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Frequency estimates & comparison

◆ How often is kick the bucket really used?

◆ What are the characteristics of “translationese”?

◆ Do Americans use more split infinitives than 
Britons? What about British teenagers?

◆ What are the typical collocates of cat?

◆ Can the next word in a sentence be predicted?

◆ Do native speakers prefer constructions that are 
grammatical according to some linguistic theory?

➡ evidence from frequency comparisons / estimates
2
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A simple toy problem

◆ American English style guide claims that
• “In an average English text, no more than 15% of the 

sentences are in passive voice. So use the passive 
sparingly, prefer sentences in active voice.”

• http://www.ego4u.com/en/business-english/grammar/passive 
actually states that only 10% of English sentences are 
passives (as of January 2009)!

◆ We have doubts and want to verify this claim
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What is English?

◆ Sensible definition: group of speakers
• e.g. American English as language spoken by

native speakers raised and living in the U.S.

• may be restricted to certain communicative situation

◆ Also applies to definition of sublanguage
• dialect (Bostonian, Cockney), social group 

(teenagers), genre (advertising), domain (statistics), …

◆ Here: professional writing by native speakers
of AmE (➪ target audience of style guide)

6
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How do you count passives?

◆ Types vs. tokens
• type count: How many different passives are there?

• token count: How many instances are there?

◆ How many passive tokens are there in English?
• infinitely many, of course!

◆ Absolute frequency is not meaningful here

7
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Against “absolute” frequency

◆ Are there 20,000 passives?
• Brown (1M words)

◆ Or 1 million?
• BNC (90M words)

◆ Or 5.1 million?
• ukWaC sampler

(450M words)

8
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◆ Only relative frequency can be meaningful!

◆ What is a sensible unit of measurement?
… 20,300 per million words?

… 390 per thousand sentences?

… 28 per hour of recorded speech?
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How do you count passives?

◆ How many passives could there be at most?
• every VP can be in active or passive voice

• frequency of passives has a meaningful interpretation
by comparison with frequency of potential passives

◆ What proportion of VPs are in passive voice?
• easier: proportion of sentences that contain a passive

• in general, proportion wrt. some unit of measurement

◆ Relative frequency = proportion π 
10
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Using inferential statistics

◆ Statistics deals with similar problems:
• goal: determine properties of large population

(human populace, objects produced in factory, …)

• method: take (completely) random sample of 
objects, then extrapolate from sample to population

• this works only because of random sampling!

◆ Many statistical methods are readily available
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The library metaphor

◆ Extensional definition of a language:
“All utterances made by speakers of the
  language under appropriate conditions,
  plus all utterances they could have made”

◆ Imagine a huge library with all the books
written in a language, as well as all the
hypothetical books that have never been written

➞  library metaphor (Evert 2006)
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A random sample of a language

◆ Apply statistical procedure to linguistic problem
➪ need random sample of objects from population

◆ Quiz: What are the objects in our population?
• words? sentences? texts? …

◆ Objects = whatever unit of measurement the 
proportions of interest are based on
• we need to take a random sample of such units

17
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The library metaphor

◆ Random sampling in the library metaphor

• in order to take a sample of sentences:

• walk to a random shelf …
… pick a random book …
… open a random page …
… and choose a random sentence from the page

• this gives us 1 item for our sample

• repeat n times for sample size n

18



Types, tokens and proportions

◆ Proportions and relative sample frequencies are
defined formally in terms of types & tokens

◆ Relative frequency of type v in sample {t1, …, tn}
= proportion of tokens ti that belong to this type

◆ Compare relative sample frequency p against 
(hypothesised) population proportion π

19
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Types, tokens and proportions

◆ Example: word frequencies
• word type = dictionary entry (distinct word)

• word token = instance of a word in library texts

◆ Example: passive VPs
• relevant VP types = active or passive (➞ abstraction)

• VP token = instance of VP in library texts

◆ Example: verb sucategorisation
• relevant types = itr., tr., ditr., PP-comp., X-comp, …

• verb token = occurrence of selected verb in text
20
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Inference from a sample
◆ Principle of inferential statistics

• if a sample is picked at random, proportions should be 
roughly the same in sample and population

◆ Take a sample of 100 sentences
• observe 19 passives ➞ p = 19% = .19

• style guide ➞ population proportion π = 15%

• p > π  ➞ reject claim of style guide?

◆ Take another sample, just to be sure
• observe 13 passives ➞ p = 13% = .13

• p < π  ➞ claim of style guide confirmed?
21
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Sampling variation

◆ Random choice of sample ensures proportions 
are the same on average in sample & population

◆ But it also means that for every sample we will 
get a different value because of chance effects
➞ sampling variation
• problem: erroneous rejection of style guide's claim 

results in publication of a false result

◆ The main purpose of statistical methods is to 
estimate & correct for sampling variation
• that’s all there is to inferential statistics, really

22
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24

◆ Our “goal” is to refute the style guide's claim,
which we call the null hypothesis H0

• we also refer to π0 = .15 as the null proportion

◆ Erroneous rejection of H0 is problematic
• leads to embarrassing publication of false result

• known as a type I error in statistics

◆ Need to control risk of a type I error

H0 : ⇥ � .15
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25

◆ Assume that style guide's claim H0 is correct
• i.e. rejection of H0 is always a type I error

◆ Many corpus linguists set out to test H0

• each one draws a random sample of size n = 100

• how many of the samples have the expected k = 15 
passives, how many have k = 19, etc.?

• if we are willing to reject H0 for k = 19 passives in a 
sample, all corpus linguists with such a sample will 
publish a false result

• risk of type I error = percentage of such cases
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◆ We don’t need an infinite number of monkeys 
(or corpus linguists) to answer these questions
• randomly picking sentences from our metaphorical 

library is like drawing balls from an infinite urn

• red ball = passive sent. / white ball = active sent.

• H0: assume proportion of red balls in urn is 15%

◆ This leads to a binomial distribution

26
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tail probability
= 16.3%

tail probability
= 9.9%

➞  risk of false rejection = p-value = 26.2%
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“socially acceptable level” (significance level α)
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interpreted as amount of evidence against H0



Statistical hypothesis testing
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◆ Statistical hypothesis tests
• define a rejection criterion for refuting H0

• control the risk of false rejection (type I error) to a 
“socially acceptable level” (significance level α)

• p-value = risk of type I error given observation,
interpreted as amount of evidence against H0

◆ Two-sided vs. one-sided tests
• in general, two-sided tests are recommended (safer)

• one-sided test is plausible in our example
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• http://sigil.collocations.de/wizard.html
• http://corpora.lancs.ac.uk/sigtest/
• http://vassarstats.net/
• SPSS, SAS, Excel, …
• We want to do it in                  , of  course

http://sigil.collocations.de/wizard.html
http://sigil.collocations.de/wizard.html
http://vassarstats.net
http://vassarstats.net
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Binomial hypothesis test in R

◆ Relevant R function:  binom.test()

◆ We need to specify
• observed data: 19 passives out of 100 sentences

• null hypothesis: H0: π = 15%

◆ Using the binom.test() function:
 > binom.test(19, 100, p=.15) # two-sided

 > binom.test(19, 100, p=.15, # one-sided
  alternative="greater")
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Binomial hypothesis test in R

> binom.test(19, 100, p=.15)

 Exact binomial test

data:  19 and 100 

number of successes = 19, number of
trials = 100, p-value = 0.2623

alternative hypothesis: true probability of 
success is not equal to 0.15 

95 percent confidence interval:
 0.1184432 0.2806980 

sample estimates:
probability of success
                  0.19
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Binomial hypothesis test in R

> binom.test(19, 100, p=.15)

 Exact binomial test

data:  19 and 100 

number of successes = 19, number of
trials = 100, p-value = 0.2623

alternative hypothesis: true probability of 
success is not equal to 0.15 

95 percent confidence interval:
 0.1184432 0.2806980 

sample estimates:
probability of success
                  0.19
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> binom.test(19, 100, p=.15)$p.value

[1] 0.2622728

> binom.test(23, 100, p=.15)$p.value

[1] 0.03430725

> binom.test(25, 100, p=.15)$p.value

[1] 0.007633061
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p < .05 = α  *

p < .01 = α  **



Rejection criterion & 
significance level

> binom.test(19, 100, p=.15)$p.value

[1] 0.2622728

> binom.test(23, 100, p=.15)$p.value

[1] 0.03430725

> binom.test(25, 100, p=.15)$p.value

[1] 0.007633061

> binom.test(29, 100, p=.15)$p.value

[1] 0.0003529264

33

p > .05   n.s.

p < .05 = α  *

p < .01 = α  **

p < .001 = α ***
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Type II errors

◆ Rejection criterion controls risk of type I error
• only for situation in which H0 is true

◆ Type II error = failure to reject incorrect H0

• for situation in which H0 is not true
➞ rejection correct, non-rejection is an error

◆ What is the risk of a type II error?
• depends on unknown true population proportion π

• intuitively, risk of type II error will be low if the 
difference δ = π – π0 (the effect size) is large enough

34
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◆ Type II error = failure to reject incorrect H0

• the larger the difference between H0 and the true 
population proportion, the more likely it is that 
H0 can be rejected based on a given sample

• a powerful test has a low type II error

• power analysis explores the relationship between 
effect size and risk of type II error
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Power

◆ Type II error = failure to reject incorrect H0

• the larger the difference between H0 and the true 
population proportion, the more likely it is that 
H0 can be rejected based on a given sample

• a powerful test has a low type II error

• power analysis explores the relationship between 
effect size and risk of type II error

◆ Key insight: larger sample = more power
• relative sampling variation becomes smaller

• power also depends on significance level
39
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Power analysis for binomial test

◆ Key factors determining the power of a test
• sample size ➞ more evidence = greater power

• significance level ➞ trade-off btw. type I / II errors

◆ Influence of hypothesis test procedure
• one-sided test more powerful than two-sided test

• parametric tests more powerful than non-parametric

• statisticians look for “uniformly most powerful” test

◆ Tests can become too powerful!
• reject H0 for 15.1% passives with n = 1,000,000

41



Parametric vs. non-parametric

◆ People often talk about parametric and non-
parametric tests without precise definition

◆ Parametric tests make stronger assumptions
• not just normality assuming (= Gaussian distribution)

• binomial test: strong random sampling assumption
➞ might be considered a parametric test in this sense!

◆ Parametric tests are usually more powerful
• strong assumptions allow less conservative estimate of 

sampling variation ➞ less evidence needed against H0

42
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Trade-offs in statistics

◆ Inferential statistics is a trade-off between
type I errors and type II errors
• i.e. between significance and power

◆ Significance level
• determines trade-off point

• low significance level α ➞ low type I risk, but low power

◆ Conservative tests
• put more weight on avoiding type I errors ➞ weaker

• most non-parametric methods are conservative
43
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◆ We now know how to test a null hypothesis H0, 
rejecting it only if there is sufficient evidence

◆ But what if we do not have an obvious
null hypothesis to start with?
• this is typically the case in (computational) linguistics
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Confidence interval

◆ We now know how to test a null hypothesis H0, 
rejecting it only if there is sufficient evidence

◆ But what if we do not have an obvious
null hypothesis to start with?
• this is typically the case in (computational) linguistics

◆ We can estimate the true population proportion 
from the sample data (relative frequency)
• sampling variation ➞ range of plausible values

• such a confidence interval can be constructed by 
inverting hypothesis tests (e.g. binomial test)

44
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◆ Confidence interval = range of plausible values 
for true population proportion
• H0 rejected by test iff π0 is outside confidence interval

◆ Size of confidence interval depends on power of 
the test (i.e. sample size and significance level)

n ⇥ 100 n ⇥ 1,000 n ⇥ 10,000
k ⇥ 19 k ⇥ 190 k ⇥ 1,900

⌃ ⇥ .05 11.8% . . . 28.1% 16.6% . . . 21.6% 18.2% . . . 19.8%
⌃ ⇥ .01 10.1% . . . 31.0% 15.9% . . . 22.4% 18.0% . . . 20.0%
⌃ ⇥ .001 8.3% . . . 34.5% 15.1% . . . 23.4% 17.7% . . . 20.3%

Table 1: Binomial confidence intervals for various sample sizes n and confidence levels ⌃.
The maximum-likelihood estimate is ⌥̂ ⇥ 19% in each case.

f ⇥ 190 and n ⇥ 1,000 yield a confidence interval of ⌥ � 16.6% . . . 21.6% (the common1

mathematical notation for such a range, which you may encounter in technical literature,2

is ⇤.166, .216⌅).3

The width of a binomial confidence interval depends on the sample size n and the sig-4

nificance level ⌃ used in the test. As we have seen in Section 2, a larger value of n makes5

it easier to reject the null hypothesis. Obviously, adopting a higher (i.e., less conserva-6

tive) value of ⌃ also makes it easier to reject H0. Hence these factors lead to a narrower7

confidence interval (which, to reiterate this important point, consists of all estimates x for8

which H0 is not rejected). Table 1 shows confidence intervals for several di�erent sam-9

ple sizes and significance levels. A confidence interval for a significance level of ⌃ ⇥ .0510

(which keeps the risk of false rejection below 5%) is often called a 95% confidence in-11

terval, indicating that we are 95% certain that the true population value ⌥ is somewhere12

within the range (since we can rule out any other value with 95% certainty). Similarly, a13

significance level of ⌃ ⇥ .01 leads to a 99% confidence interval.14

Confidence intervals can be seen as an extension of hypothesis tests. The 95% confi-15

dence interval for the observed data immediately tells us whether a given null hypothesis16

H0 : ⌥ ⇥ x would be rejected by the binomial test at significance level ⌃ ⇥ .05. Namely,17

H0 is rejected if and only if the hypothesized value x does not fall within the confidence18

interval. The width of a confidence interval illustrates thus how easily a null hypothesis19

can be rejected, i.e., it gives an indication of how much the (unknown) true population20

proportion ⌥ must di�er from the value stipulated by the null hypothesis (which is often21

denoted by the symbol ⌥0) so that H0 will reliably be rejected by the hypothesis test. In-22

tuitively speaking, the di�erence between ⌥ and ⌥0 has to be considerably larger than the23

width of one side of the 95% confidence interval so that it can reliably be detected by a24

binomial test with ⌃ ⇥ .05 (keep in mind that, even when the di�erence between ⌥ and ⌥025

is larger than this width, because of sampling variation, ⌥̂ and ⌥0 might be considerably26

closer, leading to failure to reject ⌥0). The term e�ect size is sometimes used as a generic27

way to refer to the di�erence between null hypothesis and true proportion. The reliability28

of rejection given a certain e�ect and sample size is called the power of the hypothesis29

test (see DeGroot/Schervish 2002, Chapter 8). In our example, the arithmetic di�erence30

⌥ ⇥ ⌥0 is a sensible way of quantifying e�ect size, but many other measures exist and may31

be more suitable in certain situations (we will return to this issue during the discussion of32

two-sample tests in Section 5).33

In corpus analysis, we often deal with very large samples, for which confidence inter-34

vals will be extremely narrow, so that a very small e�ect size may lead to highly significant35

rejection of H0. Consider the following example: Baayen (2001, p. 163) claims that the36

definite article the accounts for approx. 6% of all words in (British) English, including37

punctuation and numbers. Verifying this claim on the LOB (the British equivalent of the38

Brown corpus, see Appendix), we find highly significant evidence against H0. In particu-39

lar, there are f ⇥ 68,184 instances of the in a sample of n ⇥ 1,149,864 words. A two-sided40

10
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◆ Confidence interval = range of plausible values 
for true population proportion
• H0 rejected by test iff π0 is outside confidence interval

◆ Size of confidence interval depends on power of 
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◆ Size of confidence interval depends on power of 
the test (i.e. sample size and significance level)

n ⇥ 100 n ⇥ 1,000 n ⇥ 10,000
k ⇥ 19 k ⇥ 190 k ⇥ 1,900

⌃ ⇥ .05 11.8% . . . 28.1% 16.6% . . . 21.6% 18.2% . . . 19.8%
⌃ ⇥ .01 10.1% . . . 31.0% 15.9% . . . 22.4% 18.0% . . . 20.0%
⌃ ⇥ .001 8.3% . . . 34.5% 15.1% . . . 23.4% 17.7% . . . 20.3%

Table 1: Binomial confidence intervals for various sample sizes n and confidence levels ⌃.
The maximum-likelihood estimate is ⌥̂ ⇥ 19% in each case.

f ⇥ 190 and n ⇥ 1,000 yield a confidence interval of ⌥ � 16.6% . . . 21.6% (the common1

mathematical notation for such a range, which you may encounter in technical literature,2

is ⇤.166, .216⌅).3

The width of a binomial confidence interval depends on the sample size n and the sig-4

nificance level ⌃ used in the test. As we have seen in Section 2, a larger value of n makes5

it easier to reject the null hypothesis. Obviously, adopting a higher (i.e., less conserva-6

tive) value of ⌃ also makes it easier to reject H0. Hence these factors lead to a narrower7

confidence interval (which, to reiterate this important point, consists of all estimates x for8

which H0 is not rejected). Table 1 shows confidence intervals for several di�erent sam-9

ple sizes and significance levels. A confidence interval for a significance level of ⌃ ⇥ .0510

(which keeps the risk of false rejection below 5%) is often called a 95% confidence in-11

terval, indicating that we are 95% certain that the true population value ⌥ is somewhere12

within the range (since we can rule out any other value with 95% certainty). Similarly, a13

significance level of ⌃ ⇥ .01 leads to a 99% confidence interval.14

Confidence intervals can be seen as an extension of hypothesis tests. The 95% confi-15

dence interval for the observed data immediately tells us whether a given null hypothesis16

H0 : ⌥ ⇥ x would be rejected by the binomial test at significance level ⌃ ⇥ .05. Namely,17

H0 is rejected if and only if the hypothesized value x does not fall within the confidence18

interval. The width of a confidence interval illustrates thus how easily a null hypothesis19

can be rejected, i.e., it gives an indication of how much the (unknown) true population20

proportion ⌥ must di�er from the value stipulated by the null hypothesis (which is often21

denoted by the symbol ⌥0) so that H0 will reliably be rejected by the hypothesis test. In-22

tuitively speaking, the di�erence between ⌥ and ⌥0 has to be considerably larger than the23

width of one side of the 95% confidence interval so that it can reliably be detected by a24

binomial test with ⌃ ⇥ .05 (keep in mind that, even when the di�erence between ⌥ and ⌥025

is larger than this width, because of sampling variation, ⌥̂ and ⌥0 might be considerably26

closer, leading to failure to reject ⌥0). The term e�ect size is sometimes used as a generic27

way to refer to the di�erence between null hypothesis and true proportion. The reliability28

of rejection given a certain e�ect and sample size is called the power of the hypothesis29

test (see DeGroot/Schervish 2002, Chapter 8). In our example, the arithmetic di�erence30

⌥ ⇥ ⌥0 is a sensible way of quantifying e�ect size, but many other measures exist and may31

be more suitable in certain situations (we will return to this issue during the discussion of32

two-sample tests in Section 5).33

In corpus analysis, we often deal with very large samples, for which confidence inter-34

vals will be extremely narrow, so that a very small e�ect size may lead to highly significant35

rejection of H0. Consider the following example: Baayen (2001, p. 163) claims that the36

definite article the accounts for approx. 6% of all words in (British) English, including37

punctuation and numbers. Verifying this claim on the LOB (the British equivalent of the38

Brown corpus, see Appendix), we find highly significant evidence against H0. In particu-39

lar, there are f ⇥ 68,184 instances of the in a sample of n ⇥ 1,149,864 words. A two-sided40

10
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◆ Confidence interval = range of plausible values 
for true population proportion
• H0 rejected by test iff π0 is outside confidence interval

◆ Size of confidence interval depends on power of 
the test (i.e. sample size and significance level)
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The maximum-likelihood estimate is ⌥̂ ⇥ 19% in each case.
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is ⇤.166, .216⌅).3
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nificance level ⌃ used in the test. As we have seen in Section 2, a larger value of n makes5

it easier to reject the null hypothesis. Obviously, adopting a higher (i.e., less conserva-6

tive) value of ⌃ also makes it easier to reject H0. Hence these factors lead to a narrower7

confidence interval (which, to reiterate this important point, consists of all estimates x for8
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terval, indicating that we are 95% certain that the true population value ⌥ is somewhere12

within the range (since we can rule out any other value with 95% certainty). Similarly, a13

significance level of ⌃ ⇥ .01 leads to a 99% confidence interval.14

Confidence intervals can be seen as an extension of hypothesis tests. The 95% confi-15

dence interval for the observed data immediately tells us whether a given null hypothesis16

H0 : ⌥ ⇥ x would be rejected by the binomial test at significance level ⌃ ⇥ .05. Namely,17

H0 is rejected if and only if the hypothesized value x does not fall within the confidence18

interval. The width of a confidence interval illustrates thus how easily a null hypothesis19

can be rejected, i.e., it gives an indication of how much the (unknown) true population20

proportion ⌥ must di�er from the value stipulated by the null hypothesis (which is often21

denoted by the symbol ⌥0) so that H0 will reliably be rejected by the hypothesis test. In-22

tuitively speaking, the di�erence between ⌥ and ⌥0 has to be considerably larger than the23

width of one side of the 95% confidence interval so that it can reliably be detected by a24

binomial test with ⌃ ⇥ .05 (keep in mind that, even when the di�erence between ⌥ and ⌥025

is larger than this width, because of sampling variation, ⌥̂ and ⌥0 might be considerably26

closer, leading to failure to reject ⌥0). The term e�ect size is sometimes used as a generic27

way to refer to the di�erence between null hypothesis and true proportion. The reliability28

of rejection given a certain e�ect and sample size is called the power of the hypothesis29

test (see DeGroot/Schervish 2002, Chapter 8). In our example, the arithmetic di�erence30

⌥ ⇥ ⌥0 is a sensible way of quantifying e�ect size, but many other measures exist and may31

be more suitable in certain situations (we will return to this issue during the discussion of32

two-sample tests in Section 5).33

In corpus analysis, we often deal with very large samples, for which confidence inter-34

vals will be extremely narrow, so that a very small e�ect size may lead to highly significant35

rejection of H0. Consider the following example: Baayen (2001, p. 163) claims that the36

definite article the accounts for approx. 6% of all words in (British) English, including37
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Confidence intervals in R

◆ Most hypothesis tests in R also compute a 
confidence interval (including binom.test())
• omit H0 if only interested in confidence interval

◆ Significance level of underlying hypothesis test 
is controlled by conf.level parameter
• expressed as confidence, e.g. conf.level=.95 for 

significance level α = .05, i.e. 95% confidence

◆ Can also compute one-sided confidence interval
• controlled by alternative parameter

• two-sided confidence intervals strongly recommended
47



Confidence intervals in R

> binom.test(190, 1000, conf.level=.99)

 Exact binomial test

data:  190 and 1000 

number of successes = 190, number of
trials = 1000, p-value < 2.2e-16

alternative hypothesis: true probability of 
success is not equal to 0.5 

99 percent confidence interval:
 0.1590920 0.2239133  

sample estimates:
probability of success
                  0.19
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Using R to choose sample size

51

◆ Call binom.test() with hypothetical values

◆ Plots on previous slides also created with R
• requires calculation of large number of

hypothetical confidence intervals

• binom.test() is both inconvenient and inefficient

◆ The corpora package has a vectorised function
 > library(corpora)

 > prop.cint(190, 1000, conf.level=.99)

 > ?prop.cint # “conf. intervals for proportions”
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Frequency comparison

◆ Many linguistic research questions can be 
operationalised as a frequency comparison
• Are split infinitives more frequent in AmE than BrE?

• Are there more definite articles in texts written by 
Chinese learners of English than native speakers?

• Does meow occur more often in the vicinity of cat
than elsewhere in the text?

• Do speakers prefer I couldn’t agree more over 
alternative realisations such as I agree completely?

◆ Compare observed frequencies in two samples
52
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Frequency comparison

◆ Null hypothesis for frequency comparison

• no assumptions about the precise value π1 = π2 = π

◆ Observed data
• target count ki and sample size ni for each sample i

• e.g. k1 = 19 / n1 = 100 passives vs. k2 = 25 / n2 = 200

◆ Effect size: difference of proportions
• effect size  δ = π1 – π2   (and thus H0: δ  = 0)

53
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Frequency comparison in R

◆ Frequency comparison test:  prop.test()
• observed data: counts ki and sample sizes ni

• also computes confidence interval for effect size
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Frequency comparison in R

◆ Frequency comparison test:  prop.test()
• observed data: counts ki and sample sizes ni

• also computes confidence interval for effect size

◆ E.g. for 19 passives out of 100 / 25 out of 200
• parameters conf.level and alternative

can be used in the familiar way

 > prop.test(c(19,25), c(100,200))
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Frequency comparison in R

> prop.test(c(19,25), c(100,200))

 2-sample test for equality of proportions with 
continuity correction

data:  c(19, 25) out of c(100, 200) 

X-squared = 1.7611, df = 1, p-value = 0.1845

alternative hypothesis: two.sided 

95 percent confidence interval:
 -0.03201426  0.16201426 

sample estimates:
prop 1 prop 2 
 0.190  0.125
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Contingency tables

◆ Data can also be given as a contingency table
• e.g. k1 = 19 / n1 = 100 passives vs. k2 = 25 / n2 = 200

• represents a cross-classification of n = 300 items

• generalization to larger tables possible
56

k1 k2

n1–k1 n2–k2

n1 n2

19 25

81 175

100 200

sample 1 sample 2

passive

active
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Tests for contingency tables

◆ Fisher’s exact test = generalization of 
binomial test to contingency tables
• computationally expensive, mostly for small samples

◆ Pearson’s chi-squared test = asymptotic test 
based on test statistic X2

• larger value of X2 ➞ less likely under H0

• X2 can be translated into corresponding p-value
• suitable for large samples and small balanced samples

◆ Likelihood-ratio test based on statistic G2

• popular in collocation and keyword identification
• suitable for highly skewed data
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Tests for contingency tables

◆ Can easily carry out chi-squared (chisq.test) 
and Fisher’s exact test (fisher.test) in R
• likelihood ratio test not included in R standard library

◆ Table for 19 / 100 vs. 25 / 200
 > ct <- cbind(c(19,81),
              c(25,175))

 > chisq.test(ct)

 > fisher.test(ct)

58

19 25

81 175
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Significance vs. relevance

◆ Much focus on significant p-value, but …
• large differences may be non-significant if sample size 

is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)

• increase sample size for more powerful/sensitive test

• very large samples lead to highly significant p-values 
for minimal and irrelevant differences (e.g. 1M tokens 
with 150,000 = 15% vs. 151,000 = 15.1% occurrences)

◆ It is important to assess both significance and 
relevance (= effect size) of frequency data!
• confidence intervals combine both aspects
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Effect size in contingency tables

◆ Simple effect size measure:
difference of proportions

◆ H0:  δ = 0

◆ Issues
• depends on scale of π1 and π2

• small effects for lexical freq’s
60

� = ⇡1 � ⇡2

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2



Effect size in contingency tables

◆ Effect size measure:
(log) relative risk

◆ H0:  r = 1

◆ Issues
• can be inflated for small π2

• mathematically inconvenient
61
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contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1
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Effect size in contingency tables

◆ Effect size measure:
(log) odds ratio

◆ H0:  θ = 1

◆ Issues
• can be inflated for small π2

• interpretation not very intuitive
62

✓ =
⇡1

1�⇡1
⇡2

1�⇡2

=
⇡1(1 � ⇡2)
⇡2(1 � ⇡1)

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2



Effect size in contingency tables

◆ Effect size measure:
φ coefficient / Cramér V

◆ H0:  ???

◆ Issues
• this is a property of the sample 

rather than the population!

63

� =

r
X2

n

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1
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n = n1 + n2



Effect size in contingency tables

◆ Effect size measure:
φ coefficient / Cramér V

◆ H0:  φ = 0 

◆ Issues
• depends on relative sample sizes

• interpretation entirely unclear
64

n = n1 + n2

r1 = n1/n

r2 = n2/n

π1 π2

1–π1 1–π2

population equivalent of a 
contingency table, which 
determines the multinomial 
sampling distribution

⇡̂1 =
k1

n1

⇡̂2 =
k2

n2

� =
⇡1(1 � ⇡2) � ⇡2(1 � ⇡1)p

(r1⇡1 + r2⇡2)(1 � r1⇡1 � r2⇡2)/r1r2



Effect size in contingency tables
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Effect size in contingency tables

◆ We can estimate effect sizes by 
inserting sample values ki/ni

65
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Effect size in contingency tables

◆ We can estimate effect sizes by 
inserting sample values ki/ni

◆ But such point estimates are 
meaningless!
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Effect size in contingency tables

◆ We can estimate effect sizes by 
inserting sample values ki/ni

◆ But such point estimates are 
meaningless!

◆ Confidence intervals available 
only for some effect measures
• approximate interval for δ from 

proportions test
• exact interval for odds ratio θ 

from Fisher’s test
• φ computed from chi-square 

statistic is still a point estimate!
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Visualizing effect size measures
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Visualizing effect size measures
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Visualizing effect size measures
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(log) odds ratio
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Visualizing effect size measures
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Visualizing effect size measures
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φ coefficient (10 : 1)
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Visualizing effect size measures
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A case study: passives

◆ As a case study, we will compare the frequency 
of passives in Brown (AmE) and LOB (BrE)
• pooled data

• separately for each genre category

◆ Data files provided in CSV format

• passives.brown.csv  &  passives.lob.csv

• cat = genre category, passive = number of passives, 
n_w = number of word, n_s = number of sentences, 
name = description of genre category 
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Preparing the data

> Brown <- read.csv("passives.brown.csv")

> LOB <- read.csv("passives.lob.csv")

> library(SIGIL) # or use versions in SIGIL package
> Brown <- BrownPassives

> LOB <- LOBPassives

# now take a look at the two tables: what info do they provide?

# pooled data for entire corpus = column sums (col. 2 … 4)
> Brown.all <- colSums(Brown[, 2:4])

> LOB.all <- colSums(LOB[, 2:4])
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Frequency tests for pooled data

# proportions test reports p-value is based on chi-squared test
# and approximate confidence interval for effect size δ
> prop.test(c(10123, 10934), c(49576, 49742))

> ct <- cbind(c(10123, 49576-10123), # Brown
              c(10934, 49742-10934)) # LOB
> ct       # contingency table for chi-squared / Fisher
> fisher.test(ct) # exact confidence interval for odds ratio θ

# we could in principle do the same for all 15 genres …
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Automation: user functions

# user function do.test() executes proportions test for samples
# k1/n1 and k2/n2, and summarizes relevant results in compact form 
> do.test <- function (k1, n1, k2, n2) {

 # res contains results of proportions test (list = data structure)
 res <- prop.test(c(k1, k2), c(n1, n2))

 # data frames are a nice way to display summary tables
 fmt <- data.frame(p=res$p.value,
   lower=res$conf.int[1], upper=res$conf.int[2])

 fmt # return value of function = last expression
}

> do.test(10123, 49576, 10934, 49742) # pooled data
> do.test(146, 975, 134, 947)         # humour genre
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A nicer user function

# nicer version of user function with genre category labels
> do.test <- function (k1, n1, k2, n2, cat="") {
    res <- prop.test(c(k1, k2), c(n1, n2))
    data.frame(
      p=res$p.value,
      lower=100*res$conf.int[1], # scaled to % points
      upper=100*res$conf.int[2], 
      row.names=cat   # add genre as row label
    ) # return data frame directly without local variable fmt
}

# extract relevant information directly from data frames
> do.test(Brown$passive[15], Brown$n_s[15],
          LOB$passive[15], LOB$n_s[15],
          cat=Brown$name[15])
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Ad-hoc functions & loops

# ad-hoc convenience function to reduce typing/editing
# (works only if global Brown/LOB variables are set correctly!)
quick.test <- function (i) {
  do.test(k1=Brown$passive[i], n1=Brown$n_s[i],
          k2=LOB$passive[i], n2=LOB$n_s[i],
          cat=Brown$name[i])
}

quick.test(15)  # easy to repeat for different genres now
quick.test(9)

# loop over all 15 categories (more general: 1:nrow(Brown))
for (i in 1:15) {
  print( quick.test(i) ) 
}
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R wizardry: working with lists 

# our code only works if rows of Brown/LOB are in the same order!
> all(Brown$cat == LOB$cat)

# it would be nice to collect all these results in a single overview table
# for this, we need a little bit of R wizardry …
# apply function quick.test() to each number 1, …, 15
res.list <- lapply(1:15, quick.test)

# pass res.list as individual arguments to rbind()
# (think of this as an idiom you just have to remember …)
res <- do.call(rbind, res.list)

res            # data frame with one row for each genre
round(res, 3)  # rounded values are easier to read
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It’s your turn now …

◆ Questions:
• Which differences are significant?

• Are the effect sizes linguistically relevant?

◆ A different approach:
• You can construct a list of contingency tables with the 
cont.table() function from the corpora package

• Apply fisher.test() or chisq.test() directly to 
each table in the list using the lapply() function

• Try to extract relevant information with sapply()
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