
DynamicWrappers: a rule based metadata conversion and
integration system for e-Science applications

Shoaib Sufi

CCLRC – Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, UK.
E-mail: s.a.sufi@dl.ac.uk

Abstract: A need to integrate heterogeneous
metadata/relational data sources on the Grid
and in e-Science Projects exists Often this is
done in a time consuming and hard-coded way.
What is proposed is a generic dynamic
configuration driven Grid aware system which
initially supports the transformation of
metadata from any Relational Schema to any
XML Schema. Existing Transformation systems
are either manual or not fully featured enough
to support anything but fixed non-recursive
structures as well as not being Grid aware. A
configuration based approach is not only
amenable to further tool support but makes
homogenisation to common standards require
less man effort than bespoke solutions. A
configuration based system will be a natural fit
to some of the important data management
requirements of many Grid/e-Science projects.

1. Introduction

A need to integrate heterogeneous metadata
sources on the Grid and in e-Science Projects
exists. Often this is done in a time consuming
and hard-coded way; this is not only costly but
generally an uninteresting piece of work which
requires a fair amount of ‘ re-inventing the
wheel’ and can be error prone.

DynamicWrappers have been developed as part
of the CCLRC core funded DataPortal
project[1] they were formally known as
XMLWrappers. DynamicWrappers are a
generic dynamic configuration driven Grid
aware system which initially supports the
transformation of metadata from any Relational
Schema to any XML Schema[2].

Existing Transformation systems are either
manual[3] or not fully featured enough to
support anything but fixed non-recursive
structures[4] as well as not being Grid aware. A
configuration based approach is not only
amenable to further tool support e.g. GUI’s for
writing the configuration information but makes
homogenisation to common standards require

less man effort than bespoke solutions. Also It
is to be noted that XSLT only deals with
transformation from XML.

A configuration based system will thus be a
natural fit to some of the important data
management requirements of many Grid/e-
Science projects which are aiming to federate
access to (often heterogeneous)
metadata/relational data via Web/Grid Services
and XML mediation.

2. Architecture

Figure 1: DynamicWrapper Architecture

Each DynamicWrapper instance consists of two
parts: a DocumentSelector and a
DocumentBuilder.

The DocumentBuilder general operation:
1. Connecting to the source data repository

(i.e. Relational database)
2. Connecting to the XML:DB aware database

repository
3. Reading the configuration information from

relational configuration tables
4. Dynamically creating the SQL statements

needed to map the SQL in the source
database to the required XML Schema
format.

5. Perform the mappings
6. Periodically detect new, updated and

deleted records and update the XML

database accordingly in a cache coherent
manner.

The DocumentSelector is the Grid enabled
interface to the XML:DB Mapped Archive. It’ s
mode of operation is generally as follows:

1. Connect to the XML database
2. Can be invoked via Web Services with the

following arguments:
2.1. The GSI Proxy certificate
2.2. The DataPortal Authorisation Token

(an XML-Signature signed file
containing role information)

2.3. The W3C XQuery
(note: it also supports a Query to extract the
location of the XML Schema of the documents
in the XML Database to allow schema
discovery).
3. Proxy validation and group membership are

checked
4. The confirmed group membership is

checked against the permissions associated
with this role. The part is still bespoke but
it is hoped that a mediation layer will be
developed as another part of the DataPortal
Project and this could be then be
configuration based. Access Control Lists
are seen as being in a possible mechanism.
The development of such a mechanism is
not currently part of the DynamicWrapper
framework.

5. Once the query is authenticated and
authorised the XQuery is applied to the
XML Database and the results returned via
SOAP.

3. Configuration

Configuration of the DynamicWrapper is via a
number of relational tables. What follows is a
short overview pertaining to some of their
names and functions:

Table 1: Configuration Tables

Table Name Purpose
SQL_INFO Holds the details needed to

extract one value from one
or more columns with
dependencies on other
mapping rules in the
SQL_INFO table and ways
of dealing with recursive
values specified. Thus
necessary nested join
information is specified.

SQL_TO_XML Contains a set of references
to the SQL_INFO rows
and XPath locations such
that a valid instance
document can be
constructed

STX_SCHEMA Contains details about the
schema which the instance
XML documents conform
to such as the namespace
and location of the schema

There are other table also holding housekeeping
configuration information such a connection
parameters and cache serialised objects.

This flexibility of the mapping tables allows
specifying mappings from any relational
schema to any XML Schema.

3.1. Configuration Example

A common SQL statement that is needed to
‘walk’ a relational hierarchy is the following:

sel ect name f r om t opi c wher e
t opi d_i d i n (sel ect t opi c_i d f r om
t opi c_i nvest i gat i on wher e
i nvest i gat i on_i d i n(sel ect
i nvest i gat i on_i d f r om
i nvest i gat i on_st udy wher e st udy_i d =
' 23')) ;

Figure 2: Typical Select

Such SQL statement are typical when extracting
relevant values to apply to a target XML
instance e.g. the name of a topic linked to a
study with study_id=’23’ in this case.

The main configuration table in the
DynamicWrappers is called SQL_INFO and has
the following structure:

Table 2: Detailed Structure of SQL_INFO

Column Purpose K
e
y

SQL_INFO_ID Numeric primary
key column

1

PARENT_SQL_INFO
_ID

TAB_INFO_ID
of parent entry

2

COLUMN_NAME Column name in
the table

3

TABLE_NAME Table name of the 4

column
LINK_COLUMN Name of column

that does the
linking

5

CONCAT_VALUE Character
sequence that
joins result tokens
in recursive
specification
where
TAB_INFO_ID
and
PARENT_TAB_I
NFO_ID are the
same value

6

VALUE_ORDER For recursive
SQL is the result
base->first or
base->last

7

BASE_LINK_COLU
MN

Specified the
column in the
table which is
used to link this
row to the key of
other rows in
recursive calls

8

BASE_LINK_COLU
MN_VALUE

Again for
recursion;
specifies what the
link column value
is in the base case
(i.e. when you
stop recursion)

9

The follows shows the representation of the
SQL in Figure 2 in the SQL_INFO table. (note
columns whose values would be null are
omitted).

Table 3: SQL_INFO representing a normal
select

1 2 3 4 5
4
4

3
4

name topic topic_id

3
4

2
3

topic_id topic_investi
gation

investigati
on_id

2
3

-
1

investigati
on_id

investigation
_study

study_id

 The DocumentBuilder would select the
appropriate SQL_INFO_ID (SII) and an end
statement value when building the SQL from
this configuration.

The algorithm used to construct the SQL from
the information in SQL_INFO is as follows:

1. select <column_name> from <table_name>
where <link_column>

2. if parent_sql_info_id is a special value (e.g.
in this case -1) then the final value of
link_column must be set =’some value supplied
externally’ other wise we concatenate the
sequence ‘ IN (‘

3. do 1 and 2 until you reach the base case of
PARENT_SQL_INFO_ID having a special
value and then tidy up any remaining brackets.

Thus in the above example we would have:

1. (PSII=44) – select name from topic
where topic_id in (

2. (PSII=34) – select topic_id from
topic_investigation where
investigation_id in (

3. (PSII=23) – select investigation_id
from investigation_study where
study_id = ‘<some value>’

4.)) ;

Thus mirroring the above SQL statement in
Figure 2.

The configuration scheme also deals with nested
values of arbitrary depth. The following being
the specification for a recursive approach to
building the value which is mapped to an XML
Schema instance:

Table 4: SQL_INFO representing a recursive
select

1 2 3 4 5 6 7 8 9
4
5

4
5

topic_na
me

t
o
p
i
c

to
pi
c_
id

/ f
i
r
s
t

parent_
id

-
1

Basically this specifies building up the value
that is later mapped to an XML instance
element or attribute (or any other target)
recursively. The algorithm expressed in pseudo
code for this being (note: val is initially
supplied):

do {

sel ect <col umn_name>,
<base_l i nk_col umn> f r om <t abl e_name>
wher e <l i nk_col umn> = val ;

/ * . at _st ar t – wher e base- >f i r s t ,
. at _end wher e base- >l ast * /

r esul t . at _st ar t (<concat _val ue>+<col u
mn_name>) ;

val = <base_l i nk_col umn> ;

} whi l e (val ! =
<base_l i nk_col umn_val ue>) ;

r et ur n r esul t ;

Figure 3: Building recursive values

The complete configuration schema
specifies mappings from a relational
schema to an XML instance document.
XPath is used to specify actual locations
that values are mapped to in XML instance
documents and other necessary aspects to
actual create instance document:

Figure 4: Detailed Dynamic Wrapper
Configuration Schema

4. Future

The Dynamic Wrappers will be used in the
Internal Facilities of CCLRC as part of the
DataPortal project with possible application to
the e-Minerals project [5]. OGSA-DAI could be
used as an alternative DocumentSelector but the
DocumentBuilder mapping ability is not
generally available functionality.
DynamicWrappers are generic middleware and
have the potential to be used on a variety of
projects requiring metadata and relational data
transformation services.

5. References

[1] The CCLRC DataPortal,
http://www.allhands.org.uk/2004/proceedings/p
apers/161.pdf

[2] W3C XML Schema,
http://www.w3.org/XML/Schema

[3] JnetDirect JSQLMapper,
http://www.jnetdirect.com/products.php?op=jsq
lmapper

[4] Oracle XML Data Synthesis (XDS),
http://www.oracle.com/technology/tech/xml/xds
/index.html

[5] Environment from the Molecular Level,
http://eminerals.org/

	Abstract

	Introduction

	Architecture

	Configuration

	Future

	References

