (requiring several delicate O(q) cancellations between various terms) and 

we refrain from reproducing it here. Unfortunately, we do not have a general 

argument for this at arbitrary order in q, but shall nonetheless assume in the 

following that the Gi~l ( ~, P~2 ) block is identically zero. Taking only the first 

line of equation (4.15) to be the correct modular transformation of the v = 1 

sector (and excluding the ( r, s) = ( r', s') = ( ~, P~2 ) element) one then indeed 

has (8;21 ) 2 = 7]-21. 

Secondly, there is the presence of the factor rr',s' in equations (4.11) and 

(4.14). The physical origin of this factor is the fact that Ramond states, apart 

from the vacuum (r', s') = (~,~),are doubly degenerate. On computation one 

obtains10
, as in the p odd situation, that S 2 = diag(7]2 , t:2

, t:2
, t:

2
). However, the 

matrix S is no longer unitary. With the normalization of Ramond conformal 

blocks used here (see also ref.15), the unitarity relations assume the form 

1 1 r 11 s" "" (sv=4)r', 6'(sv=4)* • ~ ~ .L.J 'Yr,s r,s r,s == Or' ,r11 Vs 1 ,s11 

r,s 

1 1 r" s11 

L(sv =2)r',s'(Sv =2)* ' ~ ~ = "'r' s10r1 r 11 Us1 1111 r,s r,s 1 , , , 

r,s 

or in terms of the 4 x 4 matrix S 

(4.16) 

where r is the diagonal unit matrix except for a~ at the r = ~' s = P~2 entry i.e. 

r = diag(1, 1, ... , 1, ~' 1 ... ). Essentially the same result has also been obtained 

by the authors of ref. 20). 

Since the transformation S interchanges the a- and b- cycles, there exists 

a conjugation relation between the monodromy operators 

qi(a) = s-1qi(b)S (4.17) 

As a check on the above computations we have verified that the matrix elements 

of this operator equation are indeed satisfied and in appendix C the calculation 

for one of these (the 6i52 element) is demonstrated. Incidentally, one expects 

10The factor 'Yr',s' in equation (4.11) is in fact essential for this property to hold 
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that both equation ( 4.17) above and the fact that s-2 
rv diag( 1]2' e2' e2' e2) are 

of course basis independent and must be satisfied simply for reasons of algebraic 

consistency. 

At this point it is perhaps worth making some comparison with the struc­

ture expected from more abstract considerations of rational conformal field 

theory2),5). The first point to note is that refs.2) and 5) make the technical 

assumption that left and right extended chiral algebras consist only of genera­

tors with integral conformal weight (thereby evidently excluding the supercon­

formal case). In the superconformal models considered here at least, we have 

constructed a basis - the Verlinde basis - proportional to 

1 [ - 3 . ( >.2 1 ) - 4 ] E±(r, s)- 2 a~= (r, s) ± e-t1r 2N-12 a~= (r, s) 

and 

0 ( ) 1 [a-v-2( ) ± .!..!r.a-v-1( )) (4.18) ± r, s = 2 1- r, s e 4 1- r, s 

with respect to which both (i) the Verlinde conjecture (that the b-cycle mon­

odromy on characters yield, up to an overall normalization, the fusion rule coef­

ficients) is satisfied and which in addition (ii) is an eigenstate of qi(a); or more 

precisely in superconformal models, transforms irreducibly under the qi( a) al­

gebra. The proof 2) of the Verlinde conjecture relies only on conformal and 

duality properties (consistency with the fusion rules) under certain manipula­

tions of conformal blocks in their degeneration and factorization limits. Since 

in the superconformal case we have already explicitly checked that these lim­

its are indeed consistent with the fusion rules and as already emphasized, we 

are using bases in which the descendents in a q-expansion are always at in­

teger level spacing above the highest weight state (regarding superdescendents 

as Virasoro primaries), the present example suggests that by working in the 

appropriate basis as above the proof can always be carried through. However 

we have no general proof of this statement in superconformal models, even less 

for an arbitrary rational conformal theory including generators of non-integer 

conformal weight. Now, in the conformal case both the above properties (i) 

and (ii) of the basis, together with the (basis independent) conjugation equation 

( 4 .17) are sufficient to demonstrate that the fusion rules are diagonalised by the 

modular matrix S. The (basis dependent) symmetry and unitarity of S follow 

as a corollary.11 

11 Assuming in addition permutation symmetry of the fusion coefficients N;jl•, a consequence 

of the associativity of the fusion algebra (the latter itself following from the fact that both s­
and t-channel confonnal blocks provide a complete basis). 
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In the next section we shall demonstrate, assuming that the matrix elements 

of ~(b) are indeed always the fusion coefficients Nf., (generalized to account 

for Neveu-Schwarz and Ramond sector dependence), that the fusion rules are 

diagonalised in superconformal models as well. However, the question of whether 

the diagonalising modular matrix is symmetric and unitary appears to be more 

delicate and in particular depends on whether p is odd or even. Acting on a 

complete Verlinde basis of conformal blocks: 

and denoting as before the action of the modular transformation by 

the modular matrix is instead 

s-1 
v1=3 

s-1 
v1=3 

s-1 
v 1=2 

s-1 
v1=2 

1 s-1 s-1 s-1 s-1 
s- - v1=3 v1=3 - v 1=2 - v 1=2 - -

c1c1 2 s-1 s-1 s-1 s-1 
v 1=4 - v 1=4 v1=1 - v1=1 

s-1 
v1=4 

s-1 
- v 1=4 

s-1 
- v1=1 

s-1 
v1=1 

(4.19) 

and is symmetric and unitary for p odd. This is in accord with the well-known 

result that for p = 3 in particular, there are two equivalent representations of 

the TIM- either as a p = 4 conformal model or as theN= 1 superconformal 

model discussed above- and hence Verlinde's results must hold for this case at 

least. In fact for p = 3 the combinations of blocks (4.18) in the factorization 

limit are of course nothing but the Virasoro characters: 

and 

However acting on a different basis in general will not lead to a symmetric 

matrix Sc
1
c

1 
as we have just seen in equation (4.14) above (although it does 

happen to be unitary in that particular case). For that matter, neither is it 

sufficient to act only on a subset of the Verlinde basis (by for instance taking 

just the + signs in (4.18) above) because the action of S will take one out of 

the basis (for example G3 + G4
--+ G3 + G2 under aS-transformation). Despite 
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the fact that the odd spin structure ( v = 1) sector does not mix under mod­

ular transformations with the even sectors, it is still necessary to work with a 

complete 4-dimensional basis.12 Therefore, for p odd, the Verlinde basis is a 

sufficient condition to obtain a symmetric and unitary modular matrix (though 

not it would seem strictly a necessary condition, since we have constructed a5 
well a basis in which the action of rf>( a) is not diagonal but S is nonetheless 

symmetric and unitary). 

For p even, working in the Verlinde basis as above, the factor /r,s in the 

matrix s;,~2 (equation 4.11) associated with the Ramond vacuum state appears 

to prevent S from being either symmetric or unitary. It is however possible to 

transform the Ramond sector (v = 2) blocks to a basis with respect to which 

the modular matrix is symmetric (and unitary) in the following way (see also 

the second of refs.16). Define a new basis for (r, s) = (~, P~2 ) by 

cr:fer,s) = E 8r,r'8s,s'[1 + (J2 -1)8r,i8s,~Jcr:{(r',s')' 
r 1 ,s' 

(4.20) 

Then with respect to either of the two following bases the modular matrix S is 

seen to be symmetric (and unitary): 

(i) G(r,s)' = ( GJ.'=1(r,s) GJ.'=2(r,s)' G1=3(r,s) e-i11"(;!-i\){;1=4(r,s)) 

(ii) G' = ( E+ E_ 0~ 0'_ ) (4.21) 

where 0~ refer to the new basis (4.20) above. Now we should also consider the 

monodromy operations with respect to these new bases. The first of these, viz. 

(i), is obviously not a Verlinde basis as defined previously. As for (ii), consider 

the rf>t(b) action on the G' basis. One observes from equation (3.14) that the 

6161 matrix element of ab-cycle monodromy transformation of E+(r, s) is 

. 2 

"'e=F!fe±~i7ra:_ C.OS
2
1f'O:-; 8r1 r(8s1 s+1 + 8•'•-1)(1 + (J2 -1)8r' F.8s, 1'..±!) 

L...J s~n 1ro: ' ' • '2 • 2 ~~ - 01 

Therefore the Verlinde conjecture itself is not satisfied by this particular choice 

of basis. 

We also have to consider the situation where the contour is 62 , in which 

case the intermediate state is either (for even spin structure v = 2, 3, 4) the 

superdescendent rf>f,3 or (for odd spin structure v = 1) the primary r/>1,3 itself. 

Representing the torus as a parallelogram, 62 is illustrated in fig. 7a. On per­

forming the modular transformationS, 62 is rotated anti-clockwise, preserving 

12We thank A.Sagnotti for a useful discussion on this point; see for instance ref.19}. 
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its orientation in the z-plane leading to the contour 6~ shown in fig.7c. To work 

out the action of s on 62 it is sufficient to compare 62 and 6~ in the degen­

eration limit, where they are both Pochammer contours on the complex plane 

encircling the singular points 0 and oo. On transforming to annular coordinates 

e = e21riz and q = e2
11"iT! the COntOUr 62 (See fig. 7b) in the q ---+ 0 limit is 

- 4simrasimr(a + b + c)e-i1r(<Hb+c) fooo dx( -x)11 (z- x)b(x- l)c (4.22) 

where a= a(r, s)- ~(8v,l + 8v,2). To compare 6~ with this we need to write it 

also as an integral from 0 to oo. In doing this note that on the first sheet (upper 

parallelogramoffig.7c) the branch at the origin (in the degeneration limit) after 

the modular transformation is given by 

a'= [(r' + l)a+ + (s' + l)a_Ja_- ~(8v',l + 8v',2) 

as obtained above. However on the second sheet (lower parallelogram in fig. 

7c) we have to shift z = -z' /T to -z' /T + 1/T in addition to the modular 

transformation z~ = -zi/T of z1 and z2 in the integrand (equation 2.1). After 

Poisson resumming etc. as before one observes that the branch at the origin is 

now in fact 

a"= [(r' + 1)a+ + ((s'- 2) + 1)a_Ja_- ~(8v',l + 8v',2) 

Therefore one has that 13 

= ei1ra' fooo dx( -x)11' (z- x)b(x- lY 

+ ei11"(6v,,3+6v•,2)ei11"a' e-21Ti(a'+b+c) fooo dx( -x)a" (z- x)b(x- lY 

+ ei11"(6.,,,3+6v,,2)ei11"a' e-211"i(a'+b+c)e211"i(a"+b+c) ~~ dx( -x)a" (z _ x)b(x _ 1)c 

(4.23) 

Combining this with the modular transformation of the integrands, equations 

(4.5') and (4.6'), gives the transformation of the conformal blocks ar:i·2(r,s) 

13Notice that when one goes to the second sheet (effectively by letting z---+ z-T) the integrand 
transforms to ei..-(o.•,3+6.•,2)Jv'(r',s'- 2) 
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in the C2 channel. Once again the summations are brought into the standard 

range by implementing the two successive shifts in the dummy indices ( r 1
, s1

) 

described above. (Note that in implementing the second shift, r1 = p- r" and 

s1 = p+2-s", one performs a change of variables z---+ z1 + z2 - z in the integrand 

of the closed contour integral over C2 , whereas eqns. ( 4.22) and ( 4.23) above 

are in terms of open contours in the degeneration limit. (This introduces some 

additional phases which must be included to get the final result.) For v1 = 3,4 

respectively one obtains (p either odd or even): 

[
sin 1r(s1(s + 1)a~ - ~) _ sin 1r(s1(s- 1)a~ - ¥ )] 

sin1r((s + 1)a:_- (s~1)) sin1r((s -1)a:_- (s;
1
)) 

(4.24) 

A similar expression is obtained for v 1 = 2 (p odd): 

[
sin7r(s1(s + 1)a~- ~) _ sin1r(s1(s -1)a~- ¥)] 

sin 1r( ( s + 1 )a:_ - (s~1 ) ) sin 1r( ( s - 1 )a:_ - (s;1)) · 
(4.25) 

One should remark here that when p is an even integer, there appear to be the 

following additional terms in s:,~2 viz. 

-1 I 
. € (( , '+1);2 . 2 • 2 rr -z (-) r -s e-t11'a_ s1n 1r(rr1a+- -) 
VP(P + 2) 2 

[

cos7r(s1(s + 1)a~- s'(s
2
+1)) cos7r(s1(s -1)a~- s'(s

2
- 1) )] 

--------.,..-( ~)- - f~-1' 8r' I!.bB, 1±! 
sin 1r((s + 1)a:_-

2 
) sin 1r((s- l)a:_- T ) '2 

' 2 
(4.26) 

However, the same argument that led to the vanishing, in a s-channel q­

expansion, of the cv=1 (~, P~2 ) block for the closed contour ell implies that 

for the contour C2 instead it is now the block cv=2 (~, P~2 ) that vanishes. There­

fore in the present case we exclude the r 1
, s1 = ~, P~2 state in the v 1 = 2 sector 

and hence the terms in (4.26) above do not contribute and equation (4.25) in 

fact holds for p even as well. Finally, the modular matrix in the v = 1 sector is 

2 • -1 I 

(s-1 )r' s' 1/1] -i1ra2 • ( 1 2 rr ) 
v'=1 rs - VP(P + 

2
) "Yr',s'e - sm 7r rr a+ - 2 
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[
sin7r(s'(s + 1)a:-~) _ sin1r(s'(s -1)a:- ¥)]· 

sin 1r( ( s + 1 )a~ - (s~l)) sin 1r( ( s - 1 )a~ - (s;l)) 
( 4.27) 

These matrices vanish for s' = 1, corresponding to the fact that they are 

square matrices (there is nos = 1 conformal block for C2 ). As in the identity C1 

channel, the square of the C2 channel modular matrix S ( 4 x 4 in spin structure 

space) is a phase 14 : diag(rJ-2C2 E-2C2 )e-21fia~ (see appendix B). Comparing 

this with the action of s-2 in the factorization limit where the conformal block 

(for even spin structures) decomposes as (z1 - z2t2~ 1.2+~1 • 3+t < Nf,3(0) >, and 

for odd spin structure as (z1 - z2)-M1 • 2 +~1 • 3 < N 1,3(0) >, one is able to com­

pletely fix € to be e-i71"~ 1 •2 and 'f'J = ei11"(~ 1 •2 -~). As in conformal models, the C2 

channel matrix S is in general not symmetric for either odd or even p. The 

unitarity relations take the form: 

r,s 

r,s 

T,B 

( 4.28) 

where 

Nr,s cos(1r(s + 1)a:_- r/2) cos(1r(s- 1)a:_- r/2) 

'Yr,ssin(1r(s + 1)a:_- r/2)sin(7r(s -1)a:_- r/2) (4.29) 

The proof of these goes as follows. For example consider the third relation Z/
1 = 3 

in equation ( 4.28): assume this relation is not true and multiply both sides from 

the right by (Sv=3)~:! s"' Summing over (r", s") we get 
' 

which is a contradiction because N;., 8s;:{ is symmetric as can be easily shown 

by direct substitution. The other relation is proved in a similar way. 

The modular transformation for the double contour correlators can be ob­

tained similarly. In particular, for the two cases < cp1,3cp1,3 > and < cpf.,3 cpf.,3 > 
which involve only even spin structures the modular transformation matrices 

14Note that when p is even, for this to be the case the extra terms in equation ( 4.26) should 

not contribute as we have argued to be the case. Likewise, the factor 'Yr' ,s' in ( 4.27) is crucial. 
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8;,\ when the contours are both taken as C/51 , are identical to equations (4.9) 

and (4.11) as has to be the case since we know that, in the factorization limit, 

this combination of contours reproduces the superconformal characters. 

A Verlinde basis of conformal blocks is provided by: 

( 4.30) 

and again, for p odd, the 3 x 3 modular matrix 

( (s-'~ t'·•' 
0 (8-1 y' s

1 

) 
v 1=4 r,~ 

S = (8 -1 y'.s' 0 
111=3 r,s 

0 0 v'=2 r,s 

(4.31) 

with entries given by equations (4.9) and (4.11) is symmetric and unitary. 

On the other hand, one could also work with another (Verlinde) basis: 

(4.32) 

where E±(r, s) are defined as in equation (4.18). With respect to this basis 

( 

(8-1 )r' s1 

1 v1=3 r,; 
_ _ -1 r 1 ,s1 

S- 2 (8v1=3)r,s 

2(8-1 )r' s1 

v 1=4 r,~ 

(8-1 )r' s1 

111=3 r,~ 

(8-1 )r' s1 

111=3 r,~ 
-2(8-1 )r',s' 

v 1=4 r,s 

(8-1 )r' s
1 

) v 1=2 r,~ 
-(8 -1 )r' ,s' 

v1=2 r,s 

0 

(4.33) 

which is in fact not symmetric, even for p odd. This can be understood by 

observing that, although both bases are eigenstates of 4>t(a), the basis (4.30) 

is in fact an irreducible representation of the 4>t(a) algebra whereas the other 

basis (4.32) is not (since it is a sum of irreducible representations). (In the one 

contour example discussed previously, the basis ( 4.18) was both an eigenstate of 

4>t(a) and also irreducible under this algebra.) One concludes that the Verlinde 

basis appears to be a sufficient condition to obtain a symmetric modular matrix 

S for p odd. 

In addition note that both (4.31) and (4.33) satisfy S2 = 1 when acting on 

characters - for p odd as well as p even. 

For the other combinations of contours one obtains the modular transforma­

tion of various one-point functions. The remaining two-point function case (c) 

34 



< </J1,3</Jf.,3 >, with contours C/)11 has the modular transformation appropriate 

to < G_~ > i.e. equation (4.12). With the other combinations of contours, 
- - 2 - -cl c2 and c2c2 one gets the modular transformations of the torus one-point 

functions < </J1,3(0) > and < <Pr,5 (0) > respectively. 

5 Superconformal Verlinde Formulae 

In previous sections we have checked in several examples that, in an appropri­

ate basis, the b-cycle monodromy operator in the t-channel, <Pt(b ), yields the 

expected superconformal fusion rules up to an r, s independent factor; that is to 

say, the Verlinde conjecture appears to hold also in superconformal models. Let 

us assume that this is in fact true. The factor can of course be eliminated by an 

overall (r, s independent) change of normalization of the blocks,· and the matrix 

elements of <Pt(b) defined to be precisely the fusion coefficients Nf} occuring in 

-NK 'PI X 'PJ - IJ'PK (5.1) 

Here, 'PI is one of the operators Nr,s' N:,8 or Rr,s and the upper case indices 

denote both r, s as well as spin structure sector v (or rather the appropriate 

combinations of spin structures discussed before). Since we are interested in 

the action of <PI(b) on characters rather than two-point blocks, the change in 

normalization may be effected by factorizing the t-channel blocks on the iden­

tity intermediate state and (for example in the one contour example considered 

above, which fixes the index I in <PI(b) to _be the Ramond state R 1,2 ) requiring 

that 

</Jt(b)c
1
c

1 
limz1--+z2 E+(1, 1) = limz1--+z2 0+(1, 2) (5.2) 

(equating terms proportional to (z1 - z2)-
2

Ll1 •2 ). In other words rescaling 

0 ( ) 'f~ ±~i1ra- 2 COS'TrCi._ 0 ( ) [ 2]-1 
+ r, s ~ e s e 2 • 

2 
+ r, s . 

szn27ro._ 

In general then, as in ref.2), one has an equation of the form 

</JI(b)XJ = ~NJ}XK (5.3) 
K 

where XI denotes a particular character (or rather combination of characters). 

The normalization condition equation (5.2) above is then equivalent to setting 

N~ =6f (5.4) 
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where J = 0 denotes the identity or Neveu-Schwarz vacuum character. Fur­

thermore, with respect to the same basis of conformal blocks, one has under 

qi(a): 

Or again more generally 

(5.5) 

Working now in the context of the two contour example with basis (4.30), one 

may proceed exactly as in ref.2), using the conjugation relation between a- and 

b- cycle monodromy, eqn. ( 4.17), to express the fusion coefficients in terms of 

the modular matrices and the eigenvalue of c/>1 (a): 

NK _ '"'SL)..<L>(s-l)K u-L.J J I L (5.6) 
L 

where the modular matrices Sf are given by equation (4.31) of the previous 

section. Using the normalization condition equation (5.4) allows the eigenvalue 

to be expressed as 
,(L)_ Sf 
A[ --

- Sf=o 

whence 
Nf, = l: SfSy~S-1 )f (5.7) 

L 81=0 

In the last section, we have shown that (acting on characters) S2 1 in our 

chosen basis and therefore multiplying by S 2 from the right yields a result for the 

(integer) number of couplings between the three operators labelled by I, J, K: 

N - '"'SI,LSJ,LSL,K 
IJK- L.J 

L SI=O,L 
(5.8) 

Finally taking into account the sectorial superselection rules: 

N S x N S rv N S R x R rv N S and N S x R rv R 

one has the formulas 

( N tJ ff N S )r' ,s' ;r" ,s" ;r,8 
(SNS-+NS) (SNS-+NS) (SNS-+NS) r' 8 1'r 8 r11 s11 ·r s r s·r 8 1 I' I 1 I I I' 

(SNS-+NS)ll· , ,r,s r-8 even 

(NRNRS)r1 8 1'r 11 8 11 ·1'8 ' ' ' ', 
(SR-+NS) (SR-+NS) (SNS-+NS) r' 8 1·r 8 r 11 8 11 'r 8 r s·r 8 ' , ' ' '' ''' 

r-s even (SNS-+NS)ll· , ,r,s 

( N .Ji N S )r' ,s' ;r,8;r11 ,s" 
(SR-+NS) (SNS-+NS) (SNS-+R) 

r' ,s';r,s T,B;r,s r,s;r" ,s" 

r-s even (SNS-+NS)ll· , ,r,s 
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(5.9) 

where the modular matrices on characters are: 

4 I I 

( NS-+NS) ( R-+NS) _ · ( 1 2 rs ) . ( 1 2 sr ) s rs·r' s' = s rs-r' s'-- J stn1r rr Q+-- stn1r ss a_--, , , , , , p(p + 2) 2 2 

with both (r- s) and (r 1
- s1

) even in SNS-+NS; but (r- s) odd and (r 1
- s1

) 

even in SR-+NS. While 

4 I I 

(SNS-+R) 'Yr' ,s! . ( 1 2 sr ) . ( 1 2 rs ) 
r s·r' s' = - Stn1r rr Q+ - - S2n1r SS Q_ - -
' ' ' jp(p + 2) 2 2 

with (r- s) even and (r 1
- s1

) odd. Indices are to be raised and lowered with 

(NNS )1,1 (SNS-+NS)2 ~: ~: NS NS r1,s1;r11 ,s11 = = Vr',r"Vs',s" (5.10) 

and 

(NNS)1,1 (SR-+NS)(SNS-+R) ~: ~: R R r1 ,s1 ;r11 ,s11 = = Vr' ,r11 V s1 ,s11 (5.11) 

The equations (5.9) are essentially those already obtained by the authors of 

ref.20), apart from their explicit 'degeneracy' factors (which in our choice of 

basis is encoded in SNS-+R). 

Only the first equation has full permutation symmetry of the fusion coeffi­

cient N:ffNs and it follows that sNS-+NS is a symmetric matrix- both for odd 

and even values of p- as is indeed the case. Note also that since SNS-+NS and 

SR-+NS are identical matrices (disregarding the parity of r - s ), one has that 

(5.12) 

again for p either odd or even. Finally, for p odd, (SR-+NSf = sNS-+R implies 

the relation 

(Nf{~)r',s';r,s;r",s" = (NJ:Ns)r',s';r,8;r 11 ,s11 (5.13) 

Conversely equation (5.13) requires that (SR-+NSf = sNS-+R, This is clearly 

true in the TIM fusion algebra where one has for example 

and 

In p even models however, equation (5.13) is violated whenever a Ramond vac­

uum operator occurs on the RHS of the fusion algebra (see Appendix E). 

In Appendix E, the fusion rules reproduced by the above equations for p = 4 

are listed. This case corresponds to two particular points on the critical line of 
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the Ashkin-Teller model which describes two independent Ising spins coupled 

by a four-spin interaction. The fusion coefficients are all integer. For purposes 

of comparison and by way of 'normalization' of these coefficients with respect to 

the TIM fusion algebra, we include the latter as obtained from equations (5.8). 

In view of our previous remarks concerning the absence of symmetry and 

unitarity of the modular matrix Sin the superconformal Verlinde basis for even 

p, some clarification is called for. It is well established21)•22)that the p = 4 case 

or Ashkin-Teller model at criticality can also be described as a Z2 orbifold of a 

c = 1 Gaussian model with radius J3 or Yf i.e. an ordinary rational conformal 

field theory to which Verlinde's original results ought to apply. The apparent 

contradiction is removed by noting that the identification of characters of the 

Ashkin-Teller model partition function with those in the N = 1 superconformal 

p = 4 diagonal invariant is in fact the following. As shown in ref. 21), theN= 1 
partition function in terms of the relevant 12 characters 

zN=l( r; a) = ~ { IXNS(1, 1)12 + IXNS(3, 1)12 + IXNS(2, 2W + IXNS(3, 3W 

+ (NS -4 Ns) 

+lxR(2, 1)12 + lxR(3, 4)12 + lxR(3, 2)1 2 + ~lxR(2, 3)12 +a Tr[Ramond](- )F} , 
(5.14) 

where N S denotes the v = 4 sector. This can be re-expressed as the Ashkin­

Teller partition function, written in terms of the 6 characters of the (P, P) sector 

(U±, ut, Uf, Ut) and 3 characters (W, w±) of the (P,A), (A,P) and (A, A) 

sectors of the twisted Gaussian model: 

zA-T(r; =t=) = ~ (IU+I2 + IU-12 + IUtl2 + 21Uil2 + 2IU:JI2 + 21Utl2) 

1 1 
+ 21WI2 + IW+I2 + IW-12 =t= 2IU612 (5.15) 

In the last equation, (5.15), the final term U6 = .,(~) I:nEz(±)nq~(n+i-) 2 
= 1, and 

the - sign corresponds to radius Yf and the + sign to radius J3 respectively of 

the Gaussian model. In terms of the characters themselves the relations are as 

follows: 

ut 

v'2ut 

u-

v'2xR(2, 1) 

xR(2, 3) 

e-¥i(xiVS(1, 1) + xiVS(3, 1)) 
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and 

XNS(1, 1) + XNS(3, 1) 

J2xNS(3,3) 

W XNS(1, 1)- XNS(3, 1) = e¥i(XNS(1, 1)- XNs(3, 1)) 

w+ XN8 (2, 2) = ~(XR(3, 4) + XR(3, 2)) 

. - 1 w- = e-lixN8 (2, 2) = J2(XR(3, 4)- XR(3, 2)) 

(5.16) 

(5.17) 

With respect to the U, W characters the modular matrices, as shown in ref. 21), 

are in fact unitary and symmetric (in addition satisfying 8 2 = 1). However the 

U, W basis is not a complete superconformal Verlinde basis in the sense discussed 

in the previous section. 

There is one problematic feature, specific to our Coulomb gas construction 

for even p, remaining. TheN= 1 superconformal partition function, equation 

(5.14), can always be obtained by factorizing the modular and monodromy in­

variant two-point correlation function (given in the next section) on the identity 

intermediate state. Indeed this is how we shall fix all remaining arbitrary con­

stants. However, as will be discussed more generally in the following section, 

this leads in the present p = 4 context to a = 0 in equation (5.14) above. Now 

a matching of the Ashkin-Teller model with the N = 1 superconformal modu­

lar invariant above requires an identification of the term =f~IU6-I 2 = =f~ with 

~ Tr[Ramond]( -l which is clearly not possible if a= 0. 

6 Invariant Correlation Functions 

One may now combine the left and right moving blocks to obtain modular and 

monodromy invariant two-point correlation functions. As an example consider 

the superconformal diagonal (Ap-b Ap+l) discrete series15) (for p odd this is in 

fact the only invariant) in a t-channel basis. It is clear that requiring S and 

T modular invariance implies the invariant correlator < c/>1,2(zb zi)c/>1,2(z2, z2 ) > 
has the following form 

a1 { ~ (lar=3(r,s)l2 + lar=4(r,s)l2) + ~ l'r,siGr=2(r,s)l2} 
r-sE2Z r-sE2Z+l 
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r,• 
r-sE2Z+l 

+a3 { ~ Nr,s (16~=3 (r, sW + IG~=4 (r, s)l2) + ~ Mr,siG~=2 (r, s)l2} 
r-sE2Z r-sE2Z+l 

r,s 
r-sE2Z+l 

Since Sand Tare diagonal in (C\, 02) space, the relative weights of the G1 and 

G2 blocks remain arbitrary. These are fixed by implementing invariance under 

the monodromy operation qi(a) defined above. In particular,· ql(a) acting on 

the expression above generates cross-terms of the form Gi' ( G2)*. Requiring the 

vanishing of such terms provides a set of linear simultaneous equations for the 

coefficients ai with a solution: 

Notice that due to the conjugation relation c/>(b) = Sc/>(a)S-1, the expression 

above is automatically invariant under c/>(b)-monodromy as it should be. 

Finally, the remaining overall constant may be determined by demanding 

that the factorization limit z1 ---+ z2 reproduces the correctly normalized partition 

function on the torus. This fixes a 1 to be a 1 = ~B( ~ - a_ 2, ~ -a_ 2)-2, where 

B(a, b) is the usual beta function r(a)r(b)jr(a +b). 

It is important to realize that requiring both modular and monodromy in­

variance fixes the structure of the invariant correlator as a function of z1 , z2 and T 

completely: there are no further terms that can be appended. In particular for p 

even models in the Z1 ---+ z2 factorization limit, the constant term Tr[Ramond](- )F 
contributed by the Ramond vacuum state of conformal weight 2c4 which is ex­

pected in the usual operator formulation is in fact missing. This is a simple 

consequence of the following zero mode argument already mentioned in (I). In 

the Z1 ---+ Z2 limit the screening contour Cll encircling Z1 and Z2, is shrunk to a 

point and there is no fermion field from the screening operator left on the torus. 

When v = 1 therefore, the one point function residue of the factorized conformal 

block will always be that of a single fermionic line (and certainly not the identity 

intermediate state) in order to absorb the fermionic zero mode on the torus with 

odd spin structure. Therefore it cannot contribute to the partition function. 

In fact in this paper we have argued that, for consistency of the modular 

transformations, the blocks Gi'=1(i, ~)and G2=2(i, P~2 ) identically vanish, at 
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least in a q-expansion. This appears to be related to the particular form of 

the spin field we have used in our Ramond vertex operator (and consequently 

the three point function < 0'0'7./; >v)· The o.p.e. of the supercurrent G(z) 
with this operator vanishes for the state with weight 6.t1!f1 = 2c4 

23
). This 

is a rather puzzling feature (for even p) of the superconformal Coulomb gas 

construction presented in (I) for the (!, P~2 ) Ramond block, suggesting possibly 

an incompleteness of the particular vertex operator used, and remains to be 

understood in terms of the Felder cohomological construction of the N = 1 

superconformal Coulomb gas. 

The two contour case, because of the presence of the additional channel 

d>1.5 (corresponding to the contour combination C2C2), has rather more terms 

in the expression for the invariant correlation function. However, again modu­

lar invariance and if>( a) monodromy suffice to fix all constants up to an overall 

normalization. One may also construct, for even p, off-diagonal two-point func­

tion modular invariants and then proceed to fix the remaining undetermined 

coefficients as above. 

A wknowledgements 

It is a pleasure to thank Chan Hong Mo, K.S. Narain, H. Sarmadi and Flo­

rence Tsou for countless discussions. Cor;tversations on specific points in the 

above with M. Bianchi, J. Cardy, P. Di Vecchia, V. Dotsen.ko, E. Gava, A. 

Hodges, D. Lancaster, G. Pradisi and A. Sagnotti are gratefully awknowledged. 

One of us (M.A.N.) awknowledges financial support from the Commission of 

European Communities, Directorate-General XII for Science, Research and De­

velopment under contract no. SCI-0394-C. 

Appendix A 

In this appendix we give the computation of the coefficients Cimn relating 

the t-channel basis functions lm(x2 - xt) canonical for the point x1 = x2 to 
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the s-channel functions 111 (x1) canonical for x1 = 0. Formally this is written 

(equation (5.14) of ref.l) as 

(A.l) 

where 

(.4.2) 

(.4.3) 

(AA) 

and lm(x2- Xt) is obtained by replacing x1 with (x2 - x1) in Im(xt). The inverse 

relation to (A.l) is given by 

(.4.5) 

and the calculation of the coefficients a~~ is given in ref.l). Here we focus on 

the calculation of the coefficients occuring in (A.l), which are in fact related by 

a permutation of their arguments to the a;~. Consider 

eir(a+c) ei""c e-i::-d e-i,.(b+dl 

• )lo Q )o 0 Q )o Q )o ·---:o 0 Xl X X2 :::c 

e-i,.(a+c) e-b-c ei ... d ei,.(b+dl 

• )o 0 ) 0 0 )' 0 ~ ·-· 
where Cy is the semi-circle either above or below the real line in the y-plane 

as indicated diagramatically above. Multiplying by the phase e:;::ri(a+c) and sub­

tracting gives the equation 

... denoting the integrand. This can be rearranged to give: 

- sin7ra 1:1:2 r:Z:t a c b a c b d 
-- sin7r(a + c + d/2) 2cos7r(d/2) :z:t dx lo dyx (x-xt) (x2-x) y (xl-y) (x2-y) (y-x) 
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sin1r( a + b + C + d) 1zz 100 a c b a c b d - . ( + , d/2) 2 (d/2) dx dyx (x-xt) (x2-x) y (y-x 1) (y-x2) (x-y) 
S~n1r a C T COS1r Zl zz 

(A.6) 

The contours on the RH S of (A. 6) are in a mixed basis and we wish to transform 

them into purely s-channel contours, starting with the first term. Thus consider 

Now 

yields 

• 

ei<:-(a+c+d) ei,..(c+dl ei"'c 

) 0 ) Q ) 0 )r 

e-b·b 

-----7--~~~----~~----~--~~------~o.-_.~------·-
-cc 0 y Xl 

e -i,.;a.,..c+d) e_;,.lc..-.dl e-i::-c: 

)r 0 ) C!; ~ 0 ) 

e i=-b 
-----~--,~-+------~;-----~----::....,...~-------,:.,....-~)--- · _,_ 

(
e-rri(a+c+d) X i dx- e+OTi(a+c+d) X i dx) 1Zl dy ... = 0 

Ca.boue C~elo'tD 0 

simr(a+d/2)2cos7r(d/2)1z1 d 1zd a( )c( )b a( )c( )b( )d =- . X yx x 1-x x2-x y Xl-Y X2-y y-x 
sm1r( a + c + d) o o 

sin7r( a + b + c + d) 1oo 1zl a c b a c b d 
- . ( b d) dx dyx (x-xt) (x-x2) y (x1 -y) (x 2-y) (y-x) . 

szn1r a + + zz o . 

(A.7) 

Next we consider 

eb:-(a+c) ebrc: e-i-rrb e-i:r(b+dl 

) Q .~ 0 )o 0 ) 0 )r ·--·:C 0 Xl xz y X 

e-i::-(a+c) e-i,-c: el"'b ei"'(b+dl 

)rr eo; ) eo; )r eo; )r 0 )r ·-· 
Therefore 

(
e-11'i(a+c) X i dx - e+1ri(a+c) X j dx)· {

00 

dy ... = 0 
Cabove J'cbelow Jz~ 
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This gives now 

simr(a + b + c + d/2) 2cos7r(d/2) 100 d 1:z: d a( )c( )b a( )c( )b( )d = - . x yx x-x1 x-x2 y y-x1 y-x2 y-x 
s~n1r(a+c) :z:2 :z:2 

sin1ra 100 

d lo:z:
1 

d a( )c( )b a( )c( )b( )d - • ( ) X YX X - X1 X - X2 Y X1 - Y X2 - Y Y - X 
s~n1r a + c :z:2 o 

(A. B) 

Substituting (A.7) and (A.8) into (A.6) one obtains i 3(x2 - x1 ) and in particular 

the Onm coefficients 

_ sin1r(a + b + c + d/2) sin1r(a + b + c +d) 
an = sin1r(a +c) sin1r(a + c + d/2) 

_ sin1ra sin1r( a + b + c + d) 
Q32 = ----:-~~--:----"""=-

simr(a +c) sin1r(a + c +d) 

_ sin1ra sin1r(a + d/2) 
a 33 = sin1r(a + c + d/2) sin1r(a + c +d) 

In a similar fashion one can compute the remaining coefficients 

_ sin1rb sin1r(b + d/2) 
au = --:-----:-~-_:..-=----'----'---:-:--:-

simr(a +c) sin1r(a + c + d/2) 

_ sin1rb sin1rc 
a12 = - --,.....--,.....--....,....----. 

sin1r(a +c) sin1r(a + c +d) 

_ sin1rc sin1r(c + d/2) 
a 13 = sin1r(a + c + d/2) sin1r(a + c +d) 

sin1r(a + b + c + d/2) sin1r(b + d/2) 2cos1rdj2 
sin1r(a +c) sin1r(a + c + d/2) 

_ sin1r(a + b + c + d/2) sin1rc sin1r(a + d/2) sin1rb 
a

22 = sin1r(a +c) sin1r(a + c + d/2) - sin1r(a + c + d/2) sin1r(a + c +d) 

&
23 

= sin1r(a + d/2) sin1r(c + d/2) 2cos1rdj2 
sin1r(a + c + d/2) sin1r(a + c +d) 

The inverse matrix elements &ij1 are given by 

a;~( a, b, c; d) = Omn(a, b, c; d) = Omn(b, a, c; d) 

which may be compared to equation (5.11) of ref.l). 
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Appendix B 

In this appendix we show that s-2 = diag( ry2 , €
2 , € 2 , €2). 

Consider first the identity channel modular matrices; we only give the details 

for one of the entries of the matrix Sc
1
c

1
: 

(B.l) 

where r' - s' is odd and (r, s) and (r", s") are in the NS range. It is more 

convenient to start with the sum 

4p 4(p+2) 11 11 
" " (- 1 ) I I (--1 )r ,B 
L....J L....J s;;=2 ;,;

8 

sv1=4 r1 ,s1 , (B.2) 
r 1=1 s 1 =1 

r 1-s1E2Z+1 

where 

(B.3) 

Bringing this range back to the standard range in the same way as before we 

find that this sum reduces to 

(

[?J r 1
-l p-1 r

1
+1) 11 11 

5 " " " " --1 I I --1 T ,B 2 L....J L....J + L....J L....J (Sv1=2);,;s (Sv 1=4)r1 ,s1 • 

r 1= 1 s'=1 r1=[~]B1=1 

(B.4) 

Substituting the explict expressions for (§;;,~2 );/ and (8;;,~4 );::~~~~ in (B.2), and 

using the trigonometric identity 2sinAsinB = cos(A- B)- cos(A +B), and 

then summing over r', we obtain 4pc5r,r11 (ignoring the prefactor p(;!2)). The 

sum over s' gives 4(p + 2)88,811. However there is a factor of 2
1
2 coming from the 

trigonometric identity and another factor of 1/2 from the constraint that (r', s') 

is odd. Altogether we get 25
c5r,r11c58,811 and equation (B.l) follows. 

We also demonstrate the proof for one of the entries of the matrix Sc
2
c

2
, and 

show that 

p-1 rl 

L 
r 1=1 •1 =1 

r 1-s1E2Z 

(B.5) 

where now S;;,~3 is given by eqn.(4.24) instead. Using this equation one has: 

p-1 ~ p-1 ~ 4 -2 

L 2: 1 1 1 1 r 11 s11 }: € ( 11 11)/2 (s )r B (S ) • "- (-) r-s+r -s ;;,=3 r,; ;;,=3 r1,s1 = , L....i ( ) 
r 1=1 •1=1 r 1=1 81=1 P P + 2 

r 1-s1E2Z r 1-s1E2Z 

45 



rr' r'r" 
x sin 1r(rr'a~- 2 ) sin 1r(r'r"a~- 2) 

x [sin1r(s'(s + 1)a~-~) _ sin1r(s'(s -1)a~- ¥)] 
sin 1r((s + 1)a:_ - ~) sin 1r((s- 1)a:_ - ~) 

X 
[

sin 1r(s"(s' + 1)a~ - s"(s~+l)) _ sin 1r(s"(s'- 1)a~ - s"(s~-l) )] 

sin 1r((s' + 1)a:. - (s'tl) ) sin 1r((s'- 1)a:. - (s';l)) 
(B.6) 

As in the previous case we can extend the range of r' and s' to ( 1, 4p) and 

(1,4(p + 2)- 1) respectively, by inserting a factor of 2-5 • Summing over r', we 

obtain 4p 8r,r" (ignoring for the moment the prefactor p(p~2 ) ). However there is 

a factor of~ coming from the use of the identity 2sinAsinB = cos(A- B)­
cos( A+ B) and another factor of~ from the constraint that (r', s') is even. The 

sum over s' has four terms 

(+) X (+), (+) X(-), (-) X (+)and(-) X (-). 

Consider the sum over s' of the first of these terms 

4(p+2)-l sin1r(s'(s + 1)a~- s'(s
2
+1)) sin1r(s"(s' + 1)a~- s"(s;+l)) L X (B.7) 

•'=o sin 1r( ( s + 1 )a:. - (s~l)) sin 1r( ( s' + 1 )a:. - (s'tl)) 
r 1-s1 E2Z 

where we have added s' = 0 to the sum (which as mentioned previously amounts 

to adding zero to the sum). Rewriting (B.7) as 

4(p+2)-l sin 1r(s'(s + 1)a~- s'(s
2
+1)) sin 1r(s"(s' + 1)a~ - s'/) 

E cos 1r((s + 1)a:. - V x cos 1r((s' + 1)a:. - f) 
s1E2Z . 

. 4(p+2)-l sin 1r(s'(s + 1)a~- s'(s+l)) cos 1r(s"(s' + 1)a~ - 81181
) 

+~X L 2 X 2 
•'=o cos 1r((s + 1)a:.- i) cos 1r((s' + 1)a:. -f) 

s1E2Z-1 

and using the following identities: 

we express 

~( · )k 1 ( )ncos1r((n+~)x) 
L.....J -1 COS1rkX = -- + -1 
k=l 2 2 cos 7r ~ . 

sin1r(s"(s' + l)a::- t!f) 
cos 1r((s' + l)a::_ - f) ' 
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and 
2 11 I 

cos 1r(s"(s' + l)a_ - !..f-) 
cos 1r((s' + l)a:_ - ~) 

in terms of sums over k of sines and cosines respectively. Then performing the 

sum over s' first we obtain 

-4(p + 2) [ ~ 6,,,._, + '£, 6,,,.-1] 
s11 E2Z s11 E2Z-1 

(B.7") 

where we have made use of 

n-1 sin 1r(x + n-1 y) sin 1r(x + !!:.U.) L sin1r(x + ky) = ~ 1l 2 
k=1 sm7r(2) 

and 
n-1 cos 1r(x + n-1y) sin 1r(x + !!:.U.) L cos 7r( X + ky) = ~ 1l 2 
k=1 sm 1r(2) 

to perform the sum over s'. Similarly, the other terms give 

4(p + 2) [ ~ 6,,,._, + '£, 6,,,.-1] ' 
s11 E2Z s" E2Z- l 

-4(p + 2) [ ~ 6,,2k + '£, 6,,2H1] , 
s11 E2Z s11 E2Z-1 

and 

4(p + 2) [ ~ 6,,,. + '£,. 6,,,.+1] 
s11 E2Z s11 E2Z- l 

(B.8) 

respectively. From (B.7") and (B.8) (ignoring again the prefactor p(p~2)), the 

sum over s' gives 

8(p + 2) [ ~ (6,,2k- 6,,2k-2) + '£, (6,,2k+l- 6,,2k-1)] = B(p + 2)h's,s" 

s11 E2Z s11 E2Z-1 

Collecting everything, including the 2-5 , factor we arrive at (B.5). 

Appendix C 
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We wish, as a check on the various computations of monodromy and modular 

transformation matrices in the text, to verify the conjugation relation ( 4.17) in 

the one-contour < R1,2R1,2 > example. Starting with 

(C.1) 

consider its action on Gi~i(r, s) and in particular the ci:J2 matrix element of 

this operator equation, which is one of the more difficult cases. 

(C.2) 

In writing (C.2) the fact that qi(a) is diagonal in r, s and that S is diagonal in 

the space of contours has been utilised. Using the methods detailed in section 

3 one can compute qi(b) directly and the final result (for the matrix element of 

interest here) is: 

q/(b)- - = eTlf eT !fa: COS7rQ:. 
C2C2 sin21ra~sin1r(s'a~- ~) 

8r',r (cos7r((s' + 1)a~- r/2)8s',s+1 + cos1r((s'- 1)a~- r/2)8., ,._1 ) (C.3) 
s>1 

where the upper sign in the phases, corresponding to z1 + T going clockwise 

around z2 + T, is chosen. Now, on substituting for the various expressions in 

the RHS of (C.2) one may verify that (C.3) is reproduced after performing the 

sum. However, given cpt(b), there is a more direct way to see that this is so in 

this particular (v' = 3) case at least. Multiply both sides of (C.2) from the right 

by: 

[(s-::1_ )v=3] r,s _ [(S*- _ )v=3] r,s 
c2c2 r" s" - c2c2 r" s" 

' ' 
Then summing over r", s" (where r 11 E (1,p- 1), s" E (1, r")) we have that 

(CA) 

where (r, s) has been relabelled (r', s'). The RHS of (C.4), on substituting 

explicitly for the various expressions, is: 

2 - 1 I 
€ (-)(r-s+l)/2e-i1fa: sin7r(rr'a~- rr) 

VP(P + 2) 2 

x! ([sin1r(s'(s + 1)a:.-~) _ sin1r(s'(s - l)a:.- ¥)] + [ ..... ]) (C.S) 
2 sin1r((s + 1)a~- (s~l)) sin1r((s - 1)a~- (s; l )) 
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where [ ..... ] is given by 

sin 1r(s1 sa:_ - ¥)cos 1ra:_ (sin 1r((s + l)a:- i) sin 1r(( s - l )a:_- f)) 
- cos1r(s1a:_- f )sin7r(sa:_- V cos1r((s + l )a:_- j) + cos1r((s -l)a:_- V 

_ sin1r(s1a:_- f) (cos7r(s 1(s + l)a:-~) _ cos1r(s1(s -l)a:- ¥)) 
cos1r(s1a:_- f) cos1r((s + 1)a:_- !) cos1r((s- 1)a:_- f) 

Using various trigonometric identities one can show that the expression inside 

the second square bracket in (C.5) is equal to that in the first square bracket 

(an easy way to do this is to take the difference of the two expressions and see 

that it is zero). Thus we recover the expression, equation (4.24), obtained in 
I I 

section 4 for (s61~=4)r ,s , and hence (C.2) is verified. 
2 2 r,s 

Appendix D 

In this appendix we verify the Verlinde conjecture in the double contour 

integral example < </J1 ,3</J1,3 > by computing the b-cycle monodromy opera­

tor, using the conjugation relation equation ( 4.17), and the t-channel a-cycle 

monodromy result equation (3.11). 

<Pt(b)";: = 2)8)~</Jt(a)~(s-1); (D.1) 
p ,q 

where the indices m, n, ... = 1, 2 and 3 label the t-channel basis of contours 

6ij2, 6162 and 6161 respectively. As an example we consider the 6161l 6161 
matrix element of the action of <Pt(b) on Gb;~1 (r, s). Then (D.1) reads 

( 

11 )r
11

,s
11 

p -1 T
1 

( 1 )r
1
,s

1 
( 1 )r

1
,s

1 
( 11 )r

11
,s

11 

<Pt(b)~,3=3 r,s = r~ 8~ s~r = 3 r,s <Pt(a)~,3=3 rl, sl s;,3=3 rl,sl (D.2) 

where we have again used the fact that <Pt(a) is diagonal in r, s and that S is 

diagonal in the space of contours. The matrix elements on the RHS of (D.2) 

are given in the text: (<Pt(a)~:33)r
1

,
81 

Js given by equation (3.11), (sa,J'/=
3 )r1

,

81 

r 1 s1 r s 

is given by the same expression as i~ the one contour case eqn. (4.9), for whi,ch 

s-1 = S*. Therefore (D.2) gives 

16 2 p-1 r 1 

2i'll'a2 cos 1ra_ "" "" 
p(p + 2) e - cos 7r3a:_ r'8r ;-:: 

rr1 r1r 11 

sin 1r(rr1a~ - -)sin 1r(r1r 11a~- -) 
2 2 

r 1-s1E2Z 
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I I 11 

( 
1 2 SS ) • ( 1 11 2 S S ) x sin 1r ss a_ - T sm 1r s s a_ - 2 

[ 

_ 2i1r(s'a2 -L)sin7r((s1
- 2)a~- ~) _2i1ra2 + 2i1r(s'a2 _L)sin7r((s1 + 2)a~- ~) ] 

x e - 2 +e -+e - 2 

sin 1r(s1a:_ - f) sin 1r(s1a:_ - f) 
where we used the fact that r- s, r 1

- s1 and r 11
- s11 are even to separate the r 

from the s in the arguments of the exponentials and the sines and cosines. As 

before we can extend the range of r 1 and s1 to (1, 4p) and (1, 4(p+ 2)) respectively, 

by inserting a factor of 2-5 • Summing over r 1
, we obtain 4p 8r,r" (ignoring for 

the moment the prefactor ( ~2) ) • However there is a factor of ~ coming from 
. pp 

the use of the trigonometric identity 2 sin x sin y = cos( x - y) - cos( x + y) and 

another factor of ~ from the constraint that (r 1
, s1

) is even. The sum over s1 

has three terms. The middle term has the same structure as the sum over r 1
, 

giving ~4(p + 2)8s,s" (which is not surprising since the sum over this term, apart 
2 

from the ( r, s) independent factor c::s ;3:~ , is nothing but s-1 S). Next consider 
• ( I 2 s

1
) the sum involving the first term. Rewrite e-2

m sa_-2 as cos7r(2s1a~- s1
)-

i sin rr(2s1a~- s1
) and perform the sum over s1 as was done in Appendix B. This 

g1ves 

where( ..... ) is 

4(p+2) ( I 2 s1
) I I 11 

~ COS 7r S a_ - 2 . ( I 2 SS ) • ( I ll 2 S S ) 
L..,; ---'----,---';,..,:... s1n 1r ss a - - s1n 1r s s a - --

sin rr(s1a 2 - ~) - 2 - 2 
s'=l - 2 

(D.5) 

The sum in (D.5) can be carried out using the same techniques as those employed 

in Appendix B, however there is no need to do this since there is a contribution 

of opposite sign coming from the sum of the third term in (D.3). The sum over 

s1 of this is given by (D.4) with ( ..... ) ---+ - ( ••••• ). Putting everything together 

(noting that the 88,,2_ 8 term only contributes when s = 1) we arrive at 

(
,l,.t(b)3v',3' =3) r",s" = e4i7ra:. cos 7ra~ c (c + c + c ) 
'f' 2 Ur,r 11 0811 ,8-2 0811,8 Os11 ,s+2 

r,s COS 7r3a_ •>2 s>l 

which is, up to a ( r, s) independent normalization factor, precisely the appro­

priate Ni; of the superconformal fusion algebra. 

Appendix E 
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The fusion rules obtained from the generalised Verlinde formulae, equations 

(5.8), for p = 4 i.e. c = 1 are listed below. In the Neveu-Schwarz sector the 

operators have conformal weights D-1,1 = 0, D-2,2 = l6 , ~3,1 = 1 and D-3,3 = 

(D-1,3 ) = ~· Below, (D.r ,s )Ns denotes as usual the pair of Virasoro primary and 

its superdescendent of weight D.r,s + ~. In the Ramond sector the operators are 

D-2,1 =~,the Ramond vacuum state D-2,3 = 2~, D-3,2 = :6 and D-3,4 = (D-1 ,2) = 1
1
6 • 

NS X NS -t NS: 

U6 )Ns x ( 1
1
6 )Ns = (O)Ns + (l)Ns + 2(~)Ns 

( 1
1
6 )NS X (~)Ns = 2( 1

1
6 )Ns 

RxR-tNS: 

~R X ~R = (O)Ns + (l)Ns 

2~R X 2~R = 2(0)NS + 2(~)NS + 2(1)NS 

1
9
6R X 1

9
6R = (0) + ( ~ )NS 

1
1
6R X 1

1
6R = (0) + ( ~ )Ns 

R X NS -t R: 

~ R X ( 1
1
6 ) N S = 1

9
6 R + 116 R 

~R X (l)NS = ~R 
~R X (~)NS = 2~R 
:6R X ( 1

1
6 )Ns = ~R + 2

1
4R 

:6R X (l)NS = 1
1
6R 

1
9
6R X (~)NS = :6R + 1

1
6R 

(l)Ns X (~)NS = (~)NS 

(l)Ns X (l)Ns = (O)Ns 

For comparison, the p = 3 or TIM fusion rules as obtained from (5.8) are 

listed below. 

R xR-+-NS: 

S~R X :OR= (O)Ns + (1~)Ns 
1
7
6R X 1

7
6R = (O)Ns 

R X NS -t R: 

3 (1) -3 7 
SOR X 10 NS - SOR + 16R 
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3 7 -(1) 
SOR X 16R- 10 NS 

7 (1) -3 
16R X 10 NS - SOR 
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Figure Captions 

Fig.1 s-channel conformal blocks for case (a) < c/J1,3c/J1,a >. Intermediate 

states correspond to the three configurations of contours clcb clc2, c2c2 re­

spectively. The x denotes the trace over descendent states propagating around 

the torus. 

Fig.2 Factorization limit in at-channel basis for case (a). 

Fig.3 Transforming z1 ~ z1 + r in two stages, with Imz' < Im(z2 + r). 

Fig.4 Contour transformations to compute c/J8 (b ). 

Fig.5 Prescription for the double contour integral. 

Fig.6 Two contour c/J8 (b) monodromy transformations. 

Fig. 7a The closed contour 62 starts and ends at P and traverses the first 

and second sheets of the cut torus as indicated by the arrows. To facilitate 

comparison with fig. 7b, markings 0 and oo indicate the respective sides of the 

parallelogram that are mapped onto 0 and oo in the q ~ 0 limit. 

Fig. 7b 62 in the q ---+ 0 limit consists of an anti-clockwise rotation by 1r 

around the origin, going to oo, an anti-clockwise rotation of 27r around oo, going 

back to the origin, a clockwise rotation of 27r about the origin, going to oo again 
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and finally making another clockwise rotation of 271" about oo before returning 

to the origin. 

Fig. 7 c The contour C~ ; phases are measured from the point P. The second 

sheet is the lower parallelogram. 
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