Statistics for Linguists with \mathbf{R} - a SIGIL course

Unit 2: Corpus Frequency Data \& Statistical Inference

Marco Baroni ${ }^{1}$ \& Stefan Evert ${ }^{\text { }}$
http://SIGIL.R-Forge.R-Project.org/

${ }^{1}$ Center for Mind/Brain Sciences, University of Trento ${ }^{2}$ Corpus Linguistics Group, FAU Erlangen-Nürnberg

Frequency estimates \& comparison

Frequency estimates \& comparison

- How often is kick the bucket really used?

Frequency estimates \& comparison

- How often is kick the bucket really used?
- What are the characteristics of "translationese"?

Frequency estimates \& comparison

- How often is kick the bucket really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?

Frequency estimates \& comparison

- How often is kick the bucket really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of cat?

Frequency estimates \& comparison

- How often is kick the bucket really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of cat?
- Can the next word in a sentence be predicted?

Frequency estimates \& comparison

- How often is kick the bucket really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of cat?
- Can the next word in a sentence be predicted?
- Do native speakers prefer constructions that are grammatical according to some linguistic theory?

Frequency estimates \& comparison

- How often is kick the bucket really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of cat?
- Can the next word in a sentence be predicted?
- Do native speakers prefer constructions that are grammatical according to some linguistic theory?
\Rightarrow evidence from frequency comparisons / estimates

A simple toy problem

How many passives are there in English?

A simple toy problem

How many passives are there in English?

- American English style guide claims that
- "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."

A simple toy problem

How many passives are there in English?

- American English style guide claims that
- "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."
- http://www.ego4u.com/en/business-english/grammar/passive actually states that only 10\% of English sentences are passives (as of January 2009)!

A simple toy problem

How many passives are there in English?

- American English style guide claims that
- "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."
- http://www.ego4u.com/en/business-english/grammar/passive actually states that only 10\% of English sentences are passives (as of January 2009)!
- We have doubts and want to verify this claim

From research question to statistical analysis

linguistic question

From research question to statistical analysis

From research question to statistical analysis

linguistic question

From research question to statistical analysis

From research question to statistical analysis

What is English?

What is English?

- Sensible definition: group of speakers
- e.g. American English as language spoken by native speakers raised and living in the U.S.
- may be restricted to certain communicative situation

What is English?

- Sensible definition: group of speakers
- e.g. American English as language spoken by native speakers raised and living in the U.S.
- may be restricted to certain communicative situation
- Also applies to definition of sublanguage
- dialect (Bostonian, Cockney), social group (teenagers), genre (advertising), domain (statistics), ...

What is English?

- Sensible definition: group of speakers
- e.g. American English as language spoken by native speakers raised and living in the U.S.
- may be restricted to certain communicative situation
- Also applies to definition of sublanguage
- dialect (Bostonian, Cockney), social group (teenagers), genre (advertising), domain (statistics), ...
- Here: professional writing by native speakers of AmE (Δ target audience of style guide)

How do you count passives?

How do you count passives?

- Types vs. tokens
- type count: How many different passives are there?
- token count: How many instances are there?

How do you count passives?

- Types vs. tokens
- type count: How many different passives are there?
- token count: How many instances are there?
- How many passive tokens are there in English?

How do you count passives?

- Types vs. tokens
- type count: How many different passives are there?
- token count: How many instances are there?
- How many passive tokens are there in English?
- infinitely many, of course!

How do you count passives?

- Types vs. tokens
- type count: How many different passives are there?
- token count: How many instances are there?
- How many passive tokens are there in English?
- infinitely many, of course!

- Absolute frequency is not meaningful here

Against "absolute" frequency

Against "absolute" frequency

- Are there 20,000 passives?
- Brown (1M words)

Against "absolute" frequency

- Are there 20,000 passives?
- Brown (1M words)

Against "absolute" frequency

- Are there 20,000 passives?
- Brown (1M words)
- Or 1 million?
- BNC (90M words)

Against "absolute" frequency

- Are there 20,000 passives?
- Brown (1M words)
- Or 1 million?
- BNC (90M words)
- Or 5.1 million?
- ukWaC sampler (450M words)

How do you count passives?

How do you count passives?

- Only relative frequency can be meaningful!

How do you count passives?

- Only relative frequency can be meaningful!
- What is a sensible unit of measurement?

How do you count passives?

- Only relative frequency can be meaningful!
- What is a sensible unit of measurement?
... 20,300 per million words?

How do you count passives?

- Only relative frequency can be meaningful!
- What is a sensible unit of measurement?
... 20,300 per million words?
... $\mathbf{3 9 0}$ per thousand sentences?

How do you count passives?

- Only relative frequency can be meaningful!
- What is a sensible unit of measurement?
... 20,300 per million words?
... 390 per thousand sentences?
... $\mathbf{2 8}$ per hour of recorded speech?

How do you count passives?

- Only relative frequency can be meaningful!
- What is a sensible unit of measurement?
... 20,300 per million words?
... 390 per thousand sentences?
... 28 per hour of recorded speech?
... 4,0oo per book?

How do you count passives?

- Only relative frequency can be meaningful!
- What is a sensible unit of measurement?
... 20,300 per million words?
... 390 per thousand sentences?
... 28 per hour of recorded speech?
... 4,00o per book?
- How many passives could there be at most?

How do you count passives?

How do you count passives?

- How many passives could there be at most?
- every VP can be in active or passive voice
- frequency of passives has a meaningful interpretation by comparison with frequency of potential passives

How do you count passives?

- How many passives could there be at most?
- every VP can be in active or passive voice
- frequency of passives has a meaningful interpretation by comparison with frequency of potential passives
- What proportion of VPs are in passive voice?
- easier: proportion of sentences that contain a passive
- in general, proportion wrt. some unit of measurement

How do you count passives?

- How many passives could there be at most?
- every VP can be in active or passive voice
- frequency of passives has a meaningful interpretation by comparison with frequency of potential passives
- What proportion of VPs are in passive voice?
- easier: proportion of sentences that contain a passive
- in general, proportion wrt. some unit of measurement
- Relative frequency $=$ proportion π

From research question to statistical analysis

From research question to statistical analysis

From research question to statistical analysis

Statistics

Linguistics

Using inferential statistics

Using inferential statistics

- Statistics deals with similar problems:

Using inferential statistics

- Statistics deals with similar problems:
- goal: determine properties of large population (human populace, objects produced in factory, ...)

Using inferential statistics

- Statistics deals with similar problems:
- goal: determine properties of large population (human populace, objects produced in factory, ...)
- method: take (completely) random sample of objects, then extrapolate from sample to population

Using inferential statistics

- Statistics deals with similar problems:
- goal: determine properties of large population (human populace, objects produced in factory, ...)
- method: take (completely) random sample of objects, then extrapolate from sample to population
- this works only because of random sampling!

Using inferential statistics

- Statistics deals with similar problems:
- goal: determine properties of large population (human populace, objects produced in factory, ...)
- method: take (completely) random sample of objects, then extrapolate from sample to population
- this works only because of random sampling!
- Many statistical methods are readily available

From research question to statistical analysis

Statistics

Linguistics

From research question to statistical analysis

Linguistics

From research question to statistical analysis

Linguistics

The library metaphor

- Extensional definition of a language: "All utterances made by speakers of the language under appropriate conditions, plus all utterances they could have made"

The library metaphor

- Extensional definition of a language: "All utterances made by speakers of the language under appropriate conditions, plus all utterances they could have made"
- Imagine a huge library with all the books written in a language, as well as all the hypothetical books that have never been written
\rightarrow library metaphor (Evert 2006)

From research question to statistical analysis

Linguistics

From research question to statistical analysis

A random sample of a language

A random sample of a language

- Apply statistical procedure to linguistic problem \Rightarrow need random sample of objects from population
- Quiz: What are the objects in our population?
- words? sentences? texts? ...

A random sample of a language

- Apply statistical procedure to linguistic problem \Rightarrow need random sample of objects from population
- Quiz: What are the objects in our population?
- words? sentences? texts? ...
- Objects = whatever unit of measurement the proportions of interest are based on
- we need to take a random sample of such units

The library metaphor

The library metaphor

- Random sampling in the library metaphor
- in order to take a sample of sentences:

The library metaphor

- Random sampling in the library metaphor
- in order to take a sample of sentences:
- walk to a random shelf ...
... pick a random book ...
... open a random page ...
... and choose a random sentence from the page

The library metaphor

- Random sampling in the library metaphor
- in order to take a sample of sentences:
- walk to a random shelf ...
... pick a random book ...
... open a random page ...
... and choose a random sentence from the page
- this gives us 1 item for our sample

The library metaphor

- Random sampling in the library metaphor
- in order to take a sample of sentences:
- walk to a random shelf ...
... pick a random book ...
... open a random page ...
... and choose a random sentence from the page
- this gives us 1 item for our sample
- repeat \boldsymbol{n} times for sample size \boldsymbol{n}

Types, tokens and proportions

- Proportions and relative sample frequencies are defined formally in terms of types \& tokens
- Relative frequency of type v in sample $\left\{t_{1}, \ldots, t_{n}\right\}$ = proportion of tokens t_{i} that belong to this type

$$
p=\frac{f(v)}{n} \longleftarrow_{\text {sample size }}
$$

- Compare relative sample frequency \boldsymbol{p} against (hypothesised) population proportion π

Types, tokens and proportions

Types, tokens and proportions

- Example: word frequencies
- word type = dictionary entry (distinct word)
- word token = instance of a word in library texts

Types, tokens and proportions

- Example: word frequencies
- word type = dictionary entry (distinct word)
- word token = instance of a word in library texts
- Example: passive VPs
- relevant VP types $=$ active or passive $(\rightarrow$ abstraction $)$
- VP token = instance of VP in library texts

Types, tokens and proportions

- Example: word frequencies
- word type = dictionary entry (distinct word)
- word token = instance of a word in library texts
- Example: passive VPs
- relevant VP types $=$ active or passive $(\rightarrow$ abstraction $)$
- VP token = instance of VP in library texts
- Example: verb sucategorisation
- relevant types = itr., tr., ditr., PP-comp., X-comp, ...
- verb token = occurrence of selected verb in text

Inference from a sample

Inference from a sample

- Principle of inferential statistics
- if a sample is picked at random, proportions should be roughly the same in sample and population

Inference from a sample

- Principle of inferential statistics
- if a sample is picked at random, proportions should be roughly the same in sample and population
- Take a sample of 100 sentences
- observe 19 passives $\rightarrow p=19 \%=.19$
- style guide \rightarrow population proportion $\pi=15 \%$
- $p>\pi \rightarrow$ reject claim of style guide?

Inference from a sample

- Principle of inferential statistics
- if a sample is picked at random, proportions should be roughly the same in sample and population
- Take a sample of 100 sentences
- observe 19 passives $\rightarrow p=19 \%=.19$
- style guide \rightarrow population proportion $\pi=15 \%$
- $p>\pi \rightarrow$ reject claim of style guide?
- Take another sample, just to be sure
- observe 13 passives $\rightarrow p=13 \%=.13$
- $p<\pi \rightarrow$ claim of style guide confirmed?

Sampling variation

Sampling variation

- Random choice of sample ensures proportions are the same on average in sample \& population

Sampling variation

- Random choice of sample ensures proportions are the same on average in sample \& population
- But it also means that for every sample we will get a different value because of chance effects \rightarrow sampling variation
- problem: erroneous rejection of style guide's claim results in publication of a false result

Sampling variation

- Random choice of sample ensures proportions are the same on average in sample \& population
- But it also means that for every sample we will get a different value because of chance effects \rightarrow sampling variation
- problem: erroneous rejection of style guide's claim results in publication of a false result
- The main purpose of statistical methods is to estimate \& correct for sampling variation
- that's all there is to inferential statistics, really

Reminder: The role of statistics

Reminder: The role of statistics

The null hypothesis

The null hypothesis

- Our "goal" is to refute the style guide's claim, which we call the null hypothesis H_{o}

$$
H_{0}: \pi=.15
$$

- we also refer to $\pi_{0}=.15$ as the null proportion

The null hypothesis

- Our "goal" is to refute the style guide's claim, which we call the null hypothesis H_{o}

$$
H_{0}: \pi=.15
$$

- we also refer to $\pi_{0}=.15$ as the null proportion
- Erroneous rejection of H_{0} is problematic
- leads to embarrassing publication of false result
- known as a type I error in statistics

The null hypothesis

- Our "goal" is to refute the style guide's claim, which we call the null hypothesis H_{o}

$$
H_{0}: \pi=.15
$$

- we also refer to $\pi_{0}=.15$ as the null proportion
- Erroneous rejection of H_{0} is problematic
- leads to embarrassing publication of false result
- known as a type I error in statistics
- Need to control risk of a type I error

Estimating sampling variation

Estimating sampling variation

- Assume that style guide's claim H_{0} is correct
- i.e. rejection of H_{0} is always a type I error

Estimating sampling variation

- Assume that style guide's claim H_{0} is correct
- i.e. rejection of H_{0} is always a type I error
- Many corpus linguists set out to test H_{0}
- each one draws a random sample of size $n=100$

Estimating sampling variation

- Assume that style guide's claim H_{0} is correct
- i.e. rejection of H_{0} is always a type I error
- Many corpus linguists set out to test H_{0}
- each one draws a random sample of size $n=100$
- how many of the samples have the expected $k=15$ passives, how many have $k=19$, etc.?

Estimating sampling variation

- Assume that style guide's claim H_{0} is correct
- i.e. rejection of H_{0} is always a type I error
- Many corpus linguists set out to test H_{0}
- each one draws a random sample of size $n=100$
- how many of the samples have the expected $k=15$ passives, how many have $k=19$, etc.?
- if we are willing to reject H_{0} for $k=19$ passives in a sample, all corpus linguists with such a sample will publish a false result
- risk of type I error = percentage of such cases

Estimating sampling variation

Estimating sampling variation

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
- randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
- red ball = passive sent. $/$ white ball = active sent.
- H_{0} : assume proportion of red balls in urn is 15%

Estimating sampling variation

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
- randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
- red ball = passive sent. / white ball = active sent.
- H_{0} : assume proportion of red balls in urn is 15%
- This leads to a binomial distribution

$$
\operatorname{Pr}(k)=\binom{n}{k}\left(\pi_{0}\right)^{k}\left(1-\pi_{0}\right)^{n-k}
$$

Estimating sampling variation

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
- randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
- red ball = passive sent. / white ball = active sent.
- H_{0} : assume proportion of red balls in urn is 15%
- This leads to a binomial distribution

$$
\begin{aligned}
& \operatorname{Pr}(k)=\binom{n}{k}\left(\pi_{0}\right)^{k}\left(1-\pi_{0}\right)^{n-k} \\
& \text { percentage of samples }=\text { probability }
\end{aligned}
$$

Binomial sampling distribution

Binomial sampling distribution

Binomial sampling distribution

Binomial sampling distribution

\rightarrow risk of false rejection = \mathbf{p}-value $=26.2 \%$

Statistical hypothesis testing

Statistical hypothesis testing

- Statistical hypothesis tests
- define a rejection criterion for refuting H_{0}
- control the risk of false rejection (type I error) to a "socially acceptable level" (significance level α)
- \mathbf{p}-value $=$ risk of type I error given observation, interpreted as amount of evidence against H_{o}

Statistical hypothesis testing

- Statistical hypothesis tests
- define a rejection criterion for refuting H_{o}
- control the risk of false rejection (type I error) to a "socially acceptable level" (significance level α)
- p-value = risk of type I error given observation, interpreted as amount of evidence against H_{0}
- Two-sided vs. one-sided tests
- in general, two-sided tests are recommended (safer)
- one-sided test is plausible in our example

Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

This site provides some online utilities for the project Statistical Inference: A Gentle Introduction for Linguists (SIGIL) by Marco Baroni m and Stefan Evert ${ }^{*}$. The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL ㄹ.

One sample: frequency estimate (confidence interval)

Two samples: frequency comparison

	Frequency count	Sample size		
Sample 1	19	100	Clear fields	95\% \quad confidence interval
Sample 2	25	200		in automatic $\quad \ddagger$ format

Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

This site provides some online utilities for the project Statistical Inference: A Gentle Introduction for Linguists (SIGIL) by Marco Baroni m and Stefan Evert ©. The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL ㄹ.

One sample: frequency estimate (confidence interval)

Two samples: frequency comparison

Frequency count		Sample size
Sample 1	19	100
Sample 2	25	200

- http://sigil.collocations.de/wizard.html
- http://corpora.lancs.ac.uk/sigtest/
- http://vassarstats.net/
©ce - SPSS, SAS, Excel, ...
car - We want to do it in (D), of course

Binomial hypothesis test in R

Binomial hypothesis test in R

- Relevant R function: binom.test()

Binomial hypothesis test in R

- Relevant R function: binom.test()
- We need to specify
- observed data: 19 passives out of 100 sentences
- null hypothesis: $H_{0}: \pi=15 \%$

Binomial hypothesis test in R

- Relevant R function: binom.test()
- We need to specify
- observed data: $\mathbf{1 9}$ passives out of $\mathbf{1 0 0}$ sentences
- null hypothesis: $H_{0}: \pi=\mathbf{1 5 \%}$
- Using the binom.test() function:
> binom.test(19, 100, p=.15) \#two-sided
> binom.test(19, 100, p=.15, \# one-sided alternative="greater")

Binomial hypothesis test in R

> binom.test(19, 100, p=.15)
Exact binomial test
data: 19 and 100
number of successes $=19$, number of
trials $=100, p-v a l u e=0.2623$
alternative hypothesis: true probability of success is not equal to 0.15

95 percent confidence interval:
0.11844320 .2806980
sample estimates:
probability of success
0.19

Binomial hypothesis test in R

> binom.test(19, 100, p=.15)
Exact binomial test
data: 19 and 100
number of succesces $=19$ number of trials = 100, p-value $=0.2623$
alternative hypothesis: true probability of success is not equal to 0.15

95 percent confidence interval:
0.11844320 .2806980
sample estimates:
probability of success
0.19

Rejection criterion \& significance level

Rejection criterion \& significance level

> binom.test(19, 100, p=.15)\$p.value
[1] 0.2622728

Rejection criterion \& significance level

> binom.test(19, 100, $p=.15) \$ p . v a l u e$
[1] 0.2622728

> binom.test(23, 100, $p=.15) \$ p . v a l u e$
[1] 0.03430725

$$
p<.05=\mathrm{a}
$$

Rejection criterion \& significance level

> binom.test(19, 100, $p=.15) \$ p . v a l u e$
[1] 0.2622728

> binom.test(23, 100, p=.15)\$p.value
[1] 0.03430725

$$
p<.05=a
$$

> binom.test(25, 100, p=.15)\$p.value
[1] 0.007633061

$$
p<.01=\mathrm{a}
$$

Rejection criterion \& significance level

> binom.test(19, 100, $p=.15) \$ p . v a l u e$
[1] 0.2622728

> binom.test(23, 100, p=.15)\$p.value
[1] 0.03430725

$$
p<.05=\alpha \quad *
$$

> binom.test(25, 100, p=.15)\$p.value
[1] 0.007633061

$$
p<.01=\alpha
$$

> binom.test(29, 100, p=.15)\$p.value
[1] 0.0003529264

$$
p<.001=\alpha \quad * * *
$$

Type II errors

Type II errors

- Rejection criterion controls risk of type I error
- only for situation in which H_{0} is true

Type II errors

- Rejection criterion controls risk of type I error
- only for situation in which H_{0} is true
- Type II error = failure to reject incorrect H_{o}
- for situation in which H_{0} is not true \rightarrow rejection correct, non-rejection is an error

Type II errors

- Rejection criterion controls risk of type I error
- only for situation in which H_{0} is true
- Type II error = failure to reject incorrect H_{o}
- for situation in which H_{0} is not true \rightarrow rejection correct, non-rejection is an error
- What is the risk of a type II error?
- depends on unknown true population proportion π
- intuitively, risk of type II error will be low if the difference $\delta=\pi-\pi_{0}$ (the effect size) is large enough

Type II errors

Type II errors

Type II errors

Type II errors

Type II errors

 type II risk for $\mathrm{k} \leq 21$

Type II errors \& effect size

effect size δ

Type II errors \& effect size

effect size δ

Type II errors \& effect size

effect size δ

Type II errors \& sample size

Type II errors \& sample size

$n=1000$

Type II errors \& sample size

$n=1000$

Power

Power

- Type II error = failure to reject incorrect H_{o}
- the larger the difference between H_{o} and the true population proportion, the more likely it is that H_{o} can be rejected based on a given sample
- a powerful test has a low type II error
- power analysis explores the relationship between effect size and risk of type II error

Power

- Type II error = failure to reject incorrect H_{o}
- the larger the difference between H_{o} and the true population proportion, the more likely it is that H_{o} can be rejected based on a given sample
- a powerful test has a low type II error
- power analysis explores the relationship between effect size and risk of type II error
- Key insight: larger sample = more power
- relative sampling variation becomes smaller
- power also depends on significance level

Power analysis for binomial test

Power analysis for binomial test

Power analysis for binomial test

- Key factors determining the power of a test
- sample size \rightarrow more evidence $=$ greater power
- significance level \rightarrow trade-off btw. type I / II errors

Power analysis for binomial test

- Key factors determining the power of a test
- sample size \rightarrow more evidence $=$ greater power
- significance level \rightarrow trade-off btw. type I / II errors
- Influence of hypothesis test procedure
- one-sided test more powerful than two-sided test
- parametric tests more powerful than non-parametric
- statisticians look for "uniformly most powerful" test

Power analysis for binomial test

- Key factors determining the power of a test
- sample size \rightarrow more evidence $=$ greater power
- significance level \rightarrow trade-off btw. type I / II errors
- Influence of hypothesis test procedure
- one-sided test more powerful than two-sided test
- parametric tests more powerful than non-parametric
- statisticians look for "uniformly most powerful" test
- Tests can become too powerful!
- reject H_{0} for 15.1% passives with $n=1,000,000$

Parametric vs. non-parametric

- People often talk about parametric and nonparametric tests without precise definition
- Parametric tests make stronger assumptions
- not just normality assuming (= Gaussian distribution)
- binomial test: strong random sampling assumption \rightarrow might be considered a parametric test in this sense!
- Parametric tests are usually more powerful
- strong assumptions allow less conservative estimate of sampling variation \rightarrow less evidence needed against H_{0}

Trade-offs in statistics

Trade-offs in statistics

- Inferential statistics is a trade-off between type I errors and type II errors
- i.e. between significance and power

Trade-offs in statistics

- Inferential statistics is a trade-off between type I errors and type II errors
- i.e. between significance and power
- Significance level
- determines trade-off point
- low significance level $\alpha \rightarrow$ low type I risk, but low power

Trade-offs in statistics

- Inferential statistics is a trade-off between type I errors and type II errors
- i.e. between significance and power
- Significance level
- determines trade-off point
- low significance level $\alpha \rightarrow$ low type I risk, but low power
- Conservative tests
- put more weight on avoiding type I errors \rightarrow weaker
- most non-parametric methods are conservative

Confidence interval

Confidence interval

- We now know how to test a null hypothesis H_{0}, rejecting it only if there is sufficient evidence
- But what if we do not have an obvious null hypothesis to start with?
- this is typically the case in (computational) linguistics

Confidence interval

- We now know how to test a null hypothesis H_{0}, rejecting it only if there is sufficient evidence
- But what if we do not have an obvious null hypothesis to start with?
- this is typically the case in (computational) linguistics
- We can estimate the true population proportion from the sample data (relative frequency)
- sampling variation \rightarrow range of plausible values
- such a confidence interval can be constructed by inverting hypothesis tests (e.g. binomial test)

Confidence interval

observed data:
$k=190 / n=1000$

Confidence interval

observed data:
$k=190 / n=1000$

95\% confidence

$$
p<.05=\alpha
$$

Confidence interval

observed data:
$k=190 / n=1000$

95% confidence
 $$
p<.05=\alpha
$$

$$
\mathrm{H}_{0}: \mu=16.5 \% \rightarrow \text { rejected }
$$

Confidence interval

observed data:
$k=190 / n=1000$

95% confidence
 $$
p<.05=\alpha
$$

$$
\mathrm{H}_{0}: \mu=16.6 \% \rightarrow \text { rejected }
$$

Confidence interval

observed data:
$k=190 / n=1000$

95\% confidence

$$
p<.05=\alpha
$$

$H_{0}: \mu=16.7 \% \rightarrow$ plausible

Confidence interval

observed data:
$k=190 / n=1000$

95\% confidence

$$
p<.05=\alpha
$$

$H_{0}: \mu=17 \% \rightarrow$ plausible

Confidence interval

observed data:
$k=190 / n=1000$
95% confidence

$$
p<.05=\alpha
$$

$\mathrm{H}_{0}: \mu=18 \% \rightarrow$ plausible

Confidence interval

observed data:
$k=190 / n=1000$
$\mathrm{H}_{0}: \mu=19 \% \rightarrow$ plausible

95\% confidence

$$
p<.05=\alpha
$$

Confidence interval

observed data:
$k=190 / n=1000$

95\% confidence

$$
p<.05=\alpha
$$

$\mathrm{H}_{0}: \mu=20 \% \rightarrow$ plausible

Confidence interval

observed data:
$k=190 / n=1000$
95% confidence

$$
p<.05=\alpha
$$

$\mathrm{H}_{0}: \mu=21 \% \rightarrow$ plausible

Confidence interval

observed data:
$k=190 / n=1000$

95\% confidence

$$
p<.05=\alpha
$$

$\mathrm{H}_{0}: \mu=21.5 \% \rightarrow$ plausible

Confidence interval

observed data:
$k=190 / n=1000$
95% confidence

$$
p<.05=\alpha
$$

Confidence interval

observed data:
$k=190 / n=1000$
$H_{0}: \mu=22 \% \rightarrow$ rejected
95% confidence

$$
p<.05=\alpha
$$

Confidence interval

observed data:
$k=190 / n=1000$
$H_{0}: \mu=23 \% \rightarrow$ rejected

Confidence interval

observed data:
$k=190 / n=1000$
95% confidence

$$
p<.05=\alpha
$$

Confidence intervals

- Confidence interval = range of plausible values for true population proportion
- H_{0} rejected by test iff π_{0} is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	$n=100$	$n=1,000$	$n=10,000$
	$k=19$	$k=190$	$k=1,900$
$\alpha=.05$	$11.8 \% \ldots 28.1 \%$	$16.6 \% \ldots 21.6 \%$	$18.2 \% \ldots 19.8 \%$
$\alpha=.01$	$10.1 \% \ldots 31.0 \%$	$15.9 \% \ldots 22.4 \%$	$18.0 \% \ldots 20.0 \%$
$\alpha=.001$	$8.3 \% \ldots 34.5 \%$	$15.1 \% \ldots 23.4 \%$	$17.7 \% \ldots 20.3 \%$

Confidence intervals

- Confidence interval = range of plausible values for true population proportion
- H_{0} rejected by test iff π_{0} is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	$n=100$	$n=1,000$	$n=10,000$
	$k=19$	$k=190$	$k=1,900$
$\alpha=.05$	$11.8 \% \ldots 28.1 \%$	$16.6 \% \ldots 21.6 \%$	$18.2 \% \ldots 19.8 \%$
$\alpha=.01$	$10.1 \% \ldots 31.0 \%$	$15.9 \% \ldots 22.4 \%$	$18.0 \% \ldots 20.0 \%$
$\alpha=.001$	$8.3 \% \ldots 34.5 \%$	$15.1 \% \ldots 23.4 \%$	$17.7 \% \ldots 20.3 \%$

I'm cheating here a tiny little
bit (not allwas
Conde Confidence intervals bit (not always an interval)

- Confidence interval = range of plausible values for true population proportion
- H_{0} rejected by test iff π_{0} is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	$n=100$	$n=1,000$	$n=10,000$
	$k=19$	$k=190$	$k=1,900$
$\alpha=.05$	$11.8 \% \ldots 28.1 \%$	$16.6 \% \ldots 21.6 \%$	$18.2 \% \ldots 19.8 \%$
$\alpha=.01$	$10.1 \% \ldots 31.0 \%$	$15.9 \% \ldots 22.4 \%$	$18.0 \% \ldots 20.0 \%$
$\alpha=.001$	$8.3 \% \ldots 34.5 \%$	$15.1 \% \ldots 23.4 \%$	$17.7 \% \ldots 20.3 \%$

I'm cheating here a tiny little
bit (not allwas
Conde Confidence intervals bit (not always an interval)

- Confidence interval = range of plausible values for true population proportion
- H_{0} rejected by test iff π_{0} is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	$n=100$	$n=1,000$	$n=10,000$
	$k=19$	$k=190$	$k=1,900$
$\alpha=.05$	$11.8 \% \ldots 28.1 \%$	$16.6 \% \ldots 21.6 \%$	$18.2 \% \ldots 19.8 \%$
$\alpha=.01$	$10.1 \% \ldots 31.0 \%$	$15.9 \% \ldots 22.4 \%$	$18.0 \% \ldots 20.0 \%$
$\alpha=.001$	$8.3 \% \ldots 34.5 \%$	$15.1 \% \ldots 23.4 \%$	$17.7 \% \ldots 20.3 \%$

Confidence intervals in R

Confidence intervals in R

- Most hypothesis tests in R also compute a confidence interval (including binom. test ())
- omit H_{o} if only interested in confidence interval

Confidence intervals in R

- Most hypothesis tests in R also compute a confidence interval (including binom.test())
- omit H_{0} if only interested in confidence interval
- Significance level of underlying hypothesis test is controlled by conf. level parameter
- expressed as confidence, e.g. conf. level=. 95 for significance level $\alpha=$.05, i.e. 95% confidence

Confidence intervals in R

- Most hypothesis tests in R also compute a confidence interval (including binom. test ())
- omit H_{0} if only interested in confidence interval
- Significance level of underlying hypothesis test is controlled by conf. level parameter
- expressed as confidence, e.g. conf. level=. 95 for significance level $\alpha=.05$, i.e. 95% confidence
- Can also compute one-sided confidence interval
- controlled by alternative parameter
- two-sided confidence intervals strongly recommended

Confidence intervals in R

> binom.test(190, 1000, conf.level=.99)
Exact binomial test
data: 190 and 1000
number of successes $=190$, number of
trials $=1000, \mathrm{p}-\mathrm{value}<2.2 \mathrm{e}-16$
alternative hypothesis: true probability of success is not equal to 0.5

99 percent confidence interval:
0.15909200 .2239133
sample estimates:
probability of success
0.19

Confidence intervals in R

> binom.test(190, 1000, conf.level=.99)
Exact binomial test
data: 190 and 1000
number of successes $=190$, number of
trials $=1000, p-v a l u e<2.2 e-16$
alternative hypothesis: true probability of success is not equal to 0.5

99 percent confidence interval:
0.15909200 .2239133
sample estimates:
probability of success
0.19

Choosing sample size

Choosing sample size

Choosing sample size

Using R to choose sample size

Using R to choose sample size

- Call binom.test() with hypothetical values
- Plots on previous slides also created with R
- requires calculation of large number of hypothetical confidence intervals
- binom.test() is both inconvenient and inefficient

Using R to choose sample size

- Call binom.test() with hypothetical values
- Plots on previous slides also created with R
- requires calculation of large number of hypothetical confidence intervals
- binom.test() is both inconvenient and inefficient
- The corpora package has a vectorised function
> library (corpora)
> prop.cint(190, 1000, conf.level=.99)
> ?prop.cint \#"conf. intervals for proportions"

Frequency comparison

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
- Are split infinitives more frequent in AmE than BrE?

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
- Are split infinitives more frequent in AmE than BrE?
- Are there more definite articles in texts written by Chinese learners of English than native speakers?

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
- Are split infinitives more frequent in AmE than BrE?
- Are there more definite articles in texts written by Chinese learners of English than native speakers?
- Does meow occur more often in the vicinity of cat than elsewhere in the text?

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
- Are split infinitives more frequent in AmE than BrE ?
- Are there more definite articles in texts written by Chinese learners of English than native speakers?
- Does meow occur more often in the vicinity of cat than elsewhere in the text?
- Do speakers prefer I couldn't agree more over alternative realisations such as I agree completely?

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
- Are split infinitives more frequent in AmE than BrE ?
- Are there more definite articles in texts written by Chinese learners of English than native speakers?
- Does meow occur more often in the vicinity of cat than elsewhere in the text?
- Do speakers prefer I couldn't agree more over alternative realisations such as I agree completely?
- Compare observed frequencies in two samples

Frequency comparison

$$
H_{0}: \pi_{1}=\pi_{2}
$$

Frequency comparison

- Null hypothesis for frequency comparison

$$
H_{0}: \pi_{1}=\pi_{2}
$$

- no assumptions about the precise value $\pi_{1}=\pi_{2}=\pi$

Frequency comparison

- Null hypothesis for frequency comparison

$$
H_{0}: \pi_{1}=\pi_{2}
$$

- no assumptions about the precise value $\pi_{1}=\pi_{2}=\pi$
- Observed data
- target count k_{i} and sample size n_{i} for each sample i
- e.g. $k_{1}=19 / n_{1}=100$ passives vs. $k_{2}=25 / n_{2}=200$

Frequency comparison

- Null hypothesis for frequency comparison

$$
H_{0}: \pi_{1}=\pi_{2}
$$

- no assumptions about the precise value $\pi_{1}=\pi_{2}=\pi$
- Observed data
- target count k_{i} and sample size n_{i} for each sample i
- e.g. $k_{1}=19 / n_{1}=100$ passives vs. $k_{2}=25 / n_{2}=200$
- Effect size: difference of proportions
- effect size $\delta=\pi_{1}-\pi_{2}$ (and thus $H_{0}: \delta=0$)

Frequency comparison in R

Frequency comparison in R

- Frequency comparison test: prop.test()
- observed data: counts k_{i} and sample sizes n_{i}
- also computes confidence interval for effect size

Frequency comparison in R

- Frequency comparison test: prop.test()
- observed data: counts k_{i} and sample sizes n_{i}
- also computes confidence interval for effect size
- E.g. for 19 passives out of 100 / 25 out of 200
- parameters conf.level and alternative can be used in the familiar way
> prop.test $(c(19,25), c(100,200))$

Frequency comparison in R

> prop.test(c(19,25), c(100,200))
2-sample test for equality of proportions with continuity correction
data: $c(19,25)$ out of $c(100,200)$
X-squared $=1.7611, d f=1, p$-value $=0.1845$
alternative hypothesis: two.sided
95 percent confidence interval:
-0.03201426 0.16201426
sample estimates:
prop 1 prop 2
0.1900 .125

Contingency tables

sample 1 sample 2

passive	\boldsymbol{k}_{1}	$\boldsymbol{k}_{\mathbf{2}}$
active	$\boldsymbol{n}_{1}-\boldsymbol{k}_{1}$	$\boldsymbol{n}_{2}-\boldsymbol{k}_{2}$
\boldsymbol{n}_{1}		\boldsymbol{n}_{2}

100200

- Data can also be given as a contingency table
- e.g. $k_{1}=19 / n_{1}=100$ passives vs. $k_{2}=25 / n_{2}=200$
- represents a cross-classification of $n=300$ items
- generalization to larger tables possible

Tests for contingency tables

Tests for contingency tables

- Fisher's exact test = generalization of binomial test to contingency tables
- computationally expensive, mostly for small samples

Tests for contingency tables

- Fisher's exact test = generalization of binomial test to contingency tables
- computationally expensive, mostly for small samples
- Pearson's chi-squared test = asymptotic test based on test statistic X^{2}
- larger value of $X^{2} \rightarrow$ less likely under H_{o}
- X^{2} can be translated into corresponding p-value
- suitable for large samples and small balanced samples

Tests for contingency tables

- Fisher's exact test = generalization of binomial test to contingency tables
- computationally expensive, mostly for small samples
- Pearson's chi-squared test = asymptotic test based on test statistic X^{2}
- larger value of $X^{2} \rightarrow$ less likely under H_{o}
- X^{2} can be translated into corresponding p-value
- suitable for large samples and small balanced samples
- Likelihood-ratio test based on statistic G^{2}
- popular in collocation and keyword identification
- suitable for highly skewed data

Tests for contingency tables

- Can easily carry out chi-squared (chisq.test) and Fisher's exact test (fisher.test) in R
- likelihood ratio test not included in R standard library
- Table for 19 / 100 vs. 25 / 200
$>c t<-c b i n d(c(19,81)$, c $(25,175))$
> chisq.test(ct)
> fisher.test(ct)

Significance vs. relevance

Significance vs. relevance

- Much focus on significant p-value, but ...

Significance vs. relevance

- Much focus on significant p-value, but ...
- large differences may be non-significant if sample size is too small (e.g. $10 / 80=12.5 \%$ vs. $20 / 80=25 \%$)

Significance vs. relevance

- Much focus on significant p-value, but ...
- large differences may be non-significant if sample size is too small (e.g. $10 / 80=12.5 \%$ vs. $20 / 80=25 \%$)
- increase sample size for more powerful/sensitive test

Significance vs. relevance

- Much focus on significant p-value, but ...
- large differences may be non-significant if sample size is too small (e.g. $10 / 80=12.5 \%$ vs. $20 / 80=25 \%$)
- increase sample size for more powerful/sensitive test
- very large samples lead to highly significant p-values for minimal and irrelevant differences (e.g. 1M tokens with $150,000=15 \%$ vs. $151,000=15.1 \%$ occurrences)

Significance vs. relevance

- Much focus on significant p-value, but ...
- large differences may be non-significant if sample size is too small (e.g. $10 / 80=12.5 \%$ vs. $20 / 80=25 \%$)
- increase sample size for more powerful/sensitive test
- very large samples lead to highly significant p-values for minimal and irrelevant differences (e.g. 1M tokens with $150,000=15 \%$ vs. $151,000=15.1 \%$ occurrences)
- It is important to assess both significance and relevance (= effect size) of frequency data!
- confidence intervals combine both aspects

Effect size in contingency tables

- Simple effect size measure: difference of proportions

$$
\delta=\pi_{1}-\pi_{2}
$$

- $\mathrm{H}_{0}: \delta=\mathrm{o}$

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

- Issues
- depends on scale of π_{1} and π_{2}
- small effects for lexical freq's

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

- Effect size measure: (log) relative risk

$$
r=\frac{\pi_{1}}{\pi_{2}}
$$

- $\mathrm{H}_{0}: r=1$

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

- Issues
- can be inflated for small π_{2}
- mathematically inconvenient

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

- Effect size measure:
(log) odds ratio

$$
\theta=\frac{\frac{\pi_{1}}{1-\pi_{1}}}{\frac{\pi_{2}}{1-\pi_{2}}}=\frac{\pi_{1}\left(1-\pi_{2}\right)}{\pi_{2}\left(1-\pi_{1}\right)}
$$

- $\mathrm{H}_{\mathrm{o}}: ~ \theta=1$

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

- Issues
- can be inflated for small π_{2}
- interpretation not very intuitive

Effect size in contingency tables

- Effect size measure: φ coefficient / Cramér V

$$
\phi=\sqrt{\frac{X^{2}}{n}}
$$

- H_{o} : ???

$$
n=n_{1}+n_{2}
$$

- Issues
- this is a property of the sample rather than the population!

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

- Effect size measure: $\boldsymbol{\varphi}$ coefficient / Cramér V
$\phi=\frac{\pi_{1}\left(1-\pi_{2}\right)-\pi_{2}\left(1-\pi_{1}\right)}{\sqrt{\left(r_{1} \pi_{1}+r_{2} \pi_{2}\right)\left(1-r_{1} \pi_{1}-r_{2} \pi_{2}\right) / r_{1} r_{2}}}$

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a

- $\mathrm{H}_{0}: \varphi=0$

$$
\begin{aligned}
n & =n_{1}+n_{2} \\
r_{1} & =n_{1} / n \\
r_{2} & =n_{2} / n
\end{aligned}
$$

- depends on relative sample sizes
- interpretation entirely unclear

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

- We can estimate effect sizes by inserting sample values k_{i} / n_{i}

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

- We can estimate effect sizes by inserting sample values k_{i} / n_{i}
- But such point estimates are meaningless!

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$
\begin{aligned}
& \hat{\pi}_{1}=\frac{k_{1}}{n_{1}} \\
& \hat{\pi}_{2}=\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Effect size in contingency tables

- We can estimate effect sizes by inserting sample values k_{i} / n_{i}
- But such point estimates are meaningless!
- Confidence intervals available only for some effect measures
- approximate interval for δ from proportions test
- exact interval for odds ratio θ from Fisher's test
- φ computed from chi-square statistic is still a point estimate!

π_{1}	π_{2}
$1-\pi_{1}$	$1-\pi_{2}$

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$
\begin{aligned}
\hat{\pi}_{1} & =\frac{k_{1}}{n_{1}} \\
\hat{\pi}_{2} & =\frac{k_{2}}{n_{2}}
\end{aligned}
$$

Visualizing effect size measures

difference of proportions

Visualizing effect size measures

(log) relative risk

Visualizing effect size measures

(log) odds ratio

Visualizing effect size measures
 φ coefficient (1: 1)

Visualizing effect size measures φ coefficient (1: 1)

Visualizing effect size measures

φ coefficient (10:1)

Visualizing effect size measures φ coefficient (1:10)

A case study: passives

- As a case study, we will compare the frequency of passives in Brown (AmE) and LOB (BrE)
- pooled data
- separately for each genre category
- Data files provided in CSV format
- passives.brown.csv \& passives.lob.csv
- cat = genre category, passive = number of passives, $n _w=$ number of word, $n _s=$ number of sentences, name $=$ description of genre category

Preparing the data

> Brown <- read.csv("passives.brown.csv")
> LOB <- read.csv("passives.lob.csv")
> library(SIGIL) \# or use versions in SIGIL package
> Brown <- BrownPassives
> LOB <- LOBPassives
\# now take a look at the two tables: what info do they provide?
\# pooled data for entire corpus = column sums (col. 2 ... 4)
> Brown.all <- colSums(Brown[, 2:4])
> LOB.all <- colSums(LOB[, 2:4])

Frequency tests for pooled data

\# proportions test reports p-value is based on chi-squared test \# and approximate confidence interval for effect size δ
> prop.test(c(10123, 10934), c(49576, 49742))
> ct <- cbind(c(10123, 49576-10123), \# Brown c(10934, 49742-10934)) \# LOB
> ct \# contingency table for chi-squared / Fisher
> fisher.test(ct) \# exact confidence interval for odds ratio θ
\# we could in principle do the same for all 15 genres ...

Automation: user functions

\# user function do.test () executes proportions test for samples \# k_{1} / n_{1} and k_{2} / n_{2}, and summarizes relevant results in compact form > do.test <- function (k1, n1, k2, n2) \{
\# res contains results of proportions test (list = data structure)
res <- prop.test(c(k1, k2), c(n1, n2))
\# data frames are a nice way to display summary tables
fmt <- data.frame (p=res\$p.value,
lower=res\$conf.int[1], upper=res\$conf.int[2])
fmt \# return value of function = last expression
\}
> do.test (10123, 49576, 10934, 49742) \# pooled data
> do.test (146, 975, 134, 947) \#humourgenre

A nicer user function

\# nicer version of user function with genre category labels
> do.test <- function (k1, n1, k2, n2, cat="") \{ res <- prop.test(c(k1, k2), c(n1, n2))
data.frame(
p=res\$p.value,
lower=100*res\$conf.int[1], \# scaled to \% points
upper=100*res\$conf.int[2],
row. names=cat \# add genre as row label
) \# return data frame directly without local variable fmt
\}
\# extract relevant information directly from data frames
> do.test(Brown\$passive[15], Brown\$n_s[15], LOB\$passive[15], LOB\$n_s[15], cat=Brown\$name[15])

Ad-hoc functions \& loops

```
# ad-hoc convenience function to reduce typing/editing
# (works only if global Brown/LOB variables are set correctly!)
quick.test <- function (i) {
    do.test(k1=Brown$passive[i], n1=Brown$n_s[i],
    k2=LOB$passive[i], n2=LOB$n_s[i],
    cat=Brown$name[i])
}
quick.test(15) # easy to repeat for different genres now
quick.test(9)
# loop over all 15 categories (more general: 1: nrow(Brown))
for (i in 1:15) {
    print( quick.test(i) )
}
```


R wizardry: working with lists

\# our code only works if rows of Brown/LOB are in the same order!
> all(Brown\$cat == LOB\$cat)
\# it would be nice to collect all these results in a single overview table \# for this, we need a little bit of R wizardry ...
\# apply function quick.test() to each number $1, \ldots, 15$
res.list <- lapply(1:15, quick.test)
\# pass res.list as individual arguments to rbind()
\# (think of this as an idiom you just have to remember ...)
res <- do.call(rbind, res.list)
res \# data frame with one row for each genre
round (res, 3) \# rounded values are easier to read

It's your turn now ...

- Questions:
- Which differences are significant?
- Are the effect sizes linguistically relevant?
- A different approach:
- You can construct a list of contingency tables with the cont.table() function from the corpora package
- Apply fisher.test() or chisq.test() directly to each table in the list using the lapply () function
- Try to extract relevant information with sapply ()

