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Introduction

We are interested in the efficient and robust solution of large
sparse symmetric linear systems

Ax = b, A ∈ Rn×n

In this talk, we focus on Incomplete Cholesky (IC) factorizations

A ' LLT

used with the conjugate gradient (CG) method.

Incomplete factorization: some entries that occur in complete
factorization are ignored.
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Introduction

I Long history of incomplete factorizations.

I Early days (late 1950s and 1960s) motivated by finite
differences for PDEs. Often for specific problems.

I Real revolution in practical use and growth in popularity came
in late 1970s.

I In particular, Meijerink and van der Vorst ’77 recognised
potential of incomplete factorizations as preconditioners for
use with CG and proved existence for M-matrices (later
extended to H-matrices).
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Introduction

Different variants of incomplete factorizations:

I IC (τ): Dropping by value (Tuff and Jennings ’73)

I IC (`): originally exploited finite difference-based structure
(small number of sub-diagonals). Generalised to level-based
approach to preserve structure (Watts ’81)

I IC (p): Limited/prescribed memory: Axelsson, Munksgaard
’83; Jones, Plassman ’95; Saad ’94.

Lots of variations/hybrids that combine approaches.
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Introduction: problem of breakdown

I Kershaw ’78 locally perturbed zero or negative diagonal
entries to prevent breakdown so method more widely
applicable. Straightforward but can give large growth and
unstable preconditioner.

I Manteuffel ’80 proposed global diagonal shift so that A + αI
factorized for some α > 0. Shift α chosen by trial-and-error
but can be effective.

I Alternative approach: positive semi-definite modifications.
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Our goals

I Study two positive semi-definite modification schemes:

I Jennings and Malik ’77,’78 (and Ajiz and Jennings ’84)

I Tismenetsky ’91 (and Kaporin ’98)

I Seek to gain better understanding and to explore the
relationship between them.

I Propose memory-efficient variant of Tismenetsky approach,
optionally combined with Jennings and Malik modifications or
diagonal shifts.

I Present comprehensive numerical results.
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Positive semi-definite modifications I

I Diagonal modification scheme first introduced by
Jennings and Malik ’77, ’78 (also Jennings and Ajiz ’84).

I Every time off-diagonal entry discarded, corresponding
diagonal entries modified by adding SPSD matrix

i j

i

j



. . .

|aij | −|aij |
. . .

−|aij | |aij |
. . .
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Jennings-Malik approach

I Breakdown-free factorization that can be expressed as

A = LLT + E

where error matrix E is sum of SPSD matrices.

I But modifications to A can be significant.

I Popular in some engineering applications.
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Positive semi-definite modifications II

I More sophisticated modification scheme due to
Tismenetsky ’91 (and Kaporin ’98).

I Introduces use of intermediate memory that is employed
during construction of L but then discarded.

I Shown to be very robust but it “has unfortunately attracted
surprisingly little attention” (Benzi ’02).

I One possible reason for this is it suffers from a serious
drawback: memory requirements can be prohibitively high.

We aim to address memory problem, while retaining robustness.
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Tismenetsky approach

Based on matrix decomposition of form

A = LLT + LRT + RLT + Ê

I L is lower triangular with positive diagonal entries used for
preconditioning,

I R is strictly lower triangular with small entries that is used to
stabilise the factorization process, and

I Ê has the structure
Ê = RRT .
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Tismenetsky approach

I On j-th step, decompose col. 1 of Schur complement S into

lj + rj with |lj |T |rj | = 0,

where entries of lj are retained in incomplete factorization and
those in rj are discarded.

I On next step, S updated by subtracting

(lj + rj)(lj + rj)
T .

I Tismenetsky omits the term

Êj = rj r
T
j . (1)

I Thus, SPSD matrix implicitly added to A.
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Can we compare the two approaches?

I Standard tool in modified IC (Gill, Murray, Wright ’81, survey
by Fang, O’Leary ’08): consider norm of error matrix
E = A− LLT .

I Jennings-Malik implies a smaller ‖ E ‖:

Theorem (Scott and Tůma)
At stage j, assume S has been computed and its first column split
into lj and rj . Then the 2-norm of the Jennings-Malik modification
that compensates for all the dropped entries is not larger than the
2-norm of the Tismenetsky modification corresponding to adding
rj r

T
j to the corresponding positions.
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Kaporin’s use of drop tolerances

I Obvious choice for rj are smallest off-diagonal entries in col j .

I Controls size of L but not memory required to compute it.

I Kaporin ’98: entries of magnitude at least τ1 kept in L and
those smaller than τ2 are dropped from R.

I Now Ê has structure

Ê = RRT + F + FT ,

F strictly lower triangular matrix that is not computed;
R used in computation of L but discarded.
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Problem of unrestricted L and R

I With no restriction on size of L and R, can achieve high
quality preconditioner but memory demands high.

I Also can be very expensive to compute making approach
impractical for the very large problems iterative methods
designed for.

Remedy: impose memory limit on L and R .
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What about breakdown?

I If we impose memory limit and/or drop small entries,
Tismenetsky approach not guaranteed breakdown free.

I Use global diagonal shift? (Manteuffel) Note: multiple
restarts may be required so potentially expensive.

I Or combine with Jennings-Malik compensation?
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How to combine approaches?

There are a number of possibilities:

I Compensate for all entries not retained in L or R.

I Allow entries in RRT that do not lead to any further fill-in
and compensate for all remaining entries of RRT .
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Test environment

I Problems from University of Florida Collection.

I Selected all non-diagonal SPD matrices with n > 1000.

I Removed those with duplicate sparsity patterns.

I All problems prescaled (this is important).

I Following initial experiments, 8 problems discarded as unable
to achieve convergence without large amount of fill.

I Test set of 145 problems.
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Test environment (continued)

I CG used with x0 = 0, b computed so that x = 1, and
stopping criteria

‖Axk − b‖ ≤ 10−10‖b‖

with limit of 2000 iterations.

I All software written in Fortran.
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Test environment (continued)

I What to measure? iteration counts? timings? sparsity of L?

I We define the efficiency of preconditioner to be

iter × nz(L)

I Performance profiles (Moré, Dolan ’02) used to assess
performance.

I In our tests, lsize is max. number of fill entries in each col.
of L and rsize is max. number of entries in each col. of R.
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Efficiency for rsize=0, no diagonal compensation
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I These results are without diagonal compensation and
no dropping of small entries .... equilavent to ICFS code
of Lin and Moré ’99.

I Rather insensitive to choice of lsize.
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Efficiency for rsize=0, with/without SJM
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SJM=F,lsize=10
SJM=T,lsize=10
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I These results are with and without standard Jennings-Malik
(SJM) diagonal compensation.

I Conclude that compensation not generally useful in this case.
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Iterations and time for rsize=0, with/without SJM

Comparison of using global diagonal shifts (GDS) with the
Jennings-Malik strategy (SJM) (lsize = 10).
Figures in parentheses are number of shifts and final shift;
times are in seconds.

Problem Iterations Total time
GDS SJM GDS SJM

HB/bcsstk28 232 (2, 4.0 ∗ 10−3) 468 0.120 0.221
Cylshell/s3rmq4m1 648 (2, 4.0 ∗ 10−3) 838 0.381 0.459
GHS psdef/ldoor 437 (3, 8.0 ∗ 10−3) 643 66.4 91.5
GHS psdef/audikw 1 707 (2, 2.0 ∗ 10−3) 1442 157 303

I Our experience: generally better to use diagonal shift.
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Results for rsize varying

We now consider using intermediate memory (rsize>0).

We start by performing no diagonal compensation.
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Results for rsize varying

Efficiency (left) and total time (right) (lsize=5)
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I rsize=-1 is unlimited memory for R (not practical).
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Results with/without diagonal compensation

Recall:
Limited memory Tismenetsky approach based on decomposition

A = LLT + LRT + LTR + Ê , Ê = RRT + F + FT ,

where F is not computed but R is.



Positive semidefinite modifications for IC Jennifer Scott

Results with/without diagonal compensation

Consider three strategies for dealing with RRT :

I jm = 0: allow entries of RRT that cause no further fill in
LLT + LRT + LTR and discard all other entries of RRT .

I jm = 1: as above but use Jennings-Malik compensation for
discarded entries of RRT .

I jm = 2: discard all entries of RRT .

We run these options with (T) and without (F) diagonal
compensation for entries discarded from R.
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Results with/without diagonal compensation
Efficiency (left) and total time (right) (lsize=rsize=10)
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I Compensating for dropped entries of R generally not
beneficial.

I Reliability slightly improved if entries of RRT allowed (jm=0)
but faster and better efficiency to ignore RRT (jm=2).
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New IC code

I Based on our findings, we have developed a new IC code
called HSL MI28.

I Can be used as a “black-box” to compute an efficient and
robust IC preconditioner.

I But also flexible, allowing user to choose the scaling, ordering,
diagonal shift, drop tolerances etc.

I Importantly, the amount of memory used (for both L and R)
is under the user’s control.
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Comparison with level-based approach (IC (3))
Efficiency (left) and iterations (right).
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IC(3)
MI28, lsize=rsize=5
MI28, lsize=20, rsize=10
MI28, lsize=40, rsize=20
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IC(3)
MI28, lsize=rsize=5
MI28, lsize=20, rsize=10
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HSL MI28 solved all problems; IC (3) failed to give convergence for
19 problems
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Comparison with direct solver HSL MA97

Total time: all problems (left) and large problems (right).
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HSL MI28 can sometimes compete with direct solver
(and succeeds when HSL MA97 runs out of memory).
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Concluding remarks

I We have explored the use of diagonal compensation with a
limited memory Tismenetsky approach.

I The proposed limited memory Tismenetsky approach has been
shown to be robust and efficient.

I Using restricted intermediate memory improves efficiency.

I But diagonal compensation to prevent breakdown appears
less important than generally supposed.

I Our extensive experiments favour use of global diagonal shifts
(works well provided the problem is well scaled).

I New IC code HSL MI28.
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Thank you!

HSL MI28 is available (without charge) as part of HSL 2013.

Technical Reports RAL-P-2013-004 and RAL-P-2013-005.
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