Unit 3: Descriptive Statistics for Continuous Data Statistics for Linguists with R – A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

²Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

http://SIGIL.r-forge.r-project.org/

Copyright © 2007–2015 Baroni & Evert

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

Outline

Introduction

Categorical vs. numerical variables

Scales of measurement

Descriptive statistics

Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

Reminder: the library metaphor

- In the library metaphor, we took random samples from an infinite population of tokens (words, VPs, sentences, ...)
- ► Relevant property is a binary (or categorical) classification
 - active vs. passive VP or sentence (binary)
 - instance of lemma TIME vs. some other word (binary)
 - subcategorisation frame of verb token (itr, tr, ditr, p-obj, ...)
 - part-of-speech tag of word token (50+ categories)

Reminder: the library metaphor

- In the library metaphor, we took random samples from an infinite population of tokens (words, VPs, sentences, ...)
- Relevant property is a binary (or categorical) classification
 - active vs. passive VP or sentence (binary)
 - instance of lemma TIME vs. some other word (binary)
 - subcategorisation frame of verb token (itr, tr, ditr, p-obj, ...)
 - part-of-speech tag of word token (50+ categories)
- Characterisation of population distribution is straightforward
 - ▶ **binomial**: true proportion $\pi = 10\%$ of passive VPs, or relative frequency of TIME, e.g. $\pi = 2000$ pmw
 - alternatively: specify redundant proportions (π, 1 − π),
 e.g. passive/active VPs (.1, .9) or TIME/other (.002, .998)
 - multinomial: multiple proportions $\pi_1 + \pi_2 + \cdots + \pi_K = 1$, e.g. $(\pi_{noun} = .28, \pi_{verb} = .17, \pi_{adj} = .08, \ldots)$

ヘロト 不得下 不足下 不足下

Numerical properties

In many other cases, the properties of interest are numerical:

Population census

height	weight	shoes	sex
178.18	69.52	39.5	f
160.10	51.46	37.0	f
150.09	43.05	35.5	f
182.24	63.21	46.0	m
169.88	63.04	43.5	m
185.22	90.59	46.5	m
166.89	47.43	43.0	m
162.58	54.13	37.0	f

b 4 = b

Numerical properties

In many other cases, the properties of interest are numerical:

Population census

Wikipedia articles

height	weight	shoes	sex	tokens	types	TTR	avg len.
178.18	69.52	39.5	f	696	251	2.773	4.532
160.10	51.46	37.0	f	228	126	1.810	4.488
150.09	43.05	35.5	f	390	174	2.241	4.251
182.24	63.21	46.0	m	455	176	2.585	4.412
169.88	63.04	43.5	m	399	214	1.864	4.301
185.22	90.59	46.5	m	297	148	2.007	4.399
166.89	47.43	43.0	m	755	275	2.745	3.861
162.58	54.13	37.0	f	299	171	1.749	4.524

b 4 = b

Descriptive vs. inferential statistics

Two main tasks of "classical" statistical methods (numerical data):

Descriptive vs. inferential statistics

Two main tasks of "classical" statistical methods (numerical data):

1. Descriptive statistics

- compact description of the distribution of a (numerical) property in a very large or infinite population
- often by characteristic parameters such as mean, variance, ...
- this was the original purpose of statistics in the 19th century

Descriptive vs. inferential statistics

Two main tasks of "classical" statistical methods (numerical data):

1. Descriptive statistics

- compact description of the distribution of a (numerical) property in a very large or infinite population
- often by characteristic parameters such as mean, variance, ...
- this was the original purpose of statistics in the 19th century

2. Inferential statistics

- infer (aspects of) population distribution from a comparatively small random sample
- accurate estimates for level of uncertainty involved
- ▶ often by testing (and rejecting) some null hypothesis H₀

EN 4 EN

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

Categorical data

Numerical data

э

Scales of measurement

Statisticians distinguish 4 scales of measurement

Categorical data

- 1. Nominal scale: purely qualitative classification
 - ▶ male vs. female, passive vs. active, POS tags, subcat frames

Categorical data

- 1. Nominal scale: purely qualitative classification
 - ▶ male vs. female, passive vs. active, POS tags, subcat frames
- 2. Ordinal scale: ordered categories
 - ▶ school grades A–E, social class, low/medium/high rating

Categorical data

- 1. Nominal scale: purely qualitative classification
 - ▶ male vs. female, passive vs. active, POS tags, subcat frames
- 2. Ordinal scale: ordered categories
 - ► school grades A–E, social class, low/medium/high rating

- 3. Interval scale: meaningful comparison of differences
 - temperature (°C), plausibility & grammaticality ratings

Categorical data

- 1. Nominal scale: purely qualitative classification
 - ▶ male vs. female, passive vs. active, POS tags, subcat frames
- 2. Ordinal scale: ordered categories
 - ► school grades A–E, social class, low/medium/high rating

- 3. Interval scale: meaningful comparison of differences
 - temperature (°C), plausibility & grammaticality ratings
- 4. Ratio scale: comparison of magnitudes, absolute zero
 - time, length/width/height, weight, frequency counts

Scales of measurement

Statisticians distinguish 4 scales of measurement

Categorical data

- 1. Nominal scale: purely qualitative classification
 - ▶ male vs. female, passive vs. active, POS tags, subcat frames
- 2. Ordinal scale: ordered categories
 - ► school grades A–E, social class, low/medium/high rating

Numerical data

- 3. Interval scale: meaningful comparison of differences
 - temperature (°C), plausibility & grammaticality ratings
- 4. Ratio scale: comparison of magnitudes, absolute zero
 - time, length/width/height, weight, frequency counts

Additional dimension: discrete vs. continuous numerical data

- discrete: frequency counts, rating $(1, \ldots, 7)$, shoe size, \ldots
- continuous: length, time, weight, temperature, ...

(日) (同) (三) (三)

Which scale of measurement / data type is it?

э

A B M A B M

590

Which scale of measurement / data type is it?

subcategorisation frame

3

→ < ∃ →</p>

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)

b 4 = b

э

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7

b 4 = b

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number

SIGIL (Baroni & Evert)

b 4 = b

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- grammaticality rating: "*", "??", "?" or "ok"

3 × 4 3 ×

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- grammaticality rating: "*", "??", "?" or "ok"
- magnitude estimation of plausibility (graphical scale)

A B M A B M

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- grammaticality rating: "*", "??", "?" or "ok"
- magnitude estimation of plausibility (graphical scale)
- frequency of passive VPs in text

A B F A B F

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- grammaticality rating: "*", "??", "?" or "ok"
- magnitude estimation of plausibility (graphical scale)
- frequency of passive VPs in text
- relative frequency of passive VPs

A 15 N A 15 N

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- grammaticality rating: "*", "??", "?" or "ok"
- magnitude estimation of plausibility (graphical scale)
- frequency of passive VPs in text
- relative frequency of passive VPs
- ▶ token-type-ratio (TTR) and average word length (Wikipedia)

Which scale of measurement / data type is it?

- subcategorisation frame
- reaction time (in psycholinguistic experiment)
- ▶ familiarity rating on scale 1,...,7
- room number
- grammaticality rating: "*", "??", "?" or "ok"
- magnitude estimation of plausibility (graphical scale)
- frequency of passive VPs in text
- relative frequency of passive VPs
- ▶ token-type-ratio (TTR) and average word length (Wikipedia)

in this unit: continuous numerical variables on ratio scale

3 × 4 3 ×

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics Characteristic measures

Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

The task

- Census data from small country of *Ingary* with m = 502,202 inhabitants. The following properties were recorded:
 - body height in cm
 - weight in kg
 - shoe size in Paris points (Continental European system)
 - sex (male, female)
- Frequency statistics for m = 1,429,649 Wikipedia articles:
 - token count
 - type count
 - token-type ratio (TTR)
 - average word length (across tokens)
- Describe / summarise these data sets (continuous variables)

크 에 에 크 에

The task

- Census data from small country of *Ingary* with m = 502,202 inhabitants. The following properties were recorded:
 - body height in cm
 - weight in kg
 - shoe size in Paris points (Continental European system)
 - sex (male, female)
- Frequency statistics for m = 1,429,649 Wikipedia articles:
 - token count
 - type count
 - token-type ratio (TTR)
 - average word length (across tokens)
- Describe / summarise these data sets (continuous variables)
 - > library(SIGIL)
 - > FakeCensus <- simulated.census()</pre>
 - > WackypediaStats <- simulated.wikipedia()</pre>

(*) *) *) *)

Characteristic measures: central tendency

How would you describe body heights with a single number?

Characteristic measures: central tendency

How would you describe body heights with a single number?

mean
$$\mu = \frac{x_1 + \dots + x_m}{m} = \frac{1}{m} \sum_{i=1}^m x_i$$

Is this intuitively sensible? Or are we just used to it?

Characteristic measures: central tendency

How would you describe body heights with a single number?

mean
$$\mu = \frac{x_1 + \dots + x_m}{m} = \frac{1}{m} \sum_{i=1}^m x_i$$

Is this intuitively sensible? Or are we just used to it?

```
> mean(FakeCensus$height)
[1] 170.9781
> mean(FakeCensus$weight)
[1] 65.28917
> mean(FakeCensus$shoe.size)
[1] 41.49712
```

Characteristic measures: variability (spread)

- Average weight of 65.3 kg not very useful if we have to design an elevator for 10 persons or a chair that doesn't collapse: We need to know if everyone weighs close to 65 kg, or whether the typical range is 40–100 kg, or whether it is even larger.
- ► Measure of spread: minimum and maximum, here 30–196 kg
- We're more interested in the "typical" range of values without the most extreme cases
- ► Average variability based on error x_i µ for each individual shows how well the mean µ describes the entire population

13 / 40

Characteristic measures: variability (spread)

- Average weight of 65.3 kg not very useful if we have to design an elevator for 10 persons or a chair that doesn't collapse: We need to know if everyone weighs close to 65 kg, or whether the typical range is 40–100 kg, or whether it is even larger.
- ► Measure of spread: minimum and maximum, here 30–196 kg
- We're more interested in the "typical" range of values without the most extreme cases
- ► Average variability based on error x_i µ for each individual shows how well the mean µ describes the entire population

$$\frac{1}{m}\sum_{i=1}^m (x_i - \mu) = 0$$

SIGIL (Baroni & Evert)

- Average weight of 65.3 kg not very useful if we have to design an elevator for 10 persons or a chair that doesn't collapse: We need to know if everyone weighs close to 65 kg, or whether the typical range is 40–100 kg, or whether it is even larger.
- ► Measure of spread: minimum and maximum, here 30–196 kg
- We're more interested in the "typical" range of values without the most extreme cases
- ► Average variability based on error x_i µ for each individual shows how well the mean µ describes the entire population

$$\frac{1}{m}\sum_{i=1}^{m} |x_i - \mu|$$
 is mathematically inconvenient

- Average weight of 65.3 kg not very useful if we have to design an elevator for 10 persons or a chair that doesn't collapse: We need to know if everyone weighs close to 65 kg, or whether the typical range is 40–100 kg, or whether it is even larger.
- ► Measure of spread: minimum and maximum, here 30–196 kg
- We're more interested in the "typical" range of values without the most extreme cases
- ► Average variability based on error x_i µ for each individual shows how well the mean µ describes the entire population

variance
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu)^2$$

variance
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu)^2$$

Iso you remember how to calculate this in R?

▶ < ∃ >

э

variance
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu)^2$$

Do you remember how to calculate this in R?

- height: $\mu = 171.00$, $\sigma^2 = 199.50$
- weight: $\mu = 65.29$, $\sigma^2 = 306.72$
- shoe size: $\mu = 41.50, \sigma^2 = 21.70$

variance
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x_i - \mu)^2$$

Do you remember how to calculate this in R?

- height: $\mu = 171.00, \ \sigma^2 = 199.50, \ \sigma = 14.12$
- weight: $\mu = 65.29$, $\sigma^2 = 306.72$, $\sigma = 17.51$
- shoe size: $\mu = 41.50$, $\sigma^2 = 21.70$, $\sigma = 4.66$
- ► Mean and variance are not on a comparable scale → standard deviation (s.d.) $\sigma = \sqrt{\sigma^2}$
- NB: still gives more weight to larger errors!

Characteristic measures: higher moments

- ► Mean based on (x_i)¹ is also known as a "first moment", variance based on (x_i)² as a "second moment"
- The third moment is called skewness

$$\gamma_1 = \frac{1}{m} \sum_{i=1}^m \left(\frac{x_i - \mu}{\sigma} \right)^3$$

and measures the asymmetry of a distribution

The fourth moment (kurtosis) measures "bulginess"

15 / 40

Characteristic measures: higher moments

- ► Mean based on (x_i)¹ is also known as a "first moment", variance based on (x_i)² as a "second moment"
- The third moment is called skewness

$$\gamma_1 = \frac{1}{m} \sum_{i=1}^m \left(\frac{x_i - \mu}{\sigma} \right)^3$$

and measures the asymmetry of a distribution

- The fourth moment (kurtosis) measures "bulginess"
- How useful are these characteristic measures?
 - ▶ Given the mean, s.d., skewness, ..., can you tell how many people are taller than 190 cm, or how many weigh \approx 100 kg?
 - Such measures mainly used for computational efficiency, and even this required an elaborate procedure in the 19th century

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

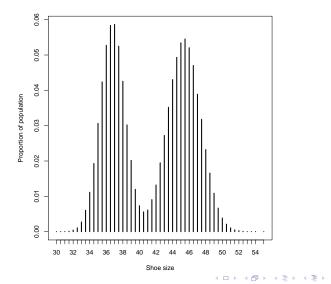
Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

The shape of a distribution: discrete data

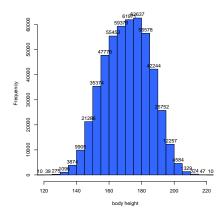
Discrete numerical data can be tabulated and plotted



SIGIL (Baroni & Evert)

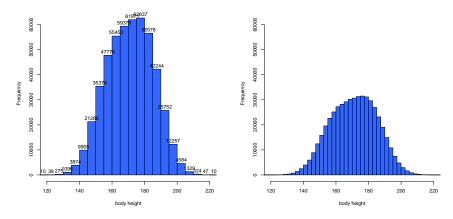
17 / 40

The shape of a distribution: histogram for continuous data Continuous data must be collected into bins → histogram



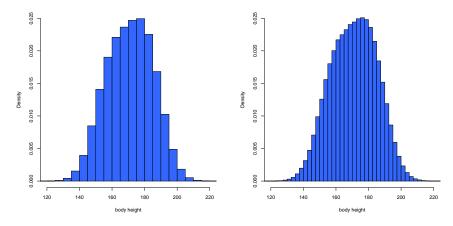
No two people have exactly the same body height, weight, ...

The shape of a distribution: histogram for continuous data Continuous data must be collected into bins → histogram

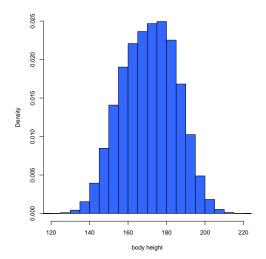


- ▶ No two people have *exactly* the same body height, weight, ...
- ► Frequency counts (= y-axis scale) depend on number of bins

The shape of a distribution: histogram for continuous data Continuous data must be collected into bins \rightarrow histogram



- Density scale is comparable for different numbers of bins
- Area of histogram bar \equiv relative frequency in population

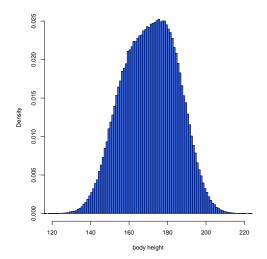


SIGIL (Baroni & Evert)

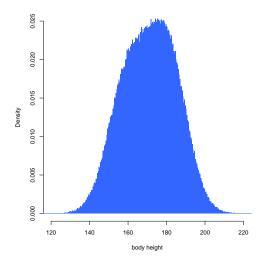
୬ ଏ ୯ 20 / 40



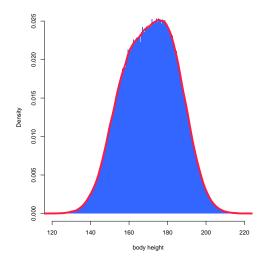
୬ ଏ ୯ 20 / 40



590



590



Contour of histogram = density function

SIGIL (Baroni & Evert)

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

Formal mathematical notation

- **Population** $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$ with $m \approx \infty$
 - item ω_k = person, Wikipedia article, word (lexical RT), ...

3

Formal mathematical notation

- Population $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$ with $m \approx \infty$
 - item ω_k = person, Wikipedia article, word (lexical RT), ...
- For each item, we are interested in several properties (e.g. height, weight, shoe size, sex) called random variables (r.v.)
 - height $X : \Omega \to \mathbb{R}^+$ with $X(\omega_k)$ = height of person ω_k
 - weight $Y : \Omega \to \mathbb{R}^+$ with $Y(\omega_k) =$ weight of person ω_k
 - sex $G: \Omega \to \{0,1\}$ with $G(\omega_k) = 1$ iff ω_k is a woman
 - ${\tt I}{\tt S}{\tt S}$ formally, a r.v. is a (usually real-valued) function over Ω

Formal mathematical notation

• Population $\Omega = \{\omega_1, \omega_2, \dots, \omega_m\}$ with $m \approx \infty$

• item ω_k = person, Wikipedia article, word (lexical RT), ...

- For each item, we are interested in several properties (e.g. height, weight, shoe size, sex) called random variables (r.v.)
 - height $X : \Omega \to \mathbb{R}^+$ with $X(\omega_k)$ = height of person ω_k
 - weight $Y : \Omega \to \mathbb{R}^+$ with $Y(\omega_k) =$ weight of person ω_k
 - sex $G: \Omega \to \{0,1\}$ with $G(\omega_k) = 1$ iff ω_k is a woman
 - so formally, a r.v. is a (usually real-valued) function over Ω

• Mean, variance, etc. computed for each random variable:

$$\mu_{X} = \frac{1}{m} \sum_{\omega \in \Omega} X(\omega) =: E[X]$$
expectation
$$\sigma_{X}^{2} = \frac{1}{m} \sum_{\omega \in \Omega} (X(\omega) - \mu_{X})^{2} =: Var[X]$$
variance
$$= E [(X - \mu_{X})^{2}]$$

sigil.r-forge.r-project.org

Working with random variables

►
$$X'(\omega) := (X(\omega) - \mu)^2$$
 defines new r.v. $X' : \Omega \to \mathbb{R}$
any function $f(X)$ of a r.v. is itself a random variable

► The expectation is a linear functional on r.v.:

•
$$E[X + Y] = E[X] + E[Y]$$
 for $X, Y : \Omega \to \mathbb{R}$

•
$$\operatorname{E}[r \cdot X] = r \cdot \operatorname{E}[X]$$
 for $r \in \mathbb{R}$

• E[a] = a for constant r.v. $a \in \mathbb{R}$ (additional property)

Working with random variables

< A

23 / 40

э

글 > - - 글 >

Working with random variables

Random variables and probabilities: r.v. X describes outcome of picking a random ω ∈ Ω → sampling distribution

$$\Pr(a \le X \le b) = \frac{1}{m} |\{\omega \in \Omega \mid a \le X(\omega) \le b\}|$$

b 4 To b

A justification for the mean

- σ_X^2 tells us how well the r.v. X is characterised by μ_X
- More generally, E [(X − a)²] tells us how well X is characterised by some real number a ∈ ℝ

A justification for the mean

- σ_X^2 tells us how well the r.v. X is characterised by μ_X
- More generally, E [(X − a)²] tells us how well X is characterised by some real number a ∈ ℝ
- The best single value we can give for X is the one that minimises the average squared error:

$$\operatorname{E}\left[(X-a)^{2}\right] = \operatorname{E}[X^{2}] - 2a \underbrace{\operatorname{E}[X]}_{=\mu_{X}} + a^{2}$$

A justification for the mean

- σ_X^2 tells us how well the r.v. X is characterised by μ_X
- More generally, E [(X − a)²] tells us how well X is characterised by some real number a ∈ ℝ
- The best single value we can give for X is the one that minimises the average squared error:

$$\operatorname{E}\left[(X-a)^{2}\right] = \operatorname{E}[X^{2}] - 2a \underbrace{\operatorname{E}[X]}_{=\mu_{X}} + a^{2}$$

It is easy to see that a minimum is achieved for a = μ_X
 It is easy to see that a minimum is achieved for a = μ_X
 The quadratic error term in our definition of σ_X² guarantees that there is always a unique minimum. This would not have been the case e.g. with |X − a| instead of (X − a)².

How to compute the expectation of a discrete variable

Population distribution of a discrete variable is fully described by giving the relative frequency of each possible value t ∈ ℝ:

$$\pi_t = \Pr(X = t)$$

How to compute the expectation of a discrete variable

Population distribution of a discrete variable is fully described by giving the relative frequency of each possible value t ∈ ℝ:

$$E[X] = \sum_{\omega \in \Omega} \frac{X(\omega)}{m} = \sum_{\substack{t \ \text{group by value of } X}} \sum_{\substack{t \ \text{group by value of } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } t \ \text{group } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } X}} \frac{t}{m} \sum_{\substack{t \ \text{group } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } X}} \frac{t}{m} \sum_{\substack{t \ \text{group } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } X}} \frac{t}{m} \sum_{\substack{t \ \text{group } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } X}} \frac{t}{m} \sum_{\substack{t \ \text{group } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } X}} \frac{t}{m} \sum_{\substack{t \ \text{group } X}} \frac{t}{m} = \sum_{\substack{t \ \text{group } X}} \frac{t}{m} \sum_{\substack{t \ \text{group$$

25 / 40

How to compute the expectation of a discrete variable

Population distribution of a discrete variable is fully described by giving the relative frequency of each possible value t ∈ ℝ:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} \frac{X(\omega)}{m} = \sum_{\substack{t \ \text{group by value of } X}} \sum_{\substack{t \ \text{group by value of } X}} \frac{t}{m} = \sum_{t} t \sum_{\substack{X(\omega)=t \ \text{group } t \ \text{gro$$

► The second moment E[X²] needed for Var[X] can also be obtained in this way from the population distribution:

$$\mathbb{E}[X^2] = \sum_t t^2 \cdot \Pr(X = t)$$

How to compute the expectation of a continuous variable

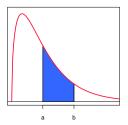
- Population distribution of continuous variable can be described by its density function g : ℝ → [0,∞]
 - ▶ keep in mind that Pr(X = t) = 0 for almost every value $t \in \mathbb{R}$: nobody is *exactly* 172.3456789 cm tall!

How to compute the expectation of a continuous variable

- Population distribution of continuous variable can be described by its density function g : ℝ → [0,∞]
 - keep in mind that Pr(X = t) = 0 for almost every value t ∈ ℝ: nobody is *exactly* 172.3456789 cm tall!

Area under density curve between *a* and *b* = proportion of items $\omega \in \Omega$ with $a \leq X(\omega) \leq b$.

$$\Pr(a \le X \le b) = \int_a^b g(t) \, dt$$



26 / 40

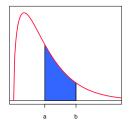
How to compute the expectation of a continuous variable

- Population distribution of continuous variable can be described by its density function g : ℝ → [0,∞]
 - ▶ keep in mind that Pr(X = t) = 0 for almost every value $t \in \mathbb{R}$: nobody is *exactly* 172.3456789 cm tall!

Area under density curve between *a* and *b* = proportion of items $\omega \in \Omega$ with $a \leq X(\omega) \leq b$.

$$\Pr(a \le X \le b) = \int_a^b g(t) \, dt$$

Same reasoning as for discrete variable leads to:



$$\mathrm{E}[X] = \int_{-\infty}^{+\infty} t \cdot g(t) \, dt$$
 and
 $\mathrm{E}[f(X)] = \int_{-\infty}^{+\infty} f(t) \cdot g(t) \, dt$

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

Histogram & density Random variables & expectations

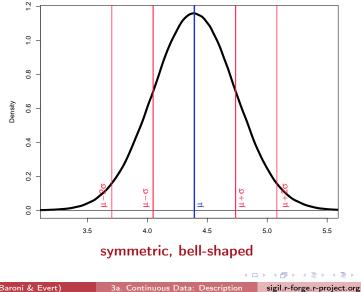
Continuous distributions

The shape of a distribution

The normal distribution (Gaussian)

sigil.r-forge.r-project.org

Different types of continuous distributions

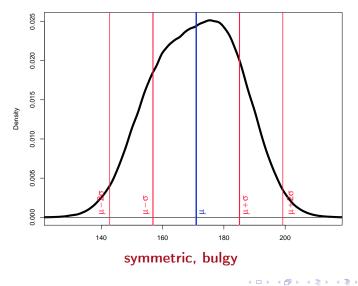


28 / 40

э

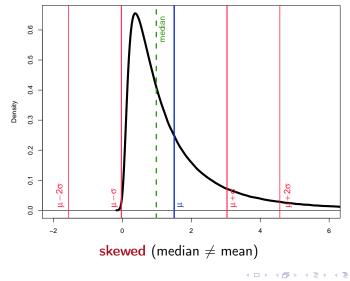
SIGIL (Baroni & Evert)

Different types of continuous distributions



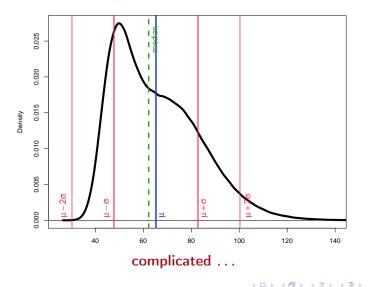
э

Different types of continuous distributions



э

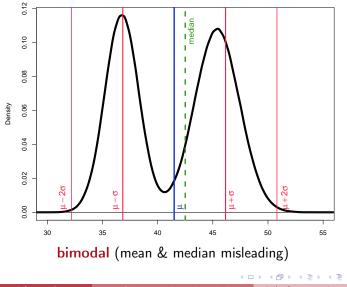
Different types of continuous distributions



31 / 40

э

Different types of continuous distributions



э

Outline

Introduction

Categorical vs. numerical variables Scales of measurement

Descriptive statistics

Characteristic measures Histogram & density Random variables & expectations

Continuous distributions

The shape of a distribution The normal distribution (Gaussian)

The Gaussian distribution

 In many real-life data sets, the distribution has a typical "bell-shaped" form known as a Gaussian (or normal)

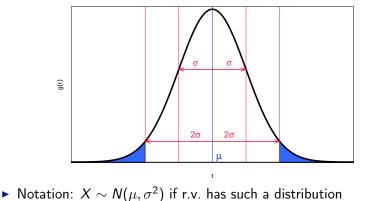
The Gaussian distribution

 In many real-life data sets, the distribution has a typical "bell-shaped" form known as a Gaussian (or normal)

Idealised density function is given by simple equation:

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(t-\mu)^2/2\sigma^2}$$

with parameters $\mu \in \mathbb{R}$ (location) and $\sigma > 0$ (width)



▶ No coincidence: $E[X] = \mu$ and $Var[X] = \sigma^2$ (→ homework ;-)

SIGIL (Baroni & Evert)

Important properties of the Gaussian distribution

Distribution is well-behaved: symmetric, and most values are relatively close to the mean μ (within 2 standard deviations)

$$\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) = \int_{\mu - 2\sigma}^{\mu + 2\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-(t-\mu)^2/2\sigma^2} dt$$
$$\approx 95.5\%$$

▶ 68.3% are within range $\mu - \sigma \leq X \leq \mu + \sigma$ (one s.d.)

Important properties of the Gaussian distribution

▶ Distribution is well-behaved: symmetric, and most values are relatively close to the mean μ (within 2 standard deviations)

$$\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) = \int_{\mu - 2\sigma}^{\mu + 2\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-(t-\mu)^2/2\sigma^2} dt$$
$$\approx 95.5\%$$

▶ 68.3% are within range $\mu - \sigma \leq X \leq \mu + \sigma$ (one s.d.)

 The central limit theorem explains why this particular distribution is so widespread (sum of independent effects)

Important properties of the Gaussian distribution

▶ Distribution is well-behaved: symmetric, and most values are relatively close to the mean μ (within 2 standard deviations)

$$\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) = \int_{\mu - 2\sigma}^{\mu + 2\sigma} \frac{1}{\sigma\sqrt{2\pi}} e^{-(t-\mu)^2/2\sigma^2} dt$$
$$\approx 95.5\%$$

▶ 68.3% are within range $\mu - \sigma \leq X \leq \mu + \sigma$ (one s.d.)

- The central limit theorem explains why this particular distribution is so widespread (sum of independent effects)
- Mean and standard deviation are meaningful characteristics if distribution is Gaussian or near-Gaussian
 - completely determined by these parameters

Assessing normality

- Many hypothesis tests and other statistical techniques assume that random variables follow a Gaussian distribution
 - If this normality assumption is not justified, a significant test result may well be entirely spurious.
- It is therefore important to verify that sample data come from such a Gaussian or near-Gaussian distribution

Assessing normality

- Many hypothesis tests and other statistical techniques assume that random variables follow a Gaussian distribution
 - If this normality assumption is not justified, a significant test result may well be entirely spurious.
- It is therefore important to verify that sample data come from such a Gaussian or near-Gaussian distribution
- Method 1: Comparison of histograms and density functions

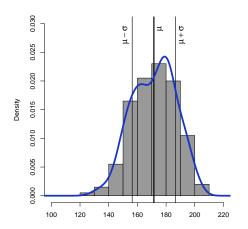
Assessing normality

- Many hypothesis tests and other statistical techniques assume that random variables follow a Gaussian distribution
 - If this normality assumption is not justified, a significant test result may well be entirely spurious.
- It is therefore important to verify that sample data come from such a Gaussian or near-Gaussian distribution
- Method 1: Comparison of histograms and density functions
- Method 2: Quantile-quantile plots

Assessing normality: Histogram & density function

Plot histogram and estimated density:

- > hist(x,freq=FALSE)
- > lines(density(x))



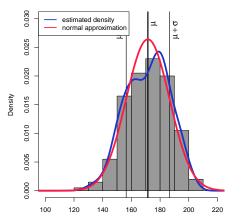
Assessing normality: Histogram & density function

Plot histogram and estimated density:

- > hist(x,freq=FALSE)
- > lines(density(x))

Compare best-matching Gaussian distribution:

> xG <seq(min(x),max(x),len=100) > yG <dnorm(xG,mean(x),sd(x)) > lines(xG,yG,col="red")



Assessing normality: Histogram & density function

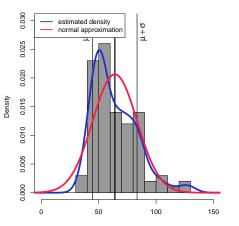
Plot histogram and estimated density:

- > hist(x,freq=FALSE)
- > lines(density(x))

Compare best-matching Gaussian distribution:

> xG <seq(min(x),max(x),len=100) > yG <dnorm(xG,mean(x),sd(x)) > lines(xG,yG,col="red")

Substantial deviation \rightarrow not normal (problematic)

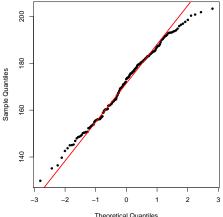


Assessing normality: Quantile-quantile plots

Quantile-quantile plots are better suited for small samples:

- > qqnorm(x)
- > qqline(x,col="red")

If distribution is near-Gaussian, points should follow red line.



I heoretical Quantile

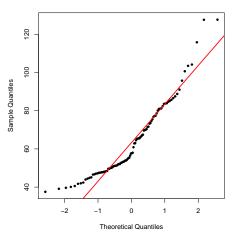
Assessing normality: Quantile-quantile plots

Quantile-quantile plots are better suited for small samples:

- > qqnorm(x)
- > qqline(x,col="red")

If distribution is near-Gaussian, points should follow red line.

One-sided deviation → skewed distribution



Playtime!

► Take random samples of *n* items each from the census and wikipedia data sets (e.g. *n* = 100)

library(corpora)

Survey <- sample.df(FakeCensus, n, sort=TRUE)</pre>

- Plot histograms and estimated density for all variables
- Assess normality of the underlying distributions
 - by comparison with Gaussian density function
 - by inspection of quantile-quantile plots
 - Can you make them look like the figures in the slides?
- Plot histograms for all variables in the full data sets (and estimated density functions if you're patient enough)
 - What kinds of distributions do you find?
 - Which variables can meaningfully be described by mean μ and standard deviation σ?

sigil.r-forge.r-project.org

> < = > < = >