
You shall know a word by
the company it keeps!

Collocation extraction with statistical association measures

Part 2

Marco Baroni1 and Stefan Evert2

1Center for Mind/Brain Sciences
University of Trento

2Cognitive Science Institute
University of Onsabrück

Potsdam, 3-14 September 2007

Outline

Scaling up: working with large data sets
Statistical association measures
Sorting and ranking data frames

The evaluation of association measures
Precision/recall tables and graphs
MWE evaluation in R

Scaling up

I We know how to compute association scores (X 2, Fisher,
and log θ) for individual contingency tables now . . .
. . . but we want to do it automatically for 24,000 bigrams in
the Brown data set, or an even larger number word pairs

I Of course, you can write a loop (if you know C/Java):

> attach(Brown)
> result <- numeric(nrow(Brown))
> for (i in 1:nrow(Brown)) {

if ((i %% 100) == 0) cat(i, " bigrams done\n")
A <- rbind(c(O11[i],O12[i]), c(O21[i],O22[i]))
result[i] <- chisq.test(A)$statistic

}

+ fisher.test() is even slower . . .

Vectorising algorithms

I Standard iterative algorithms (loops, function calls)
are excruciatingly slow in R

I R is an interpreted language designed for interactive work
and small scripts, not for implementing complex algorithms

I Large amounts of data can be processed efficiently with
vector and matrix operations ê vectorisation

I even computations involving millions of numbers are carried
out instantaneously

I How do you store a vector of contingency tables?

+ as vectors O11, O12, O21, O22 in a data frame

Vectorising algorithms

I High-level functions like chisq.test() and
fisher.test() cannot be applied to vectors

I only accept a single contingency table
I or vectors of cross-classifying factors from which a

contingency table is built automatically

I Need to implement association measures ourselves
I i.e. calculate a test statistic or effect-size estimate

to be used as an association score

ê have to take a closer look at the statistical theory

Observed and expected frequencies

w2 ¬w2 w2 ¬w2

w1 O11 O12 = R1 w1 E11 =

R1C1

N
E12 =

R1C2

N

¬w1 O21 O22 = R2 ¬w1 E21 =

R2C1

N
E22 =

R2C2

N

= C1 = C2 = N

I R1, R2 are the row sums (R1 = marginal frequency f1)
I C1, C2 are the column sums (C1 = marginal frequency f2)
I N is the sample size
I Eij are the expected frequencies under independence H0

Adding marginals and expected frequencies in R
first, keep R from performing integer arithmetic
> Brown <- transform(Brown,
O11=as.numeric(O11), O12=as.numeric(O12),
O21=as.numeric(O21), O22=as.numeric(O22))

> Brown <- transform(Brown,
R1=O11+O12, R2=O21+O22,
C1=O11+O21, C2=O12+O22,
N=O11+O12+O21+O22)

we could also have calculated them laboriously one by one:
Brown$R1 <- Brown$O11 + Brown$O12 # etc.

> Brown <- transform(Brown,
E11=(R1*C1)/N, E12=(R1*C2)/N,
E21=(R2*C1)/N, E22=(R2*C2)/N)

now check that E11, . . . , E22 always add up to N!

Statistical association measures
Measures of significance

I Statistical association measures can be calculated from
the observed, expected and marginal frequencies

I E.g. the chi-squared statistic X 2 is given by

chi-squared =
∑

ij

(Oij − Eij)
2

Eij

(you can check this in any statistics textbook)
I The chisq.test() function uses a different version with

Yates’ continuity correction applied:

chi-squaredcorr =
N

(
|O11O22 − O12O21| − N/2

)2

R1R2C1C2

Statistical association measures
Measures of significance

I P-values for Fisher’s exact test are rather tricky (and
computationally expensive)

I Can use likelihood ratio test statistc G2, which is less
sensitive to small and skewed samples than X 2

(Dunning 1993, 1998; Evert 2004)
I G2 uses same scale (asymptotic χ2

1 distribution) as X 2,
but you will notice that scores are entirely different

log-likelihood = 2
∑

ij

Oij log
Oij

Eij

Significance measures in R
chi-squared statistic with Yates’ correction
> Brown <- transform(Brown,

chisq = N *
(abs(O11*O22 - O12*O21) - N/2)^2 /
(R1 * R2 * C1 * C2)

)

Compare this to the output of chisq.test() for some bigrams.
What happens if you do not apply Yates’ correction?

> Brown <- transform(Brown,
logl = 2 * (
O11*log(O11/E11) + O12*log(O12/E12) +
O21*log(O21/E21) + O22*log(O22/E22)

))

> summary(Brown$logl) # do you notice anything strange?

Significance measures in R
Watch your numbers!

I log 0 is undefined, so G2 cannot be calculated if any of the
observed frequencies Oij are zero

I Why are the expected frequencies Eij unproblematic?
I For these terms, we can substitute 0 = 0 · log 0

> Brown <- transform(Brown,
logl = 2 * (
ifelse(O11>0, O11*log(O11/E11), 0) +
ifelse(O12>0, O12*log(O12/E12), 0) +
ifelse(O21>0, O21*log(O21/E21), 0) +
ifelse(O22>0, O22*log(O22/E22), 0)

))
ifelse() is a vectorised if-conditional

Effect-size measures

I Direct implementation allows a wide variety of effect size
measures to be calculated

I but only direct maximum-likelihood estimates,
confidence intervals are too complex (and expensive)

I Mutual information and Dice coefficient give two different
perspectives on collocativity:

MI = log2
O11

E11
Dice =

2O11

R1 + C1

I Modified log odds ratio is a reasonably good estimator:

odds-ratio = log
(O11 + 1

2)(O22 + 1
2)

(O12 + 1
2)(O21 + 1

2)

Further reading
I There are many other association measures

I Pecina (2005) lists 57 different measures

I Evert, S. (to appear). Corpora and collocations.
In A. Lüdeling and M. Kytö (eds.), Corpus Linguistics. An
International Handbook, article 57. Mouton de Gruyter, Berlin.

I explains characteristic properties of the measures
I contingency tables for textual and surface cooccurrences

I Evert, Stefan (2004). The Statistics of Word
Cooccurrences: Word Pairs and Collocations.
Dissertation, Institut für maschinelle Sprachverarbeitung,
University of Stuttgart. Published in 2005, URN
urn:nbn:de:bsz:93-opus-23714.

I full sampling models and detailed mathematical analysis
I Online repository: www.collocations.de/AM

I with reference implementations in the UCS toolkit software

+ all these sources use the notation introduced here

Implementiation of the effect-size measures

Can you compute the association scores without peeking ahead?

> Brown <- transform(Brown,
MI = log2(O11/E11),
Dice = 2 * O11 / (R1 + C1),
log.odds = log(
((O11 + .5) * (O22 + .5)) /
((O12 + .5) * (O21 + .5))

))

check summary(Brown): are there any more NA’s?

How to use association scores

I Goal: use association scores to identify “true” collocations

I Strategy 1: select word pairs with score above threshold
I no theoretically motivated thresholds for effect size
I significance thresholds not meaningful for collocations

(How many bigrams are significant with p < .001?)
I alternative: take n = 100, 500, 1000, . . . highest-scoring

word pairs ê n-best list (empirical threshold)

I Strategy 2: rank word pairs by association score
I reorder data frame by decreasing association scores
I word pairs at the top are “more collocational”
I corresponds to n-best lists of arbitrary sizes

Rankings in R

> sum(Brown$chisq > qchisq(.999,df=1)) # p < .001
> sum(Brown$logl > qchisq(.999,df=1))

> Brown <- transform(Brown,
r.logl = rank(-logl), # rank by decreasing score
r.MI = rank(-MI, ties="min"), # see ?rank

r.Dice = rank(-Dice, ties="min"))

> subset(Brown, r.logl <= 20, # 20-best list for log-likelihood
c(word1,word2,O11,logl,r.logl,r.MI,r.Dice))

Now do the same for MI and Dice. What are your observations?

How many anti-collocations are there among the 100 most
collocational bigrams according to log-likelihood?

Sorting data frames in R

> x <- 10 * sample(10) # 10, 20, . . . , 100 in random order

> sort(x) # sorting a vector is easy (default: ascending)
> sort(x, decreasing=TRUE)

But for sorting a data frame, we need an index vector that tell us
in what order to rearrange the rows of the table.

> sort.idx <- order(x) # also has decreasing option
> sort.idx
> x[sort.idx]

Sorting data frames in R: practice time

try to sort bigram data set by log-likelihood measure

> sort.idx <- order(Brown$logl, decreasing=TRUE)
> Brown.logl <- Brown[sort.idx,]

> Brown.logl[1:20, 1:6]

Now construct a simple character vector with the first 100 bigrams,
or show only relevant columns of the data frame for the first 100 rows.

Show the first 100 noun-noun bigrams (pos code N) and
the first 100 adjective-noun bigrams (codes J and N).

If you know some programming, can you write a function that
displays the first n bigrams for a selected association measure?

Sorting data frames in R: practice time
Example solutions for practice questions

> paste(Brown.logl$word1, Brown.logl$word2)[1:100]
> paste(Brown$word1, Brown$word2)[sort.idx[1:100]]

advanced code ahead: make your life easy with some R knowledge
> show.nbest <- function(myData,
AM=c("chisq","logl","MI","Dice","O11"), n=20) {
AM <- match.arg(AM) # allows unique abbreviations
idx <- order(myData[[AM]], decreasing=TRUE)
myData[idx[1:n], c("word1","word2","O11",AM)]

}

> show.nbest(Brown, "chi")

Can you construct a table that compares the measures side-by-side?

Evaluation of association measures

I One way to achieve a better understanding of different
association measures is to evaluate and compare their
performance in multiword extraction tasks

I published studies include Daille (1994), Krenn (2000), Evert
& Krenn (2001, 2005), Pearce (2002) and Pecina (2005)

I “Standard” multiword extraction approach
I extract (syntactic) collocations from suitable text corpus
I rank according to score of selected association measure
I take n-best list as multiword candidates
I additional filtering, e.g. by frequency threshold
I candidates have to be validated manually by expert

I Evaluation based on manual validation
I expert marks candidates as true (TP) or false (FP) positive
I calculate precision of n-best list = #TP/n
I if all word pairs are annotated, also calculate recall

The PP-verb data set of Krenn (2000)

I Krenn (2000) used a data set of German PP-verb pairs to
evaluate the performance of association measures

I goal: identification of lexicalised German PP-verb
combinations such as zum Opfer fallen (fall victim to),
ums Leben kommen (lose one’s life), im Mittelpunkt stehen
(be the centre of attention), etc.

I manual annotation distinguishes between support-verb
constructions and figurative expressions (both are MWE)

I candidate data for original study extracted from 8 million
word fragment of German Frankfurter Rundschau corpus

I PP-verb data set used in this session
I candidates extracted from full Frankfurter Rundschau

corpus (40 million words, July 1992 – March 1993)
I more sophisticated syntactic analysis used
I frequency threshold f ≥ 30 leaves 5102 candidates

Table of n-best precision values

I Evaluation computes precision (and optionally) recall for
various association measures and n-best lists

n-best logl chisq t-score MI Dice odds freq
100 42.0 24.0 38.0 19.0 21.0 17.0 27.0
200 37.5 23.5 35.0 16.5 19.5 14.0 26.5
500 30.4 24.6 30.2 18.0 16.4 19.6 23.0

1,000 27.1 23.9 28.1 21.6 14.9 24.4 19.2
1,500 25.3 25.0 24.8 24.3 13.2 25.3 18.0
2,000 23.4 23.4 21.9 23.1 12.6 23.3 16.3

I More intuitive presentation for arbitrary n-best lists in the
form of precision graphs (or precision-recall graphs)

Precision graphs

0 1000 2000 3000 4000 5000

0
10

20
30

40

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

Precision graphs

0 1000 2000 3000 4000 5000

0
10

20
30

40

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
Dice
θθ
f

Precision graphs: zooming in

0 500 1000 1500 2000 2500

0
10

20
30

40

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
Dice
θθ
f

Precision-by-recall graphs

0 20 40 60 80 100

0
10

20
30

40

recall (%)

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
Dice
θθ
f

The PP-verb data set

I krenn_pp_verb.tbl available from course homepage
I Data frame with 5102 rows and 14 columns:

I PP = prepositional phrase (lemmatised)
I verb = lexical verb (lemmatised)
I is.colloc = Boolean variable indicating TPs (= MWE)
I is.SVC, is.figur distinguish subtypes of MWE
I freq, MI, Dice, z.score, t.score, chisq, chisq.corr,

log.like, Fisher = precomputed association scores
(Do you recognise all association measures?)

I Our goal is to reproduce the table and plots shown on the
previous slides (perhaps not all the bells and whistles)

Precision tables: your turn!

> PPV <- read.delim("krenn_pp_verb.tbl")
> colnames(PPV)

> attach(PPV)

You should now be able to sort the data set and calculate
precision for some association measures and n-best lists.
(hint: sum() counts TRUE entries in Boolean vector)

Precision tables

> idx.logl <- order(log.like, decreasing=TRUE)
> sum(is.colloc[idx.logl[1:500]]) / 500 # n = 500
> sum(is.colloc[idx.logl[1:1000]]) / 1000 # n = 1000

use cumsum() to calculate precision for all n-best lists
> prec <- cumsum(is.colloc[idx.logl]) /
(1:nrow(PPV))

> prec[c(100,200,500,1000,1500,2000)]

Precision tables: an elegant solution

> show.prec <- function(myData, AM, n) {
stopifnot(AM %in% colnames(myData)) # safety first!
sort.idx <- order(myData[[AM]], decreasing=TRUE)
prec <- cumsum(myData$is.colloc[sort.idx]) /

(1:nrow(myData))
result <- data.frame(100 * prec[n]) # percentages
rownames(result) <- n # add nice row/column labels
colnames(result) <- AM
result # return single-column data frame with precision values
}

> show.prec(PPV, "chisq", c(100,200,500,1000))

Precision tables: an elegant solution

> n.list <- c(100,200,500,1000,1500,2000)

data frames of same height can be combined in this way
> prec.table <- cbind(

show.prec(PPV, "log.like", n.list),
show.prec(PPV, "Fisher", n.list),
show.prec(PPV, "chisq", n.list),
show.prec(PPV, "chisq.corr", n.list),
show.prec(PPV, "z.score", n.list),
show.prec(PPV, "t.score", n.list),
show.prec(PPV, "MI", n.list),
show.prec(PPV, "Dice", n.list),
show.prec(PPV, "freq", n.list)

)

> round(prec.table, 1) # rounded values are more readable

Precision graphs

first, generate sort index for each association measure
> idx.ll <- order(log.like, decreasing=TRUE)
> idx.chisq <- order(chisq, decreasing=TRUE)
> idx.t <- order(t.score, decreasing=TRUE)
> idx.MI <- order(MI, decreasing=TRUE)
> idx.Dice <- order(Dice, decreasing=TRUE)
> idx.f <- order(freq, decreasing=TRUE)

Precision graphs

second, calculate precision for all n-best lists
> n.vals <- 1:nrow(PPV)

> prec.ll <- cumsum(is.colloc[idx.ll]) *
100 / n.vals

> prec.chisq <- cumsum(is.colloc[idx.chisq]) *
100 / n.vals

> prec.t <- cumsum(is.colloc[idx.t]) *
100 / n.vals

> prec.MI <- cumsum(is.colloc[idx.MI]) *
100 / n.vals

> prec.Dice <- cumsum(is.colloc[idx.Dice]) *
100 / n.vals

> prec.f <- cumsum(is.colloc[idx.f]) *
100 / n.vals

Precision graphs

increase font size, set plot margins (measured in lines of text)
> par(cex=1.2, mar=c(4,4,1,1)+.1)

third: plot as line, then add lines for further measures
> plot(n.vals, prec.ll, type="l",
ylim=c(0,42), xaxs="i", # fit x-axis range tightly
lwd=2, col="black", # line width and colour
xlab="n-best list", ylab="precision (%)")

> lines(n.vals, prec.chisq, lwd=2, col="blue")
> lines(n.vals, prec.t, lwd=2, col="red")
> lines(n.vals, prec.MI, lwd=2, col="black",
lty="dashed") # line type: solid, dashed, dotted, . . .

> lines(n.vals, prec.Dice, lwd=2,
col="blue", lty="dashed")

> lines(n.vals, prec.f, lwd=2,
col="red", lty="dashed")

Precision graphs

add horizontal line for baseline precision
> abline(h = 100 * sum(is.colloc) / nrow(PPV))

and legend with labels for the precision lines
> legend("topright", inset=.05, # easy positioning of box
bg="white", # fill legend box so it may cover other graphics
lwd=2, # short vectors are recycled as necessary
col=c("black", "blue", "red"),
lty=c("solid","solid","solid", # no default values here!

"dashed","dashed","dashed"),
either string vector, or ‘‘expression’’ for mathematical typesetting
legend=expression(G^2, X^2, t, "MI", "Dice", f))

Precision graphs: playtime

I Add further decorations to plot (baseline text, arrows, . . .)
I Write functions to simplify plot procedure

I you may want to explore type="n" plots
I Precision values highly erratic for n < 50 ê don’t show
I Graphs look smoother with thinning

I increment n in steps of 5 or 10 (rather than 1)
I Calculate recall and create precision-by-recall graphs

+ all those bells, whistles and frills are implemented in the
UCS toolkit (www.collocations.de/software.html)

