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Frequency estimates & comparison

¢ How often is kick the bucket really used?
¢ What are the characteristics of “translationese”?

¢ Do Americans use more split infinitives than
Britons? What about British teenagers?

¢ What are the typical collocates of cat?
¢ Can the next word in a sentence be predicted?

¢ Do native speakers prefer constructions that are
grammatical according to some linguistic theory?

= evidence from frequency comparisons / estimates



A simple toy problem

How many passives are there in English?



A simple toy problem

How many passives are there in English?

¢ American English style guide claims that

e “In an average English text, no more than 15% of the
sentences are in passive voice. So use the passive
sparingly, prefer sentences in active voice.”



A simple toy problem

How many passives are there in English?

¢ American English style guide claims that

e “In an average English text, no more than 15% of the
sentences are in passive voice. So use the passive
sparingly, prefer sentences in active voice.”

e http://www.ego4u.com/en/business-english/grammar/passive
actually states that only 10% of English sentences are
passives (as of January 2009)!
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A simple toy problem

How many passives are there in English?

¢ American English style guide claims that

e “In an average English text, no more than 15% of the
sentences are in passive voice. So use the passive
sparingly, prefer sentences in active voice.”

e http://www.ego4u.com/en/business-english/grammar/passive
actually states that only 10% of English sentences are
passives (as of January 2009)!

¢ We have doubts and want to verify this claim
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What 1s English?

¢ Sensible definition: group of speakers

e e.g. American English as language spoken by
native speakers raised and living in the U.S.

e may be restricted to certain communicative situation

¢ Also applies to definition of sublanguage

e dialect (Bostonian, Cockney), social group
(teenagers), genre (advertising), domain (statistics), ...

¢ Here: professional writing by native speakers
of AmE (= target audience of style guide)
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How do you count passives?

¢ Types vs. tokens

e type count: How many different passives are there?

e token count: How many instances are there?

¢ How many passive tokens are there in English?

¢ infinitely many, of course! CX)

¢ Absolute frequency is not meaningful here
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Against “absolute” frequency

¢ Are there 20,000 passives? |B"°Z" : '

e Brown (1M words)

¢ Or 1 million?
e BNC (90oM words)

¢ Or 5.1 million?

e ukWaC sampler
(450M words)
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How do you count passives?

¢ How many passives could there be at most?

e every VP can be in active or passive voice

e frequency of passives has a meaningtul interpretation
by comparison with frequency of potential passives

¢ What proportion of VPs are in passive voice?

e easier: proportion of sentences that contain a passive

¢ in general, proportion wrt. some unit of measurement

¢ Relative frequency = proportion JtU

10
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Using inferential statistics

& Statistics deals with similar problems:

e goal: determine properties of large population
(human populace, objects produced in factory, ...)

e method: take (completely) random sample of
objects, then extrapolate from sample to population

e this works only because of random sampling!

¢ Many statistical methods are readily available

13
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The library metaphor

¢ Extensional definition of a language:
“All utterances made by speakers of the
language under appropriate conditions,
plus all utterances they could have made”
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The library metaphor

¢ Extensional definition of a language:
“All utterances made by speakers of the
language under appropriate conditions,
plus all utterances they could have made”

¢ Imagine a huge library with all the books
written in a language, as well as all the
hypothetical books that have never been written

— library metaphor (Evert 2006)
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A random sample of a language

¢ Apply statistical procedure to linguistic problem
> need random sample of objects from population

¢ Quiz: What are the objects in our population?

e words? sentences? texts? ...

¢ Objects = whatever unit of measurement the
proportions of interest are based on

e we need to take a random sample of such units
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The library metaphor

¢ Random sampling in the library metaphor

e in order to take a sample of sentences:

e walk to a random shelf ...
... pick a random book ...
... open a random page ...
... and choose a random sentence from the page

e this gives us 1 item for our sample

e repeat n times for sample size n

18



Types, tokens and proportions

¢ Proportions and relative sample frequencies are
defined formally in terms of types & tokens

¢ Relative frequency of type v in sample {t,, ..., tn}
= proportion of tokens t; that belong to this type

frequency of type

fo<
Tl\

p:

sample size

¢ Compare relative sample frequency p against
(hypothesised) population proportion Jt

19
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Types, tokens and proportions

¢ Example: word frequencies
e word type = dictionary entry (distinct word)
e word token = instance of a word in library texts
¢ Example: passive VPs
e relevant VP types = active or passive (— abstraction)
e VP token = instance of VP in library texts
¢ Example: verb sucategorisation
e relevant types = itr., tr., ditr., PP-comp., X-comp, ...

e verb token = occurrence of selected verb in text

20
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Inference from a sample

¢ Principle of inferential statistics

e if a sample is picked at random, proportions should be
roughly the same in sample and population

¢ Take a sample of 100 sentences
e observe 19 passives = p = 19% = .19
e style guide — population proportion 7 = 15%
e p > 1 — reject claim of style guide?
¢ Take another sample, just to be sure
e observe 13 passives = p = 13% = .13

e p < — claim of style guide confirmed?

21
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Sampling variation

¢ Random choice of sample ensures proportions
are the same on average in sample & population

22



Sampling variation

¢ Random choice of sample ensures proportions
are the same on average in sample & population

¢ But it also means that for every sample we will
get a different value because of chance effects
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Sampling variation

¢ Random choice of sample ensures proportions
are the same on average in sample & population

¢ But it also means that for every sample we will
get a different value because of chance effects
— sampling variation

e problem: erroneous rejection of style guide's claim
results in publication of a false result

¢ The main purpose of statistical methods is to
estimate & correct for sampling variation

e that’s all there is to inferential statistics, really @

22
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¢ Our “goal” is to refute the style guide's claim,

The null hypothesis

which we call the null hypothesis H,

HQIJT=.15

e we also refer to 7o = .15 as the null proportion

¢ Erroneous rejection of Ho is problematic

leads to embarrassing publication of false result

known as a type I error in statistics

¢ Need to control risk of a type I error

24
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Estimating sampling variation

¢ Assume that style guide's claim H, is correct

e i.e. rejection of H, is always a type I error

¢ Many corpus linguists set out to test Ho

e cach one draws a random sample of size n = 100

e how many of the samples have the expected k = 15
passives, how many have k = 19, etc.?

e if we are willing to reject H, for k = 19 passives in a
sample, all corpus linguists with such a sample will
publish a false result

e risk of type I error = percentage of such cases

25
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Estimating sampling variation

¢ We don’t need an infinite number of monkeys
(or corpus linguists) to answer these questions

e randomly picking sentences from our metaphorical
library is like drawing balls from an infinite urn

e red ball = passive sent. / white ball = active sent.

e H,: assume proportion of red balls in urn is 15%
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Estimating sampling variation

¢ We don’t need an infinite number of monkeys
(or corpus linguists) to answer these questions

e randomly picking sentences from our metaphorical
library is like drawing balls from an infinite urn

e red ball = passive sent. / white ball = active sent.

e H,: assume proportion of red balls in urn is 15%

¢ This leads to a binomial distribution

Pl‘y(’g= (Z) (7)< (1 — 7)™ %

percentage of samples = probability



IMAGINE. THAT YOURE. DRAWING
AT RANDOM FROM AN URN
CONTAINING FFTEEN BALLS —
SIX RED AND NINE BLACK.

... MY GRANDFATHERS
ASHEST? OH GOD!
L...WHAT? /

WHY LoD YoU
L0 THIS OMEZ!?

K OK. T REACH IN AND. ..

Comic relief

http://xked.com/1374/

27
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Binomial sampling distribution
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Binomial sampling distribution

— risk of false rejection = p-value = 26.2%
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Statistical hypothesis testing

¢ Statistical hypothesis tests

e define a rejection criterion for refuting Ho

e control the risk of false rejection (type I error) to a
“socially acceptable level” (significance level a)

e p-value = risk of type I error given observation,
interpreted as amount of evidence against H,
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Statistical hypothesis testing

¢ Statistical hypothesis tests

e define a rejection criterion for refuting Ho

e control the risk of false rejection (type I error) to a

“socially acceptabl

e level” (significance level a)

e p-value = risk of type I error given observation,
interpreted as amount of evidence against H,

¢ Two-sided vs. one-sided tests

e in general, two-sic

ed tests are recommended (safer)

e one-sided test is p]

ausible in our example

29



Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

back to main page

This site provides some online utilities for the project Statistical Inference: A Gentle Introduction for Linguists (SIGIL) by Marco Baroni
and Stefan Evert &/. The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL &.

One sample: frequency estimate (confidence interval)

back to top

Frequency count Sample size

95% |+ confidence interval

19 100 Clear fields R
in automatic ks format
| extrapolate to items Calculate with 4 -—:—l significant digits
Two samples: frequency comparison
back to top
Frequency count Sample size
Sample 1 19 100 ST 95% | %) confidence interval
T, in  automatic $| format
25 2 —
e 2 il ’Calcula'kg\ with | 4 3] significant digits
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Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

back to main page

This site provides some online utilities for the project Statistical Inference: A Gentle Introduction for Linguists (SIGIL) by Marco Baroni &
and Stefan Evert &/. The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL &.

One sample: frequency estimate (confidence interval)

Frequency count Sample size
19 100 Clear fields
__ extrapolate to items Calculate

Two samples: frequency comparison

- 1 -
back to top

95% |+ confidence interval

in

automatic s)] format

with 4 %] significant digits

”

Sample 1

Sample 2

Frequency count Sample size
19 100
25 200

C'e-

f Caif

http://sigil.collocations.de/wizard.html
http://corpora.lancs.ac.uk/sigtest/

http://vassarstats.net/
SPSS, SAS, Excel, ...
We want to do it in |

30
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Binomial hypothesis test in R

¢ Relevant R function: binom. test ()
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¢ Relevant R function: binom. test ()

¢ We need to specity

e observed data: 19 passives out of 100 sentences

e null hypothesis: Ho: m=15%
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Binomial hypothesis test in R

¢ Relevant R function: binom. test ()

¢ We need to specity
e observed data: 19 passives out of 100 sentences
e null hypothesis: Hy: 1= 15%

¢ Using the binom. test () function:

> binom.test (19, 100, p=.15) #two-sided

> binom.test (19, 100, p=.15, # one-sided
alternative="greater")
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Binomial hypothesis test in R

> binom.test (19, 100, p=.15)
Exact binomial test
data: 19 and 100

number of successes = 19, number of
trials = 100, p-value = 0.2623

alternative hypothesis: true probability of
success 1s not equal to 0.15

95 percent confidence interval:
©0.1184432 0.2806980

sample estimates:
probability of success
0.19
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Binomial hypothesis test in R

> binom.test (19, 100, p=.15)
Exact binomial test
data: 19 and 100

number of sucgesses =_19 _nun
trials = 100,) p-value = 0.2623

alternative hypothesis: true probability of
success 1s not equal to 0.15

95 percent confidence interval:
©0.1184432 0.2806980

sample estimates:
probability of success
0.19
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> binom.test (19,
[1] 0.2622728

100, p=.15)%p.value

p > .05

I1.S.
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> binom.test (25,
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Rejection criterion &
significance level

> binom.test (19,
[1] 0.2622728

> binom.test (23,
[1] ©0.03430725

> binom.test (25,
[1] 0.007633061

> binom.test (29,
[1] 0.0003529264

100, p=.15)%p.

100, p=.15)%p.

100, p=.15)%p.

100, p=.15)9%p.

value

p > .05

I1.S.

value

p<.05=a

value

p<.0l=aq

* %

value

p <.001=aq

*Kx*
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¢ Rejection criterion controls risk of type I error

e only for situation in which H, is true
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Type 1l errors

¢ Rejection criterion controls risk of type I error

e only for situation in which H, is true

¢ Type II error = failure to reject incorrect Ho

e for situation in which H, is not true
— rejection correct, non-rejection 1s an error

¢ What is the risk of a type II error?

e depends on unknown true population proportion

e intuitively, risk of type II error will be low if the
difference 0 = 1 — 7o (the effect size) is large enough

34
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Type 1l errors

binomial sampling

distribution under H, type I risk = 3.9%

rejection by one-sided

binomial test (p < .05%)

value k of observed frequency X
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Type 1l errors

type Il risk for k < 21
= 21.1%

type I risk

type II risk

value k of observed frequency X
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Power

¢ Type II error = failure to reject incorrect Ho

e the larger the difference between H, and the true
population proportion, the more likely it is that
H, can be rejected based on a given sample

e a powertful test has a low type II error

e power analysis explores the relationship between
effect size and risk of type II error

39



Power

¢ Type II error = failure to reject incorrect Ho

e the larger the difference between H, and the true
population proportion, the more likely it is that
H, can be rejected based on a given sample

e a powertful test has a low type II error

e power analysis explores the relationship between
effect size and risk of type II error

¢ Key insight: larger sample = more power

e relative sampling variation becomes smaller

e power also depends on significance level

39
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Power analysis for binomial test

¢ Key factors determining the power of a test

e sample size = more evidence = greater power

e significance level — trade-off btw. type I / II errors
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Power analysis for binomial test

¢ Key factors determining the power of a test

e sample size = more evidence = greater power

e significance level — trade-off btw. type I / II errors

¢ Influence of hypothesis test procedure

e one-sided test more powerful than two-sided test
e parametric tests more powerful than non-parametric

e statisticians look for “uniformly most powertul” test

¢ Tests can become too powerful!

e reject Hy for 15.1% passives with n = 1,000,000
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Parametric vs. non-parametric

¢ People often talk about parametric and non-
parametric tests without precise definition

¢ Parametric tests make stronger assumptions

e not just normality assuming (= Gaussian distribution)

e binomial test: strong random sampling assumption
— might be considered a parametric test in this sense!

¢ Parametric tests are usually more powertul

e strong assumptions allow less conservative estimate of
sampling variation — less evidence needed against H,

42
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type I errors and type II errors

e 1.e. between significance and power
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type I errors and type II errors

¢ i.e. between significance and power

¢ Significance level

e determines trade-off point

e Jow significance level a = low type I risk, but low power
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Trade-offs 1n statistics

¢ Inferential statistics is a trade-off between
type I errors and type II errors

¢ i.e. between significance and power

¢ Significance level

e determines trade-off point

e Jow significance level a = low type I risk, but low power

¢ Conservative tests

e put more weight on avoiding type I errors = weaker

e most non-parametric methods are conservative

43
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Confidence interval

¢ We now know how to test a null hypothesis Ho,
rejecting it only if there is sufficient evidence

¢ But what if we do not have an obvious
null hypothesis to start with?

e this is typically the case in (computational) linguistics
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Confidence interval

¢ We now know how to test a null hypothesis Ho,
rejecting it only if there is sufficient evidence

¢ But what if we do not have an obvious
null hypothesis to start with?

e this is typically the case in (computational) linguistics

¢ We can estimate the true population proportion
from the sample data (relative frequency)

e sampling variation — range of plausible values

e such a confidence interval can be constructed by
inverting hypothesis tests (e.g. binomial test)

44



Confidence interval

observed data:
k=190 / n =1000
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k=190 / n =1000 < .05 =a
7 / Hy:u=16.7% — plausible P 2

LO

190

4
|

f

percentage of samples

160 180 200 220 240

observed frequency k



Confidence interval

observed data: 05% confidence

k=190 / n =1000 < .05 =a
7 / Hy:u=17% — plausible P 0
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Confidence interval

observed data: 05% confidence
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observed data: 05% confidence

k =190 / n = 1000 <-05=d
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Confidence intervals

¢ Confidence interval = range of plausible values
for true population proportion

e H,rejected by test iff 71, is outside confidence interval

¢ Size of confidence interval depends on power of
the test (1.e. sample size and significance level)

n = 100 n = 1,000 n = 10,000
k=19 k =190 k = 1,900
a = .05 11.8%...28.1% 16.6%...21.6% 18.2%...19.8%
a = .01 10.1%...31.0% 15.9%...22.4% 18.0%...20.0%
a = .001 8.3%...34.5% 15.1%...23.4% 17.7%...20.3%
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e H,rejected by test iff 71, is outside confidence interval

¢ Size of confidence interval depends on power of
the test (1.e. sample size and significance level)
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ﬁ m cheating

here a tiny little
bit (not always
an interval)

Confidence intervals

¢ Confidence interval = range of plausible values
for true population proportion

e H,rejected by test iff 71, is outside confidence interval

¢ Size of confidence interval depends on power of
the test (1.e. sample size and significance level)

n = 100 n = 1,000 n = 10,000
k=19 k =190 k = 1,900
a = .05 11.8%...28.1% 16.6%...21.6% 18.2%...19.8%
a = .01 10.1%...31.0% ]15.9%...22.4%] 18.0%...20.0%

a = .001 8.3%...34.5% 15.1%...23.4% 17.7%...20.3%
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confidence interval (including binom. test ())

e omit Hy if only interested in confidence interval
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e expressed as confidence, e.g. conf.level=.95 for
significance level a = .05, i.e. 95% confidence
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Confidence intervals in R

¢ Most hypothesis tests in R also compute a
confidence interval (including binom. test ())

e omit Hy if only interested in confidence interval

¢ Significance level of underlying hypothesis test
is controlled by conf . level parameter

e expressed as confidence, e.g. conf.level=.95 for
significance level a = .05, i.e. 95% confidence

¢ Can also compute one-sided confidence interval

e controlled by alternative parameter

e two-sided confidence intervals strongly recommended
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Confidence intervals in R

> binom.test (190, 1000, conf.level=.99)
Exact binomial test
data: 190 and 1000

number of successes = 190, number of
trials = 1000, p-value < 2.2e-16

alternative hypothesis: true probability of
success 1s not equal to 0.5

99 percent confidence interval:
©.1590920 0.2239133

sample estimates:
probability of success
0.19



Confidence intervals in R

> binom.test (190, 1000, conf.level=.99)
Exact binomial test
data: 190 and 1000

number of successes = 190, number of
trials = 1000, p-value < 2.2e-16

alternative hypothesis: true probability of
success 1s not equal to 0.5

99 percent confidence interval:
©.1590920 0.2239133

sample estimates:
probability of success
0.19
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Using R to choose sample size

¢ Call binom. test () with hypothetical values

¢ Plots on previous slides also created with R

e requires calculation of large number of
hypothetical confidence intervals

e binom.test () is both inconvenient and inefficient
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Using R to choose sample size

¢ Call binom. test () with hypothetical values

¢ Plots on previous slides also created with R

e requires calculation of large number of
hypothetical confidence intervals

e binom.test () is both inconvenient and inefficient
¢ The corpora package has a vectorised function

> library(corpora)
> prop.cint (190, 1000, conf.level=.99)

> ?prop.cint # “cont. intervals for proportions”

51



Fr
equ
en
Cy compa
I'1SO
n

52



Frequency comparison

¢ Many linguistic research questions can be
operationalised as a frequency comparison
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Frequency comparison

¢ Many linguistic research questions can be
operationalised as a frequency comparison

e Are split infinitives more frequent in AmE than BrE?

e Are there more definite articles in texts written by
Chinese learners of English than native speakers?

e Does meow occur more often in the vicinity of cat
than elsewhere in the text?

e Do speakers preter I couldn’t agree more over
alternative realisations such as I agree completely?

¢ Compare observed frequencies in two samples

52



Frequency comparison

H()IJZ'1=JZ'2
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¢ Null hypothesis for frequency comparison
Hy : 711 = 709

e no assumptions about the precise value 71, = mo =7
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¢ Null hypothesis for frequency comparison
Hy : 711 = 709

e no assumptions about the precise value 71, = mo =7

¢ Observed data

e target count k; and sample size n; for each sample 1

e e.g. ki =19 / n, =100 passives vs. ko = 25 / n. = 200
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Frequency comparison

¢ Null hypothesis for frequency comparison
Hy : 711 = 709

e no assumptions about the precise value 71, = mo =7

¢ Observed data

e target count k; and sample size n; for each sample 1

e e.g. ki =19 / n; = 100 passives vs. k. = 25 / n. = 200
¢ Effect size: difference of proportions

o effect size 0 = m; — m> (and thus Ho: 0 = 0)

33



Frequency comparison in R

o4



Frequency comparison in R

¢ Frequency comparison test: prop.test()

e observed data: counts k; and sample sizes n;

e also computes confidence interval for effect size
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Frequency comparison in R

¢ Frequency comparison test: prop.test()

e observed data: counts k; and sample sizes n;

e also computes confidence interval for effect size

¢ E.g. for 19 passives out of 100 / 25 out of 200

e parameters conf.level and alternative
can be used in the familiar way

> prop.test(c(19,25), c(100,200))

o4



Frequency comparison in R

> prop.test(c(19,25), c(100,200))

2-sample test for equality of proportions with
continuity correction

data: «¢(19, 25) out of c(100, 200)
X-squared = 1.7611, df = 1, p-value = 0.1845
alternative hypothesis: two.sided

95 percent confidence interval:
-0.03201426 0.16201426

sample estimates:
prop 1 prop 2
0.190 0.125
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Contingency tables

sample 1 sample 2

passive Iy ko 19 25

active n1—k1 nz—kz 81 175

n4 no 100 200

¢ Data can also be given as a contingency table
e e.g2. ki =19 / n, = 100 passives vs. k> = 25 / 1. = 200
e represents a cross-classification of n = 300 items

e generalization to larger tables possible
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¢ Fisher’s exact test = generalization of
binomial test to contingency tables

e computationally expensive, mostly for small samples
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based on test statistic X?
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e X2 can be translated into corresponding p-value
e suitable for large samples and small balanced samples
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Tests for contingency tables

¢ Fisher’s exact test = generalization of
binomial test to contingency tables

e computationally expensive, mostly for small samples

¢ Pearson’s chi-squared test = asymptotic test
based on test statistic X?

e larger value of X> — less likely under H,
e X2 can be translated into corresponding p-value
e suitable for large samples and small balanced samples

¢ Likelihood-ratio test based on statistic G2

e popular in collocation and keyword identification
e suitable for highly skewed data
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Tests for contingency tables

¢ Can easily carry out chi-squared (chisqg. test)
and Fisher’s exact test (fisher.test)in R

e likelihood ratio test not included in R standard library

¢ Table for 19 / 100 vs. 25 / 200
> ct <- ¢cbind(c(19,81),

c(25,175))
> chisqg.test(ct) 19 25

> fisher.test(ct) 81 175
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Significance vs. relevance

¢ Much focus on significant p-value, but ...

e large differences may be non-significant if sample size
is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)

e increase sample size for more powerful /sensitive test

e very large samples lead to highly significant p-values
for minimal and irrelevant differences (e.g. 1M tokens
with 150,000 = 15% vs. 151,000 = 15.1% occurrences)

¢ It is important to assess both significance and
relevance (= effect size) of frequency data!

e confidence intervals combine both aspects
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Effect size in contingency tables

¢ Simple effect size measure:
difference of proportions 71 T2

5=Jl'1—31'2

population equivalent of a
¢ Ho: O=0 contingency table, which

determines the multinomial

sampling distribution

¢ Issues 7y = ki
n

e depends on scale of 7t; and 72 I
A 2

e small effects for lexical freq’s T2 =
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Effect size in contingency tables

¢ Effect size measure:

(log) relative risk Y g} TTo
J1
r= —
Jio

population equivalent of a
¢® Ho: r=1 contingency table, which

determines the multinomial

sampling distribution

¢ Issues 7y = ki
L. ni
e can be inflated for small n. I
S——

e mathematically inconvenient T2 =

Mno
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Effect size in contingency tables

¢ Effect size measure:

(log) odds ratio
J01
. 1—31'1 . Jrl(]- _JTZ)
13_1.31-2 JIZ(l T Jfl)
H(): 9 =1
& Issues

e can be inflated for small 7.

¢ Interpretation not very intuitive

population equivalent of a
contingency table, which
determines the multinomial
sampling distribution

. ki
1 = —

ni
. ko
TNy = —
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Effect size in contingency tables

¢ Effect size measure:
@ coefficient / Crameér V

Xz
¢ = \/ n
H()Z 277

& Issues

4 n=nmny+ny

e this is a property of the sample
rather than the population!

population equivalent of a
contingency table, which
determines the multinomial
sampling distribution

. ki
1 = —

ni
. ko
Ny = —



Effect size in contingency tables

¢ Effect size measure:
@ coefficient / Crameér V Tl T2

b = 7r1(1 — 75) — 75 (1 — 717)

V (11701 + 1) (1 — 17ty — ro72) /111

population equivalent of a

¢ H,: =0 n=n+n contingency table, which
o- P 1 2 determines the multinomial
rn =ny/n sampling distribution
o =hg/n
¢ Issues 2 = N2/ #, = ki
1
: : ni
e depends on relative sample sizes I
A 2
e interpretation entirely unclear 12 = 7~

ny



Effect size in contingency tables

population equivalent of a
contingency table, which
determines the multinomial
sampling distribution

. ki
] = —
ni
. ko
My = —
no



Effect size in contingency tables

¢ We can estimate effect sizes by

inserting sample values ki/n;

population equivalent of a
contingency table, which
determines the multinomial
sampling distribution

. ki
T = —

ni
. ko
TNy = —

ny



Effect size in contingency tables

¢ We can estimate effect sizes by
inserting sample values ki/n; 4 T2

¢ But such point estimates are
meaningless!

population equivalent of a
contingency table, which
determines the multinomial
sampling distribution

. ki
] = —

ni
. ko
Ny = —

ny



Effect size in contingency tables

¢ We can estimate effect sizes by
inserting sample values ki/n; 4 T2

¢ But such point estimates are
meaningless!

¢ Confidence intervals available Sopulation equivalent of a
only for some effect measures  contingency table, which

, . determines the multinomial
e approximate interval for 6 from sampling distribution

proportions test

e exact interval for odds ratio 6 71 = &
from Fisher’s test Ny
e ¢ computed from chi-square . ko
statistic is still a point estimate! 12 = -~

ny



Visualizing effect size measures

difference of proportions
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Visualizing effect size measures

(log) relative risk

relative risk: log,(r)
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0.000

relative risk: log,(r)
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Visualizing effect size measures

(log) odds ratio

odds ratio: log,(6)
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0.000

odds ratio: log,(6)
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TU4

Visualizing effect size measures

@ coefficient (1: 1)

I{X2/n (equal samples)

1.0

T2

TU1
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0.000

dp—coefficient (equal samples)
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TU4

Visualizing effect size measures

@ coefficient (1: 1)

d—coefficient (equal samples)

T2

TU1

0.002 0.004 0.006 0.008 0.010

0.000

dp—coefficient (equal samples)

0.000

0.002 0.004 0.006 0.008 0.010

T2
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Visualizing effect size measures

@ coefficient (10 : 1)

d—coefficient (sample sizes 10 : 1) d—coefficient (sample sizes 10 : 1)
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TU4
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Visualizing effect size measures

@ coefficient (1 : 10)

d—coefficient ( sample sizes 1 :10)
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d—coefficient (sample sizes 1 : 10)
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A case study: passives

¢ As a case study, we will compare the frequency
of passives in Brown (AmE) and LOB (BrE)

e pooled data

e separately for each genre category

¢ Data files provided in CSV format

® passives.brown.csv & passives.lob.csv

e cat = genre category, passive = number of passives,
n w = number of word, n s = number of sentences,
name = description of genre category
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Preparing the data

> Brown <- read.csv("passives.brown.csv")

> LOB <- read.csv("passives.lob.csv")

> library(SIGIL) # oruse versions in SIGIL package
> Brown <- BrownPassives
> LOB <- LOBPassives

# now take a look at the two tables: what info do they provide?

# pooled data for entire corpus = column sums (col. 2 ... 4)
> Brown.all <- colSums(Brown[, 2:4])
> LOB.all <- colSums(LOB[, 2:41)
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Frequency tests for pooled data

# proportions test reports p-value is based on chi-squared test
# and approximate confidence interval for effect size 6
> prop.test(c(10123, 10934), c(49576, 49742))

> ct <- cbind(c(160123, 4957/6-10123), # Brown
c(10934, 49742-10934)) # LOB

> ct # contingency table for chi-squared / Fisher

> fisher.test(ct) # exactconfidence interval for odds ratio 0

# we could in principle do the same for all 15 genres ...
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Automation: user functions

# user function do. test () executes proportions test for samples

# ki/n: and k2/n., and summarizes relevant results in compact form
> do.test <- function (kl, nl, k2, n2) {

# res contains results of proportions test (list = data structure)
res <- prop.test(c(kl, k2), c(nl, n2))

# data frames are a nice way to display summary tables
fmt <- data.frame(p=res$p.value,
lower=res$conf.int[1l], upper=res$conf.int[2])

fmt # return value of function = last expression

!
> do.test (10123, 49576, 10934, 49742) # pooled data

> do.test (146, 975, 134, 947) # humour genre
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A nicer user function

# nicer version of user function with genre category labels
> do.test <- function (kl, nl, k2, n2, cat="") {

res <- prop.test(c(kl, k2), c(nl, n2))
data.frame(

p=res$p.value,
lower=100*res$conf.int[1], # scaledto % points
upper=100*res$conf.int[2],
row.names=cat # add genre as row label
) # return data frame directly without local variable fmt

# extract relevant information directly from data frames

> do.test(Brown$passive[l5], Brown$n s[15],
LOB$passive[15], LOB$n s[15],
cat=Brown$name[15])



Ad-hoc functions & loops

# ad-hoc convenience function to reduce typing/editing
# (works only if global Brown/LOB variables are set correctly!)
quick.test <- function (1) {
do.test(kl=Brown$passivel[i], nl=Brown$n s[i],
k2=LOB$passive[i]l, n2=LOB$n s[i],
cat=Brown$name[i])

;

quick.test(15) # easyto repeat for different genres now
quick.test(9)

# loop over all 15 categories (more general: 1:nrow (Brown))
for (i in 1:15) {

print( quick.test(1) )
}
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R wizardry: working with lists

# our code only works if rows of Brown/LOB are in the same order!
> all(Brown$cat == LOB$%cat)

# 1t would be nice to collect all these results in a single overview table
# for this, we need a little bit of R wizardry ...

# apply function quick. test () to each number i, ..., 15
res.list <- lapply(1l:15, quick.test)

# pass res . list asindividual arguments to rbind ()
# (think of this as an idiom you just have to remember ...)
res <- do.call(rbind, res.list)

res # data frame with one row for each genre

round(res, 3) # rounded values are easier to read



[t’s your turn now ...

¢ (Questions:

e Which differences are significant?

e Are the effect sizes linguistically relevant?

¢ A different approach:

e You can construct a list of contingency tables with the
cont.table () function from the corpora package

e Apply fisher.test () or chisq.test () directly to
each table in the list using the 1lapply () function

e Try to extract relevant information with sapply ()
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