Word Frequency Distributions: The *zipfR* Package

Marco Baroni1 and Stefan Evert2

Center for Mind/Brain Sciences
 University of Trento

²Cognitive Science Institute University of Onsabrück

Potsdam, 3-14 September 2007

Lexical statistics

Zipf 1949/1961, Baaven 2001, Evert 2004

- Statistical study of the distribution of types (words or other linquistic units) in texts
 - remember the distinction between types and tokens?
- Different from other categorical data because of the extreme richness of types
 - ▶ people often speak of Zipf's law in this context

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipt's law Some applications

Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models

zipfR

Basic terminology

- ▶ N: sample / corpus size, number of tokens in the sample
- ▶ V: vocabulary size, number of distinct types in the sample
- V_m: spectrum element m, number of types in the sample with frequency m (i.e. exactly m occurrences)
- V₁: number of hapax legomena, types that occur only once in the sample (for hapaxes, #types = #tokens)
- A sample: a b b c a a b a
- ▶ N = 8, V = 3, $V_1 = 1$

Rank / frequency profile

- ▶ The sample: c a a b c c a c d
- ► Frequency list ordered by decreasing frequency

t	f
С	4
а	3
b	1
d	1

► Rank / frequency profile: type labels instead of ranks:

Expresses type frequency as function of rank of a type

Top and bottom ranks in the Brown corpus

top frequencies			bottom frequencies		
r	f	word	rank range f randomly selected example		
1	62642	the	7967- 8522	10	recordings, undergone, privileges
2	35971	of	8523- 9236	9	Leonard, indulge, creativity
3	27831	and	9237-10042	8 unnatural, Lolotte, authenticity	
4	25608	to	10043-11185	7	diffraction, Augusta, postpone
5	21883	a	11186-12510	6	uniformly, throttle, agglutinin
6	19474	in	12511-14369	5	Bud, Councilman, immoral
7	10292	that	14370-16938	4	verification, gleamed, groin
8	10026	is	16939-21076	3	Princes, nonspecifically, Arger
9	9887	was	21077-28701	2	blitz, pertinence, arson
10	8811	for	28702-53076	1	Salaries, Evensen, parentheses

Rank/frequency profile of Brown corpus

Frequency spectrum

- ▶ The sample: c a a b c c a c d
- ► Frequency classes: 1 (b, d), 3 (a), 4 (c)
- ► Frequency spectrum:

m	V _m
1	2
3	1
4	1

Frequency spectrum of Brown corpus

Vocabulary growth curve

▶ The sample: **a b b c a a b a**

▶
$$N = 1, V = 1, V_1 = 1 \quad (V_2 = 0, \ldots)$$

▶ $N = 3, V = 2, V_1 = 1 \quad (V_2 = 1, V_3 = 0, \ldots)$

▶ $N = 5, V = 3, V_1 = 1 \quad (V_2 = 2, V_3 = 0, \ldots)$

▶ $N = 8, V = 3, V_1 = 1 \quad (V_2 = 0, V_3 = 1, V_4 = 1, \ldots)$

Vocabulary growth curve of Brown corpus

With V_1 growth in red (curve smoothed with binomial interpolation)

Typical frequency patterns

Across text types & languages

Typical frequency patterns

The Italian prefix ri- in the la Repubblica corpus

Zipf's law

- Straight line in double-logarithmic space corresponds to power law for original variables
- ► This leads to Zipf's (1949, 1965) famous law:

$$f(w) = \frac{C}{r(w)^a}$$

- ▶ With a = 1 and C =60,000, Zipf's law predicts that:
 - most frequent word occurs 60,000 times
 - second most frequent word occurs 30,000 times
 - third most frequent word occurs 20,000 times
 - and there is a long tail of 80,000 words with frequencies between 1.5 and 0.5 occurrences(!)

Is there a general law?

- Language after language, corpus after corpus, linguistic type after linguistic type, ... we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law
- ► Nature of this relation becomes clearer if we plot log *f* as a function of log *r*

Zipf's law

Logarithmic version

Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

▶ If we take logarithm of both sides, we obtain:

$$\log f(w) = \log C - a \log r(w)$$

- Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space
- ▶ Best fit a and C can be found with least-squares method
- Provides intuitive interpretation of a and C:
 - a is slope determining how fast log frequency decreases
 - log C is intercept, i.e., predicted log frequency of word with rank 1 (log rank 0) = most frequent word

Zipf's law

Fitting the Brown rank/frequency profile

Zipf-Mandelbrot vs. Zipf's law

Fitting the Brown rank/frequency profile

Zipf-Mandelbrot law

Mandelbrot 1953

Mandelbrot's extra parameter:

$$f(w) = \frac{C}{(r(w) + b)^a}$$

- ▶ Zipf's law is special case with b = 0
- ► Assuming *a* = 1, *C* =60,000, *b* = 1:
 - For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
 - For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94
- ▶ Zipf-Mandelbrot law forms basis of statistical LNRE models
 - ZM law derived mathematically as limiting distribution of vocabulary generated by a character-level Markov process

Applications of word frequency distributions

- Most important application: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
 - productivity (in morphology, syntax, . . .)
 - lexical richness
 - (in stylometry, language acquisition, clinical linguistics, ...)
 - practical NLP (est. proportion of OOV words, typos, ...)
- need method for predicting vocab. growth on unseen data
- ▶ Direct applications of Zipf's law
 - population model for Good-Turing smoothing
 - realistic prior for Bayesian language modelling
- read model of type probability distribution in the population

Vocabulary growth: Pronouns vs. ri- in Italian

N	V (pron.)	V (ri-)
5000	67	224
10000	69	271
15000	69	288
20000	70	300
25000	70	322
30000	71	347
35000	71	364
40000	71	377
45000	71	386
50000	71	400

LNRE models for word frequency distributions

- ► LNRE = large number of rare events (cf. Baayen 2001)
- ► Statistics: corpus = random sample from population
- population characterised by vocabulary of types w_k with occurrence probabilities π_k

 - ▶ NB: not necessarily identical to Zipf ranking in sample!
- ▶ LNRE model = population model for type probabilities, i.e. a function $k \mapsto \pi_k$ (with small number of parameters)
 - type probabilities π_k cannot be estimated reliably from a corpus, but parameters of LNRE model can

Vocabulary growth: Pronouns vs. ri- in Italian

Vocabulary growth curves

Examples of population models

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well
- ► Re-phrase the law for type probabilities:

$$\pi_k := \frac{C}{(k+b)^a}$$

- ▶ Two free parameters: a > 1 and b > 0
- C is not a parameter but a normalization constant, needed to ensure that $\sum_{k} \pi_{k} = 1$
- ▶ this is the Zipf-Mandelbrot population model

The parameters of the Zipf-Mandelbrot model

The parameters of the Zipf-Mandelbrot model

The finite Zipf-Mandelbrot model

- ➤ Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small
- ▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-12}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)
- Alternative: finite (but often very large) number of types in the population
- We call this the **population vocabulary size** S (and write $S = \infty$ for an infinite type population)

The finite Zipf-Mandelbrot model

- ► The finite Zipf-Mandelbrot model simply stops after the first S types (w₁,..., w_S)
- ➤ S becomes a new parameter of the model
 → the finite Zipf-Mandelbrot model has 3 parameters

Abbreviations:

- ► ZM for Zipf-Mandelbrot model
- ► fZM for finite Zipf-Mandelbrot model

Sampling from a population model

 1	18	48	18	108	23	34	42	- 1	#1:
 time	course	area	course	town	school	room	order	time	
 8	4	7	4	3	36	23	28	286	#2:
 16	1	17	17	11	21	105	11	2	#3:
 28	20	25	2	223	34	110	3	44	#4:
	31								
	20								
	16								
 37	85	15	19	24	5	147	7	11	#8:
- :	:	- 3	:	:	:	:	- 3	:	:

Sampling from a population model

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:

Use computer simulation to sample from this model:

- ▶ Draw *N* tokens from the population such that in each step, type w_k has probability π_k to be picked
- ► This allows us to make predictions for samples (= corpora) of arbitrary size *N* ⇔ extrapolation

Samples: type frequency list & spectrum

rank r	f _r	type k	n	$n \mid V_m$	
1	37	6		1 83	_
2	36	1		2 22	
3	33	3	(3 20	
4	31	7	4		
5	31	10		5 10	
6	30	5	(
7	28	12		7 5	
8	27	2	8	7 5 3 3 9 3 0 3	
9	24	4	ç	9 3	
10	24	16	10) 3	
11	23	8		: :	
12	22	14		. 1 .	
:	:	:	S	ample #1	

Samples: type frequency list & spectrum

rank r	f _r	type k		m	V _m
			_		
1	39	2		1	76
2	34	3		2	27
3	30	5		3	17
4	29	10		4	10
5	28	8		5	6
6	26	1		6	5
7	25	13		7	7
8	24	7		8	3
9	23	6		10	4
10	23	11		11	2
11	20	4		:	:
12	19	17			
:	:	:		san	nple #2

Random variation: frequency spectrum

Random variation: vocabulary growth curve

Expected values

- ► There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely
- ► Take the average over a large number of samples, called expected value or expectation in statistics
- Notation: E[V(N)] and E[V_m(N)]
 - indicates that we are referring to expected values for a sample of size N
 - rather than to the specific values V and V_m
 observed in a particular sample or a real-world data set
- Expected values can be calculated efficiently without generating thousands of random samples

The expected vocabulary growth curve

The expected frequency spectrum

Confidence intervals for the expected VGC

Parameter estimation by trial & error

Parameter estimation by trial & error

Parameter estimation by trial & error

Parameter estimation by trial & error

Parameter estimation by trial & error

Automatic parameter estimation

Minimisation of suitable cost function for frequency spectrum

- ▶ By trial & error we found a = 2.0 and b = 550
- ▶ Automatic estimation procedure: *a* = 2.39 and *b* = 1968
- Goodness-of-fit: p ≈ 0 (multivariate chi-squared test)

Parameter estimation by trial & error

Summary

LNRE modelling in a nutshell:

- compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- estimate parameters of LNRE model by matching observed and expected frequency spectrum
- evaluate goodness-of-fit on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni & Evert 2007)
 - in principle, you should only go on if model gives a plausible explanation of the observed data!
- use LNRE model to compute expected frequency spectrum for arbitrary sample sizes
 - continuous extrapolation of vocabulary growth curve
 - or use population model directly as Bayesian prior etc.

zipfR Loading

- ▶ http://purl.org/stefan.evert/zipfR
- ► Already installed on the Potsdam machines
- Explore your GUI for general package installation and managing options

```
library(zipfR)
?zipfR
data(package="zipfR")
```

Importing data

```
data(ItaRi.spc)
data(ItaRi.emp.vgc)

my.spc <- read.spc("my.spc.txt")
my.vgc <- read.vgc("my.vgc.txt")

my.tfl <- read.tfl("my.tfl.txt")
my.spc <- tfl2spc(my.tfl)</pre>
```

Looking at spectra

```
summary(ItaRi.spc)
ItaRi.spc
N(ItaRi.spc)
V(ItaRi.spc)
Vm(ItaRi.spc,1)
Vm(ItaRi.spc,1)
Vm(ItaRi.spc,1);

# Baayen's P
Vm(ItaRi.spc,1) / N(ItaRi.spc)
plot(ItaRi.spc, log="x")
```

Looking at vgcs

summary(ItaRi.emp.vgc) ItaRi.emp.vgc N(ItaRi.emp.vgc)

plot(ItaRi.emp.vgc, add.m=1)

ultra-

- Load the spectrum and empirical vgc of the rarer prefix ultra-
- ► Compute binomially interpolated vgc for ultra-
- ▶ Plot the binomially interpolated ri- and ultra- vgcs together

Creating vgcs with binomial interpolation

interpolated vac

```
ItaRi.bin.vgc <- vgc.interp(ItaRi.spc,
N(ItaRi.emp.vgc), m.max=1)
summary(ItaRi.bin.vgc)
# comparison
plot(ItaRi.emp.vgc, ItaRi.bin.vgc,
legend=c("observed", "interpolated"))</pre>
```

Estimating LNRE models

```
# fZM model; you can also try ZM and
# GIGP, and compare

ItaUltra.fzm <- lnre("fzm", ItaUltra.spc)
summary(ItaUltra.fzm)</pre>
```

Observed/expected spectra at estimation size

expected spectrum

```
ItaUltra.fzm.spc <- lnre.spc(ItaUltra.fzm,
N(ItaUltra.fzm))</pre>
```

compare

```
plot(ItaUltra.spc, ItaUltra.fzm.spc,
legend=c("observed","fzm"))
```

plot first 10 elements only

```
plot(ItaUltra.spc, ItaUltra.fzm.spc,
legend=c("observed","fzm"),
m.max=10)
```

Compare growth of two categories

extrapolation of ultra- V to ri- sample size

```
ItaUltra.ext.vgc <- lnre.vgc(ItaUltra.fzm,
N(ItaRi.emp.vgc))</pre>
```

compare

```
plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,
N0=N(ItaUltra.fzm), legend=c("ultra-","ri-"))
```

zooming in

```
plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,
N0=N(ItaUltra.fzm), legend=c("ultra-","ri-"),
xlim=c(0,1e+5))
```