A practical dual gradient-projection method for large-scale, strictly-convex quadratic programming

Nick Gould

STFC Rutherford Appleton Laboratory
with
Jonathan Hogg \& Jennifer Scott

$$
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \frac{1}{2} x^{T} H x+g^{T} x \text { subject to } A x \geq b
$$

ICCOPT 2013, Lisbon, Portugal
Ect Universidade Nova de Lisboa, 29th July 2013

Problem

QP: $\underset{\boldsymbol{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} \boldsymbol{q}(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{H} \boldsymbol{x}+\boldsymbol{g}^{\boldsymbol{T}} \boldsymbol{x}$ subject to $\boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}$
\square assume that \boldsymbol{H} positive definite \Longrightarrow QP strictly convex

Problem

QP: $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$

- assume that H positive definite \Longrightarrow QP strictly convex
- aim to satisfy (KKT) criticality conditions

$$
\begin{array}{cl}
A x_{*}=b & \text { (primal feasibility) } \\
g+\boldsymbol{H} \boldsymbol{x}_{*}-\boldsymbol{A}^{T} y_{*}=0 \& \boldsymbol{y}_{*} \geq 0 & \text { (dual feasibility) } \\
\left(\boldsymbol{A} \boldsymbol{x}_{*}-b\right) \cdot y_{*}=0 & \text { (complementary slackness) }
\end{array}
$$

or to deduce that the problem is infeasible

Problem

QP: $\underset{x \in \mathbb{R}^{n}}{\operatorname{mininize}} q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$

- assume that \boldsymbol{H} positive definite \Longrightarrow QP strictly convex
\square aim to satisfy (KKT) criticality conditions

$$
\begin{array}{cl}
A x_{*}=b & \text { (primal feasibility) } \\
g+\boldsymbol{H} \boldsymbol{x}_{*}-\boldsymbol{A}^{T} y_{*}=0 \& y_{*} \geq 0 & \text { (dual feasibility) } \\
\left(A x_{*}-b\right) \cdot y_{*}=0 & \text { (complementary slackness) }
\end{array}
$$

or to deduce that the problem is infeasible
■ interested in case where n is large and H and $A \in \Re^{m \times n}$ are sparse

Problem

QP: $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} \boldsymbol{H} x+g^{T} x$ subject to $A x \geq b$
\square assume that \boldsymbol{H} positive definite \Longrightarrow QP strictly convex

- aim to satisfy (KKT) criticality conditions

$$
\begin{array}{cl}
A \boldsymbol{x}_{*}=b & \text { (primal feasibility) } \\
g+\boldsymbol{H} \boldsymbol{x}_{*}-\boldsymbol{A}^{T} \boldsymbol{y}_{*}=0 \& \boldsymbol{y}_{*} \geq 0 & \text { (dual feasibility) } \\
\left(\boldsymbol{A} \boldsymbol{x}_{*}-b\right) \cdot y_{*}=0 & \text { (complementary slackness) }
\end{array}
$$

or to deduce that the problem is infeasible
\square interested in case where n is large and H and $A \in \Re^{m \times n}$ are sparse
\square easy extension to more general constraint structures (equations, upper and both-sided bounds, simple bounds, ...)

Problem

QP: $\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} \boldsymbol{H} x+g^{T} x$ subject to $A x \geq b$
\square assume that \boldsymbol{H} positive definite \Longrightarrow QP strictly convex
\square aim to satisfy (KKT) criticality conditions

$$
\begin{array}{cl}
A x_{*}=b & \text { (primal feasibility) } \\
g+\boldsymbol{H} \boldsymbol{x}_{*}-\boldsymbol{A}^{T} \boldsymbol{y}_{*}=0 \& \boldsymbol{y}_{*} \geq 0 & \text { (dual feasibility) } \\
\left(\boldsymbol{A} \boldsymbol{x}_{*}-b\right) \cdot y_{*}=0 & \text { (complementary slackness) }
\end{array}
$$

or to deduce that the problem is infeasible
■ interested in case where n is large and H and $A \in \Re^{m \times n}$ are sparse

- easy extension to more general constraint structures (equations, upper and both-sided bounds, simple bounds, ...)many real-world applications as well as SQP

Competing methods

interior-point methods- usually very efficient
\square relatively poor at warm starting
\square active-set methods
\square worst-case combinatorics due to pedestrian active-set changes
\square good at warm starting
\square gradient projection methods
\square more rapid active-set changes
\square restricted to constraint sets for which projection is "easy"

Digression I: gradient projection

convergence and active-set determination driven by projection
\square current iterate $x_{k} \in \mathcal{F}=\{x: A x \geq b\}$
\square current gradient $g_{k}=H x_{k}+g$
\square improved Cauchy point $x_{k}^{c}=P\left[x_{k}-\alpha_{k} g_{k}\right]$
\square projection $P[y]=\arg \min _{x \in \mathcal{F}}\|y-x\|$
\square step length $\alpha_{k} \approx \arg \min q\left(P\left[x_{k}-\alpha g_{k}\right]\right)$

Accelerated gradient projection

\square acceleration by subspace minimization
\square pick active set as subset of constraints \mathcal{A}_{k} active at x_{k}^{c}
\square find (approximate) solution s_{k} to equality constrained QP
EQP: $\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} q\left(x_{k}^{c}+s\right)$ subject to $A_{\mathcal{A}_{k}} s=0$
\square set $x_{k+1} \approx \arg \min q\left(P\left[x_{k}^{c}+\alpha s_{k}\right]\right)$

Accelerated gradient projection

\square acceleration by subspace minimization
\square pick active set as subset of constraints \mathcal{A}_{k} active at x_{k}^{c}
\square find (approximate) solution $s_{\boldsymbol{k}}$ to equality constrained QP
EQP: $\underset{s \in \mathbb{R}^{n}}{\operatorname{minimize}} q\left(x_{k}^{c}+s\right)$ subject to $A_{\mathcal{A}_{k}} s=0$
\square set $x_{k+1} \approx \arg \min q\left(P\left[x_{k}^{c}+\alpha s_{k}\right]\right)$
\square solve EQP by
\square direct factorization

$$
\left(\begin{array}{cc}
H & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)\binom{s_{k}}{w_{k}}=-\binom{H x_{k}^{c}+g}{0}
$$

\square factorization-free projected CG (G., Hribar \& Nocedal, Luksan \& Vlcek,90s...)
\square N.B. need to impose step bound for unbounded subproblems

Projected search within simple bounds $\boldsymbol{x}^{\mathrm{L}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{U}}$

Find $\alpha^{+} \approx \arg \min q(P[x+\alpha s])$ for $\alpha \geq 0$ (Conn, G. \& Toint,1988)
$\square P[x+\alpha s]$ piecewise linear, ordered breakpoints $\left\{0, \alpha_{1}, \ldots, \alpha_{m}\right\}$
$\square q(P[x+\alpha s])$ piecewise quadratic $q_{i}(\alpha)$ for $\alpha \in\left[\alpha_{i}, \alpha_{i+1}\right]$
\square consider each $q_{i}(\alpha)$ in turn until first local minimizer found

Projected search within simple bounds $\boldsymbol{x}^{\mathrm{L}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{U}}$

Find $\alpha^{+} \approx \arg \min q(P[x+\alpha s])$ for $\alpha \geq 0$
$\square P[x+\alpha s]$ piecewise linear, ordered breakpoints $\left\{0, \alpha_{1}, \ldots, \alpha_{m}\right\}$
$\square q(P[x+\alpha s])$ piecewise quadratic $q_{i}(\alpha)$ for $\alpha \in\left[\alpha_{i}, \alpha_{i+1}\right]$
\square consider each $q_{i}(\alpha)$ in turn until first local minimizer found
\square for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $x_{i}=P\left[x_{i}+\alpha_{i} s\right]$:
$\square q_{i}(\alpha)=q\left(x_{i}\right)+\Delta \alpha\left(g^{T} s_{i}+x_{i}^{T} \boldsymbol{H} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H s_{i}$, where nonzero components of s_{i} are those of s "not fixed" at x_{i}

Projected search within simple bounds $\boldsymbol{x}^{\mathrm{L}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{U}}$

Find $\alpha^{+} \approx \arg \min q(P[x+\alpha s])$ for $\alpha \geq 0$
$\square P[x+\alpha s]$ piecewise linear, ordered breakpoints $\left\{0, \alpha_{1}, \ldots, \alpha_{m}\right\}$
$\square q(P[x+\alpha s])$ piecewise quadratic $q_{i}(\alpha)$ for $\alpha \in\left[\alpha_{i}, \alpha_{i+1}\right]$
\square consider each $q_{i}(\alpha)$ in turn until first local minimizer found
\square for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $x_{i}=P\left[x_{i}+\alpha_{i} s\right]$:
$\square q_{i}(\alpha)=q\left(x_{i}\right)+\Delta \alpha\left(g^{T} s_{i}+x_{i}^{T} \boldsymbol{H} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H s_{i}$, where nonzero components of s_{i} are those of s "not fixed" at x_{i}
$\square s_{i}=s_{i-1}-\Delta s_{i}$, where nonzero components of very sparse Δs_{i} are those of s_{i} "just fixed" at x_{i}

Projected search within simple bounds $\boldsymbol{x}^{\mathrm{L}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{U}}$

Find $\alpha^{+} \approx \arg \min q(P[x+\alpha s])$ for $\alpha \geq 0$
$\square P[x+\alpha s]$ piecewise linear, ordered breakpoints $\left\{0, \alpha_{1}, \ldots, \alpha_{m}\right\}$
$\square q(P[x+\alpha s])$ piecewise quadratic $q_{i}(\alpha)$ for $\alpha \in\left[\alpha_{i}, \alpha_{i+1}\right]$
\square consider each $q_{i}(\alpha)$ in turn until first local minimizer found
\square for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $x_{i}=P\left[x_{i}+\alpha_{i} s\right]$:
$\square q_{i}(\alpha)=q\left(x_{i}\right)+\Delta \alpha\left(g^{T} s_{i}+x_{i}^{T} \boldsymbol{H} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H s_{i}$, where nonzero components of s_{i} are those of s "not fixed" at x_{i}
$\square s_{i}=s_{i-1}-\Delta s_{i}$, where nonzero components of very sparse Δs_{i} are those of s_{i} "just fixed" at $x_{i} \Longrightarrow$
$\square H s_{i}=H s_{i-1}-H \Delta s_{i}$ involves likely very sparse $H \Delta s_{i}$ if \boldsymbol{H} is sparse

Projected search within simple bounds $\boldsymbol{x}^{\mathrm{L}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{U}}$

Find $\alpha^{+} \approx \arg \min q(P[x+\alpha s])$ for $\alpha \geq 0$ (Conn, G. \& Toint, 1988)
$\square P[x+\alpha s]$ piecewise linear, ordered breakpoints $\left\{0, \alpha_{1}, \ldots, \alpha_{m}\right\}$
$\square q(P[x+\alpha s])$ piecewise quadratic $q_{i}(\alpha)$ for $\alpha \in\left[\alpha_{i}, \alpha_{i+1}\right]$
\square consider each $q_{i}(\alpha)$ in turn until first local minimizer found
\square^{\square} for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $x_{i}=P\left[x_{i}+\alpha_{i} s\right]$:
$\square q_{i}(\alpha)=q\left(x_{i}\right)+\Delta \alpha\left(g^{T} s_{i}+x_{i}^{T} \boldsymbol{H} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H s_{i}$, where nonzero components of s_{i} are those of s "not fixed" at x_{i}
$\square s_{i}=s_{i-1}-\Delta s_{i}$, where nonzero components of very sparse Δs_{i} are those of s_{i} "just fixed" at $x_{i} \Longrightarrow$
$\square H s_{i}=H s_{i-1}-H \Delta s_{i}$ involves likely very sparse $H \Delta s_{i}$ if H is sparse \Longrightarrow
\square possible to recur required coefficients $g^{T} s_{i}, x_{i}^{T} \boldsymbol{H} s_{i}$ and $s_{i}^{T} H s_{i}$ of $q_{i}(\alpha)$ very efficiently

Projected search within simple bounds $\boldsymbol{x}^{\mathrm{L}} \leq \boldsymbol{x} \leq \boldsymbol{x}^{\mathrm{U}}$

Find $\alpha^{+} \approx \arg \min q(P[x+\alpha s])$ for $\alpha \geq 0$ (Conn, G. \& Toint, 1988)
$\square P[x+\alpha s]$ piecewise linear, ordered breakpoints $\left\{0, \alpha_{1}, \ldots, \alpha_{m}\right\}$
$\square q(P[x+\alpha s])$ piecewise quadratic $q_{i}(\alpha)$ for $\alpha \in\left[\alpha_{i}, \alpha_{i+1}\right]$
\square consider each $q_{i}(\alpha)$ in turn until first local minimizer found
\square for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $x_{i}=P\left[x_{i}+\alpha_{i} s\right]$:
$\square q_{i}(\alpha)=q\left(x_{i}\right)+\Delta \alpha\left(g^{T} s_{i}+x_{i}^{T} \boldsymbol{H} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H s_{i}$, where nonzero components of s_{i} are those of s "not fixed" at x_{i}
$\square s_{i}=s_{i-1}-\Delta s_{i}$, where nonzero components of very sparse Δs_{i} are those of s_{i} "just fixed" at $x_{i} \Longrightarrow$
$\square H s_{i}=H s_{i-1}-H \Delta s_{i}$ involves likely very sparse $H \Delta s_{i}$ if H is sparse \Longrightarrow
\square possible to recur required coefficients $g^{T} s_{i}, x_{i}^{T} H s_{i}$ and $s_{i}^{T} H s_{i}$ of $q_{i}(\alpha)$ very efficiently
■ approximate "Armijo"projected search also possible (Moré \& Toraldo,Toint,90s)

Anecdotal and empirical evidence

\square large change possible in the active set per iteration
\square often very effective in practice for convex bound-constrained QP
\square few overall iterations compared to active-set methods (Moré \& Toraldo)
\square competitive with interior-point methods for such problems

- basis of LANCELOT
(Conn, G. \& Toint)
generally impractical for general convex feasible regions as projection is too expensive
\square projection effectively requires the solution of a QP!

Anecdotal and empirical evidence

\square large change possible in the active set per iteration
\square often very effective in practice for convex bound-constrained QP
\square few overall iterations compared to active-set methods (Moré \& Toraldo)

- competitive with interior-point methods for such problems
\square basis of LANCELOT
(Conn, G. \& Toint)
generally impractical for general convex feasible regions as projection is too expensive
\square projection effectively requires the solution of a QP!
How might we apply such methods for QP over a general polyhedral feasible region?

Digression II: duality

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} \boldsymbol{H} x+g^{T} x$ subject to $A x \geq b$
\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0$
x, s

Digression II: duality

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$
\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0 \Longrightarrow$ (KKT) x, s

$$
\binom{H x+g}{0}-\binom{A^{T}}{-I} y-\binom{0}{I} z=0, z \geq 0 \& s^{T} z=0
$$

Digression II: duality

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} x+g^{T} x$ subject to $A x \geq b$
\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0 \Longrightarrow$ (KKT) x, s

$$
\begin{gathered}
\binom{H x+g}{0}-\binom{A^{T}}{-I} y-\binom{0}{I} z=0, z \geq 0 \& s^{T} z=0 \Longrightarrow \\
g=A^{T} y-H x, A x=s+b,(s, y) \geq 0 \text { and } s^{T} y=0
\end{gathered}
$$

Digression II: duality

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$
\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0 \Longrightarrow$ (KKT) x, s

$$
\begin{gathered}
\binom{H x+g}{0}-\binom{A^{T}}{-I} y-\binom{0}{I} z=0, z \geq 0 \& s^{T} z=0 \Longrightarrow \\
g=A^{T} y-H x, A x=s+b,(s, y) \geq 0 \text { and } s^{T} y=0
\end{gathered}
$$

Suppose $g=A^{T} y-H x, A x=s+b$ and $(s, y) \geq 0$

Digression II: duality

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$
\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0 \Longrightarrow($ KKT $)$ x, s

$$
\begin{gathered}
\binom{H x+g}{0}-\binom{A^{T}}{-I} y-\binom{0}{I} z=0, z \geq 0 \& s^{T} z=0 \Longrightarrow \\
g=A^{T} y-H x, A x=s+b,(s, y) \geq 0 \text { and } s^{T} y=0
\end{gathered}
$$

Suppose $g=A^{T} y-\boldsymbol{H} x, A x=s+b$ and $(s, y) \geq 0 \Longrightarrow$

$$
g^{T} x=y^{T} A x-x^{T} \boldsymbol{H} x=y^{T}(s+b)-x^{T} \boldsymbol{H} x \geq y^{T} b-x^{T} \boldsymbol{H} x
$$

Digression II: duality

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$
\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0 \Longrightarrow($ KKT $)$ x, s

$$
\begin{gathered}
\binom{H x+g}{0}-\binom{A^{T}}{-I} y-\binom{0}{I} z=0, z \geq 0 \& s^{T} z=0 \Longrightarrow \\
g=A^{T} y-H x, A x=s+b,(s, y) \geq 0 \text { and } s^{T} y=0
\end{gathered}
$$

Suppose $g=A^{T} y-\boldsymbol{H} x, A x=s+b$ and $(s, y) \geq 0 \Longrightarrow$

$$
g^{T} x=y^{T} A x-x^{T} H x=y^{T}(s+b)-x^{T} \boldsymbol{H} x \geq y^{T} b-x^{T} H x
$$

$$
\Longrightarrow q(x) \geq-\frac{1}{2} x^{T} H x+b^{T} y
$$

Digression II: duality

QP: minimize $q(x)=\frac{1}{2} x^{T} H x+g^{T} x$ subject to $A x \geq b$

\Longleftrightarrow minimize $q(x)$ subject to $A x-s=b$ and $s \geq 0 \Longrightarrow($ KKT $)$

$$
\begin{gathered}
\binom{H x+g}{0}-\binom{A^{T}}{-I} y-\binom{0}{I} z=0, z \geq 0 \& s^{T} z=0 \Longrightarrow \\
g=A^{T} y-H x, A x=s+b,(s, y) \geq 0 \text { and } s^{T} y=0
\end{gathered}
$$

Suppose $g=A^{T} y-\boldsymbol{H} x, A x=s+b$ and $(s, y) \geq 0 \Longrightarrow$

$$
g^{T} x=y^{T} A x-x^{T} \boldsymbol{H} x=y^{T}(s+b)-x^{T} \boldsymbol{H} x \geq y^{T} b-x^{T} \boldsymbol{H} x
$$

$\Longrightarrow q(x) \geq-\frac{1}{2} x^{T} H x+b^{T} y \Longrightarrow$ equivalent dual problem
DQP: maximize $-\frac{1}{2} x^{T} H x+b^{T} y$ s.t. $H x-A^{T} y=-g \& y \geq 0$ x, y

Duality II

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}+g^{T} \boldsymbol{x}$ subject to $A x \geq b$
x

DQP: $\underset{x, y}{\operatorname{maximize}}-\frac{1}{2} x^{T} H x+b^{T} y$ s.t. $H x-A^{T} y=-g \& y \geq 0$

Duality II

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}+g^{T} x$ subject to $A x \geq b$

$$
x
$$

$$
x, y
$$

DQP: minimize $\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} x-\boldsymbol{b}^{T} y$ s.t. $\boldsymbol{H} x-A^{T} y=-g \& y \geq 0$ x, y

Duality II

QP: $\underset{x}{\operatorname{minimize}} q(x)=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x}+g^{T} \boldsymbol{x}$ subject to $A x \geq b$

\Longleftrightarrow

$$
x, y
$$

DQP: $\underset{x, y}{\operatorname{minimize}} \frac{1}{2} x^{T} H x-b^{T} y$ s.t. $H x-A^{T} y=-g \& y \geq 0$ \Longleftrightarrow (nonsingular \boldsymbol{H})

DQP: minimize $\frac{1}{2}\left(y^{T} A-g^{T}\right) H^{-1}\left(A^{T} y-g\right)-b^{T} y$ s.t. $y \geq 0$

Dual gradient projection methods

DQP: $\underset{y}{\operatorname{minimize}} \frac{1}{2}\left(y^{T} A-g^{T}\right) H^{-1}\left(A^{T} y-g\right)-b^{T} y$ s.t. $y \geq 0$

- for strictly-convex QP (i.e., \boldsymbol{H} positive definite)

■ dual objective $\boldsymbol{q}_{\mathrm{D}}(y)=\frac{1}{2} \boldsymbol{y}^{T} \boldsymbol{H}_{\mathrm{D}} \boldsymbol{y}+g_{\mathrm{D}}^{T} \boldsymbol{y}$, where

$$
H_{\mathrm{D}}=A H^{-1} A^{T} \text { and } g_{\mathrm{D}}=-A H^{-1} g-b
$$

$\square H_{\mathrm{D}}$ may only be positive semi-definite

- since feasible region is simple, can use gradient projection to allow rapid changes in active set
\square require sparse factorization $H=L L^{T}$ but everything else "matrix-free"

Dual gradient projection methods

DQP: $\underset{y}{\operatorname{minimize}} \frac{1}{2}\left(y^{T} A-g^{T}\right) H^{-1}\left(A^{T} y-g\right)-b^{T} y$ s.t. $y \geq 0$
\square for strictly-convex QP (i.e., \boldsymbol{H} positive definite)
■ dual objective $\boldsymbol{q}_{\mathrm{D}}(\boldsymbol{y})=\frac{1}{2} \boldsymbol{y}^{T} \boldsymbol{H}_{\mathrm{D}} \boldsymbol{y}+g_{\mathrm{D}}^{T} \boldsymbol{y}$, where

$$
\boldsymbol{H}_{\mathrm{D}}=A H^{-1} A^{T} \text { and } g_{\mathrm{D}}=-A H^{-1} g-b
$$

$\square H_{\mathrm{D}}$ may only be positive semi-definite

- since feasible region is simple, can use gradient projection to allow rapid changes in active set
\square require sparse factorization $H=L L^{T}$ but everything else "matrix-free"

Questions:

\square can we perform projected search efficiently?
\square can we perform subspace minimization efficiently?

Dual projected search

\square have $H_{\mathrm{D}}=A \boldsymbol{H}^{-1} \boldsymbol{A}^{T}$ and $g_{\mathrm{D}}=-A \boldsymbol{H}^{-1} \boldsymbol{g}-\boldsymbol{b}$
\square recall require $\alpha^{+} \approx \arg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
\square investigate for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $y_{i}=P\left[y_{i}+\alpha_{i} s\right]$:
$q_{i}(\alpha)=q_{\mathrm{D}}\left(y_{i}\right)+\Delta \alpha\left(g_{\mathrm{D}}^{T} s_{i}+y_{i}^{T} H_{\mathrm{D}} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H_{\mathrm{D}} s_{i}$
\square recur via $H_{\mathrm{D}} s_{i}=H_{\mathrm{D}} s_{i-1}-H_{\mathrm{D}} \Delta s_{i}$ with very sparse Δs_{i} but likely dense $\boldsymbol{H}_{\mathrm{D}} \ldots$. looks expensive

Dual projected search

\square have $H_{\mathrm{D}}=A \boldsymbol{H}^{-1} \boldsymbol{A}^{T}$ and $g_{\mathrm{D}}=-A \boldsymbol{H}^{-1} \boldsymbol{g}-\boldsymbol{b}$
\square recall require $\alpha^{+} \approx \arg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
\square investigate for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $y_{i}=P\left[y_{i}+\alpha_{i} s\right]$:
$q_{i}(\alpha)=q_{\mathrm{D}}\left(y_{i}\right)+\Delta \alpha\left(g_{\mathrm{D}}^{T} s_{i}+y_{i}^{T} H_{\mathrm{D}} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H_{\mathrm{D}} s_{i}$
\square recur via $H_{\mathrm{D}} s_{i}=H_{\mathrm{D}} s_{i-1}-H_{\mathrm{D}} \Delta s_{i}$ with very sparse Δs_{i} but likely dense $H_{\mathrm{D}} \ldots$. looks expensive
\square instead maintain $u_{i}=L^{-1} A^{T} s_{i}$ and $v_{i}=L^{-1} A^{T} y_{i}$

Dual projected search

\square have $H_{\mathrm{D}}=A H^{-1} A^{T}$ and $g_{\mathrm{D}}=-A H^{-1} \boldsymbol{g}-b$
\square recall require $\alpha^{+} \approx \arg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
\square investigate for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $y_{i}=P\left[y_{i}+\alpha_{i} s\right]$:
$q_{i}(\alpha)=q_{\mathrm{D}}\left(y_{i}\right)+\Delta \alpha\left(g_{\mathrm{D}}^{T} s_{i}+y_{i}^{T} H_{\mathrm{D}} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H_{\mathrm{D}} s_{i}$
\square recur via $H_{\mathrm{D}} s_{i}=H_{\mathrm{D}} s_{i-1}-H_{\mathrm{D}} \Delta s_{i}$ with very sparse Δs_{i} but likely dense $\boldsymbol{H}_{\mathrm{D}} \ldots$ looks expensive
\square instead maintain $u_{i}=L^{-1} A^{T} s_{i}$ and $v_{i}=L^{-1} A^{T} y_{i} \Longrightarrow$
\square possible to recur required coefficients $g_{\mathrm{D}}^{T} s_{i}$ and $s_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} u_{i}$ very efficiently via $u_{i}=u_{i-1}-\Delta u_{i}$, where $L \Delta u_{i}=A^{T} \Delta s_{i}$

Dual projected search

\square have $H_{\mathrm{D}}=A H^{-1} A^{T}$ and $g_{\mathrm{D}}=-A \boldsymbol{H}^{-1} \boldsymbol{g}-b$
\square recall require $\alpha^{+} \approx \arg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
\square investigate for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $y_{i}=P\left[y_{i}+\alpha_{i} s\right]$:
$q_{i}(\alpha)=q_{\mathrm{D}}\left(y_{i}\right)+\Delta \alpha\left(g_{\mathrm{D}}^{T} s_{i}+y_{i}^{T} H_{\mathrm{D}} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H_{\mathrm{D}} s_{i}$
\square recur via $H_{\mathrm{D}} s_{i}=H_{\mathrm{D}} s_{i-1}-H_{\mathrm{D}} \Delta s_{i}$ with very sparse Δs_{i} but likely dense $\boldsymbol{H}_{\mathrm{D}} \ldots$ looks expensive
\square instead maintain $u_{i}=L^{-1} A^{T} s_{i}$ and $v_{i}=L^{-1} A^{T} y_{i} \Longrightarrow$
\square possible to recur required coefficients $g_{\mathrm{D}}^{T} s_{i}$ and $s_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} u_{i}$ very efficiently via $u_{i}=u_{i-1}-\Delta u_{i}$, where $L \Delta u_{i}=A^{T} \Delta s_{i}$
\square required $y_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} v_{i}$ looks harder as update to v_{i} is dense \ldots but can also be performed using inner-products involving Δu_{i}

Dual projected search

\square have $H_{\mathrm{D}}=A H^{-1} A^{T}$ and $g_{\mathrm{D}}=-A H^{-1} \boldsymbol{g}-b$
\square recall require $\alpha^{+} \approx \arg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
\square investigate for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $y_{i}=P\left[y_{i}+\alpha_{i} s\right]$:
$q_{i}(\alpha)=q_{\mathrm{D}}\left(y_{i}\right)+\Delta \alpha\left(g_{\mathrm{D}}^{T} s_{i}+y_{i}^{T} H_{\mathrm{D}} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H_{\mathrm{D}} s_{i}$
\square recur via $H_{\mathrm{D}} s_{i}=H_{\mathrm{D}} s_{i-1}-H_{\mathrm{D}} \Delta s_{i}$ with very sparse Δs_{i} but likely dense $H_{\mathrm{D}} \ldots$ looks expensive
\square instead maintain $u_{i}=L^{-1} A^{T} s_{i}$ and $v_{i}=L^{-1} A^{T} y_{i} \Longrightarrow$
\square possible to recur required coefficients $g_{\mathrm{D}}^{T} s_{i}$ and $s_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} u_{i}$ very efficiently via $u_{i}=u_{i-1}-\Delta u_{i}$, where $L \Delta u_{i}=A^{T} \Delta s_{i}$
\square required $y_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} v_{i}$ looks harder as update to v_{i} is dense \ldots but can also be performed using inner-products involving Δu_{i}
\square as $\Delta s_{i}, A$ and H are sparse, result of forward solve Δu_{i} is often very sparse

Dual projected search

\square have $H_{\mathrm{D}}=A H^{-1} A^{T}$ and $g_{\mathrm{D}}=-A H^{-1} \boldsymbol{g}-b$
\square recall require $\alpha^{+} \approx \arg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
\square investigate for $\alpha=\alpha_{i}+\Delta \alpha \leq \alpha_{i+1}$ and $y_{i}=P\left[y_{i}+\alpha_{i} s\right]$:
$q_{i}(\alpha)=q_{\mathrm{D}}\left(y_{i}\right)+\Delta \alpha\left(g_{\mathrm{D}}^{T} s_{i}+y_{i}^{T} H_{\mathrm{D}} s_{i}\right)+\frac{1}{2} \Delta \alpha^{2} s_{i}^{T} H_{\mathrm{D}} s_{i}$
\square recur via $H_{\mathrm{D}} s_{i}=H_{\mathrm{D}} s_{i-1}-H_{\mathrm{D}} \Delta s_{i}$ with very sparse Δs_{i} but likely dense $H_{\mathrm{D}} \ldots$ looks expensive
\square instead maintain $u_{i}=L^{-1} A^{T} s_{i}$ and $v_{i}=L^{-1} A^{T} y_{i} \Longrightarrow$
\square possible to recur required coefficients $g_{\mathrm{D}}^{T} s_{i}$ and $s_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} u_{i}$ very efficiently via $u_{i}=u_{i-1}-\Delta u_{i}$, where $L \Delta u_{i}=A^{T} \Delta s_{i}$
\square required $y_{i}^{T} H_{\mathrm{D}} s_{i} \equiv u_{i}^{T} v_{i}$ looks harder as update to v_{i} is dense \ldots but can also be performed using inner-products involving Δu_{i}
\square as $\Delta s_{i}, A$ and H are sparse, result of forward solve Δu_{i} is often very sparse
\square sparse forward solves now available for HSL solvers HSL_MA57/87/97 \quad)

Dual subspace minimization

\square acceleration by subspace minimization along $y_{k}^{c}+s$
\square partition variables s into active $s_{\mathrm{A}_{k}}$ and free $s_{\mathrm{F}_{k}}$ components according to status of \boldsymbol{y}_{k}^{c}
\square find (approximate) solution s_{k} to

$$
\mathrm{EQP}: \underset{s \in \mathbb{R}^{m}}{\operatorname{minimize}} q_{\mathrm{D}}\left(y_{k}^{c}+s\right) \text { subject to } s_{\mathrm{A}_{k}}=0
$$

\square set $y_{k+1} \approx \arg \min q_{\mathrm{D}}\left(P\left[y_{k}^{c}+\alpha s_{k}\right]\right)$

Dual subspace minimization

- acceleration by subspace minimization along $y_{k}^{c}+s$
\square partition variables s into active $s_{\mathrm{A}_{k}}$ and free $s_{\mathrm{F}_{k}}$ components according to status of \boldsymbol{y}_{k}^{c}
\square find (approximate) solution s_{k} to

$$
\mathrm{EQP}: \underset{s \in \mathbb{R}^{m}}{\operatorname{minimize}} q_{\mathrm{D}}\left(y_{k}^{c}+s\right) \text { subject to } s_{\mathrm{A}_{k}}=0
$$

\square set $y_{k+1} \approx \arg \min q_{\mathrm{D}}\left(P\left[y_{k}^{c}+\alpha s_{k}\right]\right)$
\square EQP equivalent to $\operatorname{minimize}_{s \in \mathbb{R}^{m_{k}}} \frac{1}{2} s^{T} \boldsymbol{H}_{k} s+s^{T} g_{k}$
$\square H_{k}=A_{k} H^{-1} A_{k}^{T}$ and $g_{k}=-A_{k} H^{-1}\left(g-A_{k}^{T} y_{k}^{c}\right)-b_{k}$
$\square A_{k}$ and b_{k} are respectively the rows of A and components of b corresponding to the m_{k} free components $s_{\mathrm{F}_{k}}$
$\square \boldsymbol{H}_{k}$ is positive semi-definite but may be singular

Digression III: the Fredholm Alternative

$$
\mathrm{DEQP}: \underset{s \in \mathbb{R}^{m_{k}}}{\operatorname{minimize}} q_{k}(s)=\frac{1}{2} s^{T} \boldsymbol{H}_{k} s+s^{T} g_{k}
$$

Two possibilities
$\square q_{k}$ has a finite critical point s_{k} for which

$$
H_{k} s_{k}=-g_{k}
$$

\square always if \boldsymbol{H}_{k} is positive definite
\square true if $\boldsymbol{g}_{\boldsymbol{k}} \in \operatorname{Range}\left(\boldsymbol{H}_{\boldsymbol{k}}\right)$
$\square q_{k}$ decreases linearly without bound along a direction s_{k} for which

$$
\boldsymbol{H}_{k} s_{k}=0 \text { and } s_{k}^{T} g_{k}<0
$$

\square true if $\boldsymbol{g}_{\boldsymbol{k}} \notin \operatorname{Range}\left(\boldsymbol{H}_{\boldsymbol{k}}\right)$

- This is the Fredholm Alternative for the data $\left[\boldsymbol{H}_{k}, g_{k}\right]$

The structured Fredholm Alternative

Seek Fredholm Alternative for data $\left[\boldsymbol{H}_{\boldsymbol{k}}, \boldsymbol{g}_{k}\right]$ where

$$
H_{k}=A_{k} H^{-1} A_{k}^{T} \text { and } g_{k}=A_{k} H^{-1}\left(A_{k}^{T} y_{k}^{c}-g\right)-b_{k}
$$

$\square \boldsymbol{H}_{k} s_{k}=-g_{k}$ equivalent to

$$
\left(\begin{array}{cc}
H & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)\binom{t_{k}}{-s_{k}}=\binom{A_{k}^{T} y_{k}^{c}-g}{b_{k}}
$$

for auxiliary unknowns t_{k}

The structured Fredholm Alternative

Seek Fredholm Alternative for data $\left[\boldsymbol{H}_{\boldsymbol{k}}, \boldsymbol{g}_{k}\right]$ where

$$
H_{k}=A_{k} H^{-1} A_{k}^{T} \text { and } g_{k}=A_{k} H^{-1}\left(A_{k}^{T} y_{k}^{c}-g\right)-b_{k}
$$

$\square \boldsymbol{H}_{k} s_{k}=-g_{k}$ equivalent to

$$
\left(\begin{array}{cc}
H & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)\binom{t_{k}}{-s_{k}}=\binom{A_{k}^{T} y_{k}^{c}-g}{b_{k}}
$$

for auxiliary unknowns t_{k}

- Fredholm Alternative for data

$$
\left[\left(\begin{array}{cc}
H & A_{k}^{T} \\
A_{k} & 0
\end{array}\right),\binom{A_{k}^{T} y_{k}^{c}-g}{b_{k}}\right]
$$

gives required alternative $H_{k} s_{k}=0$ and $s_{k}^{T} g_{k}<0$
$\Longleftrightarrow\left[\boldsymbol{H}_{k}, \boldsymbol{g}_{k}\right]$ is inconsistent

The structured Fredholm Alternative

Seek Fredholm Alternative for data $\left[\boldsymbol{H}_{\boldsymbol{k}}, \boldsymbol{g}_{k}\right]$ where

$$
H_{k}=A_{k} H^{-1} A_{k}^{T} \text { and } g_{k}=A_{k} H^{-1}\left(A_{k}^{T} y_{k}^{c}-g\right)-b_{k}
$$

$\square \boldsymbol{H}_{k} s_{k}=-g_{k}$ equivalent to

$$
\left(\begin{array}{cc}
H & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)\binom{t_{k}}{-s_{k}}=\binom{A_{k}^{T} y_{k}^{c}-g}{b_{k}}
$$

for auxiliary unknowns t_{k}
\square Fredholm Alternative for data

$$
\left[\left(\begin{array}{cc}
H & A_{k}^{T} \\
A_{k} & 0
\end{array}\right),\binom{A_{k}^{T} y_{k}^{c}-g}{b_{k}}\right]
$$

gives required alternative $H_{k} s_{k}=0$ and $s_{k}^{T} g_{k}<0$ $\Longleftrightarrow\left[\boldsymbol{H}_{k}, g_{k}\right]$ is inconsistent
HSL sparse solvers HSL_MA57/86/97 now provide Fredholm Alternative

Alternative to the Fredholm Alternative

$$
\mathrm{DEQP}: \underset{s \in \mathbb{R}^{m_{k}}}{\operatorname{minimize}} q_{k}(s)=\frac{1}{2} s^{T} \boldsymbol{H}_{k} s+s^{T} g_{k}
$$

$$
H_{k}=A_{k} H^{-1} A_{k}^{T} \text { and } g_{k}=A_{k} H^{-1}\left(A_{k}^{T} y_{k}^{c}-g\right)-b_{k}
$$

\square apply conjugate-gradient method with safeguards to detect steps to infinity

- each matrix-vector product $H_{k} p$ requires solve with \boldsymbol{H} and sparse matrix-vector products with A_{k} and A_{k}^{T}
\square preconditioning possible but no obvious simple preconditioner

An example

POWELL20: $n=10000, m=10000$

- solve problem using interior-point package CQP from GALAHAD
\square perturb constraints and resolve by dual gradient-projection $D Q P$

		size of perturbation before DQP solve					
	CQP	0	$\mathbf{1 0}^{-\mathbf{6}}$	$\mathbf{1 0}^{-\mathbf{5}}$	$\mathbf{1 0}^{-\mathbf{4}}$	$\mathbf{1 0}^{-\mathbf{3}}$	$\mathbf{1 0}^{\mathbf{- 2}}$
time		0.03	0.13	0.41	1.92	9.21	7.94
its		0	1	1	15	32	35
changes		0	1	8	594	3506	4763

An example

POWELL20: $n=10000, m=10000$

- solve problem using interior-point package CQP from GALAHAD
- perturb constraints and resolve by dual gradient-projection $D Q P$

		size of perturbation before $D Q P$ solve					
	CQP	0	$\mathbf{1 0}^{-\mathbf{6}}$	$\mathbf{1 0}^{-\mathbf{5}}$	$\mathbf{1 0}^{-\mathbf{4}}$	$\mathbf{1 0}^{-\mathbf{3}}$	$\mathbf{1 0}^{\mathbf{- 2}}$
time	4.60	0.03	0.13	0.41	1.92	9.21	7.94
its		0	1	1	15	32	35
changes		0	1	8	594	3506	4763

Active-set changes per iteration with perturbation $\mathbf{1 0}^{\mathbf{- 2}}$:

584	285	245	345	331	340	332	297	291	255
249	223	223	213	207	197	205	192	166	146
129	123	133	134	124	115	114	114	107	87
63	44	16	1	0					

Summary

■ dual gradient-projection method for large-scale, strictly-convex QP

- requires sparse factorization of Hessian but otherwise can be used "factorization-free"
\square allows rapid change to the "active set"
- particularly suited to "warm starting"
- efficient projected search
- extensive use of Fredholm alternative
\square many technical details
- easily generalised for regularization problems in ℓ_{1} and ℓ_{∞} norms using appropriate simple projections onto boxes and simplices
- implemented as a fortran 2003 module DQP in GALAHAD

