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1. INTRODUCTION 

Assessment of fish stocks using commercial fisheries data is usually carried out using one of 
two basic classes of models - biomass dynamics models and age-structured models (Hilborn 
and Walters 1992). Of the latter, virtual population (or cohort) analysis (see review in Megrey 
1989) has been the technique most frequently applied to fish stocks. 

While computationally straight-forward, VPA requires certain assumptions that are difficult to 
test and/or justify in many situations. Catch-at-age data are required and are usually assumed 
to be correct (unless aging errors are incorporated using Monte-Carlo simulations). The 
natural mortality rate and the fishing mortality rate for one age class of each cohort must be 
assumed. "Tuning" the analysis with catch per unit effort (CPUE) data or other abundance 
index time series is often employed to avoid the need to specify "terminal" fishing mortality 
rates for each cohort, but this invariably involves arbitrary assumptions about catchability. 
Additionally, VPA involves the computation of one fishing mortality rate for each non-terminal 
catch-at-age observation and the initial abundance for each cohort. The model is thus fully 
saturated (no degrees of freedom) and, apart from the statistical errors associated with the 
tuning procedure, there is no notion of statistical uncertainty in the results. 

Statistical catch-at-age models (e.g. Doubleday 1976; Paloheimo 1980; Fournier and Archibald 
1982; Pope and Shepherd 1982; Dupont 1983; Deriso et al. 1985) can potentially avoid some 
of these assumptions. While catch-at-age data are still required, age- or time-related 
constraints on fishing mortality enable a statistical estimation of initial cohort sizes, fishing 
mortality rates or related parameters and, in theory, natural mortality rate, by minimizing an 
objective function based on a statistical criterion such as least squares. Variance estimates, and 
therefore confidence intervals, for the estimated parameters conditional on the catch-at-age 
data and the model can also be obtained. 

Both VPA and statistical catch-at-age models rely on catch-at-age data typically derived from 
the analysis of annuli on various body parts of individual fish. These methods are often 
inappropriate or too expensive for routine application, particularly to large-scale tuna fisheries. 
For many fisheries, catch-at-length data may provide a convenient and less expensive 
alternative for analysis by age-structured models. 

Most catch-at-age and catch-at-length models consider a spatially-aggregated population and 
fisheries. However, for many fish stocks, population parameters may not be spatially 
homogeneous. In such cases, assuming that fisheries which operate in different portions of the 
stock range exploit a common population may lead to biased results. To avoid such problems, 
spatial structure can be incorporated into the model. 

In this paper, we describe a length-based, age-structured, likelihood model that circumvents 
many of the difficulties associated . with sequential analyses such as VPA. The model 
incorporates the following features: 

• Growth and age structure of the catch are estimated simultaneously with population 
parameters such as recruitment, selectivity, catchability and natural mortality. Approximate 
confidence intervals are therefore conditional not on catch-at-age, but on catch-at-length 
data. 
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• One-dimensional spatial structure is included in the model, with the distribution of fish 
among regions (latitudinal bands) controlled by hypotheses concerning the location of 
recruitment and fish movement. 

• Missing data and data of different temporal resolutions are allowable and are internally 
managed by the model. 

• Auxiliary data (such as tagging data) can be incorporated into the model, as appropriate. 
• Various structural hypotheses, such as density-dependent growth, time-series trends in 

catchability and seasonal catchability, can be incorporated into the model and tested. 

The model is applied to catch, effort and length frequency data for South Pacific albacore, 
Thunnus alalunga. These data were collected from several different sources (fisheries), have 
inconsistent temporal resolution and include periods of missing effort and/or length frequency 
data. 

2. BACKGROUND INFORMATION ON SOUTH PACIFIC ALBACORE 

Albacore are thought to comprise a discrete stock in the Pacific Ocean south of the equator 
(Lewis 1990). Adults (larger than about 80 cm FL) spawn in tropical and sub-tropical waters 
between about 10°S and 25°S during the austral summer (Ramon and Bailey 1994), with 
juveniles recruiting to surface fisheries in New Zealand coastal waters and in the vicinity of the 
sub-tropical convergence zone (STCZ) in the central Pacific 1-2 years later. The distribution 
of South Pacific albacore is summarized in Figure 1. 

Longline fleets of distant-water fishing nations (DWFN) (mainly Japan, Korea and Taiwan) and 
several Pacific Island countries catch primarily adult albacore virtually throughout this range. 
Also, a troll fishery for juvenile albacore has occurred in New Zealand coastal waters since the 
1960s. In the mid-1980s, a fleet of troll vessels from the United States began fishing in the 
central Pacific in the region of the STCZ, and were soon joined by vessels from New Zealand, 
Fiji and French Polynesia. At about the time the STCZ troll fishery began, driftnet vessels 
from Japan also entered the fishery, fishing in the central Tasman Sea and in the central Pacific 
in the STCZ. Taiwanese driftnetters joined the fishery in the late 1980s. These surface fisheries 
are highly seasonal, occurring mainly during December to April. The distribution of the 
fisheries is shown in Figure 2. 

The sizes of albacore captured by these fisheries increases from south to north, with the 
longline fishery typically capturing the largest fish and the troll and driftnet fisheries the 
smallest. (Typical length frequency distributions are shown later in Figure 10.) 

Annual catches have varied between 20,000 t and 52,000 t since the 1960s (Figure 3). The 
longline fishery accounts for the majority of the catch, about 30,0001 per year on average. The 
troll fisheries are relatively small, generally producing less than 10,000 t per year. The driftnet 
catch reached 22,000 t in 1989, but has since declined to zero following a United Nations 
moratorium on industrial-scale driftnetting. 
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3. MODEL DESCRIPTION 

3.1 Data structures 

The fundamental data structure of the model is based on the notion of a fishery, which is 
thought of as a collection of fishing units which operate in a particular region defined in the 
model, and which have similar catchability and selectivity characteristics. For the South Pacific 
albacore analysis, we have defined three latitudinal bands as regions: 0-10°S (Region A), 10°-
30°S (Region B) and 30°-50°S (Region C). The DWFN longline fleets fishing in these regions 
are defined as separate fisheries by region, but are aggregated across nationality. The fleets of 
small-scale, domestic longliners (using monofilament gear) that have developed in several 
Pacific Island countries in recent years are also defined as a fishery. This fishery operates in 
Region B. The troll fishery in New Zealand coastal waters, that operating in the STCZ and the 
driftnet fishery (all Region C) are classified as different fisheries. The definition of fisheries in 
the present analysis is therefore: 

Fishery 1 (Region A): DWFN longline, 0-10°S 
Fishery 2 (Region B): DWFN longline, 10-30°S 
Fishery 3 (Region C): DWFN longline, south of 30°S 
Fishery 4 (Region B): Domestic longline 
Fishery 5 (Region C): New Zealand troll 
Fishery 6 (Region C): STCZ troll 
Fishery 7 (Region C): Driftnet 

The spatial configuration of the fisheries is shown in Figure 4. 

Each occurrence of a fishery at a particular time is termed a fishing incident. In reality, fishing 
is more or less continuous, so the data for each fishery need to be aggregated over appropriate 
time intervals. For the longline fisheries (1-4), which occur more or less continuously 
throughout the year, quarterly time periods are sufficient to capture the seasonal variation. The 
surface fisheries (5-7) tend to operate during the summer months only, therefore monthly time 
periods are used for these fisheries. The history of effort and CPUE for each of these fisheries 
is shown in Figure 5. 

3.2 The catch equations 

It is assumed for simplicity of notation in this description that there is only one fishery 
operating in each region and that there is only one fishing incident per fishery per year. The 
model is designed to accommodate a variable number of different fisheries per region and 
fishing incidents per fishery per year; the equations that follow could easily be generalized in 
this way. 

The catch equations relate the numbers of fish in the population to the numbers of fish in the 
catch of the fisheries. The form of the catch equations used in the model is described by the 
following relationships: 
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Cijk=^\\-™v{-Zljk)\Nijk for \<i<n, \<j<a, \<k<>r (1) 

TM.i+l,k=exp(-Zijk)Nijk for \<i^n, \Zj<a, \<k±r (2) 

T^^ex^-Z^N^+expi-Z^N^ for l*/<», U ^ ^ r (3) 

Tm^YkRi fo r 1^ '<«, l ^ ^ ^ r where 2 r * = 1 a n d ^ * ^ ° (4) 
* 

^=Z>V* for l 5 ^ w » I*./'**. I***' , l ^ ^ r (5) 
» • • • • . • . ' • • 

Ziik=Fijk+Mijk for Is;/<;/,, l $ ; S f l , \<k$r (6) 

c i * = Z C ( * f o r 1 ^ / ' ^ « . 1 * 7 ^ l<*<: r (7) 

where 

w is the number of years of fishing, 

a is the number of age classes in the population, 

r is the number of regions, 

Cijk is the catch (in number of fish) of age classy" fish in region k in year /", 

Ct.k is the total catch observed in region k in year /, 

Fijk is the instantaneous fishing mortality rate for age classy fish in region k in year 
i, 

Mjjk is the instantaneous natural mortality rate for age classy fish in region k in year 

Zijk is the instantaneous total mortality rate for age classy fish in region k in year /, 

Tyk is the number of age classy fish in the population in region k at the beginning of 
year / before movement has taken place, 

Nijk is the number of age classy fish in the population in region k at the beginning of 
year i after movement has taken place, 

Rt is the recruitment at the beginning of year /', 
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rk 
is the proportion of recruitment occurring in region k, and 

Pja is a k by k diffusion matrix Bj for age classy fish. 

For eachy, the elements of Bj must be specified. In the case of South Pacific albacore, we use 

a one-dimensional diffusion model operating in three regions (#=3). In this case, the elements 
of Bj are given by 

-1 

(8) 

1+0, 

- 0 ; 
0 

-d2ej 

l + 2d20J 

-d2e] 

0 

-d30j 

i+-dieJ_ 

where 1, d2 and d% (d2 >0 and d^ >0) specify the relative distribution of cohort abundance 
among regions at equilibrium and 91 is the age-dependent diffusion rate. We employ a flexible 
parameterization of & f which can result in increasing or decreasing diffusion rate with 
increasing age: . 

9j = <fi0 expj^, - ( - ^ j ) ' | where ^0 £ 0, 0, £ 0and K} < 0 

9} - <f>0 expl^^^5 J where ^0 ^ 0, <f>x > 0 and Ki > 0 
(9) 

20'"1) where K , = — - 1. 
; a-I. 

Note that in this form of the catch equations, the last (a th) age class consists of all the older 
fish in the population. This is useful when, as often occurs, the aging estimates are especially 
inaccurate for the older age classes (Foumier and Archibald 1982). For catch-at-length data it 
is useful to group the older age classes together after the fish reach an age where they 
essentially stop growing (Foumier et al. 1991). 

3.3 Constraints on natural and fishing mortality rates 

Natural mortality 

To reduce the number of free parameters in the model, it is often assumed that the 
instantaneous natural mortality rate is a constant, independent of the year, age and region. We 
shall make this assumption and denote the instantaneous natural mortality simply by M. 
However, it should be noted that other (possibly more realistic) models of M variability could 
be posed and tested within the framework of the model. 
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Fishing mortality 

To further reduce the freedom of the parameters, we restrict the variation in the instantaneous 
fishing mortality rates Fijk. Consider for simplicity an individual fishery (i.e. drop the k 

subscript). We have assumed that 

log. (F, ) = log. (s,) + l o g ^ J +log. (£,) + *, (10) 

and 
log. (?,•,)= log. ( ? , )+7 , ( n ) 

where 

s, is the selectivity for age class./ (assumed constant over time), 

qi is the catchability in year /, 

Ei is the observed fishing effort in year /', 

et are normally distributed random variables representing large transient deviations 
in the effort-fishing mortality relationship, and 

7, are normally distributed random variables representing small permanent changes 
in catchability. 

The notion, as implied in equation (10), that fishing mortality consists of a "separable" age-
dependent effect (selectivity) and a time-dependent effect (catchability) was first introduced by 
Doubleday (1976) and later elaborated upon by Paloheimo (1980) and Foumier and Archibald 
(1982). Details of the treatment of selectivity and catchability in the model are as follows: 

Selectivity 
It is sometimes possible to model selectivity as a function of age class, for example using a 
gamma function (Deriso et al. 1985). We have preferred to allow the s;. to be separate 
parameters but have applied a transformation that essentially makes selectivity a length-based 
rather than age-based concept. The transformation is as follows: 

where 

(o k are weights determined from the normal distribution of length at age k standard 
deviations from the mean, 

y/x is the integer part of the age class number corresponding to length //y + kcrj, 

y/2 is the fractional part of the age class number corresponding to length 
ft j + kaJ, 
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fj.j is the mean length of age classy fish, 

a j is the standard deviation of length of age classy fish, and 
t is an estimated parameter. 

This transformation effectively ensures relatively small differences in sy between adjacent age 
classes having large overlap of their length distributions, as would be expected where 
selectivity is fundamentally length-based. 

Catchability 
Catchability is allowed to vary slowly over time. We assume that the qi have the simple time 
series structure of a random walk (equation 10), which is the simplest statistical model of a 
slowly varying random quantity. The assumption that catchability has a time series structure 
was introduced by Gudmundsson (1994) for the analysis of catch-at-age data. Gudmundsson 
also included trend components in his time series formulation. 

We make the prior assumption that the variance of rjt is small compared to ei, i.e. the si 

represent relatively large transient effects (noise) while the rjt represent relatively small 
permanent changes in the catchability. 

In this simple example of annual fishing incidents, 77, modifies catchability at each successive 
fishing incident. In general, each step of the random walk can be taken less frequently, as might 
be appropriate when multiple fishing incidents by one fishery occur within a year. In the 
albacore analysis (where the frequency of fishing incidents is quarterly for the lorigline fisheries 
and monthly for the surface fisheries), random walk steps are taken annually for all fisheries. 

Where the frequency of fishing incidents is quarterly or more, we allow catchability within a 
year to vary with a regular seasonal pattern. Equation (10) then becomes 

log. (Fv ) = log. (sj) + log, (q, ) + log, (E,) + c, sin[24^(/« - c2)] + e, (13) 

where m is the month in which the fishing incident occurred and Ci and c2 are the seasonality 
parameters. 

3.4 Assumptions about the length-at-age 

The assumptions concerning the length distribution of the fish are: 

1. The lengths of the fish in each age class are normally distributed around their mean length 
(see equation 14). 

2. The mean lengths-at-age lie on a von Bertalanffy growth curve (see equation 16) modified 
to include, where appropriate: 
• sampling bias for the first age class (see equation 17) (other age classes are randomly 

sampled without bias); and 
• density-dependent growth (see equation 19). 

3. The standard deviations of the actual lengths about the mean lengths-at-age are a simple 
function of the mean length-at-age (see equation 20). 
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The following symbols are used in the mathematical expression of these assumptions: 

a subscript indexing the length frequency intervals. 

Nj the number of length intervals in each length frequency data set. 

5, the number of fish in the / th length frequency data set. 

/„. the number offish whose lengths lie in the ath length interval in the (' th length 
frequency data set. 

pija the probability'that'ah age class j fish picked at random from the fish which 
were sampled to get the / th length frequency data set has a length lying in 
length interval a. 

Q^ the probability that an animal picked at random from the fish which composed 
the i th length frequency data set has a length lying in length interval a. 

Q the observed proportion of fish in the /' th length frequency data set having a 
length lying in length interval a. 

juv the mean length of the age class./ fish in the / th length frequency data set. 

CT0 the standard deviation of the length distribution of the age class./ fish in the i th 
length frequency data set. 

x, the midpoint of the / th length frequency interval. 

w the width of the length frequency intervals. 

1^ the mean length of the first age class on the von Bertalanffy curve in month 1. 

Lr the mean length of the last age class on the von Bertalanfry curve in month 1. 

K the von Bertalanfry AT parameter. 

P the Brody growth coefficient ( K - - log#(p) ). 

b the coefficient of sampling bias in the first age class. 

\ , ^ parameters determining the standard deviations aja. 

4ia parameters determining the relative variances of the sampling errors within the 
/th length frequency data set. 

x parameter determining the overall variance of the sampling errors in all the 
length frequency data sets. 
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Assumption 1: Normal distribution of length at age 

If the lengths of the age classy fish in the ath length frequency data set are normally distributed 
around their mean // / a with standard deviations aja, the piJa can be expressed in terms of juJa 

and<T;a by 

%ja 
(14) 

As long as aja > w, the integral can be approximated sufficiently well by setting 

PVaiMja,^ja) = 
w 

ypWjc 
^cxpi 2al (15) 

This approximation has been used in the model. 

Assumption 2: Relationship of length to age 

Parameterization of von Bertalanffy growth 
If the mean lengths juja lie on a von Bertalanffy curve, then, using the parameterization given 
by Schnute and Fournier (1980) 

MJa = Ll+(LNj-Ll) 
\-ff l+(m(or)-l)/12 

\-f?» 
(16) 

where Z,, the mean length of the first age class, LNj, the mean length of the last age class, and 
p, the Brody growth coefficient, are the three parameters that determine the form of the von 
Bertalanffy curve, and m(a)-1 is the number of months after the presumed birth month of the 
fish in the ath length frequency data set. 

Sampling bias in the first age class 
For some length frequency data sets, the sampling procedure or thefishery does not fully select 
the smallest fish in the first age class. The effect of this size selectivity is that the mean length 
of the fish in the first age class in the length frequency data set is larger than the mean length of 
the fish jn the population. If this sainpling bias is not accounted for, biased parameter estimates 
may be produced. We assume that size selective bias only occurs for fish in the first age class 
and that it decreases linearly with age until the fish reach the second age class, thus 

fi,a = L,+{LNj-L,) 
I-fit (m(a)-l)/12 

\-P
N" 

t b\\2-{m(a)-\)] 
12 

(17) 

where b is the sampling bias coefficient. 
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Density-dependent growth 
For many species it is suspected that individuals of small (in numbers of fish) cohorts may 
grow more quickly than those of large cohorts (i.e. density-dependent growth). If true, this 
phenomenon could have a large effect on the conclusions drawn from a length-based stock 
assessment. To test for evidence of the existence of the dependence of the mean length at age 
on cohort strength we have incorporated density-dependent growth into the model in the 
following fashion. 

Consider a cohort k at agey in year /. If we denote recruitment as occurring at age 1, the 
l v 

strength of cohort k is Nku where k = i-j + l. Let A = —2̂ -N*, De ^ e average recruitment. 
n * 

The normalized relative cohort strength is given by 

(ATtl - A) 
Rk = 

JZK-
(18) 

The changes in mean length are effected by changing the apparent age of the fish before the 
length at age is calculated. 

If the age class isj the apparent age a is 

a = j +1.9 
1 

l + exp^aKJ 
-0.5 (19) 

where d determines the amount of density-dependent growth; if d = 0, a = j . Since the 
standard deviation of the Rk has been normalized to 1, the "generic" variation in the Rk will be 
about -2 to 2. Thus the difference in a between the largest and smallest cohorts of any given 

1 1 
age class will be approximately 1.9 . For d=0A (which is close to 

. 1+exp(-2tf) 1 + exp(2c0.' 
the estimate for the albacore data) this yields a generic variation of about 0.73 years. 

Assumption 3: Relationship of standard deviations in length at age to mean length 
at age 

The standard deviations aja are parameterized as a simple function of length involving two 
parameters A, and X2: 

aja = A, exp\ A, 1 - ^ - ) i-ff 
(20) 

where the term enclosed in square brackets expresses the length dependency of the standard 
deviations independently of the numerical values of the parameters Z, and 1^ (cf. equation 

16). The two coefficients, A, and X2, transform the rescaled length to the standard deviations. 
A, determines the magnitude of the standard deviations, and A2 determines the length-

10 



dependent trend in the standard deviations. If X2 = 0, the standard deviations are length-
independent. 

3.6 Maximum likelihood estimation 

The parameters of the model are estimated by maximizing the log-likelihood function (or more 
generally by maximizing the sum of the log-likelihood function and the log of the density of the 
Bayesian prior distribution). The log-likelihood function consists of the sum of several 
components, the most important of which correspond to the length frequency data and the 
total catch estimates. 

The log-likelihood contribution for the length frequency data 

Due to the large variability in the length samples which occurs for real fishery length frequency 
data, the model employs a robust maximum likelihood estimation procedure. The motivation 
for using this procedure and the technicalities behind the procedure are described in Fournier et 
al. (1990) We shall not repeat this discussion here, but for convenient reference we briefly 
describe the form of the log-likelihood function employed. 

If the Q^ are derived from a random sample of size St, they would be random variables with 
means (?a and variances (1 -Qa)QajSi. Two modifications have been made to this formula. If 
Qu = 0 the formula implies that the variance of Q^ = 0. To decrease the influence of areas 
where no observations are expected we add a small number to the variance formula in such 
cases. To reduce the influence of very large sample sizes we have assumed that sample sizes 
> 1000 are no more accurate than sample sizes of 1000. Set ^ia=(l-Qai)Qai and set 

r] -1/ min(.SJ ,1000). Assume the variance of Q^ is given by (gia + .l/JV,) zf . 

The likelihood function contribution for the length frequency data employed in the model is 

f f ,?K „ ,7 ^ V 

ftft 
a=\ i=1 

1 
V2,r(£a+.l/tf;)H

 Pl 2(£.+.l/tf,)raJ ' J 
(21) 

Taking the logarithm of equation (21) we obtain the log-likelihood function for the length 
frequency data: 

NA N, 

-V2£2>g.(2*(4L+.Vtf,)) 

-2>/Iog.(T) (22) 
o=l 

^,A. r f -(ft-ay 1 1 -E5>g. expJ ~(Q* -QJ 3 U.oi 

Expression (22) is the contribution to the log-likelihood function for the observed length 
frequency data. 
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The log-likelihood contribution for the observed total catches 

Assuming for simplicity that there is only one fishery per year, the log-likelihood contribution 
for the observed total catches is given by 

PcZM^)-log(c,))2 (23) 

where pc is determined by the prior assumption made about the accuracy of the observed 
catch data. 

The log-likelihood contribution for the Bayesian priors on the effort-fishing 
mortality relationship 

The log-likelihood contribution for the Bayesian priors on the 77 and s;, (see equations 10 and 

11) is given by 

i 1 

The size of the constants p7 and ps are adjusted to reflect prior assumptions about the 
variances of these random variables. 

Fitting the model 

The parameters of the model are estimated by maximizing the log-likelihood function (or 
posterior density in the Bayesian framework) as described above. The maximization was 
performed with a quasi-Newton function minimizing routine employing exact derivatives with 
respect to the model parameters. The derivatives were calculated using the C++ class library, 
AUTODIF, using an extension of the technique known as automatic differentiation (Griewank 
and Corliss 1991). This approach is especially useful for models with large numbers of 
parameters. It also provides quick and accurate estimates of the Hessian matrix at the 
maximum, which can be used to obtain estimates of the covariance matrix and confidence 
limits for the parameters of interest (see section 3.7). 

3.6 Hypothesis testing 

It is frequently of interest in statistical modeling to add model structure in the form of one or 
more hypotheses concerning some process(es) of interest, and to observe the resulting change 
in model performance. This process can be thought of as attempting to define the "correct" 
model for a given set of data. Two approaches are taken to the addition and testing of 
hypotheses - a Frequentist approach and a Bayesian approach. 

Frequentist approach 

With the Frequentist approach to hypothesis testing, parameters representing a more complex 
model are added to the simpler model and the resulting improvement in fit is calculated. If this 
improvement in fit is large enough (as indicated by a likelihood ratio test, for example) the 
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more complicated model is accepted. Otherwise the more complicated model is rejected and 
the simpler model is accepted as providing an adequate description of the data. Various more 
complicated models may be investigated in this fashion. 

Some of the hypotheses that can be tested in this way are: 

• the number of (significant) age classes represented in the data; 
• the existence of a length-dependent trend in the standard deviation of the distribution of the 

length at age around the mean length; and 
• the existence of a relative cohort strength component in the mean length at age of a cohort 

(density-dependent growth). 

Bayesian approach 

Some hypotheses that are useful in length-based stock assessment cannot be well represented 
in a Frequentist context. An example is the existence of a time-series (random walk) trend in 
catchability for a fishery. For such hypotheses, the results of the analysis are not as clear cut as 
they are for the Frequentist approach. We do not either accept or reject the existence of a trend 
in catchability. Instead, the analysis will produce a probability distribution for quantities of 
interest. For example we can get an (approximate) probability distribution for the ratio of the 
catchability for the first year of a fishery to the catchability for the last year of the fishery. This 
can be used to produce, for example, an estimate of the probability that the catchability has 
increased by 30% or more. 

3.7 Estimation of confidence intervals 

A great advantage of an integrated model such as this is that the estimates of the uncertainty in 
the parameter estimates automatically take into account the effect of all of the model's 
assumptions, such as the uncertainty in the age at length, the possibility of trends in 
catchability, effects caused by variability in the length frequency data and errors in the 
estimates of fishing effort. 

Confidence limits for the parameter estimates are calculated by employing the. usual second 
order approximation to the posterior distribution at its mode. Let #,,...,9n denote a minimal 
set of n model parameters from which all model parameters can be calculated, and let 
p(0x,..., 0„y be some parameter of interest, while L(0U..~, 0„) is the logarithm of the posterior 
distribution. Then the estimated standard deviation pa for/? is given by the square root of 

£ 4 » M 4>/<&-\j where A = (<?L/#9id0jy and the calculations are carried out at the 

mode of the posterior distribution. Then, 0.95 confidence limits for the p are given by 
\p-\.96pa,/> + 1.96/?a]. These confidence limits are not invariant under reparameterization. 
To compensate somewhat for this the confidence limits for parameters which must be positive, 
such as estimates of biomass, are calculated by computing the confidence limits for the 
logarithms of these parameters and then transforming the confidence limits. This yields the 
confidence limits \pe\p (-1.96 pjp\/?exp (l. 96/>„//>)]. 
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4. SOUTH PACIFIC ALBACORE ASSESSMENT 

The preliminary results presented below are a limited selection of the fits to the albacore data 
carried out to date. As yet, not all of the structural hypotheses described in the previous 
section have been tested. The results presented assume the following model structure: 

• nine significant age classes (probably corresponding to ages 2 to 10+); 
• three regions, as defined earlier; 
• age-independent diffusion offish among regions; 
• recruitment assumed to occur only in region C (the southern-most region); 
• time-series trends in catchability for all fisheries; and 
• a trend in standard deviation of length at age with increasing mean length at age. 

Additional model hypotheses, such as seasonal variation in catchability, density-dependent 
growth, age-dependent diffusion and recruitment by region, are yet to be formally incorporated 
into the full analysis. However, some results from preliminary fits incorporating seasonal 
catchability and density-dependent growth are presented. 

We used two different.starting values for M(0.2 and 0.4 yr"1). WhenM was eventually relaxed, 
both of the fits converged to the same solution. This encourages us to believe that the solution 
obtained is global, rather than local, at least with respect to M, which is a notoriously difficult 
parameter to estimate. Ultimately, we will need to use different starting values for other 
parameters, such as K and the movement parameters, and use different assumed numbers of 
significant age classes, to increase our confidence that an overall global solution has been 
found. 

4.1 Results to date 

Selectivity coefficients 

Selectivity coefficients (Figure 6) for the longline fisheries show an increasing trend with age. 
The differences among fisheries 1, 2 and 3 are in line with observations of increasing average 
size of longline-caught albacore from south to north. We originally tried fitting the model with 
the selectivities for fisheries 1, 2 and 3 constrained to be equal. However, a significantly 
improved fit was obtained when this assumption was relaxed. This suggests that differences in 
the size composition of longline catches in the three regions are not entirely due to differences 
in the size structure of the albacore populations in those regions - other factors such as 
targeting may also have an effect. 

The New Zealand troll fishery selectivities also increase with age, in order to accommodate 
occasional length frequency samples containing larger fish from that fishery. Maximum 
selectivity for the STCZ troll and driftnet fisheries occurs for age classes 3 and 4 (likely ages 4 
and 5). 

Catchability coefficients 

Estimated catchability time series are plotted with catchability deviations ( e,), by fishery, in 
Figure 7. Strong trends in catchability are evident in the longline fisheries. For the DWFN 
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fisheries (fisheries 1-3), catchability is estimated to have declined substantially during the late 
1960s and 1970s. In this analysis, these longline fisheries are aggregated across the Japanese, 
Taiwanese and Korean fleets, which are known to have targeted albacore to different extents 
over time: It is possible, therefore, that the estimated trends in catchability reflect both the 
changing fleet composition in the three regions and changing targeting practices by those fleets 
over time. In recent years, catchability in fisheries 2 and 3 has increased somewhat. For fishery 
4 (Region B), catchability has shown a consistent increasing trend over time. For the troll and 
driftnet fisheries, no clear trends in catchability are evident. 

Catchability deviations show a wide scatter about the estimated catchability trends. Much of 
this scatter is due to seasonal variation in catchability, as suggested by the seasonally variable 
CPUE patterns shown in Figure 5. Some preliminary fits incorporating seasonal variation in 
catchability have been carried out, and strong seasonal signals for all fisheries estimated (Figure 
8). 

Exploitation rates 

Exploitation rates (the proportion of the population harvested per year) for two age groups, 
corresponding approximately to 3-6 years and 7-10+ years (assuming age class 1 fish are 
approximately two years of age), have been estimated, along with their 95% confidence 
intervals (Figure 9). Overall, the exploitation rates are low, and are lower for the younger age 
group (primarily exploited by the surface fisheries) than for the older age group (primarily 
exploited by the longline fisheries). For the 3-6 year group, the exploitation rate surged in the 
late 1980s at the time of the driftnet fishery. Prior to the mid-1980s, exploitation of this group 
was inconsequential, as it was restricted to minor catches of these age classes by longliners. 
For the older age group, exploitation'rate declined through the 1960s and 1970s from a high of 
around 0.15. Since the mid-1980s, exploitation rate has increased slightly, with the most recent 
estimate in the vicinity of 0.05. These recent exploitation rates are consistent with the range of 
estimates obtained from an analysis of albacore tagging data (Bertignac et al. 1996). 

Natural mortality rate 

The estimate of M is reasonably consistent with expectation, 0.53 yr"1, with 95% confidence 
intervals 6f 0.49-0.58 yr'1. As indicated above, this estimate was arrived at from two different 
starting values, 0.2 and 0.4 yr"1. The confidence interval is surprisingly small, indicating that M 
is reasonably well determined in these data. Previous analyses of the same data without spatial 
structure were not successful in estimating M (the estimates tended to converge to zero). It is 
therefore likely that the addition of spatial structure is important in resolving this parameter. 

In common with many other tuna populations, the sex ratio of adult South Pacific albacore 
changes rapidly with increasing size to favor males. This raises the possibility that M may be 
greater for older fish (because of high female mortality). Such possibilities can be investigated 
within the framework of this model. 

Growth parameters and catch age composition 

The estimation of catch age composition from length composition assumes, amongst other 
things, that albacore grow according to a von Bertalanffy growth curve. We use a 
parameterization such that growth is specified by three parameters - the mean length of the 
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first age class (47.7 cm), the mean length of the last age class (98.1 cm), and growth 
coefficient K (0.17 yr"1). These parameters can be transformed to provide the usual von 
Bertalanflfy growth parameter L„ (115.6 cm). These parameters imply a growth increment of 
about 10 cm after one year for a 50 cm albacore. This growth increment is somewhat less than 
that derived on the basis of tagging data (13.85 cm - Bertignac et al. 1996), but is probably 
within the bounds of uncertainty of that analysis. 

In determining age composition from length composition, we also assume that the standard 
deviation (SD) of length at age is a linear function of mean length at age. The SD for the first 
age class is estimated to be 3.09 cm, while the ratio of the SDs of the first to the last age 
classes is 0.29. The fit of the model to the length data in terms of the correspondence of 
estimated mean lengths at age to obvious modes in the length frequency samples appears to be 
good for most of the fisheries. Examples of the fits to the length-frequency data are shown in 
Figure 10. 

The addition of density-dependent growth to the model makes the growth of individual cohorts 
dependent on their abundance. Preliminary fits suggest that this effect is quite strong in South 
Pacific albacore, with more abundant cohorts growing slower than less abundant cohorts. The 
effect that this has on the estimated mean lengths at age is shown in Figure 11 by the 
differences between the solid and dashed vertical lines for each age class. 

Movement parameters 

The estimated movement parameters can be converted to annual exchange rates between 
regions for ease of interpretation. The annual rate of movement from region C (the recruitment 
region) to region B is 14.5%; from region B to region A and region C is 2.3%; and from 
region A to region B is 2.2%. These exchange rates result in a net "flow" of albacore from 
south to north. 

Population biomass and recruitment 

The time series of population biomass and recruitment are key outputs of the model from a 
stock assessment viewpoint. The time series can be looked at in terms of absolute or relative 
quantities. For the biomass (Figures 12 and 13) and recruitment (Figure 14) time series, we 
have plotted both of these measures, with the relative measures normalized to the average 
values over the whole time series. As would be expected, the 95% confidence intervals for the 
relative measures are much tighter than for the absolute estimates. 

The biomass estimates (Figure 12) show a strongly increasing trend up to the late 1970s and a 
decreasing trend thereafter until about 1990. Biomass in the last two years increases, although 
the confidence limits about these estimates are relatively wide. Relative biomass shows similar 
trends in the three regions (Figure 13). Biomass is smallest in region A and largest in region C 
(the recruitment region). Note that the confidence intervals on the region-specific estimates are 
considerably wider than for the spatially aggregated time series, reflecting uncertainty in the 
estimated movement parameters. 

The recruitment estimates (Figure 14) show an increasing trend through to the mid-1970s and 
a decreasing trend from the mid-1970s to about 1990, which appear to drive the biomass 
trends observed in Figures 12 and 13. The 1992 recruitment is estimated to be close to the 
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highest of the entire time series, whereas the 1993 level is the lowest. Note, however, that 
these later estimates of recruitment are associated with the highest uncertainty. 

Relatively low estimates of recruitment are obtained for 1980, 1985 and 1990. Assuming that 
the age of recruitment is approximately two years, the spawning seasons corresponding to the 
low recruitments match well with the occurrence of El Nino episodes (negative values of the 
Southern Oscillation Index) in the Pacific Ocean (Figure 14). The high recruitments resulting 
from spawning in the mid-1970s and 1989-90 also seem to correspond to La Nina events 
(positive values of the Southern Oscillation Index). The relationship is not as good over the 
first half of the time series, but recruitment variability during this period may.not be well 
estimated because of the absence of fisheries directed at small albacore. 

The possibility of large-scale environmental effects on recruitment is interesting in several 
respects. First, the nature of the relationship, if it exists, is interesting from a biological point of 
view in that it may shed light on the population dynamics of pre-recruit albacore. Also, the 
existence of such a relationship raises the possibility of using large-scale environmental data to 
develop a statistical model of recruitment which could be used in population projections and 
fishery forecasting. 

4.2 Conclusions 

We have developed an integrated, likelihood-based age-structured model using length data that 
may, for many fisheries, be a viable alternative to more traditional approaches such as VPA. 
The statistical approach employed offers the advantage of being able to objectively assess the 
information content the data. One outcome of this is the ability to construct approximate 
confidence intervals on the parameters of interest. Another outcome is the ability to test 
hypotheses regarding alternative model formulations. While the "correct" model may never be 
found, our approach enables sensible decisions to be made in choosing the best model from a 
range of alternatives. 

The results presented here for South Pacific albacore should be considered preliminary, as 
further questions concerning the analysis need to be explored. These include: 

• testing different numbers of assumed age classes 
• using different starting values of various model parameters 
• incorporating additional model structure, as appropriate, e.g. density-dependent growth, 

age-dependent M. 

In the longer term, we might also investigate improvements that might result from further 
stratification of the DWFN longline fishery in each region by fleet (i.e. separating Japan, Korea 
and Taiwan), using logbook coverage for the various fisheries to index the credibility of the 
effort data and using tagging data to refine model parameters, particularly the movement 
parameters. Pending the completion of this work, we can offer some observations on the basis 
of the results obtained to date: 

• The estimated exploitation rates on both young and older age groups are relatively low, 
generally less than 10% per year. 
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• The trends in recruitment and population biomass are unlikely to have been influenced 
significantly by the fisheries. 

• The low exploitation rate of the younger age classes, even at the height of the driftnet 
fishery, implies that the surface fisheries are unlikely to have had an observable impact on 
the longline fishery. 

• South Pacific albacore recruitment may be linked to large-scale climatic variation, with 
lower than average spawning success or larval survival during El Nino episodes. 

The model should be a useful tool for future management of the South Pacific albacore fishery. 
Two key uses come readily to mind, and would require only minimal adaptation of the existing 
computer software. First, it would be relatively straight forward to cast the results of the model 
in a form suitable for comparison with limit or target reference points, as envisaged by the 
recent United Nations agreement on straddling and highly migratory fish stocks. This could be 
done by calculating the probability that a particular reference point would be exceeded under a 
particular fishing regime. Second, it is possible that the model could be a useful forecasting 
tool for both the surface and longline fisheries. Given some reasonable model for future 
recruitment (perhaps linked to large-scale environmental conditions such as El Nino), it would 
be possible to project the stock forward in time. Confidence intervals could also be determined 
for the projections to capture the uncertainty in future recruitment and the current population 
state. Such forecasting, if successful, would presumably assist both industry and management 
decision-making. 
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Figure 1. General distribution of the South Pacific albacore stock (light shading) and South 
Pacific albacore spawning (dark shading). The spawning distribution is interpreted from larval 
sampling data of Nishikawa et al. (1985). The "?" symbols indicate areas of minimal larval 
sampling. 

Figure 2. Distribution of longline, troll and driftnet fisheries for South Pacific albacore. 
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Figure 3. Longline, troll and driftnet catches of South Pacific albacore. 
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Figure 4. Definition of regions and associated fisheries for the analysis of South Pacific 
albacore data. 
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Figure 5. Catch and catch per unit effort (CPUE) of South Pacific albacore by fishery and year 
quarter. Catch is in thousands offish. CPUE for longline fisheries is in number offish per 100 
hooks; CPUE for troll and driftnet fisheries is in number offish per operational day. 
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Figure 5. Continued. 
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Figure 6. Estimated selectivity coefficients for each fishery. 
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Figure 7. Estimated catchability (solid lines), which is assumed to change annually and has no 
seasonality, and deviations from the effort-fishing mortality relationship (dots), by fishery. The 
"***" indicate deviations beyond the scale of the figures. 
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Figure 7. Continued. 
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Figure 8. Estimated catchability (solid lines), which is assumed to change annually and 
seasonally, and deviations from the efFort-fishing mortality relationship (dots), by fishery. The 
"***" indicate deviations beyond the scale of the figures. 
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Figure 8. Continued. 
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Figure 9. Estimated average annual exploitation rates (heavy lines) and their 95% confidence 
intervals (thin lines) of presumed ages 3-6 and ages 7-10+. 
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Figure 10. Examples of model fit to the lengtli-frequency data The vertical lines indicate 
estimated mean lengths at age. Both the estimated' aggregate (upper line) and age-class specific 
length distributions are shown. 
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Figure 10. Continued. 

NZ Troll 

STCZ Troll 

•—i—nmrmrn— fiEKXiacsii B 

Driftnet 

31 



Zi 

UMoqs SJB suoiinqujsip 
qiSuai ogpads SSBJO-SSB pire (auq jaddn) 9}B83J88B pajBimjss sqi q;og qiMOiS juapuadap 
-Ajisuap jo aouasqc aqj ui a8B IB sqjSuai ireaui ajBOipui sauq jBOiyaA paqsBp aqj, SSB IB sqjSuai 
uBsui pajBunjsa ajBOipui sauq IBOIJJBA pqos aqx qiA\oj8 luapuadap-Aiisuap SuijBJodjooui 
japoui B JOJ Ajaqsij JJOJJ Z3IS 9W JOJ «*BP Abuanbaij-qjguaj aqj oj jg B JO ajdurexg n SJIISIJ 



Figure 12. Estimated relative (scaled to the average) and absolute biomass, with 95% 
confidence intervals. 
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Figure 13. Estimated relative (scaled to the average) biomass by region, with 95% confidence 
intervals. 
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Figure 14. Estimated relative (scaled to the average) and absolute recruitment, with 95% 
confidence intervals. 
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Figure 15. Estimated relative recruitment by presumed spawning season (assuming age 2 at 
recruitment) and the Southern Oscillation Index (SOI). Negative values of the SOI indicate El 
Nino episodes and positive values La Nina episodes. 
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