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Symmetric Quasi-Definite Systems

[
M A
AT −N

] [
x
y

]
=

[
f
g

]
where M = MT � 0, N = NT � 0.

I Interior-point methods for LP, QP, NLP, SOCP, SDP, . . .

I Regularized/stabilized PDE problems

I Regularized least squares

I How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation
matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDLT .

I Cholesky-factorizable

I Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

I Stability analysis by Gill, Saunders, Shinnerl (1996).
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Centered preconditioning

[
M−

1
2

N−
1
2

] [
M A
AT −N

] [
M−

1
2

N−
1
2

] [
x̂
ŷ

]
=

[
M−

1
2 f

N−
1
2g

]

which is equivalent to

Ĉ︷ ︸︸ ︷[
Im M−

1
2AN−

1
2

N−
1
2ATM−

1
2 −In

][
x̂
ŷ

]
=

[
M−

1
2 f

N−
1
2g

]

Theorem (Saunders (1995))

Suppose Ã = M−
1
2AN−

1
2 has rank p ≤ m with nonzero singular

values σ1, . . . , σp. The eigenvalues of Ĉ are +1, −1 and
±
√

1 + σk , k = 1, . . . , p.
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Symmetric spectrum and Iterative methods

A symmetric matrix with a symmetric spectrum can be transform
preserving the symmetry of the spectrum in a SQD one.
Moreover, Fischer (Theorem 6.9.9 in “Polynomial based iteration
methods for symmetric linear systems”) Freund (1983), Freund
Golub Nachtigal (1992), and Ramage Silvester Wathen (1995) give
different poofs that MINRES and CG perform redundant iterations.
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Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

I MINRES

I SYMMLQ

I (F)GMRES??

I QMRS????

Fact: . . . none exploits the SQD structure and they are doing
redundant iterations
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Related Problems: an example

[
M A
AT −N

] [
x
y

]
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[
b
0

]
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Related Problems: an example

[
M A
AT −N

] [
x
y

]
=

[
b
0

]
are the optimality conditions of

min
y∈IRm

1
2

∥∥∥∥[AI
]
y −

[
b
0

]∥∥∥∥2

E−1
+

≡ min
y∈IRm

1
2

∥∥∥∥∥
[
M−

1
2 0

0 N
1
2

]([
A
I

]
y −

[
b
0

])∥∥∥∥∥
2

2
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1
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1
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[
b
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or of

minimize
x,y

1
2 (‖x‖2

M + ‖y‖2
N) subject to Mx + Ay = b.
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Some properties of SQD matrices

Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

H =

[
M

N

]
=

[
RTR

UTU

]
= R̃T R̃

We observe that

C =

[
M A
AT −N

]
=

[
RT 0
0 UT

] [
Im Ã

ÃT −In

] [
R 0
0 U

]
= R̃T C̃R̃,
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Some properties of SQD matrices

By direct computation it is easy to prove that

C̃2 =

[
Im + ÃÃT

In + ÃT Ã

]
=

[
D̃1

D̃2

]
= D̃.
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[
D̃1
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]
= D̃.

C̃−1 = D̃−1C̃ = C̃D̃−1;

C̃D̃ = C̃3 = D̃C̃;

CH−1C = R̃T D̃R̃ = D =

[
M + AN−1AT

N + ATM−1A

]
.

(
H−1C

)2
= R̃−1C̃2R̃ = R̃−1D̃R̃ = H−1D,(

H−1C
)3

= R̃−1C̃3R̃ = H−1CH−1D = H−1DH−1C

C−1 = D−1CH−1 = H−1CD−1.
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Some properties of SQD matrices

D̃ and C̃ commute.
Both matrices can be simultaneously diagonalized by the
generalized eigenvalues of

Cz = λjHz,

where the λj , j = 1, . . . , p = rank(Ā) are the same eigenvalues of

Ĉ
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Krylov subspaces

Hereafter we will denote by

K̃i (C̃, z) = Range
{
z, C̃z, C̃2z, . . . , C̃i−1z, C̃iz

}
the Krylov subspace generated by C̃ and a vector z. We point out
that K̃i (C̃, z) are also the Krylov subspaces used to define the
Lanczos algorithm applied to C symmetrically preconditioned by R̃.

K̃i (H
−1C,w) = R̃−1K̃i (C̃, z), where w = R̃z.
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Krylov subspaces

C̃2k = D̃k

C̃2k+1 = C̃D̃k = D̃k C̃

}
.

Therefore,

K̃k(C̃, z) = K̃bk/2c(D̃, z) + K̃dk/2e−1(D̃, C̃z)

= K̃bk/2c(D̃, z) + C̃K̃dk/2e−1(D̃, z).
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Krylov subspaces

Finally, denoting by D̃1 and D̃2 the diagonal blocks of D̃, i.e. we
have:

K̃i (D̃,

[
z1

z2

]
) =

[
Ki (D̃1, z1)

0

]
⊕
[

0

Ki (D̃2, z2)

]
and

C̃K̃i (D̃,

[
z1

z2

]
) =

[
Ki (D̃1, z1)

ÃTKi (D̃1, z1)

]
⊕

[
ÃKi (D̃2, z2)

−Ki (D̃2, z2)

]

=

[
Ki (D̃1, z1)

Ki (D̃2, ÃTz1)

]
⊕

[
Ki (D̃1, Ãz2)

−Ki (D̃2, z2)

]
.
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Intermezzo

A personal point of view on
preconditioning
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Hilbert Space Setting

Let H ∈ IRk×k be a SPD non singular matrix. We have that IRk

with the scalar product defined by uTHv is an Hilbert space.
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Let u, v ∈ H be such that u =

∑
j ujφj and v =

∑
j vjφj , and

Hi ,j = (φi , φj)H be the corresponding Gramian, then we have
(u, v)H = uTHv.
The dual space H? of H is itself an Hilbert space with a scalar
product induced by H−1.
Furthermore, we have that the {φi} basis is made by the columns
of H and the corresponding {ψi} basis for H? is made by the
columns of H−1.
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Hilbert Space Setting: duality and adjoint.

Given z ∈ H?, we have

〈z , u〉H?,H = zTu = zTH−1Hu = (u,H−1z)H,

w = H−1z Riesz vector corresponding to w =
∑

j wjφj ∈ H.
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Let C : H 7→ F
C ? : F? 7→ H? (adjoint operator)

〈C ?v , u〉H?,H , 〈v ,C u〉F?,F ∀v ∈ F?, u ∈ H.

Therefore, we have

〈C ?v , u〉H?,H = (Cu,F−1v)F = uTCTv.
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Hilbert Space Setting: normal equations.

If we assume that F = H? then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C ? ◦H −1 ◦ C : H 7→ H?,

and it is represented by the matrix

CTH−1C.
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Hilbert Space Setting: normal equations.
If we assume that F = H? then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C ? ◦H −1 ◦ C : H 7→ H?,

and it is represented by the matrix

CTH−1C.

If CT = C then the corresponding operator C is self-adjoint.
Moreover, we have that the operator

H −1 ◦ C : H 7→ H

maps H into itself. (
H −1 ◦ C

)i
, (H−1C)i .
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Linear operators

Let us consider now the Hilbert spaces

M := (IRn, ‖ · ‖M), N := (IRm, ‖ · ‖N),

and their dual spaces

M? := (IRn, ‖ · ‖M−1), N? := (IRm, ‖ · ‖N−1),

19 / 44



Purdue University 15 April 2013 Mario Arioli, Dominique Orban

Linear operators

Let us consider now the Hilbert spaces

M := (IRn, ‖ · ‖M), N := (IRm, ‖ · ‖N),

and their dual spaces

M? := (IRn, ‖ · ‖M−1), N? := (IRm, ‖ · ‖N−1),

A : N→M?

〈A y , u〉M?,M , (u,M−1Ay)M = uTAy, y ∈ N,∀u ∈M,

19 / 44



Purdue University 15 April 2013 Mario Arioli, Dominique Orban

Linear operators

Let us consider now the Hilbert spaces

M := (IRn, ‖ · ‖M), N := (IRm, ‖ · ‖N),

and their dual spaces

M? := (IRn, ‖ · ‖M−1), N? := (IRm, ‖ · ‖N−1),

A : N→M?

〈A y , u〉M?,M , (u,M−1Ay)M = uTAy, y ∈ N,∀u ∈M,

〈A ?u, y〉N?,N := (y,N−1ATu)N = yTATu, u ∈M,∀y ∈ N,
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Linear operators
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Linear operators

C =

[
M A
AT −N

]
C : M×N 7→M? ×N?.

The scalar product in M×N is represented by the matrix

H =

[
M

N

]
.
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Generalized SVD

Given q ∈M and v ∈ N, the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
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vTAq

‖q‖N ‖v‖M

are the “elliptic singular values and singular vectors’’ of A.
The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qTi Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

The elliptic singular values are the standard singular values of

Ã = M−1/2AN−1/2. The elliptic singular vectors qi and vi , i = 1, . . . , n

are the transformation by M−1/2 and N−1/2 respectively of the left and

right standard singular vector of Ã.
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m × n matrix are presented. All of
them can be theoretically applied to Ã and their generalization to
A is straightforward as shown by Benbow (1999). Here, we want
specifically to analyse one of the variants known as the
”Craig”-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

 AQ̃ = MṼ

[
B̃
0

]
ṼTMṼ = Im

AT Ṽ = NQ̃
[
B̃T ; 0

]
Q̃TNQ̃ = In

where

B̃ =



α̃1 0 0 · · · 0

β̃2 α̃2 0
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · β̃n−1 α̃n−1 0

0 · · · 0 β̃n α̃n

0 · · · 0 0 β̃n+1


.
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Generalized Golub-Kahan bidiagonalization

 AQ = MV

[
B
0

]
VTMV = Im

ATV = NQ
[
BT ; 0

]
QTNQ = In

where

B =


α1 β1 0 · · · 0

0 α2 β2
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn

 .
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 =
√
wTMw =

√
wAq1

v1 = w/α1.
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α1Mv1 = Aq1, such as

w = M−1Aq1

α1 =
√
wTMw =

√
wAq1

v1 = w/α1.

Finally, knowing q1 and v1 we can start the recursive relations

gi+1 = N−1
(
ATvi − αiNqi

)
βi+1 =

√
gTNg

qi+1 = g βi+1

w = M−1 (Aqi+1 − βi+1Mvi )

αi+1 =
√
wTMw

vi+1 = w/αi+1.
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Generalized Least Squares

Normal equations: (ATM−1A + N)y = ATM−1b.

At k-th iteration, seek y ≈ yk := Ṽk ȳk :

(B̃T
k B̃k + I)ȳk = B̃T

k β1e1

i.e.:

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

or: [
I B̃k

B̃T
k −I

] [
x̄k
ȳk

]
=

[
β1e1

0

]
.
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Generalized Least Squares

Normal equations: (ATM−1A + N)y = ATM−1b.
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k β1e1

i.e.:

min
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Generalized LSQR
Solve

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

by specialized Givens Rotations (Eliminate I first and R̃k will be
upper bidiagonal)

min
ȳ∈IRk

1
2

∥∥∥∥[R̃k

0

]
ȳ −

[
φk
0

]∥∥∥∥2

2

.

As in Paige-Saunders ’82 we can build recursive expressions of yk

yk+1 = yk + dkφk
(
Dk = Ṽk R̃

−1
k

)
and we have that

||ȳ||2N+ATM−1A =
m∑
j=1

φ2
j and ||ȳ − yk ||2N+ATM−1A =

m∑
j=k+1

φ2
j
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Error bound
Lower bound We can estimate ||ȳ − yk ||2N+ATM−1A

by the lower
bound

ξ2
k,d =

k+d+1∑
j=k+1

φ2
j < ||ȳ − yk ||2N+ATM−1A.

and ||ȳ||2
N+ATM−1A

by the lower bound
∑k

j=1 φ
2
j .

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

φ2
j < τ

k∑
j=1

φ2
j < τ ||ȳ||2N+ATM−1A.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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Generalized CRAIG

min
y,x

1
2 (‖y‖2

N + ‖x‖2
M) s.t. Ay + Mx = b.

At step k of GK bidiagonalization, we seek

x ≈ xk := Uk x̄k , and y ≈ yk := Vk ȳk .

min
ȳ,x̄

1
2 (‖ȳ‖2 + ‖x̄‖2) s.t. Bk ȳk + x̄k = β1e1

or:

min
ȳ∈IRk

1
2

∥∥∥∥[Bk

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

.
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ȳ∈IRk

1
2

∥∥∥∥[Bk

I

]
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
Following Saunders (1995) and Paige (1974), we compute an LQ

factorization to the k-by-2k matrix
[
Bk Ik

]
by applying 2k − 1

Givens rotations that zero out the identity block.
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem[
Ik Bk

BT
k −Ik

] [
x̄k
ȳk

]
=

[
β1e1

0

]
[
Bk Ik

]
QT

k =
[
B̂k 0

]
QT

k Qk = I

where

B̂k :=


α̂1

β̂2 α̂2

. . .
. . .

β̂k α̂k

 .
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Generalized CRAIG

β1e1 = Bk ȳk + x̄k =
[
Bk Ik

] [ȳk
x̄k

]
=

[
B̂k 0

]
Qk

[
ȳk
x̄k

]
=
[
B̂k 0

] [z̄k
0

]
= B̂k z̄k ,

for some z̄k ∈ IRk : z̄k = (ζ1, . . . , ζk)
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β1e1 = Bk ȳk + x̄k =
[
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] [ȳk
x̄k

]
=

[
B̂k 0

]
Qk

[
ȳk
x̄k

]
=
[
B̂k 0

] [z̄k
0

]
= B̂k z̄k ,

for some z̄k ∈ IRk : z̄k = (ζ1, . . . , ζk)

ζ1 = β1/α̂1, ζi+1 = −β̂i+1ζi/α̂i+1, (i = 1, . . . , k − 1).
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Generalized CRAIG

Solving for xk directly, and bypassing x̄k , may now be done. By
definition,

xk = Uk x̄k = UkB̂
−T
k z̄k .

Since B̂−Tk is upper bidiagonal, all components of B̂−Tk z̄k are
likely to change at every iteration. Fortunately, upon defining
Dk := UkB̂

−T
k , and denoting di the i-th column of Dk , we are

able to use a recursion formula for xk provided that di may be
found easily. Slightly rearranging, we have

B̂kD
T
k = UT

k

and therefore it is easy to identify each di—i.e., each row of
DT

k —recursively.
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Generalized CRAIG

Solving for xk directly, and bypassing x̄k , may now be done. By
definition,

xk = Uk x̄k = UkB̂
−T
k z̄k .

d1 := u1/α̂1, di+1 := (ui+1− β̂i+1di )/α̂i+1, (i = 1, . . . , k − 1).

This yields the update

xk+1 = xk + ζk+1dk+1

for xk+1.
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Generalized CRAIG: errors bound

Let B̂k be defined as above and Dk := UkB̂
−T
k . For k = 1, . . . , n,

we have
DT

k (AN−1AT + M)Dk = Ik .

In particular,

xk =
k∑

j=1

ζjdj

and we have the estimates

‖xk‖2
AN−1AT+M =

k∑
i=1

ζ2
i , (1a)

‖x∗ − xk‖2
AN−1AT +M =

n∑
i=k+1

ζ2
i , (1b)
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Generalized CRAIG: errors bound

As for generalized LSQR, we can estimate the error using the
windowing technique and we can give a lower bound of the error by

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
i ≤ ‖x∗ − xk‖2

AN−1AT +M

and we can estimate ‖x∗‖AN−1AT +M by the lower bound
∑k

j=1 ζ
2
j .
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Generalized CRAIG: errors bound

As for GLSQR. If we know a lower bound of singular values we can
use an approach inspired by the Gauss-Radau quadrature algorithm
and similar to the one described in Golub-Meurant (2010).
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Other variants:

Generalized LSMR

minimize
y∈IRm

1
2‖N

− 1
2 (ATM−1b− (ATM−1A + N)y))‖2.

Generalized Craig-MR

Error bounds similar to the ones given above exist for the MR
variants
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Numerical experiments

We will focus on optimization problems:

minimize
x∈IRn

gTx + 1
2x

THx subject to Cx = d, x ≥ 0,

where g ∈ IRn and H = HT ∈ IRn×n is positive semi-definite, and
result in linear systems with coefficient matrix[

H + X−1Z + ρI CT

C −δI

]
where ρ > 0 and δ > 0 are regularization parameters.

35 / 44



Purdue University 15 April 2013 Mario Arioli, Dominique Orban

Numerical experiments MINRES

This is a blow-up of some iterations
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Numerical experiments GLSQR
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105 Regularized Least-Squares Objective

G-LSQR
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10-1
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105

107

109 Residual of Normal Equations

Figure: Problem DUAL1 (255, 171).
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Numerical experiments GLSQR
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Figure: Problem MOSARQP1 (5700, 3200).
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How to choose d?

problem m n
dual1 255 171
stcqp1 12291 10246

qpcboei1 1355 980
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Numerical experiments GCraig

d = 5, 15
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Figure: Problem dual1
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CG?
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Numerical experiments CG

d = 5, 15
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Figure: Problem DUAL1 and MOSARQP1 (5700, 3200).
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Numerical experiments CG

d = 5, 15
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Figure: Problem Stokes (IFISS 3.1): colliding and cavity
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Conclusions

I Preconditioning −→ Norms i.e. different topologies!!

I Nice relation between the algebraic error and the
approximation error

I A. and Orban ”Iterative methods for symmetric quasi definite
systems” in preparation. WORK IN PROGRESS
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