A practical dual gradient-projection method for large-scale, strictly-convex quadratic programming

Nick Gould

STFC Rutherford Appleton Laboratory

with

Jonathan Hogg & Jennifer Scott

minimize
$$\frac{1}{2}x^THx + g^Tx$$
 subject to $Ax \geq b$

ICCOPT 2013, Lisbon, PortugalUniversidade Nova de Lisboa, 29th July 2013

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 \blacksquare assume that H positive definite \Longrightarrow QP strictly convex

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

- \blacksquare assume that H positive definite \Longrightarrow QP strictly convex
- aim to satisfy (KKT) criticality conditions

$$Ax_* = b$$
 (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \ge 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

- \blacksquare assume that H positive definite \Longrightarrow QP strictly convex
- aim to satisfy (KKT) criticality conditions

$$Ax_* = b$$
 (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \geq 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

lacksquare interested in case where n is large and H and $A\in\Re^{m\times n}$ are sparse

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

- \blacksquare assume that H positive definite \Longrightarrow QP strictly convex
- aim to satisfy (KKT) criticality conditions

$$Ax_* = b$$
 (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \geq 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

- lacksquare interested in case where n is large and H and $A\in\Re^{m\times n}$ are sparse
- easy extension to more general constraint structures (equations, upper and both-sided bounds, simple bounds, ...)

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

- \blacksquare assume that H positive definite \Longrightarrow QP strictly convex
- aim to satisfy (KKT) criticality conditions

$$Ax_* = b$$
 (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \geq 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

- lacksquare interested in case where n is large and H and $A\in\Re^{m\times n}$ are sparse
- easy extension to more general constraint structures (equations, upper and both-sided bounds, simple bounds, ...)
- many real-world applications as well as SQP

Competing methods

- interior-point methods
 - usually very efficient
 - relatively poor at warm starting
- active-set methods
 - worst-case combinatorics due to pedestrian active-set changes
 - good at warm starting
- gradient projection methods
 - more rapid active-set changes
 - restricted to constraint sets for which projection is "easy"

Digression I: gradient projection

- convergence and active-set determination driven by projection
 - lacksquare current iterate $x_k \in \mathcal{F} = \{x : Ax \geq b\}$
 - \blacksquare current gradient $g_k = Hx_k + g$
 - lacksquare improved Cauchy point $x_k^c = P[x_k lpha_k g_k]$
 - lacksquare projection $P[y] = rg \min_{x \in \mathcal{F}} \|y x\|$
 - \blacksquare step length $\alpha_k pprox rg \min q(P[x_k \alpha g_k])$

(Rosen, 1960)

Accelerated gradient projection

- acceleration by subspace minimization
 - lacksquare pick active set as subset of constraints \mathcal{A}_k active at x_k^c
 - \blacksquare find (approximate) solution s_k to equality constrained QP

EQP: minimize
$$q(x_k^c + s)$$
 subject to $A_{\mathcal{A}_k} s = 0$

 \blacksquare set $x_{k+1} \approx \arg\min q(P[x_k^c + \alpha s_k])$

Accelerated gradient projection

- acceleration by subspace minimization
 - lacksquare pick active set as subset of constraints \mathcal{A}_k active at x_k^c
 - \blacksquare find (approximate) solution s_k to equality constrained QP

EQP: minimize
$$q(x_k^c + s)$$
 subject to $A_{\mathcal{A}_k} s = 0$

- \blacksquare set $x_{k+1} \approx \arg\min q(P[x_k^c + \alpha s_k])$
- solve EQP by
 - direct factorization

(HSL, PARDISO, WSMP,...)

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight) \left(egin{array}{c} s_k \ w_k \end{array}
ight) = - \left(egin{array}{c} Hx_k^c + g \ 0 \end{array}
ight)$$

- factorization-free projected CG (G., Hribar & Nocedal, Luksan & Vlcek, 90s...)
- N.B. need to impose step bound for unbounded subproblems

Projected search within simple bounds $m{x}^{\mathrm{L}} \leq m{x} \leq m{x}^{\mathrm{U}}$

Find $\alpha^+ pprox \arg\min q(P[x+\alpha s])$ for $\alpha \geq 0$ (Conn, G. & Toint, 1988)

- $\blacksquare P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$
- $\blacksquare q(P[x+\alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
- \blacksquare consider each $q_i(\alpha)$ in turn until first local minimizer found

Projected search within simple bounds $x^{ ext{L}} \leq x \leq x^{ ext{U}}$

Find $\alpha^+ \approx \arg\min q(P[x + \alpha s])$ for $\alpha \geq 0$

(Conn, G. & Toint, 1988)

- $\blacksquare P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$
- $\blacksquare q(P[x + \alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
- lacksquare consider each $q_i(\alpha)$ in turn until first local minimizer found
- \blacksquare for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$:
 - $q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i

Projected search within simple bounds $m{x}^{\mathrm{L}} \leq m{x} \leq m{x}^{\mathrm{U}}$

Find $\alpha^+ \approx \arg\min q(P[x + \alpha s])$ for $\alpha \geq 0$

(Conn, G. & Toint, 1988)

- $\blacksquare P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$
- $\blacksquare q(P[x+\alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
- lacksquare consider each $q_i(\alpha)$ in turn until first local minimizer found
- \blacksquare for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$:

 - $\mathbf{s}_i = s_{i-1} \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at x_i

Projected search within simple bounds $x^{ ext{L}} \leq x \leq x^{ ext{U}}$

Find $\alpha^+ \approx \arg\min q(P[x + \alpha s])$ for $\alpha \geq 0$

(Conn, G. & Toint, 1988)

- $\blacksquare P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$
- $\blacksquare q(P[x+\alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
- lacksquare consider each $q_i(\alpha)$ in turn until first local minimizer found
- \blacksquare for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$:

 - $s_i = s_{i-1} \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at $x_i \Longrightarrow$
 - $\blacksquare Hs_i = Hs_{i-1} H\Delta s_i$ involves likely very sparse $H\Delta s_i$ if H is sparse

Projected search within simple bounds $m{x}^{ ext{L}} \leq m{x} \leq m{x}^{ ext{U}}$

Find $\alpha^+ pprox rg \min q(P[x+\alpha s])$ for $\alpha \geq 0$ (Conn, Conn, Conn

- (Conn, G. & Toint, 1988)
- lacksquare $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$
- $\blacksquare q(P[x+\alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
- lacksquare consider each $q_i(\alpha)$ in turn until first local minimizer found
- \blacksquare for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$:
 - $q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i
 - $s_i = s_{i-1} \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at $x_i \Longrightarrow$
 - $Hs_i = Hs_{i-1} H\Delta s_i$ involves likely very sparse $H\Delta s_i$ if H is sparse \Longrightarrow
 - possible to recur required coefficients $g^T s_i$, $x_i^T H s_i$ and $s_i^T H s_i$ of $q_i(\alpha)$ very efficiently

Projected search within simple bounds $m{x}^{ ext{L}} \leq m{x} \leq m{x}^{ ext{U}}$

Find $\alpha^+ pprox \arg\min q(P[x+\alpha s])$ for $\alpha \geq 0$ (Conn, G. & Toint, 1988)

- $\blacksquare P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$
- $\blacksquare q(P[x+\alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
- \blacksquare consider each $q_i(\alpha)$ in turn until first local minimizer found
- \blacksquare for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$:
 - $q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i
 - $s_i = s_{i-1} \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at $x_i \Longrightarrow$
 - $Hs_i = Hs_{i-1} H\Delta s_i$ involves likely very sparse $H\Delta s_i$ if H is sparse \Longrightarrow
 - possible to recur required coefficients $g^T s_i$, $x_i^T H s_i$ and $s_i^T H s_i$ of $q_i(\alpha)$ very efficiently
- approximate "Armijo" projected search also possible (Moré & Toraldo, Toint, 90s)

Anecdotal and empirical evidence

- large change possible in the active set per iteration
- often very effective in practice for convex bound-constrained QP
 - few overall iterations compared to active-set methods (Moré & Toraldo)
 - competitive with interior-point methods for such problems
- basis of LANCELOT

(Conn, G. & Toint)

- generally impractical for general convex feasible regions as projection is too expensive
 - projection effectively requires the solution of a QP!

Anecdotal and empirical evidence

- large change possible in the active set per iteration
- often very effective in practice for convex bound-constrained QP
 - few overall iterations compared to active-set methods (Moré & Toraldo)
 - competitive with interior-point methods for such problems
- basis of LANCELOT

(Conn, G. & Toint)

- generally impractical for general convex feasible regions as projection is too expensive
 - projection effectively requires the solution of a QP!

How might we apply such methods for QP over a general polyhedral feasible region?

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0$

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0 \Longrightarrow (KKT)$

$$egin{pmatrix} Hx+g \ 0 \end{pmatrix} - egin{pmatrix} A^T \ -I \end{pmatrix} y - egin{pmatrix} 0 \ I \end{pmatrix} z = 0, \ z \geq 0 \ \& \ s^Tz = 0$$

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0 \Longrightarrow (KKT)$

$$egin{pmatrix} Hx+g \ 0 \end{pmatrix} - egin{pmatrix} A^T \ -I \end{pmatrix} y - egin{pmatrix} 0 \ I \end{pmatrix} z = 0, \ z \geq 0 \ \& \ s^Tz = 0 \Longrightarrow \ g = A^Ty - Hx, \ Ax = s+b, \ (s,y) \geq 0 \ ext{and} \ s^Ty = 0 \end{cases}$$

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0 \Longrightarrow (KKT)$

$$egin{pmatrix} Hx+g \ 0 \end{pmatrix} - egin{pmatrix} A^T \ -I \end{pmatrix} y - egin{pmatrix} 0 \ I \end{pmatrix} z = 0, \ z \geq 0 \ \& \ s^Tz = 0 \Longrightarrow 0$$

 $g = A^{T}y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \ \text{and} \ s^{T}y = 0$

Suppose $g = A^Ty - Hx$, Ax = s + b and $(s, y) \ge 0$

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0 \Longrightarrow (KKT)$

$$egin{pmatrix} Hx+g \ 0 \end{pmatrix} - egin{pmatrix} A^T \ -I \end{pmatrix} y - egin{pmatrix} 0 \ I \end{pmatrix} z = 0, \ z \geq 0 \ \& \ s^Tz = 0 \Longrightarrow 0$$

$$g = A^{T}y - Hx$$
, $Ax = s + b$, $(s, y) \ge 0$ and $s^{T}y = 0$

Suppose
$$g = A^Ty - Hx$$
, $Ax = s + b$ and $(s, y) \ge 0 \Longrightarrow$

$$g^{T}x = y^{T}Ax - x^{T}Hx = y^{T}(s+b) - x^{T}Hx \ge y^{T}b - x^{T}Hx$$

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0 \Longrightarrow (KKT)$

$$egin{pmatrix} Hx+g \ 0 \end{pmatrix} - egin{pmatrix} A^T \ -I \end{pmatrix} y - egin{pmatrix} 0 \ I \end{pmatrix} z = 0, \ z \geq 0 \ \& \ s^Tz = 0 \Longrightarrow 0$$

$$g = A^{T}y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \ \text{and} \ s^{T}y = 0$$

Suppose
$$g = A^Ty - Hx$$
, $Ax = s + b$ and $(s, y) \ge 0 \Longrightarrow$

$$g^{T}x = y^{T}Ax - x^{T}Hx = y^{T}(s+b) - x^{T}Hx \ge y^{T}b - x^{T}Hx$$

$$\implies q(x) \ge -\frac{1}{2}x^T H x + b^T y$$

QP: minimize $q(x) = \frac{1}{2}x^T H x + g^T x$ subject to $Ax \ge b$

 \iff minimize q(x) subject to Ax - s = b and $s \ge 0 \Longrightarrow (KKT)$

$$egin{pmatrix} Hx+g \ 0 \end{pmatrix} - egin{pmatrix} A^T \ -I \end{pmatrix} y - egin{pmatrix} 0 \ I \end{pmatrix} z = 0, \ z \geq 0 \ \& \ s^Tz = 0 \Longrightarrow 0$$

 $g = A^{T}y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \ \text{and} \ s^{T}y = 0$

Suppose $g = A^Ty - Hx$, Ax = s + b and $(s, y) \ge 0 \Longrightarrow$

$$g^{T}x = y^{T}Ax - x^{T}Hx = y^{T}(s+b) - x^{T}Hx \ge y^{T}b - x^{T}Hx$$

 $\implies q(x) \ge -\frac{1}{2}x^T H x + b^T y \implies \text{equivalent dual problem}$

DQP: maximize $-\frac{1}{2}x^THx + b^Ty$ s.t. $Hx - A^Ty = -g \& y \ge 0$

Duality II

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 \iff

DQP: maximize
$$-\frac{1}{2}x^THx + b^Ty$$
 s.t. $Hx - A^Ty = -g \& y \ge 0$

Duality II

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

$$\iff$$

DQP: maximize
$$-\frac{1}{2}x^THx + b^Ty$$
 s.t. $Hx - A^Ty = -g \& y \ge 0$

$$\iff$$

DQP: minimize
$$\frac{1}{2}x^THx - b^Ty$$
 s.t. $Hx - A^Ty = -g \& y \ge 0$

Duality II

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

$$\iff$$

DQP: maximize
$$-\frac{1}{2}x^{T}Hx + b^{T}y$$
 s.t. $Hx - A^{T}y = -g \& y \ge 0$

$$\iff$$

DQP: minimize
$$\frac{1}{2}x^THx - b^Ty$$
 s.t. $Hx - A^Ty = -g \& y \ge 0$

$$\iff$$
 (nonsingular H)

DQP: minimize
$$\frac{1}{2}(y^TA - g^T)H^{-1}(A^Ty - g) - b^Ty$$
 s.t. $y \ge 0$

Dual gradient projection methods

DQP: minimize
$$\frac{1}{2}(y^T A - g^T) H^{-1}(A^T y - g) - b^T y$$
 s.t. $y \ge 0$

- for strictly-convex QP (i.e., *H* positive definite)
- dual objective $q_{
 m D}(y)=rac{1}{2}y^TH_{
 m D}y+g_{
 m D}^Ty$, where $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- \blacksquare $H_{\rm D}$ may only be positive semi-definite
- since feasible region is simple, can use gradient projection to allow rapid changes in active set
- require sparse factorization $H = LL^T$ but everything else "matrix-free"

Dual gradient projection methods

DQP: minimize
$$\frac{1}{2}(y^T A - g^T) H^{-1}(A^T y - g) - b^T y$$
 s.t. $y \ge 0$

- for strictly-convex QP (i.e., *H* positive definite)
- dual objective $q_{
 m D}(y)=\frac{1}{2}y^TH_{
 m D}y+g_{
 m D}^Ty$, where $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- \blacksquare $H_{\rm D}$ may only be positive semi-definite
- since feasible region is simple, can use gradient projection to allow rapid changes in active set
- require sparse factorization $H = LL^T$ but everything else "matrix-free"

Questions:

- can we perform projected search efficiently?
- can we perform subspace minimization efficiently?

- lacksquare have $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- recall require $\alpha^+ \approx \arg\min q_{\rm D}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ...looks expensive

- lacksquare have $H_{\mathrm{D}}=AH^{-1}A^{T}$ and $g_{\mathrm{D}}=-AH^{-1}g-b$
- recall require $\alpha^+ pprox rg \min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense $H_D \dots$ looks expensive
- lacksquare instead maintain $u_i = L^{-1}A^Ts_i$ and $v_i = L^{-1}A^Ty_i$

- lacksquare have $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- recall require $\alpha^+ \approx \arg\min q_{\rm D}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive
- lacksquare instead maintain $u_i = L^{-1}A^Ts_i$ and $v_i = L^{-1}A^Ty_i \implies$
- possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$

- lacksquare have $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- recall require $\alpha^+ \approx \arg\min q_{\rm D}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense $H_D \dots$ looks expensive
- lacksquare instead maintain $u_i = L^{-1}A^Ts_i$ and $v_i = L^{-1}A^Ty_i \implies$
- possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$
- required $y_i^T H_D s_i \equiv u_i^T v_i$ looks harder as update to v_i is dense ... but can also be performed using inner-products involving Δu_i

- lacksquare have $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- recall require $\alpha^+ \approx \arg\min q_{\rm D}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense $H_D \dots$ looks expensive
- lacksquare instead maintain $u_i = L^{-1}A^Ts_i$ and $v_i = L^{-1}A^Ty_i \implies$
- possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$
- required $y_i^T H_D s_i \equiv u_i^T v_i$ looks harder as update to v_i is dense ... but can also be performed using inner-products involving Δu_i
- lacksquare as Δs_i , A and H are sparse, result of forward solve Δu_i is often very sparse

- lacksquare have $H_{
 m D}=AH^{-1}A^T$ and $g_{
 m D}=-AH^{-1}g-b$
- recall require $\alpha^+ \approx \arg\min q_{\rm D}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense $H_D \dots$ looks expensive
- lacksquare instead maintain $u_i = L^{-1}A^Ts_i$ and $v_i = L^{-1}A^Ty_i \implies$
- possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$
- required $y_i^T H_D s_i \equiv u_i^T v_i$ looks harder as update to v_i is dense ... but can also be performed using inner-products involving Δu_i
- lacksquare as Δs_i , A and H are sparse, result of forward solve Δu_i is often very sparse
- sparse forward solves now available for HSL solvers HSL_MA57/87/97

Dual subspace minimization

- lacksquare acceleration by subspace minimization along $y_k^c + s$
 - lacksquare partition variables s into active s_{A_k} and free s_{F_k} components according to status of y_k^c
 - \blacksquare find (approximate) solution s_k to

EQP: minimize
$$q_{\mathrm{D}}(y_k^c+s)$$
 subject to $s_{\mathrm{A}_k}=0$

 \blacksquare set $y_{k+1} \approx \arg\min q_{\mathrm{D}}(P[y_k^c + \alpha s_k])$

Dual subspace minimization

- lacksquare acceleration by subspace minimization along $y_k^c + s$
 - lacksquare partition variables s into active s_{A_k} and free s_{F_k} components according to status of y_k^c
 - \blacksquare find (approximate) solution s_k to

EQP: minimize
$$q_{\mathrm{D}}(y_k^c+s)$$
 subject to $s_{\mathrm{A}_k}=0$

- \blacksquare set $y_{k+1} pprox rg \min q_{\mathrm{D}}(P[y_k^c + \alpha s_k])$
- - $\blacksquare H_k = A_k H^{-1} A_k^T$ and $g_k = -A_k H^{-1} (g A_k^T y_k^c) b_k$
 - \blacksquare A_k and b_k are respectively the rows of A and components of b corresponding to the m_k free components s_{F_k}
 - \blacksquare H_k is positive semi-definite but may be singular

Digression III: the Fredholm Alternative

DEQP: minimize
$$q_k(s) = \frac{1}{2}s^T H_k s + s^T g_k$$

Two possibilities

 $\blacksquare q_k$ has a finite critical point s_k for which

$$H_k s_k = -g_k$$

- \blacksquare always if H_k is positive definite
- \blacksquare true if $g_k \in \operatorname{Range}(H_k)$
- $\blacksquare q_k$ decreases linearly without bound along a direction s_k for which

$$H_k s_k = 0$$
 and $s_k^T g_k < 0$

- lacksquare true if $g_k \notin \operatorname{Range}(H_k)$
- lacksquare This is the **Fredholm Alternative** for the data $[H_k, g_k]$

The structured Fredholm Alternative

Seek Fredholm Alternative for data $[H_k, g_k]$ where

$$\boldsymbol{H}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} \boldsymbol{A}_k^T$$
 and $\boldsymbol{g}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} (\boldsymbol{A}_k^T \boldsymbol{y}_k^c - \boldsymbol{g}) - \boldsymbol{b}_k$

 $\blacksquare H_k s_k = -g_k$ equivalent to

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight) \left(egin{array}{cc} t_k \ -s_k \end{array}
ight) = \left(egin{array}{cc} A_k^T y_k^c - g \ b_k \end{array}
ight)$$

for auxiliary unknowns t_k

The structured Fredholm Alternative

Seek Fredholm Alternative for data $[H_k, g_k]$ where

$$\boldsymbol{H}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} \boldsymbol{A}_k^T$$
 and $\boldsymbol{g}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} (\boldsymbol{A}_k^T \boldsymbol{y}_k^c - \boldsymbol{g}) - \boldsymbol{b}_k$

 $\blacksquare H_k s_k = -g_k$ equivalent to

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight) \left(egin{array}{cc} t_k \ -s_k \end{array}
ight) = \left(egin{array}{cc} A_k^T y_k^c - g \ b_k \end{array}
ight)$$

for auxiliary unknowns t_k

■ Fredholm Alternative for data

$$egin{bmatrix} \left[\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight), \left(egin{array}{cc} A_k^T y_k^c - g \ b_k \end{array}
ight)
ight]$$

gives required alternative $H_k s_k = 0$ and $s_k^T g_k < 0$ $\iff [H_k, g_k]$ is inconsistent

The structured Fredholm Alternative

Seek Fredholm Alternative for data $[H_k, g_k]$ where

$$\boldsymbol{H}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} \boldsymbol{A}_k^T$$
 and $\boldsymbol{g}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} (\boldsymbol{A}_k^T \boldsymbol{y}_k^c - \boldsymbol{g}) - \boldsymbol{b}_k$

 $\blacksquare H_k s_k = -g_k$ equivalent to

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight) \left(egin{array}{cc} t_k \ -s_k \end{array}
ight) = \left(egin{array}{cc} A_k^T y_k^c - g \ b_k \end{array}
ight)$$

for auxiliary unknowns t_k

Fredholm Alternative for data

$$egin{bmatrix} \left[\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight), \left(egin{array}{cc} A_k^T y_k^c - g \ b_k \end{array}
ight)
ight]$$

gives required alternative $H_k s_k = 0$ and $s_k^T g_k < 0$ $\iff [H_k, g_k]$ is inconsistent

■ HSL sparse solvers HSL_MA57/86/97 now provide Fredholm Alternative

Alternative to the Fredholm Alternative

DEQP: minimize
$$q_k(s) = \frac{1}{2}s^T H_k s + s^T g_k$$

$$\boldsymbol{H}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} \boldsymbol{A}_k^T$$
 and $\boldsymbol{g}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} (\boldsymbol{A}_k^T \boldsymbol{y}_k^c - \boldsymbol{g}) - \boldsymbol{b}_k$

- apply conjugate-gradient method with safeguards to detect steps to infinity
- lacksquare each matrix-vector product $H_k p$ requires solve with H and sparse matrix-vector products with A_k and A_k^T
- preconditioning possible but no obvious simple preconditioner

An example

POWELL20: n=10000, m=10000

- solve problem using interior-point package CQP from GALAHAD
- perturb constraints and resolve by dual gradient-projection DQP

		size of perturbation before DQP solve						size of perturbation before DQP solve			
	CQP	0	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10^{-2}				
time	4.60	0.03	0.13	0.41	1.92	9.21	7.94				
its		0	1	1	15	32	35				
changes		0	1	8	594	3506	4763				

An example

POWELL20: n=10000, m=10000

- solve problem using interior-point package CQP from GALAHAD
- perturb constraints and resolve by dual gradient-projection DQP

		size of perturbation before DQP solve					
	CQP	0	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10^{-2}
time	4.60	0.03	0.13	0.41	1.92	9.21	7.94
its		0	1	1	15	32	35
changes		0	1	8	594	3506	4763

Active-set changes per iteration with perturbation 10^{-2} :

584	285	245	345	331	340	332	297	291	255
249	223	223	213	207	197	205	192	166	146
129	123	133	134	124	115	114	114	107	87
63	44	16	1	0					

Summary

- dual gradient-projection method for large-scale, strictly-convex QP
- requires sparse factorization of Hessian but otherwise can be used "factorization-free"
- allows rapid change to the "active set"
- particularly suited to "warm starting"
- efficient projected search
- extensive use of Fredholm alternative
- many technical details
- \blacksquare easily generalised for regularization problems in ℓ_1 and ℓ_∞ norms using appropriate simple projections onto boxes and simplices
- implemented as a fortran 2003 module DQP in GALAHAD (G., Hogg, Scott)

