Statistics for Linguists with R – a SIGIL course

Unit 2: Corpus Frequency Data & Statistical Inference

Marco Baroni¹ & Stefan Evert²

http://SIGIL.R-Forge.R-Project.org/

¹Center for Mind/Brain Sciences, University of Trento ²Corpus Linguistics Group, FAU Erlangen-Nürnberg

• How often is *kick the bucket* really used?

- How often is *kick the bucket* really used?
- What are the characteristics of "translationese"?

- How often is *kick the bucket* really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?

- How often is *kick the bucket* really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of *cat*?

- How often is *kick the bucket* really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of *cat*?
- Can the next word in a sentence be predicted?

- How often is *kick the bucket* really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of *cat*?
- Can the next word in a sentence be predicted?
- Do native speakers prefer constructions that are grammatical according to some linguistic theory?

- How often is *kick the bucket* really used?
- What are the characteristics of "translationese"?
- Do Americans use more split infinitives than Britons? What about British teenagers?
- What are the typical collocates of *cat*?
- Can the next word in a sentence be predicted?
- Do native speakers prefer constructions that are grammatical according to some linguistic theory?
- evidence from frequency comparisons / estimates

How many passives are there in English?

How many passives are there in English?

- American English style guide claims that
 - "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."

How many passives are there in English?

- American English style guide claims that
 - "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."
 - http://www.ego4u.com/en/business-english/grammar/passive actually states that only 10% of English sentences are passives (as of January 2009)!

How many passives are there in English?

• American English style guide claims that

- "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."
- http://www.ego4u.com/en/business-english/grammar/passive actually states that only 10% of English sentences are passives (as of January 2009)!
- We have doubts and want to verify this claim

corpus data linguistic question

corpus data

corpus data linguistic question

- Sensible definition: group of speakers
 - e.g. American English as language spoken by native speakers raised and living in the U.S.
 - may be restricted to certain communicative situation

- Sensible definition: group of speakers
 - e.g. American English as language spoken by native speakers raised and living in the U.S.
 - may be restricted to certain communicative situation
- Also applies to definition of sublanguage
 - dialect (Bostonian, Cockney), social group (teenagers), genre (advertising), domain (statistics), ...

- Sensible definition: group of speakers
 - e.g. American English as language spoken by native speakers raised and living in the U.S.
 - may be restricted to certain communicative situation
- Also applies to definition of sublanguage
 - dialect (Bostonian, Cockney), social group (teenagers), genre (advertising), domain (statistics), ...

- Types vs. tokens
 - **type** count: How many *different* passives are there?
 - **token** count: How many *instances* are there?

- Types vs. tokens
 - **type** count: How many *different* passives are there?
 - **token** count: How many *instances* are there?
- How many passive tokens are there in English?

- Types vs. tokens
 - **type** count: How many *different* passives are there?
 - **token** count: How many *instances* are there?

- How many passive tokens are there in English?
 - infinitely many, of course!

- Types vs. tokens
 - **type** count: How many *different* passives are there?
 - **token** count: How many *instances* are there?

- How many passive tokens are there in English?
 infinitely many, of course!
- Absolute frequency is not meaningful here

- Are there **20,000** passives?
 - Brown (1M words)

- Are there **20,000** passives?
 - Brown (1M words)

• Are there **20,000** passives?

• Brown (1M words)

- Or 1 million?
 - BNC (90M words)

• Are there **20,000** passives?

• Brown (1M words)

- Or 1 million?
 - BNC (90M words)
- Or 5.1 million?
 - ukWaC sampler (450M words)

• Only **relative frequency** can be meaningful!

- Only **relative frequency** can be meaningful!
- What is a sensible unit of measurement?

- Only **relative frequency** can be meaningful!
- What is a sensible unit of measurement?

... 20,300 per million words?

- Only **relative frequency** can be meaningful!
- What is a sensible unit of measurement?

... **20,300** per **million words**?

... 390 per thousand sentences?

- Only **relative frequency** can be meaningful!
- What is a sensible unit of measurement?
 - ... **20,300** per **million words**?
 - ... 390 per thousand sentences?
 - ... **28** per **hour** of recorded speech?

- Only **relative frequency** can be meaningful!
- What is a sensible unit of measurement?
 - ... **20,300** per **million words**?
 - ... 390 per thousand sentences?
 - ... **28** per **hour** of recorded speech?
 - ... **4,000** per **book**?

- Only **relative frequency** can be meaningful!
- What is a sensible unit of measurement?
 - ... **20,300** per **million words**?
 - ... 390 per thousand sentences?
 - ... **28** per **hour** of recorded speech?
 - ... **4,000** per **book**?
- How many passives could there be at most?

• How many passives could there be at most?

- every VP can be in active or passive voice
- frequency of passives has a meaningful interpretation by comparison with frequency of potential passives

• How many passives could there be at most?

- every VP can be in active or passive voice
- frequency of passives has a meaningful interpretation by comparison with frequency of potential passives
- What proportion of VPs are in passive voice?
 - easier: proportion of sentences that contain a passive
 - in general, proportion wrt. some **unit of measurement**

• How many passives could there be at most?

- every VP can be in active or passive voice
- frequency of passives has a meaningful interpretation by comparison with frequency of potential passives
- What proportion of VPs are in passive voice?
 - easier: proportion of sentences that contain a passive
 - in general, proportion wrt. some **unit of measurement**

Relative frequency = proportion π

• Statistics deals with similar problems:

- Statistics deals with similar problems:
 - goal: determine properties of **large population** (human populace, objects produced in factory, ...)

- Statistics deals with similar problems:
 - goal: determine properties of **large population** (human populace, objects produced in factory, ...)
 - method: take (completely) **random sample** of objects, then extrapolate from sample to population

- Statistics deals with similar problems:
 - goal: determine properties of **large population** (human populace, objects produced in factory, ...)
 - method: take (completely) **random sample** of objects, then extrapolate from sample to population
 - this works only because of **random** sampling!

- Statistics deals with similar problems:
 - goal: determine properties of **large population** (human populace, objects produced in factory, ...)
 - method: take (completely) **random sample** of objects, then extrapolate from sample to population
 - this works only because of **random** sampling!
- Many statistical methods are readily available

DI ALI COLL

15

 Extensional definition of a language: "All utterances made by speakers of the language under appropriate conditions, plus all utterances they could have made"

 Extensional definition of a language: "All utterances made by speakers of the language under appropriate conditions, plus all utterances they could have made"

- Imagine a huge library with all the books written in a language, as well as all the hypothetical books that have never been written
 - → library metaphor (Evert 2006)

A random sample of a language

A random sample of a language

- Apply statistical procedure to linguistic problem
 need random sample of objects from population
- Quiz: What are the objects in our population?
 - words? sentences? texts? ...

A random sample of a language

- Apply statistical procedure to linguistic problem
 need random sample of objects from population
- Quiz: What are the objects in our population?
 - words? sentences? texts? ...
- Objects = whatever unit of measurement the proportions of interest are based on
 - we need to take a random sample of such units

18

Random sampling in the library metaphor

• in order to take a sample of sentences:

משבע עי אין במועב אלא להבינעלן (עיבר אינאל

Random sampling in the library metaphor

- in order to take a sample of sentences:
- walk to a random shelf ...
 - ... pick a random book ...
 - ... open a random page ...
 - ... and choose a random sentence from the page

Random sampling in the library metaphor

- in order to take a sample of sentences:
- walk to a random shelf ...
 - ... pick a random book ...
 - ... open a random page ...
 - ... and choose a random sentence from the page
- this gives us 1 item for our sample

Random sampling in the library metaphor

- in order to take a sample of sentences:
- walk to a random shelf ...
 - ... pick a random book ...
 - ... open a random page ...
 - ... and choose a random sentence from the page
- this gives us 1 item for our sample

repeat *n* times for sample size *n*

Types, tokens and proportions

- Proportions and relative sample frequencies are defined formally in terms of types & tokens
- Relative frequency of type *v* in sample {*t*₁, ..., *t*_n}
 = proportion of tokens *t_i* that belong to this type

Compare relative sample frequency *p* against (hypothesised) population proportion π

Types, tokens and proportions

Types, tokens and proportions

- Example: word frequencies
 - word type = dictionary entry (distinct word)
 - word token = instance of a word in library texts

Types, tokens and proportions

- Example: word frequencies
 - word type = dictionary entry (distinct word)
 - word token = instance of a word in library texts
- Example: passive VPs
 - relevant VP types = active or passive (→ abstraction)
 - VP token = instance of VP in library texts

Types, tokens and proportions

- Example: word frequencies
 - word type = dictionary entry (distinct word)
 - word token = instance of a word in library texts
- Example: passive VPs
 - relevant VP types = active or passive (→ abstraction)
 - VP token = instance of VP in library texts
- Example: verb sucategorisation
 - relevant types = itr., tr., ditr., PP-comp., X-comp, ...
 - verb token = occurrence of selected verb in text

- Principle of inferential statistics
 - if a sample is picked at random, proportions should be roughly the same in sample and population

- Principle of inferential statistics
 - if a sample is picked at random, proportions should be roughly the same in sample and population
- Take a sample of 100 sentences
 - observe 19 passives $\rightarrow p = 19\% = .19$
 - style guide \rightarrow population proportion $\pi = 15\%$
 - $p > \pi \rightarrow$ reject claim of style guide?

- Principle of inferential statistics
 - if a sample is picked at random, proportions should be roughly the same in sample and population
- Take a sample of 100 sentences
 - observe 19 passives $\rightarrow p = 19\% = .19$
 - style guide \rightarrow population proportion $\pi = 15\%$
 - $p > \pi \rightarrow$ reject claim of style guide?
- Take another sample, just to be sure
 - observe 13 passives $\rightarrow p = 13\% = .13$
 - $p < \pi \rightarrow$ claim of style guide confirmed?

• Random choice of sample ensures proportions are the same on average in sample & population

- Random choice of sample ensures proportions are the same on average in sample & population
- ◆ But it also means that for every sample we will get a different value because of chance effects
 → sampling variation
 - problem: erroneous rejection of style guide's claim results in publication of a false result

- Random choice of sample ensures proportions are the same on average in sample & population
- ◆ But it also means that for every sample we will get a different value because of chance effects
 → sampling variation
 - **problem:** erroneous rejection of style guide's claim results in publication of a false result
- The main purpose of statistical methods is to estimate & correct for sampling variation
 - that's all there is to inferential statistics, really

Reminder: The role of statistics

Reminder: The role of statistics

Our "goal" is to refute the style guide's claim, which we call the null hypothesis H₀

$H_0: \pi = .15$

• we also refer to π_0 = .15 as the **null proportion**

Our "goal" is to refute the style guide's claim, which we call the null hypothesis H_o

$H_0: \pi = .15$

- we also refer to π_0 = .15 as the **null proportion**
- Erroneous rejection of H_0 is problematic
 - leads to embarrassing publication of false result
 - known as a **type I error** in statistics

Our "goal" is to refute the style guide's claim, which we call the null hypothesis H_o

$H_0: \pi = .15$

- we also refer to π_0 = .15 as the **null proportion**
- Erroneous rejection of H_0 is problematic
 - leads to embarrassing publication of false result
 - known as a **type I error** in statistics
- Need to control risk of a type I error

- Assume that style guide's claim H_0 is correct
 - i.e. rejection of H_0 is always a type I error

- Assume that style guide's claim H_0 is correct
 - i.e. rejection of H_0 is always a type I error
- Many corpus linguists set out to test H_0
 - each one draws a random sample of size n = 100

- Assume that style guide's claim H_0 is correct
 - i.e. rejection of H_0 is always a type I error
- Many corpus linguists set out to test H_0
 - each one draws a random sample of size n = 100
 - how many of the samples have the expected k = 15 passives, how many have k = 19, etc.?

- Assume that style guide's claim H_0 is correct
 - i.e. rejection of H_0 is always a type I error
- Many corpus linguists set out to test H_0
 - each one draws a random sample of size n = 100
 - how many of the samples have the expected k = 15 passives, how many have k = 19, etc.?
 - if we are willing to reject H_0 for k = 19 passives in a sample, all corpus linguists with such a sample will publish a false result
 - risk of type I error = percentage of such cases

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
 - randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
 - red ball = passive sent. / white ball = active sent.
 - H_0 : assume proportion of red balls in urn is 15%

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
 - randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
 - red ball = passive sent. / white ball = active sent.
 - H_0 : assume proportion of red balls in urn is 15%
- This leads to a **binomial distribution**

$$\Pr(k) = \binom{n}{k} (\pi_0)^k (1 - \pi_0)^{n-k}$$

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
 - randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
 - red ball = passive sent. / white ball = active sent.
 - H_0 : assume proportion of red balls in urn is 15%
- This leads to a **binomial distribution**

$$Pr(k) = \binom{n}{k} (\pi_0)^k (1 - \pi_0)^{n-k}$$
percentage of samples = **probal**

 \rightarrow risk of false rejection = **p-value** = 26.2%

Statistical hypothesis testing

Statistical hypothesis testing

Statistical hypothesis tests

- define a **rejection criterion** for refuting H_0
- control the risk of false rejection (type I error) to a "socially acceptable level" (significance level α)
- **p-value** = risk of type I error given observation, interpreted as amount of evidence against *H*₀

Statistical hypothesis testing

Statistical hypothesis tests

- define a **rejection criterion** for refuting H_0
- control the risk of false rejection (type I error) to a "socially acceptable level" (significance level α)
- **p-value** = risk of type I error given observation, interpreted as amount of evidence against H_0
- Two-sided vs. one-sided tests
 - in general, two-sided tests are recommended (safer)
 - one-sided test is plausible in our example

Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

back to main page

This site provides some online utilities for the project Statistical Inference: A Gentle Introduction for Linguists (SIGIL) by Marco Baroni & and Stefan Evert &. The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL &.

One sample: frequency estimate (confidence interval)

Two samples: frequency comparison

	Frequency count	Sample size
Sample 1	19	100
Sample 2	25	200

Clear fields	95% 😜 confidence interval	
	in automatic 🛟 format	
Calculate	with 4 🗧 significant digits	

back to top

Hypothesis tests in practice

SIGIL: Corpus Frequency Test Wizard

back to main page

back to top

This site provides some online utilities for the project Statistical Inference: A Gentle Introduction for Linguists (SIGIL) by Marco Baroni and Stefan Evert . The main SIGIL homepage can be found at purl.org/stefan.evert/SIGIL .

One sample: frequency estimate (confidence interval)

Binomial hypothesis test in R

Relevant R function: binom.test()

- Relevant R function: binom.test()
- We need to specify
 - **observed data: 19** passives out of **100** sentences
 - null hypothesis: H_0 : $\pi = 15\%$

- Relevant R function: binom.test()
- We need to specify
 - **observed data**: **19** passives out of **100** sentences
 - null hypothesis: H_0 : $\pi = 15\%$
- Using the binom.test() function:
 - > binom.test(19, 100, p=.15) # two-sided

> binom.test(19, 100, p=.15)

Exact binomial test

```
data: 19 and 100
```

```
number of successes = 19, number of trials = 100, p-value = 0.2623
```

alternative hypothesis: true probability of success is not equal to 0.15

95 percent confidence interval: 0.1184432 0.2806980

```
sample estimates:
probability of success
0.19
```

> binom.test(19, 100, p=.15)

Exact binomial test

data: 19 and 100

number of successes = 19 number of trials = 100, p-value = 0.2623

alternative hypothesis: true probability of success is not equal to 0.15

95 percent confidence interval: 0.1184432 0.2806980

```
sample estimates:
probability of success
0.19
```

> binom.test(19, 100, p=.15)\$p.value
[1] 0.2622728

p > .05 n.s.

> binom.test(19, 100, p=.15)\$p.value [1] 0.2622728 p > .05 n.s.

> binom.test(23, 100, p=.15)\$p.value [1] 0.03430725 n < 0

 $p < .05 = \alpha$ *

> binom.test(19, 100, p=.15)\$p.value [1] 0.2622728 p > .05n.s. > binom.test(23, 100, p=.15)\$p.value [1] 0.03430725 $p < .05 = \alpha$ * > binom.test(25, 100, p=.15)\$p.value [1] 0.007633061 ** $p < .01 = \alpha$ > binom.test(29, 100, p=.15)\$p.value [1] 0.0003529264 *** $.001 = \alpha$

- Rejection criterion controls risk of type I error
 - only for situation in which H_0 is true

- Rejection criterion controls risk of type I error
 - only for situation in which H_0 is true
- Type II error = failure to reject incorrect H_0
 - for situation in which *H*₀ is not true
 → rejection correct, non-rejection is an error

- Rejection criterion controls risk of type I error
 - only for situation in which H_0 is true
- Type II error = failure to reject incorrect H_0
 - for situation in which *H*₀ is not true
 → rejection correct, non-rejection is an error
- What is the risk of a type II error?
 - depends on unknown true population proportion π
 - intuitively, risk of type II error will be low if the difference $\delta = \pi \pi_0$ (the **effect size**) is large enough

Type II errors & sample size

Type II errors & sample size

Type II errors & sample size

Power

Power

- Type II error = failure to reject incorrect H_o
 - the larger the difference between *H*₀ and the true population proportion, the more likely it is that *H*₀ can be rejected based on a given sample
 - a **powerful** test has a low **type II error**
 - power analysis explores the relationship between effect size and risk of type II error

Power

- Type II error = failure to reject incorrect H_o
 - the larger the difference between *H_o* and the true population proportion, the more likely it is that *H_o* can be rejected based on a given sample
 - a **powerful** test has a low **type II error**
 - power analysis explores the relationship between effect size and risk of type II error
- Key insight: larger sample = more power
 - relative sampling variation becomes smaller
 - power also depends on significance level

40

- Key factors determining the power of a test
 - **sample size** → more evidence = greater power
 - **significance level** \rightarrow trade-off btw. type I / II errors

- Key factors determining the power of a test
 - **sample size** → more evidence = greater power
 - **significance level** \rightarrow trade-off btw. type I / II errors
- Influence of hypothesis test procedure
 - one-sided test more powerful than two-sided test
 - parametric tests more powerful than non-parametric
 - statisticians look for "uniformly most powerful" test

Power analysis for binomial test

- Key factors determining the power of a test
 - **sample size** → more evidence = greater power
 - **significance level** \rightarrow trade-off btw. type I / II errors
- Influence of hypothesis test procedure
 - one-sided test more powerful than two-sided test
 - parametric tests more powerful than non-parametric
 - statisticians look for "uniformly most powerful" test
- Tests can become too powerful!
 - reject H_0 for 15.1% passives with n = 1,000,000

Parametric vs. non-parametric

- People often talk about parametric and nonparametric tests without precise definition
- Parametric tests make stronger assumptions
 - not just normality assuming (= Gaussian distribution)
 - binomial test: strong random sampling assumption
 → might be considered a parametric test in this sense!
- Parametric tests are usually more powerful
 - strong assumptions allow less conservative estimate of sampling variation \rightarrow less evidence needed against H_0

- Inferential statistics is a trade-off between type I errors and type II errors
 - i.e. between **significance** and **power**

- Inferential statistics is a trade-off between type I errors and type II errors
 - i.e. between **significance** and **power**
- Significance level
 - determines trade-off point
 - low significance level $\alpha \rightarrow$ low type I risk, but low power

- Inferential statistics is a trade-off between type I errors and type II errors
 - i.e. between **significance** and **power**
- Significance level
 - determines trade-off point
 - low significance level $\alpha \rightarrow$ low type I risk, but low power
- Conservative tests
 - put more weight on avoiding type I errors \rightarrow weaker
 - most non-parametric methods are conservative

- ♦ We now know how to test a null hypothesis *H*₀, rejecting it only if there is sufficient evidence
- But what if we do not have an obvious null hypothesis to start with?
 - this is typically the case in (computational) linguistics

- ♦ We now know how to test a null hypothesis *H*₀, rejecting it only if there is sufficient evidence
- But what if we do not have an obvious null hypothesis to start with?
 - this is typically the case in (computational) linguistics
- We can estimate the true population proportion from the sample data (relative frequency)
 - sampling variation \rightarrow range of plausible values
 - such a **confidence interval** can be constructed by inverting hypothesis tests (e.g. binomial test)

observed data: k = 190 / n = 1000

observed data: k = 190 / n = 1000

95% confidence $p < .05 = \alpha$

 $H_0: \mu = 16.7\% \rightarrow \text{plausible}$

observed data: 95% confidence k = 190 / n = 1000 $p < .05 = \alpha$ $H_0: \mu = 17\% \rightarrow \text{plausible}$ S 00 4 percentage of samples က N O 160 180 200 220 240

observed data: k = 190 / n = 1000

95% confidence $p < .05 = \alpha$

 $H_0: \mu = 18\% \rightarrow \text{plausible}$

observed data: k = 190 / n = 1000

95% confidence $p < .05 = \alpha$

 $H_0: \mu = 19\% \rightarrow \text{plausible}$

- Confidence interval = range of plausible values for true population proportion
 - H_0 rejected by test iff π_0 is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	n = 100 k = 19	n = 1,000 k = 190	n = 10,000 k = 1,900
$\alpha = .05$	$11.8\% \dots 28.1\%$	$16.6\% \dots 21.6\%$	18.2%19.8%
$\alpha = .01$	$10.1\% \dots 31.0\%$	15.9%22.4%	$18.0\% \dots 20.0\%$
$\alpha = .001$	8.3%34.5%	$15.1\% \dots 23.4\%$	$17.7\% \dots 20.3\%$

- Confidence interval = range of plausible values for true population proportion
 - H_0 rejected by test iff π_0 is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	n = 100 k = 19	n = 1,000 k = 190	n = 10,000 k = 1,900
$\alpha = .05$	$11.8\% \dots 28.1\%$	16.6%21.6%	18.2%19.8%
$\alpha = .01$	$10.1\% \dots 31.0\%$	15.9%22.4%	$18.0\% \dots 20.0\%$
$\alpha = .001$	8.3%34.5%	$15.1\% \dots 23.4\%$	$17.7\% \dots 20.3\%$

I'm cheating here a tiny little bit (not always an interval)

- Confidence interval = range of plausible values for true population proportion
 - H_0 rejected by test iff π_0 is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	n = 100 k = 19	n = 1,000 k = 190	n = 10,000 k = 1,900
$\alpha = .05$	$11.8\% \dots 28.1\%$	16.6%21.6%	18.2%19.8%
$\alpha = .01$	$10.1\% \dots 31.0\%$	15.9%22.4%	$18.0\% \dots 20.0\%$
$\alpha = .001$	8.3%34.5%	$15.1\% \dots 23.4\%$	$17.7\% \dots 20.3\%$

I'm cheating here a tiny little bit (not always an interval)

- Confidence interval = range of plausible values for true population proportion
 - H_0 rejected by test iff π_0 is outside confidence interval
- Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	n = 100 k = 19	n = 1,000 k = 190	n = 10,000 k = 1,900
$\alpha = .05$	$11.8\%\dots 28.1\%$	16.6%21.6%	18.2%19.8%
$\alpha = .01$	$10.1\% \dots 31.0\%$	15.9%22.4%	$18.0\% \dots 20.0\%$
$\alpha = .001$	8.3%34.5%	$15.1\% \dots 23.4\%$	$17.7\% \dots 20.3\%$

- Most hypothesis tests in R also compute a confidence interval (including binom.test())
 - omit H_0 if only interested in confidence interval

- Most hypothesis tests in R also compute a confidence interval (including binom.test())
 - omit H_0 if only interested in confidence interval
- Significance level of underlying hypothesis test is controlled by conf.level parameter
 - expressed as confidence, e.g. conf.level=.95 for significance level $\alpha = .05$, i.e. 95% confidence

- Most hypothesis tests in R also compute a confidence interval (including binom.test())
 - omit H_0 if only interested in confidence interval
- Significance level of underlying hypothesis test is controlled by conf.level parameter
 - expressed as confidence, e.g. conf.level=.95 for significance level $\alpha = .05$, i.e. 95% confidence
- Can also compute one-sided confidence interval
 - controlled by alternative parameter
 - two-sided confidence intervals strongly recommended

> binom.test(190, 1000, conf.level=.99)

Exact binomial test

data: 190 and 1000

```
number of successes = 190, number of
trials = 1000, p-value < 2.2e-16</pre>
```

alternative hypothesis: true probability of success is not equal to 0.5

```
99 percent confidence interval:
0.1590920 0.2239133
```

```
sample estimates:
probability of success
0.19
```

> binom.test(190, 1000, conf.level=.99)

Exact binomial test

data: 190 and 1000

number of successes = 190, number of trials = 1000, p-value < 2.2e-16</pre>

alternative hypothesis: true probability of success is not equal to 0.5

99 percent confidence interval: 0.1590920 0.2239133

```
sample estimates:
probability of success
0.19
```

Choosing sample size

Choosing sample size

95% confidence intervals

sample: k / n (%)

Choosing sample size

sample: k / n (%)

Using R to choose sample size

Using R to choose sample size

- Call binom.test() with hypothetical values
- Plots on previous slides also created with R
 - requires calculation of large number of hypothetical confidence intervals
 - binom.test() is both inconvenient and inefficient

Using R to choose sample size

- Call binom.test() with hypothetical values
- Plots on previous slides also created with R
 - requires calculation of large number of hypothetical confidence intervals
 - binom.test() is both inconvenient and inefficient
- The corpora package has a vectorised function
 - > library(corpora)
 - > prop.cint(190, 1000, conf.level=.99)
 - > ?prop.cint # "conf. intervals for proportions"

• Many linguistic research questions can be operationalised as a frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?

- Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?
 - Are there more definite articles in texts written by Chinese learners of English than native speakers?

- Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?
 - Are there more definite articles in texts written by Chinese learners of English than native speakers?
 - Does *meow* occur more often in the vicinity of *cat* than elsewhere in the text?

- Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?
 - Are there more definite articles in texts written by Chinese learners of English than native speakers?
 - Does *meow* occur more often in the vicinity of *cat* than elsewhere in the text?
 - Do speakers prefer *I couldn't agree more* over alternative realisations such as *I agree completely*?

- Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?
 - Are there more definite articles in texts written by Chinese learners of English than native speakers?
 - Does *meow* occur more often in the vicinity of *cat* than elsewhere in the text?
 - Do speakers prefer *I couldn't agree more* over alternative realisations such as *I agree completely*?
- Compare observed frequencies in two samples

$H_0: \pi_1 = \pi_2$

• Null hypothesis for frequency comparison

$$H_0:\pi_1=\pi_2$$

• no assumptions about the precise value $\pi_1 = \pi_2 = \pi$

Null hypothesis for frequency comparison

$$H_0:\pi_1=\pi_2$$

- no assumptions about the precise value $\pi_1 = \pi_2 = \pi$
- Observed data
 - target count k_i and sample size n_i for each sample i
 - e.g. $k_1 = 19 / n_1 = 100$ passives vs. $k_2 = 25 / n_2 = 200$

Null hypothesis for frequency comparison

$$H_0:\pi_1=\pi_2$$

- no assumptions about the precise value $\pi_1 = \pi_2 = \pi$
- Observed data
 - target count k_i and sample size n_i for each sample i
 - e.g. $k_1 = 19 / n_1 = 100$ passives vs. $k_2 = 25 / n_2 = 200$
- Effect size: difference of proportions
 - effect size $\delta = \pi_1 \pi_2$ (and thus $H_0: \delta = 0$)

- ◆ Frequency comparison test: prop.test()
 - observed data: counts k_i and sample sizes n_i
 - also computes confidence interval for effect size

- ◆ Frequency comparison test: prop.test()
 - observed data: counts k_i and sample sizes n_i
 - also computes confidence interval for effect size

- E.g. for 19 passives out of 100 / 25 out of 200
 - parameters conf.level and alternative can be used in the familiar way
 - > prop.test(c(19,25), c(100,200))

> prop.test(c(19,25), c(100,200))

2-sample test for equality of proportions with continuity correction

```
data: c(19, 25) out of c(100, 200)
```

```
X-squared = 1.7611, df = 1, p-value = 0.1845
```

alternative hypothesis: two.sided

```
95 percent confidence interval:
-0.03201426 0.16201426
```

```
sample estimates:
prop 1 prop 2
0.190 0.125
```

Contingency tables

 n_1 n_2 100 200

• Data can also be given as a **contingency table**

• e.g. $k_1 = 19 / n_1 = 100$ passives vs. $k_2 = 25 / n_2 = 200$

- represents a cross-classification of n = 300 items
- generalization to larger tables possible

- **Fisher's exact test** = generalization of binomial test to contingency tables
 - computationally expensive, mostly for small samples

- Fisher's exact test = generalization of binomial test to contingency tables
 - computationally expensive, mostly for small samples
- Pearson's chi-squared test = asymptotic test based on test statistic X²
 - larger value of $X^2 \rightarrow$ less likely under H_0
 - X^2 can be translated into corresponding p-value
 - suitable for large samples and small balanced samples

- Fisher's exact test = generalization of binomial test to contingency tables
 - computationally expensive, mostly for small samples
- Pearson's chi-squared test = asymptotic test based on test statistic X²
 - larger value of $X^2 \rightarrow$ less likely under H_0
 - X^2 can be translated into corresponding p-value
 - suitable for large samples and small balanced samples
- Likelihood-ratio test based on statistic G^2
 - popular in collocation and keyword identification
 - suitable for highly skewed data

- Can easily carry out chi-squared (chisq.test) and Fisher's exact test (fisher.test) in R
 - likelihood ratio test not included in R standard library
- ◆ Table for 19 / 100 vs. 25 / 200

 - > chisq.test(ct)
 - > fisher.test(ct)

19	25
81	175

• Much focus on significant p-value, but ...

- Much focus on significant p-value, but ...
 - large differences may be non-significant if sample size is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)

- Much focus on significant p-value, but ...
 - large differences may be non-significant if sample size is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)
 - increase sample size for more powerful/sensitive test

- Much focus on significant p-value, but ...
 - large differences may be non-significant if sample size is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)
 - increase sample size for more powerful/sensitive test
 - very large samples lead to highly significant p-values for minimal and irrelevant differences (e.g. 1M tokens with 150,000 = 15% vs. 151,000 = 15.1% occurrences)

- Much focus on significant p-value, but ...
 - large differences may be non-significant if sample size is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)
 - increase sample size for more powerful/sensitive test
 - very large samples lead to highly significant p-values for minimal and irrelevant differences (e.g. 1M tokens with 150,000 = 15% vs. 151,000 = 15.1% occurrences)
- It is important to assess both significance and relevance (= effect size) of frequency data!
 - confidence intervals combine both aspects

Simple effect size measure:
 difference of proportions

$$\delta = \pi_1 - \pi_2$$

•
$$H_0: \delta = 0$$

Issues

- depends on scale of π_1 and π_2
- small effects for lexical freq's

π_1	π_2
1 - π_1	1- π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$\hat{\pi}_1 = \frac{k_1}{n_1}$$
$$\hat{\pi}_2 = \frac{k_2}{n_2}$$

Effect size measure:
 (log) relative risk

$$r = \frac{\pi_1}{\pi_2}$$

•
$$H_0: r = 1$$

Issues

- can be inflated for small π_2
- mathematically inconvenient

π_1	π_2
1 - π_{1}	1- π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

• Effect size measure: (log) odds ratio $\theta = \frac{\frac{\pi_1}{1-\pi_1}}{\frac{\pi_2}{1-\pi_2}} = \frac{\pi_1(1-\pi_2)}{\pi_2(1-\pi_1)}$ • H₀: $\theta = 1$

$oldsymbol{\pi_1}$	π_2
1 - π_{1}	1- π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

♦ Issues

- can be inflated for small π_2
- interpretation not very intuitive

$$\hat{\pi}_1 = \frac{k_1}{n_1}$$
$$\hat{\pi}_2 = \frac{k_2}{n_2}$$

♦ Effect size measure:
 φ coefficient / Cramér V

$$\phi = \sqrt{\frac{X^2}{n}}$$

• H_0 : ??? $n = n_1 + n_2$

population equivalent of a contingency table, which determines the multinomial sampling distribution

Issues

• this is a property of the sample rather than the population!

Effect size measure: φ coefficient / Cramér V

$$\phi = \frac{\pi_1(1 - \pi_2) - \pi_2(1 - \pi_1)}{\sqrt{(r_1\pi_1 + r_2\pi_2)(1 - r_1\pi_1 - r_2\pi_2)/r_1r_2}}$$

• H₀:
$$\varphi = 0$$
 $n = n_1 + n_2$
 $r_1 = n_1 / n$
• Issues $r_2 = n_2 / n$

122002

- depends on relative sample sizes
- interpretation entirely unclear

π_1	π_2
1 - π_1	1- π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$\hat{\pi}_1 = \frac{k_1}{n_1}$$
$$\hat{\pi}_2 = \frac{k_2}{n_2}$$

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$\hat{\pi}_1 = \frac{k_1}{n_1}$$
$$\hat{\pi}_2 = \frac{k_2}{n_2}$$

65

♦ We can estimate effect sizes by inserting sample values k_i/n_i

π_1	π_2
1 - π_1	1- π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$\hat{\pi}_1 = \frac{k_1}{n_1}$$
$$\hat{\pi}_2 = \frac{k_2}{n_2}$$

- We can estimate effect sizes by inserting sample values k_i/n_i
- But such point estimates are meaningless!

$oldsymbol{\pi}_1$	π_2
1- π ₁	1-π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

$$\hat{\pi}_1 = \frac{k_1}{n_1}$$
$$\hat{\pi}_2 = \frac{k_2}{n_2}$$

- We can estimate effect sizes by inserting sample values k_i/n_i
- But such point estimates are meaningless!
- Confidence intervals available only for some effect measures
 - approximate interval for δ from proportions test
 - exact interval for odds ratio θ from Fisher's test
 - φ computed from chi-square statistic is still a point estimate!

$oldsymbol{\pi_1}$	π_2
1- π ₁	1- π ₂

population equivalent of a contingency table, which determines the multinomial sampling distribution

difference of proportions

 π_2

Ŗ

(log) relative risk

 π_2

Ŗ

(log) odds ratio

 π_2

ĥ

φ coefficient (1 : 1)

 π_2

ĥ

φ coefficient (1 : 1)

 π_2

ĥ

φ coefficient (10 : 1)

 π_2

Ŗ

φ coefficient (1 : 10)

Ŗ

A case study: passives

- As a case study, we will compare the frequency of passives in Brown (AmE) and LOB (BrE)
 - pooled data
 - separately for each genre category

- Data files provided in CSV format
 - passives.brown.csv & passives.lob.csv
 - cat = genre category, passive = number of passives,
 n_w = number of word, n_s = number of sentences,
 name = description of genre category

Preparing the data

- > Brown <- read.csv("passives.brown.csv")</pre>
- > LOB <- read.csv("passives.lob.csv")</pre>
- > library(SIGIL) # or use versions in SIGIL package
- > Brown <- BrownPassives</pre>
- > LOB <- LOBPassives</pre>
- # now take a look at the two tables: what info do they provide?
- # pooled data for entire corpus = column sums (col. $2 \dots 4$)
- > Brown.all <- colSums(Brown[, 2:4])</pre>
- > LOB.all <- colSums(LOB[, 2:4])</pre>

Frequency tests for pooled data

- # proportions test reports p-value is based on chi-squared test # and approximate confidence interval for effect size δ > prop.test(c(10123, 10934), c(49576, 49742))
- > ct <- cbind(c(10123, 49576-10123), # Brown c(10934, 49742-10934)) # LOB
- > ct # contingency table for chi-squared / Fisher
- > fisher.test(ct) # exact confidence interval for odds ratio θ

we could in principle do the same for all 15 genres ...

Automation: user functions

user function do.test() executes proportions test for samples
k_1/n_1 and k_2/n_2 , and summarizes relevant results in compact form
> do.test <- function (k1, n1, k2, n2) {</pre>

res contains results of proportions test (list = data structure)
res <- prop.test(c(k1, k2), c(n1, n2))</pre>

data frames are a nice way to display summary tables
fmt <- data.frame(p=res\$p.value,
 lower=res\$conf.int[1], upper=res\$conf.int[2])</pre>

fmt # return value of function = last expression
}
> do.test(10123, 49576, 10934, 49742) # pooled data
> do.test(146, 975, 134, 947) # humour genre

A nicer user function

```
# nicer version of user function with genre category labels
> do.test <- function (k1, n1, k2, n2, cat="") {
    res <- prop.test(c(k1, k2), c(n1, n2))
    data.frame(
        p=res$p.value,
        lower=100*res$conf.int[1], # scaled to % points
        upper=100*res$conf.int[2],
        row.names=cat # add genre as row label
    ) # return data frame directly without local variable fmt
}</pre>
```

```
# extract relevant information directly from data frames
> do.test(Brown$passive[15], Brown$n_s[15],
        LOB$passive[15], LOB$n_s[15],
        cat=Brown$name[15])
```

Ad-hoc functions & loops

```
# ad-hoc convenience function to reduce typing/editing
# (works only if global Brown/LOB variables are set correctly!)
quick.test <- function (i) {
    do.test(k1=Brown$passive[i], n1=Brown$n_s[i],
        k2=LOB$passive[i], n2=LOB$n_s[i],
        cat=Brown$name[i])
}
quick.test(15) # easy to repeat for different genres now</pre>
```

```
quick.test(9)
```

```
# loop over all 15 categories (more general: 1:nrow(Brown))
for (i in 1:15) {
    print( quick.test(i) )
}
```

R wizardry: working with lists

our code only works if rows of Brown/LOB are in the same order!
> all(Brown\$cat == LOB\$cat)

it would be nice to collect all these results in a single overview table
for this, we need a little bit of R wizardry ...

apply function quick.test() to each number 1, ..., 15
res.list <- lapply(1:15, quick.test)</pre>

pass res.list as individual arguments to rbind()
(think of this as an idiom you just have to remember ...)
res <- do.call(rbind, res.list)</pre>

res # data frame with one row for each genre
round(res, 3) # rounded values are easier to read

It's your turn now ...

• Questions:

- Which differences are significant?
- Are the effect sizes linguistically relevant?

• A different approach:

- You can construct a list of contingency tables with the **cont.table()** function from the **corpora** package
- Apply fisher.test() or chisq.test() directly to each table in the list using the lapply() function
- Try to extract relevant information with **sapply()**