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ABSTRACT

We analyze the phenomenological implications for new electroweak physics in the
Higgs sector in the framework of SU(2)r, ® U(1)y theories that naturally predict heavy
Majorana neutrinos. We calculate the one-loop Majorana-neutrino contributions to the
decay rates of the Higgs boson into pairs of quarks and intermediate bosons and to its
production cross section via bremsstrahlung in ete™ collisions. It turns out that these
are extremely small in three-generation models. On the other hand, the sizeable quantum
corrections generated by a conventional fourth generation with a Dirac neutrino may be
screened considerably in the presence of a Majorana degree of freedom.
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1 Introduction

The well-established “see-saw” mechanism, as suggested by Yanagida, Gell-Mann,
Ramond, and Slansky [1] in grand unified theories [2], could serve as a natural solution to
the problem of the smallness in mass of the three known neutrinos, v, v,, and v,, provided
that these are Majorana particles. Such a solution entails the existence of very heavy
neutral leptons, which also have to be of Majorana type. If heavy Majorana neutrinos
are assumed to be realized in nature at the mass scale of 1-10 TeV, they may manifest
themselves in lepton-number violating processes involving the Z and Higgs bosons [3,4] or
through non-universality effects in diagonal leptonic Z-boson decays [5]. Their presence
may also influence [6,7] the electroweak oblique parameters, S, T', U (or €y, €, €3) [8], as well
as the parameters X, YV, Z [9] introduced recently. The masses of such heavy Majorana
neutrinos and their couplings to ordinary matter should satisfy a large set of stringent
constraints coming from a global analysis of charged-current universality, neutral-current
effects, and other low-energy data [10], which set severe limits on the prospects of observing
these particles in high-energy experiments.

Making use of the full power of existing data to constrain new electroweak physics,
we find that, in a large class of extensions of the minimal Standard Model (SM) by Ma-
jorana neutrinos, the Higgs sector is feebly confined. We demonstrate this by elaborating
minimal scenarios which extend the field content of the SM by introducing right-handed
neutrinos [1,11]. In addition, new electroweak physics may arise from the possible existence
of fourth-generation Majorana neutrinos [12], which can be added in a natural way without
conflicting with the data from the CERN Large Electron Positron Collider (LEP) and the
SLAC Linear Collider (SLC) [12,13]. Such scenarios can account also for the mass hierarchy
problem of the light neutrinos, since the light neutrinos acquire their masses radiatively at
the two-loop level [14]. By the same token, this resolves the solar-neutrino deficit prob-
lem [15], through the Mikheyev-Smirnov-Wolfenstein (MSW) mechanism [16]. However, it
has recently been argued that the Hill-Paschos mode] [12] containing Majoron fields (J)
violates astrophysical constraints by predicting too big Jee, Juu, and Jdd couplings [17].
Subsequently, it has been shown that, even in Majoron models with three generations,
astrophysical constraints limit considerably the testability of such models by terrestrial
experiments [18]. In order to avoid that our analysis depends on whether Majoron scalars
are present in the model or not, we shall consider Majoronless models by assuming that
the Majorana mass terms in the Yukawa sector are bare. Similar Majoronless scenarios
can be realized if the SM gauge group is extended by an additional hypercharge group,
U(1)y: [19]. In such theories, Majoron fields are completely absent. For simplicity, we shall
also assume the absence of Majoron-triplet scalars [20], as they seem to be ruled out by
the present LEP data.

This work is organized as follows: In Sect. 2, we shall give a short description of the
basic low-energy structure of the SM with right-handed neutrinos. In Sect. 3, we shall
compute the quantum corrections to the gq¢H, WWH, ZZH, and ZAH vertices induced
by heavy Majorana neutrinos along with additional charged leptons and quarks. We shall
also briefly outline our renormalization scheme. In Sect. 4, we shall discuss our numerical
results and assess the possibility of discovering in the Higgs sector new electroweak physics
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beyond the minimal SM. Section 5 contains our conclusions.

2 SU(2)  U(1)y theories with right-handed

neutrinos

Heavy Majorana neutrinos can naturally be predicted in extensions of the SM where
AL = 2 operators have been introduced in the Yukawa sector by the inclusion of right-
handed neutrinos. The quark sector of such extensions is similar to that of the minimal
SM. For the leptonic sector, we shall adopt the conventions of Ref. [11]. Specifically, the
interactions of the Majorana neutrinos, n;, and charged leptons, [;, with the gauge bosons,
W* and Z, and the Higgs boson, H, are described by the following Lagrangians [11]:

Lh, = =W iG:%ZGl Byl =) ny + hee, (2.1)
2\/_ =1 j=1
2ng
['g” 7 GI/VZ# 1;1 ﬁi%[ﬂmai - 75ReC'1-j]nj, (2.2)
2nG
Eﬁt = 4]\4W H Ijzzl 'I’Lll: m; + mJ)ReC,J + 175( mz)ImOUjl n;, (23)

where m; are the masses of n; and B and C are ng X 2ng and 2ng X 2ng dimensional
mixing matrices, respectively, with ng being the number of generations. These matrices
are defined as

By = ZV/;CUM, (2.4)
Cij = Z Ukl kj ’ (25)

where V! and U are the leptonic Cabbibo-Kobayashi-Maskawa (CKM) matrix and the
unitary matrix that diagonalizes the 2ng X 2ng “see-saw” neutrino mass matrix, respec-
tively. B and C satisfy a number of identities, which guarantee the renormalizabilty of our
minimally extended model, namely [4,11]

2ng 2ng 2ng nG
> BuiBry = b, > CaCy = G, > BiCi = By, > BiBi,; = Ci;(2.6)
k=1 k=1 k=1 k=1
2ng 2nG 2ng
Z kaiijk = 0, E kalkCI:{ = 0, Z kallkBlgk = 0 (27)
k=1 k=1 k=1

Equations (2.6) and (2.7) allow us to verify the cancellations of ultraviolet divergences in
the one-loop renormalizations of the qgH, WWH, ZZH, and ZAH vertices. The only




information used to obtain all these identities is the gauge structure of the SM. Therefore,
our theoretical analysis does not depend on the explicit form of the Majorana-neutrino mass
matrix. In fact, a vast number of possible mass ansétze have been proposed in the literature
during the last few years [21]. However, all these mass models possess the very same low-
energy gauge structure discussed here and thus obey the sum rules of Egs. (2.6) and (2.7).
In other words, the specific form of any such mass matrix produces only supplementary
relations between m;, By, and C;; on top of the identities of Eqs (2.6) and (2.7). Similarly,
the quark mass matrices given, e.g., by the Fritzsch texture lead to additional relations
between the quark masses and CKM mixings [22].

Another interesting feature of the SM with right-handed neutrinos is that out-of-
equilibrium lepton-number-violating decays of heavy Majorana neutrinos can generate a
non-zero lepton number (L) [23] in the universe through the L-violating interactions of
Egs. (2.1)-(2.3). This excess in L then gives rise to a baryon-number (B) asymmetry
of the universe via the (B + L)-violating sphaleron interactions, which are in thermal
equilibrium above the critical temperature of the electroweak phase transition [24]. This
mechanism has received much attention recently, and many studies have been devoted to
constrain the (B— L)-violating mass scale and so to derive a lower mass bound for the heavy
Majorana neutrinos [25-29], exploiting the dramatic effect of out-of-equilibrium conditions
for the AL = 2 operators. Yet, it was conceivable that certain scenarios predicting heavy
Majorana neutrinos with my = 1-10 TeV could naturally account for the existing B
asymmetry in the universe (BAU) [25]. Furthermore, on the basis of a two-generation
scenario of right-handed neutrinos, it was argued [26] that the my lower bound of ~ 1 TeV
had been underestimated by many orders of magnitude. As a consequence, the opportunity
of probing Majorana-neutrino physics at LEP energies would be extinguished practically.
Fortunately, very recently, careful inspection of chemical potentials in the framework of
three generations with lepton-flavour mixings have revealed that all these stringent bounds
can be weakened dramatically and are quite model dependent [28,29]. In particular, it
is sufficient that one individual lepton number, L. say, is conserved in order to protect
any primordial BAU generated at the GUT scale from being erased by sphalerons, even if
operators with AL;;, # AL, were in thermal equilibrium [28]. The reason is that sphalerons
generally conserve the quantum numbers B/3 — L;; [27,28] and thus protect any pre-existing
BAU from being washed out. Similar conclusions have been drawn in Ref. [29], where it was
suggested that the BAU may be preserved by an asymmetry in the number of right-handed
electrons. These new observations support our assumptions concerning viable scenarios of
heavy Majorana neutrinos with masses in the TeV range, which couple very feebly to a
separate leptonic quantum number, so that, for instance, AL, = 0.

3 Heavy Majorana neutrinos and Higgs phenomeno-
logy

In this section, we shall analyze quantitatively the implications of Majorana neutrinos
for the Higgs sector at the quantum level. Specifically, we shall consider the Higgs-boson
decays H — q4, H — WW  and H — ZZ as well as the production mechanism ete~ —
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Z1II. Since all these processes have been studied at one loop in the SM already [30], we
shall focus attention on the quantum corrections induced by the extended fermion sector
Jescribed in Sect. 2. Tach generation contains two Majorana neutrinos, one charged lepton,
an up-type quark, and a down-type quark, so that the anomalies cancel. Since we wish to
estimate the size of new physics both in three- and four-generation models, we shall keep
the number of generations arbitrary.

Loop calculations in electroweak physics are frequently carried out in the on-mass-
shell scheme, which uses the fine-structure constant, «, and the physical particle masses as
basic parameters [31]. One drawback of this scheme is the occurrence of large logarithms
connected with light charged fermions, which drive the renormalization scale of « from me
to M, and artificially enhance the corrections. These logarithms may be removed from the
corrections and resummed by expressing the Born result in terms of the Fermi constant,
Gr = [ﬂ'a/\/—‘Z_sﬁ,Mﬁv(l - Ar)], where Ar embodies the non-photonic corrections to the
muon decay rate [32]. As a consequence, a multiple of Ar is added to the correction in
such a way that the large logarithms are exactly cancelled. This procedure is sometimes
called modified on-mass-shell (MOMS) scheme.

3.1 The decay H — q@G

The one-loop electroweak corrections to the H — qg decay width are well known
within the minimal SM [33]. The contribution due to the fermion sector modified by the
presence of Majorana neutrinos as described in Sect. 2, relative to the Born decay width,

N,GpMgm? 4m? 3/
Co(H j) = —————— — - 1
with N, = 3, may be calculated in the MOMS scheme from
. ww (0) 2 1z4(0)
6, = — Rellyy(Mf) — W sees M AT girects (3.2)

where Hww, Ilza, and Il denote unrenormalized vacuum-polarization functions and
Argireee comprises the non-photonic vertex and box contributions to Ar [32]. As a con-
sequence of electromagnetic gauge invariance, M4(0) = 0 for fermionic contributions.
Throughout this work, we shall assume that the novel heavy Majorana neutrinos couple
so weakly to the electron and muon that their contribution to Argirect may be neglected,
which agrees with observations by other authors [10,19].

Note that Majorana neutrinos do not contribute through triangle diagrams to I'(H —
qq) at one loop. This is quite different for lepton pair production. However, the decays into
the known lepton flavours are suppressed by the smallness of the Yukawa couplings, and
this is not expected to be changed by virtual Majorana-neutrino effects. We shall leave the
study of the leptonic decays for future work. Furthermore, it is interesting to observe that
the Z and Higgs bosons can mix via loops involving Majorana neutrinos. Such amplitudes,
which do not exist in the SM, render the branching ratios of the trtr, and tptp channels,
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where L and R label the helicity states, different, which is a signal for CP violation [34].
However, these contributions cancel when the helicities are summed over. ! |

The fermionic contributions to the vacuum polarizations may be cast in the general |
forms, .

GpM?2
ww(g?) = X [‘BliP (Hv(q2, mq, i) + v (¢?, m;, —ml))
V2
+ NC’VudV (HV(q2amU7md) + HV(qzv Moy, _md)) jl y (33)
GrM:Z
zz(¢%) = QFﬁZ {/Cij’Z (v (g2, mi, my) + Ty (%, m, —m;))

— ReC2 (Tv(¢%, mi,my) — Ty (g, mi, —m;))
+ v v (q?, mi,my) + v (g2, my, —my)

N (g )+ T =) 69§

Mza(q) = —V2GrMisuco|~ully(e’,mm) + NeoQIly(¢ m,,m,)],  (35)
2y Gr C42(..2 2 o 2 2 . ] 2 .
Tan(e’) = 575 (IG5 P(m? + m3) + 2mim,ReC2) (ILs(q?, mi, mj) + (g, mi, —m;))

+ (Qmimj’cijﬁ + (m? + mjz)R'eij) (Hs(q2, mg, mj) - Hs(q2, my, _mj))

+ 4m12H5(q27m17m1) i 4N6m§HS(q2amq’nlq):l> (36)

where vy = 2T — 4s2Q; is the Zff vector coupling, T is the weak isospin of f, Q@7 is
its electric charge in units of the positron charge, V,q is the ng x ng CKM matrix of the
quark sector, and the scalar and vector functions, IIs and IIy, are listed in the Appendix.
Here and in the following, it is understood that indices are to be summed over when they
appear more than once in an expression. For later use, we have presented also IIz7 and
ITz4. We postpone the numerical discussion of the new virtual effects to Sect. 4.

3.2 The decay H — VV

The one-loop renormalization of the H — WW and H — ZZ decay widths in the
minimal SM is described in Refs. [35,36]. Modifications of the fermion sector affect these
decay widths through the WW H and ZZH triangle diagrams depicted in Figs. 1(a) and
(b), respectively. Assigning incoming four-momenta and Lorentz indices, (p, u) and (k,v),
to the vector bosons, V, the renormalized vertex function takes the form

TI;LIL;H = 25/4G}7'/2M12/ [DVVH(aaba C) k.upl/ + (1 +EVVH(a7ba C)) guu

+ iFVVH(aa ba c) €;wpf7ppka} A (37)
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where @ = p*, b= k% ¢ = (p+ k)?, and we have discarded terms with p* or k¥ anticipating
that, in our applications, the vector bosons are real or couple to conserved currents. The
hatted quantity has been renormalized by including its counterterm,

Evv(a,b,¢) = Byvu(a,bc) + 6Evvn. (3.8)

In the MOMS scheme, one has

Iy MZ, 1 , I 0
v = Re(M) o) - L (Reftyaarg) + 20
My 2 M2,
1 Iz4(0)
+ Ardzrect> = Ee M% . (39)

In the SM, Fwwi(a,a,c) = Fzzu(a,b,c) =0 for a, b, ¢ arbitrary, due to CP conser-
vation [35,36]. In the presence of Majorana neutrinos, Fyv(a,a,c) does not vanish, in
general, so that CP-violating interactions are generated. If the vector-boson polarizations
can be determined experimentally, it is possible to construct asymmetries that measure the
degree of CP-nonconservation [34]. However, the Fyvpg term drops out when we sum over
all vector-boson polarizations, which we shall do to obtain the total H — V'V decay rates.

In the considered class of models, the most general representations for the Dy vy form
factors read

G _ — _
DWWH - ﬁ[B;C;BU (mi’D(m]-,m;,mi) + mjD(mi,ml,mj))

+ B.Ci;Bi; (mﬁ?—(mi,ml,mj) + mjﬁ(mj,ml,mi))
+ 2m1|BH]2 (D(ml,m,-,ml) —+ ’D(m;, —m;, ml))
+ 2Ncmu]Vud|2 (’D(mu,md,mu) + D(m, —Mg, My))

+ 2Ncmd|Vud\2 (’D(md,mu,md) + ’D(md,—mu,md))}, (3.10)
Gr _ —
Dzzg = _Z_\/—i Re(CikajCﬁ) (miD(_mk,mj,mi) + mkD(_mi,mj,mkD

+ Re(C,CxiCis) (miD(ms, mjyme) + myD(my, mjms))
— Re(CiCL;Ci) D-(mi, mj, me) — Re(CikCriC;) D (mi; mij, m)
+ 2y (va(m[,ml,m[) + D(m;,—ml,ml))

+ 2N,m, (ng(mq,mq,mq) + D(my, —mq,mq)) ] , (3.11)
Dzanr = V2Grsycuw [ — muuD(my, my, mu) + NemgvgQqD(mg, ma, mq)}: (3.12)

where we have suppressed the labels a,b,c on both sides of the equations. The auxiliary
functions D, D, and Dy are listed in the Appendix. For later use, we have also presented
the D4 form factor appropriate to the 7-photon-Higgs vertex shown in Fig. 1(b). Here
bis the photon invariant mass squared. The expressions for Fwwn, EzzH, and Egzag are
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similar to Egs. (3.10)~(3.12), and the corresponding functions £, £, and £+ are given in
the Appendix.

Defining ry = (M%/4M%), nw = 1, and nz = 2, the Born approximation for the
H — VV decay rate reads

1 GrM3 1 1

— HE - — 1——+—3—2>. (3.13)
ny 8m/2 Ty TV 4ry

The fermion sector extended by Majorana neutrinos induces a relative correction to

Eq. (3.13), which is given by

To(H - VV) =

. - 2 2 2 (1— l/T'V)[l o= (1/27"V)] 2 ] 2 2 2
5V = 2ReEVVH(MV7MV,MH) + 1 — 1/7"V -|_ (3/47‘%/) MHRCDV VH(A/I‘/,.AI‘/,MH').
(3.14)

In Sect. 4, we shall evaluate this expression numerically.

3.3 The reaction ete- — ZH

At LEP200 and future ete™ linear colliders with /s < 500 GeV, the bremsstrahlung
process, ee™ — Z H, will be the most copious source of Higgs bosons in the intermediate
mass range [37], and it is important to have the radiative corrections to its cross section well
under control. These have been calculated in the SM [38] and in its minimal supersymmetric
extension [39]. Here, we shall study the influence of virtual heavy Majorana neutrinos.

To start with, we consider the angular distribution, which, at tree level, is given by
dcos® ~— 16ms(s — M2

where 6 is the angle defined by the electron and Z-boson three-momenta in the centre-of-
mass frame and A = (s — M% — M}%)?> —4MZM};. The corrections due to the fermion sector

with Majorana neutrinos described in Sect. 2 may be included by multiplying Eq. (3.15)
with (1 + 2Reézx), where

A
2 .
7 (1497) ( 1+ e sin @ ) , (3.15)

A s Rellzz(M? II
bz = EZZH(M%,S,M}?_I)+F(9)DZZH(M%,S,]\412{)+S ( zz(M7) _ ZZ(S))

— M} M2 s
+ -;—Re (%)- - ’ZZ(Mé)) — HWTWI;V(Q - %ReH;IH(M?{)
oot [ M (B3, M3) + F(O)Dran(M43,5,M7) — 2L
e - ) | oo
Here, all angular dependence is carried by
F(o) = (M} — M2 — s)\sin® @ (3.17)

2(8sM%2 + Xsin’#)
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As before, we have assumed that the couplings of the electron to the heavy Majorana
neutrinos are suppressed [10], so that ete™ H triangle and e*e~ ZH box contributions are
shifted from their SM values by insignificant amounts, which may safely be neglected.

As for the integrated cross section, the Born result is

G M5V A
0 _ ¥r-=z 2
T = 87rs(s—M§)2(l+Ue)<1 * 123M§>’ (3.18)

and the correction factor is

(1 +2Rebzn| , /3) . (3.19)

The phenomenological implications of these results will be examined in the next section.

4 Numerical results and discussion

In Sect. 3, we have collected the analytic results for the one-loop corrections to the
rates of Higgs-boson production via ete™ — ZH and its decays to ¢, WHW~, and ZZ
pairs in the context of three- and four-generation models with Majorana neutrinos. We are
now in a position to explore the phenomenological consequences of our results.

To start with, we consider extensions of the SM by three right-handed neutrinos. We
find that the relative corrections to the Higgs-boson observables under consideration are
shifted from their SM values by very small amounts, which are typically of the order of
a few tenths of a percent. Similar observations have been made in connection with the
oblique parameters S, T', and U [7].

In the following, we shall thus concentrate on models that naturally accommodate
a fourth generation with Majorana neutrinos, adopting the scenario proposed by Hill and
Paschos [12]. For reasons mentioned in the Introduction, we take the Majorana masses
appearing in the Lagrangian to be bare. Specifically, the fourth generation consists of two
Majorana neutrinos, N; and Ng, one charged lepton, E, one up-type quark, ¢, and one
down-type quark, &'. We assume that E, t', and b have SM couplings. All these new
particles must have masses in excess of Mz/2 so as to escape detection at the LEP/SLC
experiments. The Majorana and Dirac masses of the Majorana system are related to the
physical masses by M = mn, —my, and mp = ,/my,mpy,, respectively. Conversely, one

has mN1’2 = HmQD +M2/4:FA4/2

Since global analyses suggest that the mixings between the new fermions and the
established ones are greatly suppressed [10], we neglect these couplings altogether in our
analysis. Qur new-physics scenario thus effectively reduces to a one-generation model.
The interactions between the novel fermions and the weak bosons are characterized by
Egs. (2.1)-(2.3) with ng = 1. The mixing matrices may be determined from the identities
of Egs. (2.6) and (2.7) with the result that

my. mn LA/ TNy,
Crin, = — Cyn, = ——+ Cnin, = —Chpny = 102 (4.1)
my, + my, mpy, + mp, my, + mpy,
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my. . my. g
Bgn, = |[———=—, Bgy, =i [—M (4.2)
my, +mpy, mpy, + muy,

Inspired by the fact that the third-generation quarks participate only feebly in the CKM
mixing, we ignore the possibility of mixing of ¢’ and ¥ with quark flavours of the first three )
generations, i.e., we put Vyy = 1 and V,y = Vipr = 0 otherwise. i

Our final results are displayed in Figs. 2-10. Figures 2-4 refer to H — tf [cf. Eq. (3.2)],
Figs. 5-T to H — WHW~ [cf. Eq. (3.14) for V = W], and Figs. 8-10 to e*e™ — ZH [cf.
Eq. (3.16) multiplied by two]. Our results for H — Z7 are very similar to those for
H — W*W~. In fact, §; differs from ow by less than 0.1% in the considered parameter
range. This may be understood by observing that, in our analysis, the mass scale of }
new physics is much larger than the mass difference of the W and Z bosons, so that the
custodial symmetry is in effect. In each set of figures, the first two are devoted to a fourth-
generation scenario with two mass-degenerate Majorana neutrinos, which are equivalent to
one standard Dirac neutrino, i.e., mp = my, = mpy, and M = 0, while the third figure
deals with the genuine Majorana case, M > 0, for which my, < mp < mp,. Since we are
mainly interested in the Majorana system, we assume mg = mp, which has been identified i
as a natural choice [12], and my = my = 400 GeV in order to reduce the number of L
parameters to be varied independently. Figures 2 and 5 (3 and 6) examine the dependence
of the radiative corrections on My (mp) for selected values of mp (Mpr). In Figs. 4 and 7, f

the my, dependence is analyzed for mp = 400 GeV and several values of My. The spikes i
in Figs. 2-7 arise from threshold effects in the Higgs wave-function renormalization and are 3
an artifact of treating the Higgs boson as an asymptotic state despite its limited lifetime. :

They occur when My = 2m;, where | = Ny, No, E,t', 6. The corrections remain finite at
these points, which may be understood from arguments based on dispersion relations [35].
The H — W*W~ triangle diagrams have thresholds at the same points.

In Figs. 2 and 3, we see that a virtual heavy Dirac neutrino, with mp > My /2,
produces a positive correction to I’ (H — tf), which increases with Mp decreasing and/or
mp increasing. This agrees with previous observations made in connection with additional
heavy-fermion doublets [33]. From F ig. 4, we learn that this conventional heavy-flavour
effect may be reduced by virtue of a mass splitting between N, and N, i. e., the possible
Majorana nature of the lepton sector. In the mass range considered, the maximum shift in
d; with respect to the Dirac case is —5% and occurs at my, = My /2. In other words, the
influence of new heavy flavours may be screened by the existence of a Majorana degree of
freedom. A screening effect of Majorana origin was encountered also in the case of the 7
parameter, which measures isospin breaking [6,7]. In the present case, however, the heavy
flavours generate large corrections even if their Dirac masses are degenerate.

In the case of H — W*W~=, loop effects due to a Dirac neutrino with mp > Mpy/2 i
reduce the decay rate by an amount that increases with Mj; and/or mp; see Figs. 5 and 6. i
Similar observations have been reported in Refs. [35,36]. Again, the magnitude of this effect :
may be decreased appreciably by allowing for a nonvanishing Majorana mass, mpy, — mpy;,;
see Fig. 7. In the mass range considered, the maximum shift in ow is 7%.

T T TIN5 e 2 Sl e

T

Y

In Fig. 8, the My dependence of the shift in o(ete™ — Z H ) induced by a conventional
fourth generation with My, = my, =mp = my = my = 400 GeV is shown for LEP200
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energy and three /s values appropriate to future ete™ linacs. For My < 700 GeV, the
corrections are negative, decrease in magnitude with \/s increasing, and are practically
independent of Mp. The spikes af My = 800 GeV are again due to threshold effects in the
Higgs wave-function renormalization. In Figs. 9 and 10, we concentrate on Higgs-boson
production at LEP200 and a 500-GeV linac, assuming My = 70 and 200 GeV, respectively.
In Fig. 9, we study how the conventional fourth-generation correction varies with the Dirac-
neutrino mass, mp. In addition to the threshold effects related to the Higgs wave function,
there are new possible thresholds at /s = 2m; (i = Ny, Ny, E,t'.¥) and /s = mn, +mn,
originating from the s-channel cut through the ZZH and ZAH triangle diagrams. The
one at y/5 = 2my;, is visible in both cases considered in Fig. 9. Leaving aside the threshold
effects, the correction is negative and its magnitude grows quadratically with mp. At
mp = 400 GeV, it reaches —4.3%. When we now turn on the Majorana mass, we may
reduce the effect down to the level of —1% without affecting the invisible Z-boson width;
see Fig. 10. Again, the impact of heavy flavours is screened in the presence of genuine
Majorana neutrinos.

5 Conclusions

We have investigated the influence of virtual heavy Majorana neutrinos on some of the
most relevant processes involving the Higgs boson, namely, its decays into pairs of quarks
and intermediate bosons as well as its production via bremsstrahlung in eTe~ collisions.
We found that the Standard Model predictions are changed insignificantly when the Dirac
neutrinos of the established three generations are split into light and heavy Majorana
neutrinos. The situation is very different in the fourth-generation scenario proposed by
Hill and Paschos [12]. Here, the Majorana nature of the lepton sector manifests itself in a
screening of the typical heavy-flavour effects. This feature is familiar from the electroweak
parameter T' [6,7], which measures the breaking of isospin. In contrast to T', however, the
Higgs observables are sensitive to the novel heavy flavours even if they are degenerate in
mass.

Acknowledgements. We wish to thank Steven Abel and Wilfried Buchmuller for stim-
ulating discussions concerning cosmological constraints on models with heavy Majorana
neutrinos.

A  Appendix

In this paper, we evaluate the loop amplitudes using dimensional regularization along
with the reduction algorithm of Ref. [40]. In contrast to Ref. [40], we use the Minkowskian
metric, g* = diag(1, —1,...,—1).

The scalar and vector two-point functions occurring in Egs. (3.3)-(3.6) are defined as

1 drl 1 !
(s e e
s(q , M1, Ma) 1672 ) tr ()’—{-;j—mg }'—m1>
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1
= e [ (q2 — (m1 + m2)2) Bo(q2,mf, mi) — m? (1 + Bo(O,mf,mf))
—m? (1 + Bo(0,m3, mg)) } , (A.1)

1 q.9y Il / drl | 1
2 - _ ety e .
My (g”, ma,ma) = n—1 (g‘“' q? ) 1672 J ix? b l—l—/i my | J—m

1 m2 + m? mZ —m
. [(q LR Q) Bolq?, m?, md)

2 2q?

2
5

m2 m2 s m2
+ m? (—1 + 127) By(0,m?, m?) + m? (-1 + %)
2 m2 — m2)2
X Bo(0,m3,m2) — % + (IQT"’)] (A.2)

where n is the dimensionality of space-time and the standard two-point integral, By, is
listed, e.g., in Appendix A of Ref. [30]. For the evaluation of the counterterms, we also
need Ily at ¢ =0,

1 2 1
Oy (0,mq,mg) = 16?[ —2(my — my)? (r —vg —Inw— = ln(mlmg))
=) 2
_m? — il + dmymg + mi + mj 2m1m22(m1 + mi) B _m_;},
my —mj mj
(A.3)
where vg is Euler’s constant. In fact, IIy(0,m ,m) = 0 as required by electromag-

netic gauge invariance. The pseudo- scalar and axial-vector two-point functions emerge
from Eqgs. (A.1) and (A.2) by 75 reflection, i.e. , IIp(g?, my, my) = —Tls(g?, mq, —mz) and
I4(q?,my,ma) = Iy (g% mq, —my), respectlvely In our calculation, we have used these
properties to eliminate the IIp and II4 functions.

In our analysis, all vertex corrections can be reduced to the basic three-point integral,

1 [ dm ( 1 L1 1
_/ — tr ~ e
1672 J ax? \J+p+F—-ms " J+p-my ' J—my
= Ap*p" + BE'k" + Cp"k” + Dk*p” + Eg™. (A.4)
As explained in Sect. 3.2, only D and £ enter our final results. These can be expressed in
terms of By and the standard three-point integrals Co, C1y, Cia, Cas, and Caq, viz.

1
D(mq,ma,ms) = m[— miCo + (—mi+m2)Cii — (2my +my + m3)Cia
— 2(m1 + m3)023], (A5)

1
E(mq, mq, m3) = 8?[(—"11 + ma)Bo(a,mi, m3) + (mq —ma3)Bo(b,m?, m2)

+ (m1 + ms)(4024 — Bo(e,mj, mg)) + [ml(—b +mj +mj)

+ ma(c — mf — mg) + ma(—a+ m} + m%) - 2m1m2m3J Co J, (A.6)

12

g the—rie

Bthonaes reastoth

S T IR e e Ry i i a3

S B e




where we have suppressed a = p?,b = k%,¢ = (p+k)? in the argument lists of D and £ and
it is understood that the C functions are evaluated at (a, b, c, m? m2, m2) in the notation
of Ref. [30]. 1t is convenient to introduce the following short-hand notations:

ﬁ(ml, ma, m3) = D(ml, ma, m3) + ’D(ml, —my, 'm3)

+ D(—m1,m2,m3) - D(m17m2> _m3)7 (A-7)

(mq + ma3) (D(mh ma, ms) — D(mq, —m,, mg))

=+ (m1 - ms)(D(—mu mz,ms) + D(mlamZ, _m3)>7 (A,8)
(A.9)

Il

Di(mla may, mS)

and similarly for € and &;.
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Figure Captions

Feynman diagrams pertinent to the fermionic (a) WtW~H, (b) ZZH, and
Z~H vertex corrections in models with Majorana neutrinos.

Radiative corrections to the H — tf decay width induced by a fourth gen-
eration with Dirac neutrinos (mp = mp, = mn,) as a function of My for
selected values of mp assuming mg = mp and my = my = 400 GeV.

Radiative corrections to the H — tf decay width induced by a fourth gen-
eration with Dirac neutrinos (mp = mn, = mp,) as a function of mp for
selected values of My assuming mg = mp and my = my = 400 GeV.

Radiative corrections to the H — tf decay width induced by a fourth gener-
ation with Majorana neutrinos (my, < mp < my,) as a function of mp, for
selected values of My assuming mp = mg = my = my = 400 GeV.

Radiative corrections to the H — W+W~ decay width induced by a fourth
generation with Dirac neutrinos (mp = mn, =m N,) as a function of My for
selected values of mp assuming mg = mp and my = my = 400 GeV.

Radiative corrections to the H — W1W~ decay width induced by a fourth
generation with Dirac neutrinos (mp = mp; = mp,) as a function of mp for
selected values of My assuming mg = mp and my = my = 400 GeV.

Radiative corrections to the H — W+W~ decay width induced by a fourth
generation with Majorana neutrinos (my, < mp < mp,) as a function of
my, for selected values of My assuming mp = mg = my = my = 400 GeV.

Radiative corrections to the total cross section of ete™ — ZH induced by a
fourth generation with Dirac neutrinos (mp = my, = mp,) as a function of
Mjp; for selected values of /s assuming mp = mg = my = my = 400 GeV.

Radiative corrections to the total cross section of ete™ — ZH induced by
a fourth generation with Dirac neutrinos (mp = my, = my,) as a function
of mp assuming mp = mg and my = my = 400 GeV. The dashed (solid)
line refers to low-mass (high-mass) Higgs-boson production at LEP200 (a
500-GeV linac).

Radiative corrections to the total cross section of e*e™ — ZH induced by a
fourth generation with Majorana neutrinos (my, < mp <m N,) as a function
of my, assuming mp = mg and my = my = 400 GeV. The dashed (solid)
line refers to low-mass (high-mass) Higgs-boson production at LEP200 (a
500-GeV ete linac).
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