Word Frequency Distributions: The zipfR Package

Marco Baroni ${ }^{1}$ and Stefan Evert ${ }^{2}$

${ }^{1}$ Center for Mind/Brain Sciences
University of Trento
${ }^{2}$ Cognitive Science Institute University of Onsabrück

Potsdam, 3-14 September 2007

Outline

Lexical statistics \& word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf's law
Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

Lexical statistics

Zipf 1949/1961, Baayen 2001, Evert 2004

- Statistical study of the distribution of types (words or other linguistic units) in texts
- remember the distinction between types and tokens?
- Different from other categorical data because of the extreme richness of types
- people often speak of Zipf's law in this context

Basic terminology

- N : sample / corpus size, number of tokens in the sample
- V: vocabulary size, number of distinct types in the sample
- V_{m} : spectrum element m, number of types in the sample with frequency m (i.e. exactly m occurrences)
- V_{1} : number of hapax legomena, types that occur only once in the sample (for hapaxes, \#types = \#tokens)
- A sample: a b b c a a b a
- $N=8, V=3, V_{1}=1$

Rank / frequency profile

- The sample: c a a b c c a c d
- Frequency list ordered by decreasing frequency

t	f
c	4
a	3
b	1
d	1

Rank / frequency profile

- The sample: c a a b c c a c d
- Frequency list ordered by decreasing frequency

t	f
c	4
a	3
b	1
d	1

- Rank / frequency profile: type labels instead of ranks:

r	f
1	4
2	3
3	1
4	1

- Expresses type frequency as function of rank of a type

Rank/frequency profile of Brown corpus

Top and bottom ranks in the Brown corpus

top frequencies			bottom frequencies		
\boldsymbol{r}	\boldsymbol{f}	word	rank range	\boldsymbol{f}	randomly selected examples
1	62642	the	$7967-8522$	10	recordings, undergone, privileges
2	35971	of	$8523-9236$	9	Leonard, indulge, creativity
3	27831	and	$9237-10042$	8	unnatural, Lolotte, authenticity
4	25608	to	$10043-11185$	7	diffraction, Augusta, postpone
5	21883	a	$1186-12510$	6	uniformly, throttle, agglutinin
6	19474	in	$12511-14369$	5	Bud, Councilman, immoral
7	10292	that	$14370-16938$	4	verification, gleamed, groin
8	10026	is	$16939-21076$	3	Princes, nonspecifically, Arger
9	9887	was	$21077-28701$	2	blitz, pertinence, arson
10	8811	for	$28702-53076$	1	Salaries, Evensen, parentheses

Frequency spectrum

- The sample: ca a b c c a c d
- Frequency classes: 1 (b, d), 3 (a), 4 (c)
- Frequency spectrum:

m	V_{m}
1	2
3	1
4	1

Frequency spectrum of Brown corpus

Vocabulary growth curve

- The sample: a b b c a a b a

Vocabulary growth curve

- The sample: a b b c a a b a
- $N=1, V=1, V_{1}=1 \quad\left(V_{2}=0, \ldots\right)$

Vocabulary growth curve

- The sample: a b b c a a b a
- $N=1, V=1, V_{1}=1 \quad\left(V_{2}=0, \ldots\right)$
- $N=3, V=2, V_{1}=1 \quad\left(V_{2}=1, V_{3}=0, \ldots\right)$

Vocabulary growth curve

- The sample: a b b c a a b a
- $N=1, V=1, V_{1}=1 \quad\left(V_{2}=0, \ldots\right)$
- $N=3, V=2, V_{1}=1 \quad\left(V_{2}=1, V_{3}=0, \ldots\right)$
- $N=5, V=3, V_{1}=1 \quad\left(V_{2}=2, V_{3}=0, \ldots\right)$

Vocabulary growth curve

- The sample: a b b c a a b a
- $N=1, V=1, V_{1}=1 \quad\left(V_{2}=0, \ldots\right)$
- $N=3, V=2, V_{1}=1 \quad\left(V_{2}=1, V_{3}=0, \ldots\right)$
- $N=5, V=3, V_{1}=1 \quad\left(V_{2}=2, V_{3}=0, \ldots\right)$
- $N=8, V=3, V_{1}=1 \quad\left(V_{2}=0, V_{3}=1, V_{4}=1, \ldots\right)$

Vocabulary growth curve of Brown corpus

With V_{1} growth in red (curve smoothed with binomial interpolation)

Outline

Lexical statistics \& word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf's law
Some applications

```
Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
```

zipfR

Typical frequency patterns

Across text types \& languages

Typical frequency patterns

The Italian prefix ri- in the la Repubblica corpus

Is there a general law?

- Language after language, corpus after corpus, linguistic type after linguistic type, ... we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law

Is there a general law?

- Language after language, corpus after corpus, linguistic type after linguistic type, ... we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law
- Nature of this relation becomes clearer if we plot $\log f$ as a function of $\log r$

Outline

Lexical statistics \& word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf's law
Some applications

Statistical LNRE Models

ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

Zipf's law

- Straight line in double-logarithmic space corresponds to power law for original variables
- This leads to Zipf's $(1949,1965)$ famous law:

$$
f(w)=\frac{C}{r(w)^{a}}
$$

Zipf's law

- Straight line in double-logarithmic space corresponds to power law for original variables
- This leads to Zipf's $(1949,1965)$ famous law:

$$
f(w)=\frac{C}{r(w)^{a}}
$$

- With $a=1$ and $C=60,000$, Zipf's law predicts that:
- most frequent word occurs 60,000 times
- second most frequent word occurs 30,000 times
- third most frequent word occurs 20,000 times
- and there is a long tail of 80,000 words with frequencies between 1.5 and 0.5 occurrences(!)

Zipf's law

- Zipf's power law:

$$
f(w)=\frac{C}{r(w)^{a}}
$$

- If we take logarithm of both sides, we obtain:

$$
\log f(w)=\log C-a \log r(w)
$$

- Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space
- Best fit a and C can be found with least-squares method

Zipf's law

Logarithmic version

- Zipf's power law:

$$
f(w)=\frac{C}{r(w)^{a}}
$$

- If we take logarithm of both sides, we obtain:

$$
\log f(w)=\log C-a \log r(w)
$$

- Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space
- Best fit a and C can be found with least-squares method
- Provides intuitive interpretation of a and C :
- a is slope determining how fast log frequency decreases
- $\log C$ is intercept, i.e., predicted log frequency of word with rank $1(\log$ rank 0$)=$ most frequent word

Zipf's law

Fitting the Brown rank/frequency profile

Zipf-Mandelbrot law

Mandelbrot 1953

- Mandelbrot's extra parameter:

$$
f(w)=\frac{C}{(r(w)+b)^{a}}
$$

- Zipf's law is special case with $b=0$
- Assuming $a=1, C=60,000, b=1$:
- For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
- For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94
- Zipf-Mandelbrot law forms basis of statistical LNRE models
- ZM law derived mathematically as limiting distribution of vocabulary generated by a character-level Markov process

Zipf-Mandelbrot vs. Zipf's law

Fitting the Brown rank/frequency profile

Outline

Lexical statistics \& word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf's law
Some applications

```
Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
```

zipfR

Applications of word frequency distributions

- Most important application: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
- productivity (in morphology, syntax, ...)
- lexical richness
(in stylometry, language acquisition, clinical linguistics, ...)
- practical NLP (est. proportion of OOV words, typos, ...)
need method for predicting vocab. growth on unseen data

Applications of word frequency distributions

- Most important application: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
- productivity (in morphology, syntax, ...)
- lexical richness
(in stylometry, language acquisition, clinical linguistics, ...)
- practical NLP (est. proportion of OOV words, typos, ...)
need method for predicting vocab. growth on unseen data
- Direct applications of Zipf's law
- population model for Good-Turing smoothing
- realistic prior for Bayesian language modelling
need model of type probability distribution in the population

Vocabulary growth: Pronouns vs. ri- in Italian

N	V (pron.)	$V($ ri- $)$
5000	67	224
10000	69	271
15000	69	288
20000	70	300
25000	70	322
30000	71	347
35000	71	364
40000	71	377
45000	71	386
50000	71	400
\ldots	\ldots	\ldots

Vocabulary growth: Pronouns vs. ri- in Italian

 Vocabulary growth curves

Outline

Lexical statistics \& word frequency distributions
 Basic notions of lexical statistics
 Typical frequency distribution patterns
 Zipf's law
 Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models

LNRE models for word frequency distributions

- LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus = random sample from population
- population characterised by vocabulary of types w_{k} with occurrence probabilities π_{k}
- not interested in specific types \leadsto arrange by decreasing probability: $\pi_{1} \geq \pi_{2} \geq \pi_{3} \geq \cdots$
- NB: not necessarily identical to Zipf ranking in sample!

LNRE models for word frequency distributions

- LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus = random sample from population
- population characterised by vocabulary of types w_{k} with occurrence probabilities π_{k}
- not interested in specific types \Rightarrow arrange by decreasing probability: $\pi_{1} \geq \pi_{2} \geq \pi_{3} \geq \cdots$
- NB: not necessarily identical to Zipf ranking in sample!
- LNRE model = population model for type probabilities, i.e. a function $k \mapsto \pi_{k}$ (with small number of parameters)
- type probabilities π_{k} cannot be estimated reliably from a corpus, but parameters of LNRE model can

Examples of population models

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well
- Re-phrase the law for type probabilities:

$$
\pi_{k}:=\frac{C}{(k+b)^{a}}
$$

- Two free parameters: $a>1$ and $b \geq 0$
- C is not a parameter but a normalization constant, needed to ensure that $\sum_{k} \pi_{k}=1$
- this is the Zipf-Mandelbrot population model

Outline

Lexical statistics \& word frequency distributions Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law
 Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

The parameters of the Zipf-Mandelbrot model

The parameters of the Zipf-Mandelbrot model

The finite Zipf-Mandelbrot model

- Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_{k} can become arbitrarily small
- $\pi=10^{-6}$ (once every million words), $\pi=10^{-9}$ (once every billion words), $\pi=10^{-12}$ (once on the entire Internet), $\pi=10^{-100}$ (once in the universe?)

The finite Zipf-Mandelbrot model

- Zipf-Mandelbrot population model characterizes an infinite type population: there is no upper bound on k, and the type probabilities π_{k} can become arbitrarily small
- $\pi=10^{-6}$ (once every million words), $\pi=10^{-9}$ (once every billion words), $\pi=10^{-12}$ (once on the entire Internet), $\pi=10^{-100}$ (once in the universe?)
- Alternative: finite (but often very large) number of types in the population
- We call this the population vocabulary size S (and write $S=\infty$ for an infinite type population)

The finite Zipf-Mandelbrot model

- The finite Zipf-Mandelbrot model simply stops after the first S types (w_{1}, \ldots, w_{S})
- S becomes a new parameter of the model
\rightarrow the finite Zipf-Mandelbrot model has 3 parameters
Abbreviations:
- ZM for Zipf-Mandelbrot model
- fZM for finite Zipf-Mandelbrot model

Outline

Lexical statistics \& word frequency distributions Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law
 Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

Sampling from a population model

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:

Use computer simulation to sample from this model:

- Draw N tokens from the population such that in each step, type w_{k} has probability π_{k} to be picked
- This allows us to make predictions for samples (= corpora) of arbitrary size $N \Rightarrow$ extrapolation

Sampling from a population model

$$
\text { \#1: } \left.\begin{array}{llllllllll}
& 1 & 42 & 34 & 23 & 108 & 18 & 48 & 18 & 1
\end{array}\right) \ldots
$$

Sampling from a population model

$$
\begin{aligned}
& \text { \#1: } \begin{array}{rrrrrrrrr}
1 & 42 & 34 & 23 & 108 & 18 & 48 & 18 & 1 \\
\text { time order room school town course area course time } & \ldots \\
\ldots
\end{array}
\end{aligned}
$$

Sampling from a population model

Sampling from a population model

\#2:	286	28	23	36	3	4	7	4	8	\ldots
\#3:	2	11	105	21	11	17	17	1	16	\ldots

Sampling from a population model

\#2:	286	28	23	36	3	4	7	4	8	\ldots
\#3:	2	11	105	21	11	17	17	1	16	\ldots
\#4:	44	3	110	34	223	2	25	20	28	\ldots
\#5:	24	81	54	11	8	61	1	31	35	\ldots
\#6:	3	65	9	165	5	42	16	20	7	\ldots
\#7:	10	21	11	60	164	54	18	16	203	\ldots
\#8:	11	7	147	5	24	19	15	85	37	\ldots

Samples: type frequency list \& spectrum

rank r	f_{r}	type k	m	V_{m}
	3	6	1	83
2	36	1	2	22
3	33	3	3	20
4	31	7	4	12
5	31	10	5	10
6	30	5	6	5
7	28	12	7	5
8	27	2	8	3
9	24	4	9	3
10	24	16	10	3
11	23	8	\vdots	\vdots
12	22	14		
\vdots	\vdots	\vdots	sample \#1	

Samples: type frequency list \& spectrum

rank r	f_{r}	type k
1	39	2
2	34	3
3	30	5
4	29	10
5	28	8
6	26	1
7	25	13
8	24	7
9	23	6
10	23	11
11	20	4
12	19	17
\vdots	\vdots	\vdots

m	V_{m}
1	76
2	27
3	17
4	10
5	6
6	5
7	7
8	3
10	4
11	2
\vdots	\vdots
sample \#2	

Random variation in type-frequency lists

Random variation: frequency spectrum

m

m

Random variation: vocabulary growth curve

Outline

Lexical statistics \& word frequency distributions Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law
 Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

Expected values

- There is no reason why we should choose a particular sample to make a prediction for the real data - each one is equally likely or unlikely
- Take the average over a large number of samples, called expected value or expectation in statistics
- Notation: $\mathrm{E}[V(N)]$ and $\mathrm{E}\left[V_{m}(N)\right]$
- indicates that we are referring to expected values for a sample of size N
- rather than to the specific values V and V_{m} observed in a particular sample or a real-world data set
- Expected values can be calculated efficiently without generating thousands of random samples

The expected frequency spectrum

m

The expected vocabulary growth curve

Confidence intervals for the expected VGC

Outline

Lexical statistics \& word frequency distributions Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law
 Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

Parameter estimation by trial \& error

m

N

Parameter estimation by trial \& error

m

N

Parameter estimation by trial \& error

m

N

Parameter estimation by trial \& error

m

N

Parameter estimation by trial \& error

m

N

Parameter estimation by trial \& error

m

N

Parameter estimation by trial \& error

m

N

Automatic parameter estimation

Minimisation of suitable cost function for frequency spectrum

m

N

- By trial \& error we found $a=2.0$ and $b=550$
- Automatic estimation procedure: $a=2.39$ and $b=1968$
- Goodness-of-fit: $p \approx 0$ (multivariate chi-squared test)

Summary

LNRE modelling in a nutshell:

Summary

LNRE modelling in a nutshell:

1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set

Summary

LNRE modelling in a nutshell:

1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
2. estimate parameters of LNRE model by matching observed and expected frequency spectrum

Summary

LNRE modelling in a nutshell:

1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
2. estimate parameters of LNRE model by matching observed and expected frequency spectrum
3. evaluate goodness-of-fit on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni \& Evert 2007)

- in principle, you should only go on if model gives a plausible explanation of the observed data!

Summary

LNRE modelling in a nutshell:

1. compile observed frequency spectrum (and vocabulary growth curves) for a given corpus or data set
2. estimate parameters of LNRE model by matching observed and expected frequency spectrum
3. evaluate goodness-of-fit on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni \& Evert 2007)

- in principle, you should only go on if model gives a plausible explanation of the observed data!

4. use LNRE model to compute expected frequency spectrum for arbitrary sample sizes \Rightarrow extrapolation of vocabulary growth curve

- or use population model directly as Bayesian prior etc.

Outline

Lexical statistics \& word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf's law
Some applications

Statistical LNRE Models
ZM \& fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
zipfR

zipfR

- http://purl.org/stefan.evert/zipfR
- Already installed on the Potsdam machines
- Explore your GUI for general package installation and managing options

Loading

library(zipfR)
?zipfR
data(package="zipfR")

Importing data

```
data(ItaRi.spc)
data(ItaRi.emp.vgc)
my.spc <- read.spc("my.spc.txt")
my.vgc <- read.vgc("my.vgc.txt")
my.tfl <- read.tfl("my.tfl.txt")
my.spc <- tfl2spc(my.tfl)
```


Looking at spectra

```
summary(ItaRi.spc)
ItaRi.spc
N(ItaRi.spc)
V(ItaRi.spc)
Vm(ItaRi.spc,1)
Vm(ItaRi.spc,1:5)
# Baayen's P
Vm(ItaRi.spc,1) / N(ItaRi.spc)
plot(ItaRi.spc)
plot(ItaRi.spc, log="x")
```


Looking at vgcs

summary (ItaRi.emp.vgc)
ItaRi.emp.vgc
N(ItaRi.emp.vgc)

plot(ItaRi.emp.vgc, add.m=1)

Creating vgcs with binomial interpolation

\# interpolated vgc

```
ItaRi.bin.vgc <- vgc.interp(ItaRi.spc,
N(ItaRi.emp.vgc), m.max=1)
```

summary(ItaRi.bin.vgc)
\# comparison
plot(ItaRi.emp.vgc, ItaRi.bin.vgc, legend=c("observed","interpolated"))

- Load the spectrum and empirical vgc of the rarer prefix ultra-
- Compute binomially interpolated vgc for ultra-
- Plot the binomially interpolated ri- and ultra- vges together

Estimating LNRE models

\# fZM model; you can also try ZM and \# GIGP, and compare

ItaUltra.fzm <- lnre("fzm", ItaUltra.spc)
summary(ItaUltra.fzm)

Observed/expected spectra at estimation size

\# expected spectrum
ItaUltra.fzm.spc <- lnre.spc(ItaUltra.fzm, N(ItaUltra.fzm))
\# compare
plot(ItaUltra.spc, ItaUltra.fzm.spc, legend=c("observed","fzm"))
\# plot first 10 elements only

```
plot(ItaUltra.spc, ItaUltra.fzm.spc,
legend=c("observed","fzm"),
m.max=10)
```


Compare growth of two categories

\# extrapolation of ultra- V to ri- sample size
ItaUltra.ext.vgc <- lnre.vgc(ItaUltra.fzm, N(ItaRi.emp.vgc))
\# compare
plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,
NO=N(ItaUltra.fzm), legend=c("ultra-","ri-"))
\# zooming in

```
plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,
NO=N(ItaUltra.fzm), legend=c("ultra-","ri-"),
xlim=c(0,1e+5))
```

