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Abstract 

An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM 
is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean. It 
includes the modelling of mid-trophic organisms of the pelagic ecosystem with several 
pelagic mid-trophic functional groups. Parametrization of the dynamics of these components 
is based on an allometric relationship. Then, a simple energy transfer from primary production 
is used, justified by the existence of constant slopes in log-log biomass size spectrum 
relationships. Impacts of vertical behaviour of the organisms and horizontal currents are 
considered through a system of advection-diffusion equations. Dynamics of tuna populations 
have been revised. This new version of SEAPODYM includes expanded definitions of habitat 
indices, movements, and natural mortality based on empirical evidences and first biological 
principles. A thermal habitat of tuna species is derived from an individual heat budget model. 
The feeding habitat is computed according to the accessibility of tuna predator cohorts to 
different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. 
The spawning habitat is based on temperature and the coincidence of spawning fish with 
presence or absence of predators and food for larvae. The successful larval recruitment is 
linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna 
can move of their own volition, in addition to being advected by currents. A food requirement 
index is computed to adjust locally the natural mortality of cohorts based on food demand and 
accessibility to available forage components. Together these mechanisms induce bottom-up 
and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The 
model is now fully operational for running multi-species, multi-fisheries simulations, and the 
structure of the model allows a validation from multiple data sources. In particular, the model 
includes a rigorous mathematical parameter optimization using catch data and size frequency 
of catch. Examples of applications are presented to illustrate the interest of the model for 
management of tuna stocks in the context of climate and ecosystem variability, and to 
investigate potential changes due to anthropogenic activities including global warming and 
fisheries pressures and management scenarios. 
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1. Introduction 

SEAPODYM is a model developed initially for investigating spatial tuna population 
dynamics, under the influence of both fishing and environmental effects. This modelling 
effort started in 1995 at the Secretariat of the Pacific Community in Noumea, New Caledonia, 
under two consecutive EU-funded projects: SPR-TRAMP (1995-2000) and PROCFISH 
(2002-2005). The model development also benefited of a grant from the PFRP (Pelagic 
Fisheries Research Program) of the University of Hawaii, allowing the implementation of 
irregular grids and initiating the work for parameter optimization (2004-05). Since 2006, the 
development has continued within the MEMMS section (Marine Ecosystem Modeling and 
Monitoring by Satellites) of the Spatial Oceanography Division of CLS, a subsidiary of the 
French CNES and IFREMER Institutes. Collaboration with SPC continues, with funding 
support from a new EU-funded SPC project, SCIFISH. 
 
An enhanced version of the model (SEAPODYM.v2) is now ready for use. It includes revised 
mechanisms for the modelling of mid-trophic organisms of the pelagic ecosystem with several 
pelagic mid-trophic functional groups.  Dynamics of tuna populations have been also revised 
with expanded definitions of habitat indices, movements, and natural mortality. The code for 
parameter optimization has been completed and tested. A second PFRP grant (2006-09) and 
the SPC – CLS collaboration via SCIFISH should lead to parameterized models for the main 
tuna species in the Pacific Ocean (skipjack, yellowfin, bigeye and south Pacific albacore), 
using catch, size frequency and possibly tagging data for the parameter optimization, and 
based on single-species basin-scale simulations at monthly 2x2 degree resolution. Examples 
of applications are presented in this document to illustrate the potential utility of the model for 
management of tuna stocks in the context of climate and ecosystem variability, and to 
investigate potential changes due to anthropogenic activities including global warming, 
fishing and management intervention. 
 

2. Model summary 

The SEAPODYM model has been continuously enhanced to provide a general framework 
allowing integration of the biological and ecological knowledge of tuna species, and 
potentially other oceanic top-predator species, within a comprehensive description of the 
pelagic ecosystem (Bertignac et al., 1998; Lehodey et al., 1998; Lehodey, 2001; Lehodey et 
al., 2003). It has been upgraded to include more detailed relationships between population 
dynamics and basic biological and ecological functions, including a more realistic 
representation of the vertical oceanic habitat, both in terms of physical and foraging 
conditions. The model includes a forage (prey) sub-model describing the transfer of energy of 
stored biomass through functional groups of mid-trophic levels and an age-structured 
population sub-model of tuna predator species and their multi-fisheries. The dynamics of 
forage and predators are driven by environmental forcing (temperature, currents, oxygen and 
primary production) that can be predicted from coupled physical-biogeochemical models. The 
model also includes a rigorous mathematical parameter optimization using catch data and size 
frequency of catch (Figure 1). We attempted to keep the minimal number of parameters to 
facilitate a formal optimization procedure required for assessment analyses.  
 
Because the model is driven by the bio-physical environment of the ecosystem, it was 
possible to reduce the number of parameters that describe the complete spatially-explicit 
population dynamics of a species to twenty-one (cf. appendix), i.e., a small number relative to 
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the number of variables described in the model. A few more parameters should be added to 
include the growth function that is still provided by independent studies in this version.  Other 
parameters concern the description of fisheries (selectivity and catchability). 
 
The model is parameterized through assimilation of commercial fisheries data, and 
optimization is carried out using maximum likelihood estimation approach. For parameter 
optimization, we implemented adjoint methodology to obtain an exact, analytical evaluation 
of the likelihood gradient. The approach to select the “best parameter estimate” is based on a 
series of computer experiments in order i) to determine model sensitivity with respect to 
variable parameters and, hence, investigate their observability, ii) to estimate observable 
parameters and their errors, and iii) to justify the reliability of found solution. 
 
The new version of the model is fully detailed in recent papers (Lehodey et al., in press; 
Lehodey et al., in revision; Senina et al., in press). 
 

TADR tuna model

Eqns for 0-3 month old juveniles:
spawning, foraging, passive transport, 

survival, mortality, cannibalism

Predictions

Six forage components:
epi-pelagic
Migrant and non-migrant meso-pelagic
Migrant, non-migrant and highly-migrant 
bathypelagic

Pole-and-line:
tropical and 
sub-tropical gears

Purse seine: 
associated and 

unassociated fleets

Longline: 
Shallow, deep, …

3-layer data:
Temperature, 

currents,
Oxygen

Predictions
Tuna spatial distributions, catch and
length frequencies time series 

Primary Production, 
Euphotic depth

Bio-physical environment Mid-trophic sub-model (Tuna forage) Fishing data

Eqns for 1-X quarter old adults:
recruitment, foraging, migrations,

ageing, natural and fishing mortality

Optimization:
Preliminary sensitivity analysis

Constructing cost function according to data distribution
minimization, parameter estimation and errors.

Estimates of model parameters

 
 

Figure 1: General scheme of the SEAPODYM model with optimization approach. 

 

3. Applications 

3.1. Stock assessment 

A preliminary parameterization has been obtained with SEAPODYM for skipjack and bigeye 
Pacific tuna, using an oceanic physical environment predicted by an independent Ocean 
General Circulation Model with biogeochemical input predicted by a nutrients-phytoplankton-
zooplankton-detritus model developed at ESSIC, University of Maryland. Table 1 
summarizes the fishing data used for parameter estimation for each species. Parameters 
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describing recruitment, movement, habitat preferences, and the natural and fishing mortality 
of the population are presented in Table 2. Figures 2 and 3 provide examples of outputs, e.g., 
comparison between SEAPODYM and MULTIFAN-CL estimates or comparison between 
predicted and observed catch. It is worth noting that parameter optimization is carried out 
over the recent period (1985-2004) and the remainder of the time series hindcast using the 
parameterized model.  
 
Future tasks:  

- Run optimization experiments with multiple forcing data sets to provide an envelope 
of prediction and to investigate sensitivity of the model and the optimization approach 
to the forcing fields (since the population dynamics in the model are strongly linked to 
the environmental conditions).  

- Investigate independent measures or estimates of some of these parameters, for 
example using electronic tagging data, should assist in the evaluation of model 
predictions.  

- Add the conventional and archival tagging data to the parameter estimation to provide 
additional key information for estimating several critical parameters (e.g., movements, 
habitats, recruitment and mortality). 

- Apply to other species (yellowfin, albacore, swordfish, …) 
- Run parameter optimization with multi-species simulations 
- Compare with simulation experiments in Atlantic and Indian Ocean. 
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Table 1. Definition of fisheries for the Pacific skipjack and bigeye tuna SEAPODYM 
parameters optimization experiments. 
 

Fishery 
Number 

Nationality Gear Sub-
region 

Code 

1 Japan, Korea, Chinese Taipei Longline 1 LLI 
2  Japan, Korea, Chinese Taipei  Longline 2 LL2 
3  United States (Hawaii)  Longline  2 LL3 
4 All  Longline  3 LL4-5 
5 Papua New Guinea  Longline  4 LL6 
6 Japan, Korea, Chinese Taipei 

and China  
Longline  4 LL7-8 

7 United States (Hawaii)  Longline 4 LL9 
8 All excl. Australia  Longline  5 LL10 
9 Australia  Longline  5 LL11 

10 Japan, Korea, Chinese Taipei  Longline  6 LL12 
11 Pacific Island 

Countries/Territories  
Longline  6 LL13 

12 All excl. Chinese Taipei & 
China 

Longline  7 LL21 

13 Chinese Taipei and China Longline  7 LL22 
14 Japan, Korea, Chinese Taipei Longline 8 LL23 
15 Japan, Korea, Chinese Taipei  Longline  9 LL24 
16 All  Purse seine, log/FAD sets  3 WPSASS 
17 All  Purse seine, school sets  3 WPSUNA 
18 All  Purse seine, log/FAD sets, 

nearshore and central area 
8 EPSASS 

 
19 All  Purse seine, school, dolphin 

sets, log/FAD sets, offshore 
area 

8 EPSUNA 
 

20 Japan  Pole-and-line 1,2 PLSUB 
21 All Pole-and-line 3,4 PLTRO 
22 Philippines, Indonesia  Handline (large fish)  3 COMMHL 
23 Philippines, Indonesia  Miscellaneous (small fish)  3 ARTSURF 
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Table 2: Estimated values of model parameter based on optimization with ESSIC reanalysis. 

 

  Θ Skipjack Bigeye 

βp 0.296 ± 0.0018 0.073 ± 0.0005 

Mmax 0.5* 0.25 ± 0.003 

βs -0.044 ± 0.0015 -0.097 ± 0.008 

 Natural mortality 

A 31* 80.6 ± 0.008 

σ0 3.5* 0.82 ± 0.012 

T0 30.5 ± 0.0047 26.2 ± 0.013 

α 0.1* 0.63 ± 0.02 

 Spawning Habitat 

BHa 0.5* 0.0045 ± 6e-4 

σa 2.62 ± 0.0015 2.16 ± 0.004 

Ta 26* 13 ± 0.004 

 Adult Habitat 

O 3.86 ± 0.0009 0.46 ± 0.0006 

Dmax 0.4 ± 0.005 0.22 ± 0.002  Movement 

Vmax 1.3 ± 0.006 0.32 ± 0.002 

Fishing parameters: catchabilities & selectivities 
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Figure 2: Trends in Pacific bigeye tuna population predicted in WCPO and EPO with 
optimization (1985-2004) and hindcast prediction to 1965 for experiment based on ESSIC 
(black thick line) forcing fields. The trends for adults are compared to estimates (thin red line) 
from stock-assessment model MULTIFAN-CL (Hampton et al. 2006, Sibert et al. 2006). 
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Figure 3: Comparison of observed (circles) and predicted (lines) catch series and size 
frequency distributions aggregated by main categories of fleets (PS = purse seine, LL = 
longline) in the western central (WCPO) and eastern Pacific Ocean (EPO). 
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3.2. Impacts of climate variability 

Previous studies have shown the influence of climate variability on tuna (e.g., Lehodey et al. 
1997, Fournier et al., 1998; Lehodey et al 2003). The new simulation experiments with 
parameter optimization using data assimilation confirm the strong influence of interannual 
ENSO variability on both the spatial dynamics and the recruitment of skipjack. 
 
During El Nino, the skipjack population moves eastward (Figure 4), and the biomass in the 
Central and Eastern Pacific increases, while it decreases in the Western Pacific ocean 
correspondingly. These spatial changes very likely affect the catch and can lead to a 
discrepancy between SEAPODYM-APE and MULTIFAN-CL biomass estimates. The latter 
might "interpret" a sudden drop of catches in the WCPO due to an eastward displacement of a 
large fraction of the stock as either a decrease in stock abundance or a decrease in 
catchability. Conversely, SEAPODYM has the additional flexibility to model 
environmentally-induced time-series changes in movement, and can therefore explicitly 
predict catch decline due to short-medium term eastward movement of the population. 
 
Comparison of predicted biomass time series of young tuna and the Southern Oscillation 
Index (SOI) shows an evident direct relationship between ENSO events and changes in the 
population dynamics (Figure 4). The maximum correlation between the two series (-0.63) is 
obtained with a SOI series lagged by 8 months, a time lag approximately matching the age of 
recruits, and thus suggesting that the ENSO impact occurs directly on the early life history of 
the species (i.e. spawning index). This result can have important application in the real-time 
management of the fishery, with the general trend in abundance of the adult stock being 
predictable 8 months in advance simply using the SOI. 
 
Future tasks:  

- Investigate climate variability impacts on other tuna species (and in other oceans) 
- Explore management and economic repercussions of climate linked forecasts 
- Develop ENSO-phase (El Nino; La Nina; Neutral) fisheries scenarios and run 

projections 
- Develop a fleet dynamics model that could integrate ENSO forecasting and that could 

be coupled to SEAPODYM 
 
Note that in order to develop useful climate-based projections, e.g., at 6 months, it would be 
essential to reduce to a minimum the delay in the update of fishing databases. The use of 
VMS is a promising way to provide near real-time estimates of fishing effort. 
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Figure 4: Distribution of biomass of a skipjack cohort at the first month after the age of 
maturity in November 1997 (El Niño phase) and November 1998 (La Niña phase) in the 
Pacific Ocean. Circles and arrows represent random (diffusion) and directed (advection) 
movements of population density, respectively, and are averaged by 10 degree squares. Black 
rectangles show the region where tags have been released and recaptured during the earlier 
corresponding ENSO phases (redrawn from Lehodey et al., 1997). 
 
 
 
 

 
 
Figure 5:  Biomass of young skipjack tuna (sum of ages from 3 month to 3 quarter) and eight 
month lagged Southern Oscillation Index (notice that y axis is inverted) as an indicator of El-
Nino event (Redrawn from Senina et al., in press). 
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3.3. Impacts of Global warming 

It is possible to investigate the impact of global warming on tuna populations with 
SEAPODYM using forcing datasets of oceanic conditions under IPCC scenarios for the 21th 
Century. A preliminary study has been carried out for skipjack and bigeye using the SRESA2 
IPCC scenario, i.e, atmospheric CO2 concentrations reaching 850 ppm in the year 2100, and 
historical data between 1860 and 2000. The simulation is driven by physical-biogeochemical 
fields predicted from a global Earth system simulation (IPSL, L. Bopp, pers. comm.). 
 
The projection of this IPSL climate simulation under the A2 scenario for the 21th century 
shows a decline in primary productivity and an increase in temperature in both equatorial and 
sub-tropical regions correlated to an increase in the euphotic depth. The decline of 
productivity in the tropical region is compensated by an increase in higher latitudes where the 
greater vertical stability increases the length of the growing season of phytoplankton in the 
euphotic depth. The dissolved oxygen concentration, a critical variable constraining tuna 
habitat, is also predicted to decrease under this A2 scenario almost everywhere. The primary 
reason for the simulated decrease in oxygen is the reduction of transport to depth due to 
increased vertical stability and solubility changes due to warmer waters. The decrease in 
primary productivity predicted during the 21st Century is particularly strong in the western 
tropical Pacific.  
 

The parameterization based on the IPSL predictions over the period 1985-2000 was used for 
the whole climate simulation (1860-2100), without fishing effort, to investigate the general 
trends of biomass (Figure 6) and spatial distributions (Figure 7) associated with 
environmental changes under the increasing forcing of atmospheric CO2. The result is a clear 
expansion of the spawning habitat and density of larvae for both species, especially in the 
eastern tropical Pacific (see Figure 7). This phenomenon occurs in correlation with ocean 
warming but also the changes in productivity and circulation that interact through the larvae 
prey-predator interactions in the model. In the eastern tropical Pacific, enhanced adult habitat 
leads to an increase in the adult biomass with a direct effect on the local spawning through the 
assumed Beverton-Holt relationship. Despite the large increase in larvae density, the ensuing 
adult biomass of both species is predicted to decrease in the western Pacific and to remain 
stable or increase slightly in the eastern Pacific (Figures 6 and 7). 
 
Future tasks:  

- Compare fishery and climate effects during historical period 
- Apply to other tuna species 
- Test the sensitivity to mid-trophic parameterization 
- Run  optimization using other reanalyses and simulation products  
- Test other IPCC scenarios 
- Run optimization with multi-species for testing species-interaction (need parallel 

coding) 
- Forecast fishing effects into the future (needs model of fishery dynamics) 
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Figure 6. Trends by ocean of bigeye and skipjack larvae (top) and adult (bottom) biomass 
(million tonnes) estimated by SEAPODYM under the IPCC SRESA2 scenario. 

 11



 
Bigeye larvae distribution Skipjack larvae distribution 

1950

 

1950

 
2000

 

2000

 
2050

 

2050

 
2099

 

2099

 
 

Bigeye adult biomass distribution Skipjack adult biomass distribution 
1950

 

1950

 
2000

 

2000

 
2050

 

2050

 
2099

 

2099

 
Figure 7. Change in spatial distribution of bigeye and skipjack larvae and adult biomass 
under the IPCC (SRES A2) scenario. Note that parameter optimization is carried out in the 
Pacific Ocean for the period 1985-2004). Fishing impact is not included in this simulation. 
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3.4. Management Scenarios 

Once the best parameterization of the model is obtained and the predicted results fully 
evaluated, it becomes possible to use the model for many different management scenarios 
taking advantage of its spatial multi-species multi-fisheries structure. There are many types of 
potential applications. In a first attempt to estimate the mobility of tropical tunas, Sibert and 
Hampton (2003) suggested that semi-isolated high-seas enclaves of the WCPO could provide 
potential conservation zones. One preliminary analysis is presented here to examine the 
potential interest of establishing marine protected areas (MPAs) on these high-sea enclaves as 
a new tool and strategy for tuna fisheries management.  
 
MPAs are recognized as appropriate tools to implement ecosystem-based fisheries 
management in the context of scientific uncertainty, but have been designed in coastal domain 
mainly. High Seas MPAs requires identification of pelagic areas that are key zones for 
ensuring the sustainability of tuna stocks and fisheries and the resilience of by-catch marine 
species. The relevance of establishing High Seas MPAs in the WCPO leads to a set of 
questions: Can it contribute to a better sustainable management of tuna resources and 
conservation of marine biodiversity? What could be the impact on the catch rates in adjacent 
EEZs? Would the MPA implementation benefit all fleets, i.e. is it a win-win option?  
 
This preliminary analysis used an optimal parameterization that has been obtained for 
skipjack using the maximum likelihood approach and function minimization method outlined 
above. Two scenarios corresponding to the closure of the 3 IW MPAs shown in Figure 8 were 
tested: the total monthly effort released from MPAs was redistributed within the same fishery 
either equally over other areas (S3) or (more realistically) proportionally to the current effort 
distribution (S4). MPA closures have more limited impact in scenario S4 (annual reduction of 
catch <3%) due to more efficient use of released effort. In this case purse seine fleets targeting 
free schools (i.e. WPSUNA) obtain smaller losses than those fishing on associated sets 
(WPSASS).  
 
This preliminary result highlights the interest of using spatially-disaggregated catch data to 
investigate MPA effects and demonstrates how simple management measures can produce 
complex responses on stock dynamics and fisheries. It indicates that redistribution of fishing 
effort displaced by the imposition of MPAs will be a critical factor that will determine 
whether high-seas MPAs will be successful in achieving stock conservation objectives.  
 
Future tasks:  

- Run multi-species multi-fisheries simulations 
- Include economic criteria in the scenarios of redistribution of the fishing effort.  
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Figure 8: Location of the three MPAs considered in the simulation and results showing the 
difference in skipjack catch by purse seine fleets due to the MPA closures and two different 
scenarios dealing with released fishing effort – either to redistribute the effort equally among 
other enclaves (S3) or proportionally to the existing distribution (S4).  

 
 
 

4. Conclusion 

The new version of SEAPODYM with a parameterization achieved by a rigorous 
optimization approach can now be considered sufficiently mature to be proposed and used as 
a new approach for tuna stock assessment studies and developing spatial management 
strategies. It can help us investigate the impact of fishing under various management 
scenarios, and also forecast the spatial dynamics of stocks in the context of environmental 
variability and climate change.  
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