SPC/Inshore Fish. Mgmt./BP 48 9 June 1995

ORIGINAL : ENGLISH

SOUTH PACIFIC COMMISSION

JOINT FFA/SPC WORKSHOP ON THE MANAGEMENT OF SOUTH PACIFIC INSHORE FISHERIES (Noumea, New Caledonia, 26 June - 7 July 1995)

A POTENTIAL ENVIRONMENTAL FISHERIES PRODUCTION MODEL FOR BANANA PRAWNS IN KEREMA BAY AND THE GULF OF PAPUA

by

C.R. Evans Dept. of Fisheries & Marine Resources Port Moresby Papua New Guinea

A potential environmental fisheries production model for banana prawns in Kerema Bay and the Gulf of Papua.

Christopher R. Evans, Department of Fisheries and Marine Resources, P.O. Box 165, Konedobu, NCD, Papua New Guinea.

Abstract

An environmental (rainfall) fisheries production model *CLIMPROD*, (FAO, 1993) of the form linear-quadratic-exponential was fitted to annual yield and effort data for banana prawns caught in the Gulf of Papua fishery and annual rainfall at Bereina in the southeast of the region. The same was carried out for Kerema Bay banana prawn yield and effort and annual rainfall at Bereina. Most of the variation in annual yield of banana prawns in the Gulf of Papua fishery and in the Kerema Bay fishing ground appears to be attributable to interannual variation in rainfall in the southeastern part of the Gulf of Papua region.

Introduction

The Gulf of Papua prawn trawl fishery is a relatively small fishery compared to the Australian Gulf of Carpentaria prawn fishery. Both target banana prawn <u>Penaeus merguiensis</u> (though on recent years the latter has targeted tiger prawn also). Banana prawn yield in the Gulf of Papua fishery during 1974 to 1993 ranged from 258 metric tonnes (in 1975) to 673 mt (in 1985) (Table 1), whereas banana prawn yield in the Gulf of Carpentaria during 1970 to 1992 ranged from 1670 mt (in 1970) to 12696 mt (in 1974) (Pownall, 1994).

Studies by Polovina and Opnai (1989) indicated that the annual yield of banana prawns in the Gulf of Papua fishery was inversely related to the minimum monthly rainfall at Baimuru, near Kikori (Fig. 1) during September to December of the preceding year, and suggested that this was perhaps related to postlarval settlement or the survival of early benthic juveniles.

Quadratic regression of banana prawn catch and CPUE from the important Kerema Bay fishing ground (in the Gulf of Papua) on Bereina annual rainfall suggested a parabola relationship between prawn abundance and annual rainfall in the southeastern part of the Gulf of Papua (Evans and Opnai, 1995; Evans <u>et al</u>, 1995).

Other studies (Gwyther, 1980; Polovina and Opnai, 1989; Evans et

<u>al</u>, 1995a; Kare <u>et al</u>, 1995) reported on the seasonality, distribution and abundance of recruit-sized banana prawns in the Gulf of Papua and suggested that sub-adult prawns are "flushed" out of estuarine nursery areas at the onset of the monsoon season. When the monsoon season is delayed or weak in nature the offshore migration of juvenile/ sub-adult prawns may be affected, based upon the results of research in the Gulf of Carpentaria (Staples and Vance, 1987). Thus the availability of banana prawns to capture, area by area, is also dependent on the amount and timing of the monsoon in the different parts of the region.

Rainfall varies considerably over the region and there are different regimes (see Figure 1). Monthly variability as a percentage of the maximum is perhaps greatest at Bereina (personal communication, David Vance, CSIRO, May 1995).

Material and Methods

The Kerema Bay data set was used for the analyses as this area is by far the most important in terms of yield (Gwyther, 1980a) (Table 1) along with Bereina rainfall (a station relatively close, in the southeast), which record was obtained by DFMR from the National Weather Service in 1994 (Table 2). As Kerema Bay is by far the most important fishing ground in terms of yield and effort, banana prawn yield and effort data for the Gulf of Papua as a whole was also used along with Bereina rainfall in a separate computer run of the CLIMPROD programme. Data entry was in terms of metric tonnes of tails and thousands of trawl hours, and mm of rain. It should be noted that Kerema Bay data consists of the total catch and effort for the entire southeastern region of the Gulf of Papua: comprising West Kerema, Kerema Bay, Freshwater Bay, Lakekamu Estuary and Iokea data set.

Yield, effort and annual rainfall were entered in the CLIMPROD programme (FAO, 1993) at the CSIRO's Division of Fisheries Laboratory, Cleveland, Australia and the expert system was used to select an appropriate model based upon the known information on its biology in the Gulf of Papua. The coefficient of determination R^2 was given by the programme along with the values of the constants. The model was validated in each case by the CLIMPROD programme's validation process in which the percentage variation in R^2 resulting from the elimination of a single data point from the set is calculated for all of the points. The print-outs from the runs were collated and attached. A straight linear (Schaeffer) model was also fitted to each data set in order to investigate the variation in yield attributable to

interannual variation in rainfall in the southeast of the region.

<u>Results</u>

An environmental (rainfall) fisheries production model *CLIMPROD*, (FAO, 1993) was fitted to annual yield and effort data for banana prawns caught in the Gulf of Papua fishery and annual rainfall at Bereina in the southeast of the region. The same was carried out for Kerema Bay banana prawn yield and effort and annual rainfall at Bereina.

The model fitted was selected by the *CLIMPROD*, FAO programme using its "expert" system (linear-quadratic-exponential):

 $CPUE = aV^{(1+b)} + cV^{(2+b)} + dV^{(2b)}E,$

where a, b, c, and d are constants, V is the annual rainfall and E is the annual fishing effort. This is a production model combining on the one hand the linear (Schaeffer) model between the catch per unit of fishing effort (CPUE) and the fishing effort E, and on the other a quadratic (parabola) relationship between CPUE and the environmental variable V when it influences the abundance and a power relationship between the CPUE and V when it influences the catchability coefficient.

The values of the constants are given in the details of the computer print-outs attached. The coefficient of determination R^2 was 0.76 (Gulf of Papua/Bereina data) and 0.82 (Kerema Bay/Bereina data). The straight linear (Schaeffer) production model (CPUE = a + b.E) was also fitted the each of the two data sets and resulted in R^2 values of 0.25 in each case. Thus most of the variation in annual yield of banana prawns in the Gulf of Papua fishery and in the Kerema Bay fishing ground appears to be attributable to interannual variation in rainfall in the southeastern part of the region.

The optimum yields for three different levels of annual rainfall (intermediate, excessive and drought) were given by the model for the Gulf of Papua/Bereina and Kerema Bay/Bereina data sets (Gulf of Papua/Bereina and Kerema Bay/Bereina run print-outs).

For the Kerema Bay/Bereina data set, Y_{max} and production (Y) isovalues were also generated by the CLIMPROD programme for environment (V, annual rainfall from 436 to 1888 mm) on the y-axis and effort (E, annual fishing effort from 17 to 52 thousand trawl hours) (Kerema Bay/Bereina print-out). Y_{max} occurs at

intermediate levels of rainfall at Bereina.

Discussion

The models (linear-quadratic-exponential) fitted to the Kerema Bay/Bereina and Gulf of Papua/Bereina data sets were each validated by the validation process. Validation of the model for the Kerema Bay/Bereina data set is attached as print-outs. (See R^2 (%) time plot: the closer the 100% value the different yearly values are, the better the model fitting is. Empirically, it can be assumed that yearly ratios greater than 140% or lower than 60% will invalidate the model fitting (FAO, 1993).

The predicted and observed CPUE series (kg/trawl-hour) for the Gulf of Papua/Bereina data set closely matched which suggested that the model was in fact appropriate. The same was true for the Kerema Bay/Bereina data set (and the match was even closer).

The highest yields in Kerema Bay fishing ground and in the Gulf of Papua fishery are obtained in years when there is an intermediate level of annual rainfall at Bereina (1217 mm rainfall) (GOP/Bereina run print-out and Kerema Bay/Bereina run print-out). In years where there is high (1682 mm) or low (753mm) annual rainfall at Bereina, yields are lower (print-outs): for Kerema Bay/Bereina, yields appear to be equally reduced by excessive rainfall and drought, but this is not true for the Gulf of Papua yield and Bereina rainfall (there is greater reduction in years of excessive rainfall). However, for both Kerema Bay and the Gulf of Papua fishery as a whole, it appears that more effort has to be expended in wetter than average years than in drier than average years to obtain the maximum equilibrium catch (i.e. the optimum yield for the rainfall level). This may be related to reduction in postlarval settlement and/or the survival of newly-settled juveniles (Polovina and Opnai, 1989).

Caution should be excercised with regard to the interpretation of the results for a number of reasons:

- (1) The length of the years in the data set is too short (borderline);
- (2) Using three functions linear, quadratic and a power function in the model makes it statistically easier to explain the observations by chance.
- (3) The effort is not standardised and the assumption of the model is that it is. It is difficult to standardise because technological advances went occurred at a non-uniform rate.

<u>4</u>

- (4) The rainfall regime at Bereina is similar to that at the Fly Estuary but not similar to that at Kikori and Kerema.
- (5) Although the percentage variation in R² is reasonable, there is perhaps too much change in the constants when the model is put through the jacknife validation process.
- (6) There is only half a parabola and the assumption of the model is that the relation of MSY with rainfall is obviously parabolic.

Suggestions for Further Research

Separation of the banana prawn yield and effort data area by area for the 12 years 1977 to 1988 has been carried out since these analyses were completed at Cleveland. Additional rainfall data has also been obtained for Kerema town and Erave in the middle/upper reaches of the Kikori drainage basin and Lake Kutubu in the Southern Highlands. These data will be matched with the yield and effort data from the appropriate fishing area and entered in the CLIMPROD programme. David Vance at the CSIRO Laboratory, Cleveland is currently carrying out these additional runs. The rainfall regimes at Kutubu, Erave, Baimuru and Kerema are similar and the rainfall data may also be averaged.

Acknowledgements

I would like to thank David Vance and David Die at the CSIRO Division of Fisheries for their kind help and collaboration with this work.

<u>References</u>

- Anon., 1974. Assessment and administration of the water resources of Papua New Guinea. Vol. 2: Technical Information i-xi, 1-246, 7 figs. Prepared for the Office of Minerals and Energy, P.N.G., by the Snowy Mountains Engineering Corporation and S.D. Clark, University of Melbourne.
- Evans, C.R. and Opnai, L.J. 1995. Fisheries ecology of the White Banana Prawn <u>Penaeus merguiensis</u> in the Gulf of Papua: estimates of sustainable yields and observations on trends in abundance. Occasional Technical Report. Department of Fisheries and Marine Resources, Konedobu, Papua New Guinea, 61 pp + annexe.
- Evans, C.R., Opnai, L.J, and Kare, B. 1995. Research and Management of the Industrial Prawn Fishery of the Gulf of

Papua. Paper for the SPC/FFA Coastal Fisheries Management Workshop, Noumea, French Caledonia, June/July 1995. Department of Fisheries and Marine Resources, Konedobu, NCD, Papua New Guinea.

- Evans, C., Kare, B., Kumoru, L., Tatamasi, M., Kumilgo, K, and Baule, L. 1995a. A survey of the distribution and apparent abundance of recruit-sized prawns <u>Penaeus</u> <u>merguiensis</u> and <u>P. monodon</u> in the Gulf of Papua, during the 1995 closed season, 1st February to 15th March. Occasional Technical Report, Department of Fisheries and Marine Resources, Konedobu, Papua New Guinea, April 1995.
- FAO, 1993. An experimental interactive software for choosing and fitting surplus production models including environmental variables. Developed by P. Freon, C. Mullon and G. Pichon, Orstom, 213, rue Lafayette, 75480 Paris Cedex 10, France. FAO Computerised Information Series (fisheries) No. 5. 68 pages.
- Gwyther, D. 1980. The Gulf of Papua offshore prawn fishery in relation to the Wabo hydro-electricity scheme. Technical Report, Kanudi Fisheries Research Station, Department of Primary Industry, Konedobu, Papua New Guinea. 22 pp.
- Gwyther, D. 1980a. Commercial and biological aspects of the Gulf of Papua prawn fishery. Department of Primary industry, Port Moresby. Research Bulletin No. 21, 72 pp.
- Kare, B., Evans, C., Kumoru, L. and Tatamasi, M. 1995. Size Frequencies of White Banana Prawns (<u>Penaeus merguiensis</u>) and Black Tiger Prawns (<u>P. monodon</u>) in the Gulf of Papua, by Sex, Area and Depth During the Closed Season 1st February to 15th March, 1995: Juvenile Recruitment and Implications for Management. Research Bulletin, Department of Fisheries and Marine Resources, Konedobu, Papua New Guinea, April 1995.
- Polovina J.J. and L.J. Opnai. 1989. Assessment of the Gulf of Papua Prawn fishery. DFMR Papua New Guinea. Occasional Technical Report, 1989, 34 pp.

Pownall. P.C. (editor) 1994. Australia's Northern Prawn Fishery: the first 25 years. NPF25, Cleveland, Australia, 180 pages.

Staples, D.J. and Vance, D.J. 1987. Comparative recruitment of the banana prawn, <u>Penaeus merguiensis</u>, in five estuaries of the southeastern Gulf of Carpentaria, Australia. Aust. J. Mar. Freshwat. Res. 38:29-45.

Summary

An environmental (rainfall) fisheries production model *CLIMPROD*, (FAO, 1993) of the form linear-quadratic-exponential was fitted to annual yield and effort data for banana prawns

<u>6</u>

caught in the Gulf of Papua fishery and annual rainfall at Bereina in the southeast of the region. The same was carried out for Kerema Bay banana prawn yield and effort and annual rainfall at Bereina. Most of the variation in annual yield of banana prawns in the Gulf of Papua fishery and in the Kerema Bay fishing ground appears to be attributable to inter-annual variation in rainfall in the southeast of the Gulf region.

The model fitted was selected by the *CLIMPROD*, FAO programme using its "expert" system (linear-quadratic-exponential): $CPUE = aV^{(1+b)} + cV^{(2+b)} + dV^{(2b)}E$, where a, b, c, and d are constants, V is the annual rainfall and E is the annual fishing effort. This is a production model combining on the one hand the linear (Schaeffer) model between the catch per unit of fishing effort (CPUE) and the fishing effort E, and on the other a quadratic (parabola) relationship between CPUE and the environmental variable V when it influences the abundance and a power relationship between the CPUE and V when it influences the catchability coefficient.

The models fitted to the Kerema Bay/Bereina and Gulf of Papua/Bereina data sets were each validated by the validation process. The predicted and observed CPUE series (kg/trawl-hour) for the Gulf of Papua/Bereina data set closely matched which suggested that the model was appropriate. The same was true for the Kerema Bay/Bereina data set (the match was closer). The highest yields are obtained in years when there is an intermediate level of annual rain at Bereina (ca. 1200 mm).

Figure 1. Map of mean annual rainfall (mm) for the Gulf of Papua, showing average monthly rainfall for selected localities. (Source: Anon, 1974)

Table 1: Annual catches (in metric tonnes of tails) and fishing effort (in thousands of trawl hours) of all prawn species combined, banana prawns in the Gulf of Papua, and banana prawns in Kerema Bay.

G.O.P.

Kerema Bay

Year	Effort _.	All Prawns	Banana Prawns	Effort	Banana	Prawns
1974	49	733	442			·
1975	17	410	258			
1976	48	780	462			
1977	46	562	291	26	221	
1978	71	997	531	38	378	
1979	78	1221	636	35	350	
1980	81	1178	668	38	404	
1981	73	1026	517	34	314	
1982	69	891	426	33.	264	
1983	62	1151	638	32	376	
1984	75	1114	477	38	296	
1985	78	1334	673	37	371	
1986	93	1321	571	48	344	
1987	91	1165	601	47	304	
1988	76	1100	557			
1989	95	1174	591*			
1990	70	873	449			
1991	46	649	371			
1992	41	860	475			
1993	47	756	375			

* Predicted from regression of total catch with banana catch.

MR55002.REC NATIONAL WEATHER SERVICE FORM R3 <u>TABLE 2: MONTHLY AND YEARLY RAINFALL</u>, <u>BEREINH</u>.

SIN NUMBER: 55002 LATITUDE: 08 39 SOUTH LONGITUDE: 146 30 EAST NAME: BEREINA AGRIC. STATION ELEVATION: 15 METRES

UNIT USED IS IN MILLIMETRES

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL	
1976				87.8	118,2	60.8	39.4	29.0	21.8	27.4	131.0	112.2	627.6	
1977	285.0	190.0	421.0	147.0	181.0	82.0	12.0	2.0	1.0	85.0	35.0	241.0	1682.0	
1978	313.4	89.0	209.8	201.0	113.8	40.0	56.6	21.8	37.2	36.2	12.6	116.4	12478	
1979	398.0	406.0	71.0	134-27	^{F-} 82.0	1.0	90.0	36.0	31.0	11.0	103.0	82.0	1311.0	144,5.2
1980	290.0	169.0	200.0	87.0	91.0	5.0	22.0	0.0	15.0	9.0	0.0	109.0	0.700	
1981	385.0	222.0	372.0	8.0	11.0	2.0	12.0	70.0	0.0	2.0	23.0	98.0	1205.0	
1982	201.6	475.2	215.8	137.0	20.6	88.0	21.4	44.0	27.0	196.6	53.6	137.8	1618.¢	
1983	188.6	82.4	195.2	103.4	98.8	25.2	0.4	47.6	0.0	0.8	0.2	10.0	752.6	
1984	188.8	67.6	122.6	84.2	114.2	66.2	62.8	18.2	25.6	41.2	27.2	150.4	969.0	
1985	149.8	283.0	153.2	149.6	12.4	25.4	33.4	22.4	б.8	62.0	12.0	350.8	1260.8	
1986	102.8	189.8	458.4	138.4	97.2	45.2	13.2	60.6	123.0	33.4	185.6	130.2	1577.8	
1987	291.0	345.6	151.8	322.0	46.6	34.4	2.8	22.G	12.2	• 87.2	23.2	85.4	1424.8	
1988														
1989														
1990														
1991														
1992	407.2	220.2	205.2	145.2	15.0	0.0	3.2	24.8	6.2	71.4	ó8.2	114.4	1281.0	
1993					32.0	96.2	0.0	19.6	11.8	0.0	5.2	205.8	370.6	
1994	299.8	171.4	71.0										542.2	
	RAINFA	LL SUM	ÍMARY I	FOR PER	IOD 197	6 TO 199	4, USING	G ALL A	VAILAP	LE DAT	A			
MAXIMUM	407.2	475.2	458.4	322	181	96.2	90	70	123	196.6	185.6	350.8	1682	
AVERAGE	269.3	. 223.9	219.0	134.2*	₹ 73.8	40.8	26.4	29.9	22.8	47.4	48.6	138.8	887 8	

MAXIMUM	407.2	475.2	458.4	322	181	90.2	90	70	123	190.0	185.0	300.8	1682
AVERAGE	269.3	. 223.9	219.0	134.2*	73.8	40.8	26.4	29.9	22.8	47.4	48.6	138.8	887.8
MINIMUM	102.8	67.ó	71	8	11	0	0	0	0	0	0	10	0
RAIN YEARS	13	13	13	12	14	14	14	14	14	14	14	14	19

* Substitution of mean for missing data 1979, April

Gulf of Papua Banana Prawn Yield and Effort with Bereina Annual Rainfall, 1977-87 and 1992: CLIMPROD (FAO). <u>12</u>

EVANSBE2. CLI Gulf of Papua Yield & Effort (Banana Prawn), Bereina annual rain

umber ((TTING : O CPU of years used	JE=a+b.E (Marquardt for fitting : 12	Method)	
Iteratio lambda:	n n° 6 Ti 81.0000	rials -2 Total DO alpha:	trials 13 4.000000	delta: 0.0000
lumber (Converg: 	of iterations ing factor R2	: 0 it : 25.1739	1 it 25.1739	6 it 25.1739
Ť	nitial Coeff	Previous Coeff	Variation(%)	Actual Coeff
a. b	11.727988 -0.055555	11.727988 -0.055555	-0.00 -0.00	11.727988 -0.055555
Press al	ny key and read	i comments on this :	model R O D	
NODEL: (Fair ir	CPUE = a + b E	al lippar producti	oo model usually	named
"Schaef	er model".	at theat products	on moder, usuarry	Hamed
It does product	not take into ion (white nois	account any environ se).	nmental influence	on the

VOL II / 349

ð

MODEL: CPUE = aV*(1+b) + rure of 4 dv*(265 e D This is a prefer model combining on the one hand the linear This is a prefer model) between the CPUE and the fishing effort E, model, the other a quadratic (parabola) relationship between CPUE and the environmental variable V when it influences the abundance and a power relationship between the CPUE and V when it influences the catchability coefficient. This kind of non-monotonic equation is useful when the relationship between CPUE and V is shaped (optimal central value). The graph MSY versus V must OBVIOUSLY be parabolic. If not, the data-set does not justify such a model and it is recommanded to use another model (CPUE = (av*b) exp(cV*d) for instance). Moreover, when using these formulae in a non-equilibrium condition

and a power relationship between the CPUE and V when it influences the catchability coefficient.

This kind of non-monotonic equation is useful when the relationship between CPUE and V is shaped (optimal central value). The graph MSY versus V must OBVIOUSLY be parabolic. If not, the data-set does not justify such a model and it is recommanded to use another model (CPUE = (aV b) exp(cV d) for instance).

Moreover, when using these formulae in a non-equilibrium condition (transitional state) the user must carefully check the temporal stability of the V variable on the time-series graph. In particular, it would be nonsense to allow the program to average two V values with one located on the left side of the parabola and the other on the right.

VOL 11 / 35

	d.V^ (2.b).E	$Min_E = 41.000000$	Nh_years = 13	Age_rec = 1	Begin = 0	Variance = 2.767707	R2 = 76	b = -0.3495684333	d = -11.2045452685			
Current known facts	Model = CPUE=a.V°(1+b)+c.V°(2+b)+(File = C:\CLIMPROD\EVANBRE2.CLI	Max_E = 93.00000	Nb_exploit = 1	Climatic_infl = abundance_catchability	End = 1	Var.residuals = 0.658998	a = 0.287889000	c = -0.0001238051			

<u>17</u>

VOL II / 356

Kerema Bay Banana Prawn Yield and Effort with Bereina Annual Rainfall, 1977-87: CLIMPROD (FAO).

Evans 5. CLI	Kerema Bay	Yield & Ettert	(Banana	Prawn),	Bereina	annual	rainfoll
	egene i de pr	and the Alice		•	. *. ÷		

MODEL FITTING : O CPUE Number of years used fo	=a+b.E (Marquardt r fitting : 11	Method)	
Iteration n° 6 Tri lambda: 81.000000	als -1 Total alpha:	trials 9 4.000000	delta: 0.0000
Number of iterations : Converging factor R2	0 it : 25,4019	1 it 25.4019	6 it 25.4019
Initial Coeff	Previous Coeff	Variation(%)	Actual Coeff
a 13.768086 b ~0.127915	13.768086 -0.127915	-0.00 -0.00	13.768086 -0.127915
Press any key and read	comments on this n	nodel	
MODEL: CPUE = a + b E	CLIMP	R O D	1990
This is the conventiona "Schaefer model".	l linear productio	on model, usually	named
It does not take into a production (white noise	ccount any enviror).	mental influence	on the

_____CLIMPROD _____

Current known facts Model = CPUE=a+b.E File = C:\CLIMPROD\EVANS5.CLI Max_E = 48.000000 Nb_exploit = 1 Var.residuals = 1.742553 a = 13.7680855150

VOL 11 / 359

Min_E = 26.000000 Nb_years = 12 Variance = 2.335920 R2 = 25 b = -0.1279148933

<u>23</u>

VOL 11 / 361

CLIMPROD

____CLIMPROD ____

26

MODEL: CPUE = $aV^{(1+b)} + cV(2+b) + dV^{(2b)} E$

This is a production model combining on the one hand the linear model (Schaefer model) between the CPUE and the fishing effort E, and on the other a quadratic (parabola) relationship between CPUE and the environmental variable V when it influences the abundance and a power relationship between the CPUE and V when it influences the catchability coefficient.

This kind of non-monotonic equation is useful when the relationship between CPUE and V is shaped (optimal central value). The graph MSY versus V must OBVIOUSLY be parabolic. If not, the data-set does not justify such a model and it is recommanded to use another model (CPUE = $(aV^b) exp(cV^d)$ for instance).

Moreover, when using these formulae in a non-equilibrium condition

_____MESSAGES_____

____CLIMPROD ____

and a power relationship between the CPUE and V when it influences the catchability coefficient.

This kind of non-monotonic equation is useful when the relationship between CPUE and V is shaped (optimal central value). The graph MSY versus V must OBVIOUSLY be parabolic. If not, the data-set does not justify such a model and it is recommanded to use another model (CPUE = $(aV^{+}b) \exp(cV^{+}d)$ for instance).

Moreover, when using these formulae in a non-equilibrium condition (transitional state) the user must carefully check the temporal stability of the V variable on the time-series graph. In particular, it would be nonsense to allow the program to average two V values with one located on the left side of the parabola and the other on the right.

VOL 11/3

<u>29</u>

MODEL VALIBATING: CPUE=a.V^(1+b)+c.V^(2+b)+d.V^(2.b).E (Jackknife Method)

***************************************	**************************************			
Conventional coe-	fficient of	determination	R2	 82,17
Jackknife coe-	fficient of	determination	R2	 46,79

Coefficient:	a	Ь	C	d
Value :	0.2948	-0.3436	-0.0001	-21.0562
Jackknife Standard deviation:	1.1028	0.2269	0.0005	475.2144
Jackknife t-ratio:	0.2673	-1.5153	-0.2645	-0.0443

Note these results, then press any key to get graphs showing the stability of coefficients and R2 when removing a year from the data set.

VOL 11/ 36

۰.

-1 0

0

197_

0 0 ا

629_

<u>32</u>

MS-E versus V

<u>33</u>

)L 11 / 370