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Introduction 

 

Catch and effort data from longline fleets are a key input in the assessment of yellowfin, 

bigeye, skipjack, and albacore tuna stocks in the WCPFC convention area (Hampton et 

al. 2006a, 2006b; Hoyle 2008). These data are used to derive standardised CPUE indices 

whose temporal trends are assumed to be proportional to the longline exploitable 

biomass.  Improving existing catch effort standardization models for construction of 

stock assessment indices for key tuna species in the WCPO has been the focus of much 

research (e.g., Langley 2007).  In this paper, we explore and develop alternative 

standardization models based on the Bayesian estimator and apply these models to 

albacore catch-effort data from the Japanese distant-water longline fleet.  Bayesian 

models are appealing because they can easily incorporate heterogrenous data and they are 

flexible in allowing the use of new data (Zhang and Perry 2005, Zhang et al. 2008, Zhang 

et al. 2009).   

 

 

Material and Methods 

 We developed three kinds of generalized linear Bayesian models for standardizing 

CPUE: lognormal, Delta (binomial + lognormal), and zero-inflated lognormal models. 

The lognormal model has both hierarchical and non-hierarchical forms, whereas the Delta 

and zero-inflated models were constructed only in a hierarchical format. Hierarchical 

generalized linear models are also known as Generalized Linear Mixed Models (GLMM).  

 The developed models are capable of estimating the effects of multiple 

explanatory variables: fishing year, fishing season, fishing area, fishing depth, and 

interaction of fishing year and area on catch rates (CPUEs). The entire fishing ground is 
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divided into same-sized relatively small spatial blocks. The models have the capability to 

predict CPUEs for un-fished blocks based on the estimated effects of the explanatory 

variables as long as these blocks are fished in some of the years. We aim to mitigate the 

problems of estimating abundance index due to spatial contraction in fishing patterns.  

 

1. Lognormal Model 

CPUEs are modeled using the Log-normal distribution: 

),(~ 2

,,,,,, lkjilkji ULognormalU     (1) 

where lkjiU ,,,  is the observed CPUE at Depth l  in Area k  in Fishing Season j of Fishing 

Year i , lkjiU ,,,  is the mean of the distribution on the log scale for CPUEs at Depth l  in 

Area k  in Fishing Season j of Fishing Year i , and   is the standard deviation of the 

distribution on the log scale. When zero catch rates are encountered, Eq. 1 is adjusted by 

adding a small constant ( ) equivalent to 10% of the overall CPUE (total catch divided 

by total effort over all the years) to each observed CPUE values: 

),(~ 2

,,,,,, lkjilkji ULognormalU     (2) 

The expected CPUE, lkjiU ,,,
ˆ , is estimated as: 
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lkjilkji UU      (3) 

The mean, lkjiU ,,, ,  is estimated based on the effects of explanatory variables:  

kilkjilkji cyacdcacscycU ,,,, 0     (4) 

where c0 is the intercept, icy , jcs , kca , and lcd  are the effects of Year i , Season j , 

Area k , and Depth l , respectively, and kicya ,  is the interaction effect between Year i  
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and Area k . Corner constraints are applied to all these variables. Namely, the effects of 

Year 1, Season 1, Area 1, and Depth 1 are all assigned a value of 0, and the effects of 

remaining years, seasons, areas, and depths are estimated. The interaction effects between 

Year 1 and all areas, and between Area 1 and all years were also assigned a value of 0, 

and effects of the other year and area interactions are estimated. 

 For a non-hierarchical model, interaction between individual year and individual 

area has a fixed effect. Therefore, each interaction effect to be estimated is assigned an 

independent prior probability distribution. For a hierarchical model, interaction between 

individual year and individual area is assumed to have a random effect, which is 

exchangeable and comes from a normal distribution,  ),(~ 2

, ccki UNcya  , where the 

hyperparameters cU  and 2

c   denote the mean interaction effect and the variance of 

interaction effects over different years and areas, respectively. One of the advantages of 

using hierarchical models is that the interaction effect, kicya , , could be estimated more 

reliably, when no catch information was available from Area k  in Year i , by borrowing 

information from observations in other years and areas. In contrast, non-hierarchical 

models could only estimate this interaction effect directly from the assigned prior 

probability distribution.  

 The abundance index for Area k  in Season j  of Year i , kjiYSA ,, , was estimated 

according to Campbell (2004): 

   
2

0exp
2

,,,


kikjikji cyacacscycYSA  (5) 

 Abundance index for year i , iY , was estimated in two different ways depending 

on whether predicted catch rates in the un-fished areas were used in the calculation of 
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abundance index. If predicted catch rates were used, iY  is simply the summation of 

kjiYSA ,,  over the entire area and seasons: 
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where NS  and NA  are the total number of seasons and areas fished in the time series. If 

predicted catch rates were not used, iY  is calculated as follows: 
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where jiA ,  refers to the areas fished in Season j  of Year i , and iTFA  is the total number 

of fished areas in Year i : 

 



NS

j

jii NTFA
1

,       (8) 

where jiN ,  is the number of areas fished in Season j  of Year i . 

 The yearly abundance index relative to the abundance index for the reference year 

(1
st
 year) is calculated as: 

 
1Y

Y
I i

i         (9) 

2. Delta Model  

 Two probability models were used in the Delta approach, binomial and 

lognormal. The former is used to model, the number of non-zero catches, given the total 

number of catches, and the latter is used to model the non-zero catch rates: 
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where lkjiN ,,,  and lkjiTN ,,,  are the number of non-zero catches and total number of fishing 

events, respectively, at Depth l  in Area k  in Fishing Season j  of Fishing Year i , and 

lkjip ,,,  is the probability of obtaining a non-zero catch in a single fishing event at Depth l  

in Area k  in Fishing Season j  of Fishing Year i .  lkjiU ,,,  is the observed non-zero CPUE 

at Depth l  in Area k  in Fishing Season j of Fishing Year i , lkjiU ,,,  is the mean of the 

distribution on the log scale for non-zero CPUEs at Depth l  in Area k  in Fishing Season 

j of Fishing Year i , and   is the standard deviation of the distribution on the log scale.  

The expected CPUE (including zero catches) is estimated as: 
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expˆ
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lkjilkjilkji UpU     (11) 

The binomial probability, lkjip ,,, , is associated with explanatory variables through 

the Logit link function,  )1(log)( pppLogit  : 

  kilkjilkji pyapdpapspyppLogit ,,,, 0)(   (12) 

where 0p  is the intercept, ipy , jps , kpa , and lpd  are the effects of Year i , Season j , 

Area k , and Depth l , respectively, on the probability, and kipya ,  is the effect of 

interaction between Year i  and Area k  on the probability. Corner constraints are applied 

to all the explanatory variables. The effects of Year 1, Season 1, Area 1, and Depth 1 are 

assigned a value of 0, and the effects of remaining years, seasons, areas, and depths are 

estimated. The effects of interaction between Year 1 and all areas, and between Area 1  

and all years were also assigned a value of 0, and effects of the other year and area 

interactions are estimated. lkjiU ,,,  is estimated in the same way as in the lognormal model 

(see Eq. 4).  
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 The interaction variable, kipya , , is assumed to have a random effect. We also 

assume that individual interaction effects are exchangeable and are from a normal 

distribution, ),(~ 2

, ppki UNpya  , where the hyperparameters pU  and 2

p   denote the 

mean interaction effect and the variance of interaction effects over different years and 

areas, respectively. The interaction variable, kicya , , is treated in the same way as 

described for the lognormal model. 

 The abundance index for Area k  in Season j  of Year i , kjiYSA ,, , is estimated as: 
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where kjiq ,,  is the expected probability of obtaining a non-zero catch in a single fishing 

event in Area k  in Fishing Season j of Fishing Year i , and is calculated as follows: 
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   (14) 

The abundance index for a year, iY , is estimated in the same way as described for the 

lognormal model (see Eqs. 5 and 6). The yearly relative abundance index, iI , is 

calculated using Eq. 8. 

 

3. Zero-inflated Lognormal Model  

A zero-inflated lognormal model differs from a lognormal model in that it introduces 

an extra probability parameter to capture non-zero or zero values that cannot be directly 

modeled by the lognormal distribution. It also differs from the Delta model, which 
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consists of lognormal and binomial distributions. The Zero-inflated model is composed of 

one single model component. Specifically, CPUEs are modeled as follows: 
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where lkjip ,,,  is the probability of obtaining a non-zero catch in a single fishing event at 

Depth l  in Area k  in Fishing Season j  of Fishing Year i , and lkjUif ,,,  is the probability 

function for the lognormal distribution: 
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The expected CPUE is calculated in the same way as Eq 11. The probability for 

non-zero catches, lkjip ,,, , is also associated with explanatory variables through the Logit 

link function as described for the Delta model (see Eq. 12).  The interaction variables, 

kicya ,  and kipya , , are treated in the same way as described for the lognormal model and 

Delta model. The abundance index for Area k  in Season j  of Year i , kjiYSA ,, , is 

calculated using Eq. 13. Abundance index for a year, iY , is estimated in the same way as 

described for the lognormal model (see Eqs. 5 and 6). Yearly relative abundance index, 

iI , is calculated using Eq. 8. 

 

4. Application of the Models to Albacore Fisheries  

The models were applied to CPUE data from Japanese longline fisheries on albacore 

tuna (Thunnus alalunga) in the south Pacific (south of the equator) for the years 1975-

2006.  The dataset consists of the month of fishing, number of hooks per basket, and 
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catch and effort aggregated by 5°5° spatial blocks within the WCPFC Convention Area. 

Explanatory variables considered in the models are Year, Season, Area, and Depth. The 

monthly catch data were aggregated across the four seasons. Each of such 5° 5° spatial 

blocks is considered to be an Area. Blocks in which the total number of longline sets was 

less than 50 over the 1975-2006 period, i.e., areas rarely fished, were removed from our 

analysis (Fig. 1). Altogether, 95 blocks were removed, leaving 91 blocks which 

experienced fishing more than 49 times for the modeling analysis. The hooks per basket 

(HPB) variable was categorized into 5 classes: <4, 5-6, 7-9, 10-14, and >14 HPB. Fishing 

data with no HPB information were removed from the analysis. Catch rate (CPUE) was 

expressed as number of albacore caught per thousand hooks.  

To fit to the lognormal models, a small constant has to be added to each CPUE due to 

a large number of zero CPUEs. To reduce the number of zero catch rates, CPUEs were 

combined for the same cells (based on depth, area, season and year), and the combined 

CPUEs were fitted to the lognormal models. To measure the fit of the data to the models, 

the coefficient of determination (R2) and deviance information criterion (DIC) were 

calculated  

Bayesian analyses require that all model parameters have prior probability 

distributions. We assigned uninformative priors to all the parameters and 

hyperparameters. Specifically, 0c , cy , cs , ca , cd  were assigned a normal distribution 

with mean = 0, and variance = 100000 (~  2316,0N  ); for Delta and Zero-inflated 

models, 0p , py , ps , pa , pd  were also assigned a normal distribution ~  2316,0N  ; 

for the non-hierarchical lognormal model, each cya  was independently assigned a normal 

distribution,  2316,0~ N ; )0001.0,001.0(~1 Gamma  where 0.001 and 0.0001 
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represent the parameters of shape and rate of the gamma distribution; for the hierarchical 

models, the hyperparameters,  cU  and pU ,  were assigned a normal distribution ~ 

 2316,0N  ; 
c

1  and 
p

1  were assigned a gamma distribution 

)0001.0,001.0(~ Gamma .  

The WinBUGS software program (Spiegelhalter et al. 2003) was used for the 

Bayesian analyses. The first 5000 samples from the posterior distribution were treated as 

a burn-in period. The next 5000 samples from the posterior distribution were saved. Two 

chains were used with different initial values for the convergence test by the Gelman-

Rubin diagnostics (Gelman and Rubin, 1992). Evidence of convergence was warranted 

by this test.  

 

Results 

 The lognormal model appears to fit the data better than the Delta or Zero-inflated 

model based on the values of 
2R  (Table 1). For both the hierarchical and non-

hierarchical lognormal models 
2R  is greater than 0.4 when the data were not combined 

for the same cells (same depth, area, season and year).  When the data were combined, 

only the hierarchical model exhibited an 
2R  greater than 0.4, and the non-hierarchical 

model had an 
2R  (0.23) which was between the 

2R  values for Delta and Zero-inflated 

models. 
2R  is 0.30 for the Delta model, only 0.19 for the Zero-inflated lognormal model 

(Table 1).  

The estimated abundance index appeared to be similar to the nominal catch rates 

in the early years, but was, mostly, significantly less than the nominal catch rates in the 

later years (Figs. 2-5).  The abundance index estimated with the incorporation of 
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predicted catch rates for un-fished areas was consistently lower than those without such 

incorporation for the later years, regardless of the model used, whereas both abundance 

indices appear to be similar in the early years (Figs. 2-5). Variations for the estimated 

abundance index appear to be smaller, when predictions of catch rates are used for the 

lognormal models (Figs. 2-3). Variations appear to be similar whether or not predictions 

are used for the Delta or Zero-inflated lognormal models (Figs. 4-5). 

 Mean abundance indices estimated from all the models appear to be similar for 

the early years, but differ considerably in the later years (Figs. 6-7). Mean abundance 

indices estimated from the lognormal models are, in general, lower than those estimated 

from the Delta or zero-inflated lognormal models in the later years (Figs. 6-7). 

 The deviance information criterion (DIC) was introduced by Spiegelhalter et al. 

(2002) as a measure of model comparison and adequacy. Lower DIC values indicate a 

better model fit. Based on DICs, the Season variable is of more importance than the 

Depth variable to model performance as DIC increases were greater without 

incorporation of Season than Depth (Tables 2-3). The interaction between year and area 

is also a significant variable for the standardization model (Tables 2-3). For the 

lognormal models, the interaction variable appears to be of more importance than either 

the Season or Depth variables, as greater DIC increases were observed without 

incorporation of the interaction variable than without incorporation of Season or Depth, 

or both Season and Depth (Tables 2-3). The interaction between year and area on CPUE, 

cya , is of more importance than that on the probability of obtaining non-zero catches, 

pya , as DIC increases more without incorporation of the latter than the former (Tables 4-

5). 
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For the hierarchical models, the hyperparameters cU  and pU  denote the overall 

mean interaction effect over different years and areas on CPUE and the probability of 

obtaining non-zero catches, respectively. The adequacy of model fitting appears to be 

similar whether cU  and pU  are fixed at zero or are estimated (Tables 3-5). 

 

Discussion 

 We developed four Bayesian CPUE standardization models, non-hierarchical 

lognormal, hierarchical lognormal, Delta lognormal, and zero-inflated lognormal models. 

Based on R
2
 when fitted to the data (Table 1) and DIC values (Tables 2-3), the 

hierarchical lognormal model outperformed the other three models.  

 Compared with nominal CPUEs for the albacore stock, standardized CPUEs in 

the later years are significantly lower, indicating that the impact of Area, Season, Depth, 

and interaction of Year and Area on catch rates was largely removed through the 

standardization process. Therefore, standardized CPUEs should more accurately reflect 

the relative changes in the albacore stock abundance. Standardized CPUEs with the 

incorporation of predicted catch rates for un-fished areas are largely lower than the 

corresponding predictions without these predictions for the later years, which we interpret 

as an indication that there may have been some spatial contraction in the albacore fishing 

patterns.  

 All explanatory variables used in the models are of significance for explaining 

variations in catch rates. In particular, the Season variable is of more importance for the 

model fitting than the Depth variable.  However, in our analysis depth was approximated 

by hooks-per-basket, which may not be the most appropriate measure, but was the only 
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one available. The interaction between year and area on catch rates was more important 

than either Season or Depth in explaining variations in catch rates. It is reasonable, at 

least for the albacore stock, to assume that the mean interaction over all years and areas 

on the catch rates is zero, as this assumption may lead to slightly reduced DIC than when 

the overall mean interaction to be estimated. 

 We provided some new tools for CPUE standardization. These models, especially 

the hierarchical lognormal model,  produce promising outcomes on the albacore catch 

data. These models need to be further tested on other tuna species.   
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Table 1. Coefficient of Determination (R
2
) for the Models.   

   

  
Data Un-Combined for the 
Same Cells 

Data Combined for the Same 
Cells 

   

Non-Hierarchical Lognormal  0.42 0.23 

   

Hierarchical Lognormal  0.48 0.48 

   

Delta  0.30  

   

Zero-inflated Lognormal 0.19   
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Table 2. Coefficient of determination (R
2
) and deviance information criterion (DIC) for the  

lognormal model with fixed effects for the year and area interaction (data un-combined). 

   

Model Types R
2
 DIC 

c0+cy+cs+ca+cd+cya 0.42 111163 

c0+cy+cs+ca+cd 0.41 114834 

c0+cy+ca+cd+cya 0.40 112602 

c0+cy+cs+ca+cya 0.41 111681 

c0+cy+ca+cya 0.39 113124 
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Table 3. Coefficient of determination (R
2
) and deviance information criterion (DIC) for the  

lognormal model with random effects for the year and area interaction (data un-combined). 

   

 R
2
 DIC 

c0+cy+cs+ca+cd+cya 0.48 110773 

c0+cy+cs+ca+cd+cya
0
 0.48 110774 

c0+cy+cs+ca+cd 0.41 114835 

c0+cy+ca+cd+cya
0
 0.47 112210 

c0+cy+cs+ca+cya
0
 0.48 111304 

c0+cy+ca+cya
0
 0.47 112750 

 

cya ~ ),( 2UN The hyperparameters, U  and   are assigned a normal 

distribution and a gamma distribution, respectively. 

cya
0
 ~ ),( 2UN  The hyperparameter, U  is fixed to be 0, and the hyperparameter, 

 , is assigned a gamma distribution. 
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Table 4. Coefficient of determination (R
2
) and deviance information criterion (DIC) for the Delta 

Model. 

   

  R
2
 DIC 

c0+cy+cs+ca+cd+cya 0.30 111692 

p0+py+ps+pa+pd+pya   

   

c0+cy+cs+ca+cd+cya 0.29 113397 

p0+py+ps+pa+pd   

   

c0+cy+cs+ca+cd 0.28 113804 

p0+py+ps+pa+pd+pya   

   

c0+cy+cs+ca+cd+cya
0
 0.30 111698 

p0+py+ps+pa+pd+pya
0
   

   

c0+cy+cs+ca+cd+cya
0
 0.29 113395 

p0+py+ps+pa+pd   

   

c0+cy+cs+ca+cd 0.28 113800 

p0+py+ps+pa+pd+pya
0
     

   

cya ~ ),( 2UN The hyperparameters, U  and   are assigned a normal distribution and a 

gamma distribution, respectively. 

pya
0
 ~ ),( 2UN  The hyperparameter, U  is fixed to be 0, and the hyperparameter,  , is 

assigned a gamma distribution  
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Table 5. Coefficient of determination (R
2
) and deviance information criterion (DIC) for the Zero- 

inflated lognormal model.     

   

  R
2
 DIC 

c0+cy+cs+ca+cd+cya 0.19 123593 

p0+py+ps+pa+pd+pya   

   

c0+cy+cs+ca+cd+cya 0.18 125064 

p0+py+ps+pa+pd   

   

c0+cy+cs+ca+cd 0.14 126642 

p0+py+ps+pa+pd+pya   

   

c0+cy+cs+ca+cd+cya
0
 0.18 123419 

p0+py+ps+pa+pd+pya
0
   

   

c0+cy+cs+ca+cd+cya
0
 0.18 125065 

p0+py+ps+pa+pd   

   

c0+cy+cs+ca+cd 0.14 125476 

p0+py+ps+pa+pd+pya
0
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Fig. 1. Fishing distribution (longline sets less than 50 are not used in the analyses).
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Fig. 2. Estimated annual abundance index relative to the first year with 95% credible intervals, using the Lognormal Model with catch 

data combined for each cell (same depth, area, season and year). Index was estimated either without (BLUE) or with (RED) 

incorporation of predictions of abundance index for the un-fished areas. 
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Fig. 3. Estimated annual abundance index relative to the first year with 95% credible intervals, using the Lognormal Model without 

(BLUE) or with (RED) incorporation of predictions of abundance index for the un-fished areas. 
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Fig. 4. Estimated annual abundance index relative to the first year with 95% credible intervals, using the Lognormal Model  without 

(BLUE) or with (RED) incorporation of predictions of abundance index for the un-fished areas. 
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Fig. 5. Estimated annual abundance index relative to the first year with 95% credible intervals, using the Zero-inflated Lognormal 

Model  without (BLUE) or with (RED) incorporation of predictions of abundance index for the un-fished areas. 
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Fig. 6. Estimated annual mean abundance index relative to the first year, using non-hierarchical lognormal(with combined and un-

combined data), Delta, and Zero-inflated lognormal models without incorporation of predictions of abundance index for the un-fished 

areas. 
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Fig. 7. Estimated annual mean abundance index relative to the first year, using hierarchical lognormal (with combined and un-

combined data), Delta, and Zero-inflated lognormal models with incorporation of predictions of abundance index for the un-fished 

areas. 


