Unit 3: Inferential Statistics for Continuous Data Statistics for Linguists with R – A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

²Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

b 4 = b

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean Testing the variance Student's *t* test Confidence intervals

э

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean Testing the variance Student's *t* test Confidence intervals

-

Preliminaries

- Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - problem: overwhelmingly infinite coice of possible distributions
 - \blacktriangleright can estimate/test characteristics such as mean μ and s.d. σ
 - but H_0 doesn't determine a unique sampling distribution then
 - **parametric** model, where the population distribution of a r.v. RF . X is completely determined by a small set of parameters

- Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - problem: overwhelmingly infinite coice of possible distributions
 - \blacktriangleright can estimate/test characteristics such as mean μ and s.d. σ
 - ▶ but H_0 doesn't determine a unique sampling distribution then
 - parametric model, where the population distribution of a r.v. X is completely determined by a small set of parameters
- ► In this session, we assume a Gaussian population distribution
 - \blacktriangleright estimate/test parameters μ and σ of this distribution
 - sometimes a scale transformation is necessary (e.g. lognormal)

- Goal: infer (characteristics of) population distribution from small random sample, or test hypotheses about population
 - problem: overwhelmingly infinite coice of possible distributions
 - \blacktriangleright can estimate/test characteristics such as mean μ and s.d. σ
 - but H_0 doesn't determine a unique sampling distribution then
 - parametric model, where the population distribution of a r.v. X is completely determined by a small set of parameters
- ► In this session, we assume a Gaussian population distribution
 - \blacktriangleright estimate/test parameters μ and σ of this distribution
 - sometimes a scale transformation is necessary (e.g. lognormal)
- Nonparametric tests need fewer assumptions, but ...
 - cannot test hypotheses about μ and σ
 (instead: median m, IQR = inter-quartile range, etc.)
 - more complicated and computationally expensive procedures
 - correct interpretation of results often difficult

SIGIL (Baroni & Evert)

Rationale similar to binomial test for frequency data: measure observed statistic T in sample, which is compared against its expected value $E_0[T] \rightarrow$ if difference is large enough, reject H_0

Preliminaries

Inferential statistics for continuous data

Rationale similar to binomial test for frequency data: measure observed statistic T in sample, which is compared against its expected value $E_0[T] \rightarrow$ if difference is large enough, reject H_0

- Question 1: What is a suitable statistic?
 - depends on null hypothesis H_0
 - ▶ large difference $T E_0[T]$ should provide evidence against H_0
 - e.g. unbiased estimator for population parameter to be tested

Preliminaries

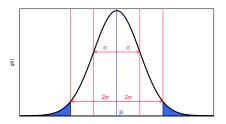
Inferential statistics for continuous data

Rationale similar to binomial test for frequency data: measure observed statistic T in sample, which is compared against its **expected** value $E_0[\mathcal{T}] \rightarrow$ if difference is large enough, reject H_0

- Question 1: What is a suitable statistic?
 - depends on null hypothesis H_0
 - ▶ large difference $T E_0[T]$ should provide evidence against H_0
 - e.g. unbiased estimator for population parameter to be tested
- Question 2: what is "large enough"?
 - reject if difference is unlikely to arise by chance
 - need to compute sampling distribution of T under H_0

A B F A B F

- Easy if statistic T has a Gaussian distribution $T \sim N(\mu, \sigma^2)$
 - μ and σ^2 are determined by null hypothesis H_0
 - reject H₀ at two-sided significance level α = .05 if T < μ − 1.96σ or T > μ + 1.96σ



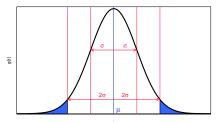
Preliminaries

Inferential statistics for continuous data

- Easy if statistic T has a Gaussian distribution $T \sim N(\mu, \sigma^2)$
 - μ and σ^2 are determined by null hypothesis H_0
 - reject H_0 at two-sided significance level $\alpha = .05$ if $T < \mu - 1.96\sigma$ or $T > \mu + 1.96\sigma$
- This suggests a standardized z-score as a measure of extremeness:

$$Z := \frac{T - \mu}{\sigma}$$

Central range of sampling variation: |Z| < 1.96



Notation for random samples

- Random sample of $n \ll m = |\Omega|$ items
 - e.g. participants of survey, Wikipedia sample, ...
 - recall importance of completely random selection
- ► Sample described by observed values of r.v. X, Y, Z, ...:

 $x_1, \ldots, x_n; \quad y_1, \ldots, y_n; \quad z_1, \ldots, z_n$

specific items $\omega_1, \ldots, \omega_n$ are irrelevant, we are only interested in their properties $x_i = X(\omega_i)$, $y_i = Y(\omega_i)$, etc.

Notation for random samples

- Random sample of $n \ll m = |\Omega|$ items
 - ▶ e.g. participants of survey, Wikipedia sample, ...
 - recall importance of completely random selection
- ► Sample described by observed values of r.v. X, Y, Z, ...:

 $x_1, \ldots, x_n; y_1, \ldots, y_n; z_1, \ldots, z_n$

- specific items $\omega_1, \ldots, \omega_n$ are irrelevant, we are only interested in their properties $x_i = X(\omega_i)$, $y_i = Y(\omega_i)$, etc.
- ► Mathematically, *x_i*, *y_i*, *z_i* are realisations of random variables

$$X_1,\ldots,X_n;$$
 $Y_1,\ldots,Y_n;$ Z_1,\ldots,Z_n

X₁,..., X_n are independent from each other and each one has the same distribution X_i ~ X → i.i.d. random variables
 ^{ISS} each random experiment now yields complete sample of size n

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean

Testing the variance Student's *t* test Confidence intervals

-

- A simple test for the mean
 - ► Consider simplest possible *H*₀: a **point hypothesis**

$$H_0$$
: $\mu = \mu_0, \ \sigma = \sigma_0$

- together with normality assumption, population distribution is completely determined
- How would you test whether $\mu = \mu_0$ is correct?

A simple test for the mean

► Consider simplest possible *H*₀: a **point hypothesis**

$$H_0$$
: $\mu = \mu_0, \ \sigma = \sigma_0$

- together with normality assumption, population distribution is completely determined
- How would you test whether $\mu = \mu_0$ is correct?
- An intuitive test statistic is the sample mean

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i$$
 with $ar{x} pprox \mu_0$ under H_0

▶ Reject H₀ if difference x̄ - µ₀ is sufficiently large
 Image meed to work out sampling distribution of X̄

• The sample mean is also a random variable:

$$\bar{X} = \frac{1}{n} (X_1 + \dots + X_n)$$

• \bar{X} is a sensible test statistic for μ because it is **unbiased**:

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

• The sample mean is also a random variable:

$$\bar{X} = \frac{1}{n} (X_1 + \dots + X_n)$$

• \bar{X} is a sensible test statistic for μ because it is **unbiased**:

$$E[\bar{X}] = E\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] = \frac{1}{n}\sum_{i=1}^{n}\mu = \mu$$

• An important property of the Gaussian distribution: if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then

$$egin{aligned} X+Y &\sim \textit{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) \ r\cdot X &\sim \textit{N}(r\mu_1,r^2\sigma_1^2) \quad ext{for } r\in \mathbb{R} \end{aligned}$$

• Since X_1, \ldots, X_n are i.i.d. with $X_i \sim N(\mu, \sigma^2)$, we have

$$X_1 + \dots + X_n \sim N(n\mu, n\sigma^2)$$
$$\bar{X} = \frac{1}{n} (X_1 + \dots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$$

- ► \bar{X} has Gaussian distribution with same mean μ but smaller s.d. than the original r.v. X: $\sigma_{\bar{X}} = \sigma/\sqrt{n}$
 - explains why normality assumptions are so convenient
 - ${f I}$ larger samples allow more reliable hypothesis tests about μ

Since X_1, \ldots, X_n are i.i.d. with $X_i \sim N(\mu, \sigma^2)$, we have

$$X_1 + \dots + X_n \sim N(n\mu, n\sigma^2)$$
$$\bar{X} = \frac{1}{n} (X_1 + \dots + X_n) \sim N(\mu, \frac{\sigma^2}{n})$$

► \bar{X} has Gaussian distribution with same mean μ but smaller s.d. than the original r.v. X: $\sigma_{\bar{X}} = \sigma/\sqrt{n}$

explains why normality assumptions are so convenient

- ${f I}$ larger samples allow more reliable hypothesis tests about μ
- If the sample size n is large enough, σ_{X̄} = σ/√n → 0 and the sample mean x̄ becomes an accurate estimate of the true population value μ (law of large numbers)

(*) = (*) = (*)

The z test

Now we can quantify the extremeness of the observed value x̄, given the null hypothesis H₀: μ = μ₀, σ = σ₀

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

► Corresponding r.v. Z has a standard normal distribution if H₀ is correct: Z ~ N(0, 1)

The z test

Now we can quantify the extremeness of the observed value x̄, given the null hypothesis H₀: μ = μ₀, σ = σ₀

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

- ► Corresponding r.v. Z has a standard normal distribution if H₀ is correct: Z ~ N(0, 1)
- We can reject H_0 at significance level α if

$$lpha = .05 .01 .001$$

 $|z| > 1.960 2.576 3.291 -qnorm(lpha/2)$

The z test

Now we can quantify the extremeness of the observed value x̄, given the null hypothesis H₀: μ = μ₀, σ = σ₀

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{X}}} = \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}}$$

- ► Corresponding r.v. Z has a standard normal distribution if H₀ is correct: Z ~ N(0, 1)
- We can reject H_0 at significance level α if

$$lpha = .05 .01 .001$$

 $|z| > 1.960 2.576 3.291 -qnorm(lpha/2)$

- Two problems of this approach:
 - 1. need to make hypothesis about σ in order to test $\mu = \mu_0$
 - 2. H_0 might be rejected because of $\sigma \gg \sigma_0$ even if $\mu = \mu_0$ is true

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean Testing the variance Student's t test

Confidence intervals

3 N 3

• An intuitive test statistic for σ^2 is the error sum of squares

$$V=(X_1-\mu)^2+\cdots+(X_n-\mu)^2$$

- ► Squared error $(X \mu)^2$ is σ^2 on average → $E[V] = n\sigma^2$
 - reject $\sigma = \sigma_0$ if $V \gg n\sigma_0^2$ (variance larger than expected)
 - reject $\sigma = \sigma_0$ if $V \ll n\sigma_0^2$ (variance smaller than expected)
 - sampling distribution of V shows if difference is large enough

• An intuitive test statistic for σ^2 is the error sum of squares

$$V=(X_1-\mu)^2+\cdots+(X_n-\mu)^2$$

► Squared error $(X - \mu)^2$ is σ^2 on average → $E[V] = n\sigma^2$

- reject $\sigma = \sigma_0$ if $V \gg n\sigma_0^2$ (variance larger than expected)
- reject $\sigma = \sigma_0$ if $V \ll n\sigma_0^2$ (variance smaller than expected)

sampling distribution of V shows if difference is large enough

• Rewrite V in the following way:

$$V = \sigma^2 \left[\left(\frac{X_1 - \mu}{\sigma} \right)^2 + \dots + \left(\frac{X_n - \mu}{\sigma} \right)^2 \right]$$
$$= \sigma^2 (Z_1^2 + \dots + Z_n^2)$$

with $Z_i \sim N(0, 1)$ i.i.d. standard normal variables

- Note that the distribution of Z₁² + · · · + Z_n² does not depend on the population parameters µ and σ² (unlike V)
- ► Statisticians have worked out the distribution of $\sum_{i=1}^{n} Z_i^2$ for i.i.d. $Z_i \sim N(0, 1)$, known as the **chi-squared distribution**

$$\sum_{i=1}^n Z_i^2 \sim \chi_n^2$$

with *n* degrees of freedom (df = n)

► The χ_n^2 distribution has expectation $E[\sum_i Z_i^2] = n$ and variance $Var[\sum_i Z_i^2] = 2n \rightarrow confirms E[V] = n\sigma^2$

• Under $H_0: \sigma = \sigma_0$, we have

$$\frac{V}{\sigma_0^2} = Z_1^2 + \dots + Z_n^2 \sim \chi_n^2$$

- ► Appropriate rejection thresholds for the test statistic V/σ₀² can easily be obtained with R
 - χ_n^2 distribution is not symmetric, so one-sided tail probabilities are used (with $\alpha' = \alpha/2$ for two-sided test)

• Under $H_0: \sigma = \sigma_0$, we have

$$\frac{V}{\sigma_0^2} = Z_1^2 + \dots + Z_n^2 \sim \chi_n^2$$

- ► Appropriate rejection thresholds for the test statistic V/σ₀² can easily be obtained with R
 - χ_n^2 distribution is not symmetric, so one-sided tail probabilities are used (with $\alpha' = \alpha/2$ for two-sided test)
- Again, there are two problems:
 - 1. need to make hypothesis about μ in order to test $\sigma = \sigma_0$
 - 2. H_0 easily rejected for $\mu \neq \mu_0$, even though $\sigma = \sigma_0$ may be true

Intermission: Distributions in R

- R can compute density functions and tail probabilities or generate random numbers for a wide range of distributions
- Systematic naming scheme for such functions:
 - dnorm() density function of Gaussian (normal) distribution
 - pnorm() tail probability
 - qnorm() quantile = inverse tail probability
 - rnorm() generate random numbers
- Available distributions include Gaussian (norm), chi-squared (chisq), t (t), F (f), binomial (binom), Poisson (pois), ...
 - sou will encounter many of them later in the course
- Each function accepts distribution-specific parameters

Testing the variance

Intermission: Distributions in R

> x <- rnorm(50, mean=100, sd=15) # random sample of 50 IQ scores > hist(x, freq=FALSE, breaks=seq(45,155,10)) # histogram

- > xG <- seq(45, 155, 1) # theoretical density in steps of 1 IQ point > yG <- dnorm(xG, mean=100, sd=15)</pre>
- > lines(xG, yG, col="blue", lwd=2)

What is the probability of an IQ score above 150? # (we need to compute an upper tail probability to answer this question) > pnorm(150, mean=100, sd=15, lower.tail=FALSE)

What does it mean to be among the bottom 25% of the population?
> qnorm(.25, mean=100, sd=15) # inverse tail probability

Intermission: Distributions in R

Now do the same for a chi-squared distribution with 5 degrees of freedom # (hint: the parameter you're looking for is df=5)

b 4 = b

Intermission: Distributions in R

Now do the same for a chi-squared distribution with 5 degrees of freedom
(hint: the parameter you're looking for is df=5)

> xC <- seq(0, 10, .1)
> yC <- dchisq(xC, df=5)
> plot(xC, yC, type="l", col="blue", lwd=2)

tail probability for $\sum_i Z_i^2 \ge 10$ > pchisq(10, df=5, lower.tail=FALSE)

What is the appropriate rejection criterion for a variance test with $\alpha = 0.05$? > qchisq(.025, df=5, lower.tail=FALSE) # two-sided: $V / \sigma_0^2 > n$ > qchisq(.025, df=5, lower.tail=TRUE) # two-sided: $V / \sigma_0^2 < n$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

The sample variance

• Idea: replace true μ by sample value \bar{X} (which is a r.v.!)

$$V' = (X_1 - \bar{X})^2 + \cdots + (X_n - \bar{X})^2$$

But there are two problems:

Solution $X_i - \bar{X} \sim N(0, \sigma^2)$ not guaranteed because $\bar{X} \neq \mu$ Solutions are no longer i.i.d. because \bar{X} depends on all X_i

The sample variance

• We can easily work out the distribution of V' for n = 2:

$$V' = (X_1 - \bar{X})^2 + (X_2 - \bar{X})^2$$

= $(X_1 - \frac{X_1 + X_2}{2})^2 + (X_2 - \frac{X_1 + X_2}{2})^2$
= $(\frac{X_1 - X_2}{2})^2 + (\frac{X_2 - X_1}{2})^2 = \frac{1}{2}(X_1 - X_2)^2$

where $X_1 - X_2 \sim N(0, 2\sigma^2)$ for i.i.d. $X_1, X_2 \sim N(\mu, \sigma^2)$

- Can also show that V' and \bar{X} are independent
 - follows from independence of $X_1 X_2$ and $X_1 + X_2$
 - this is only the case for independent Gaussian variables (Geary 1936, p. 178)

イモトイモト

The sample variance

We now have

$$V' = \sigma^2 \left(\frac{X_1 - X_2}{\sigma\sqrt{2}}\right)^2 = \sigma^2 Z^2$$

with $Z^2 \sim \chi_1^2$ because of $X_1 - X_2 \sim N(0, 2\sigma^2)$

∃ nar

The sample variance

We now have

$$V' = \sigma^2 \left(\frac{X_1 - X_2}{\sigma\sqrt{2}}\right)^2 = \sigma^2 Z^2$$

with $Z^2 \sim \chi_1^2$ because of $X_1 - X_2 \sim N(0, 2\sigma^2)$ For n > 2 it can be shown that

$$V' = \sum_{i=1}^{n} (X_i - \bar{X})^2 = \sigma^2 \sum_{j=1}^{n-1} Z_j^2$$

with $\sum_j Z_j^2 \sim \chi^2_{n-1}$ independent from $ar{X}$

- proof based on multivariate Gaussian and vector algebra
- ► notice that we "lose" one degree of freedom because one parameter ($\mu \approx \bar{x}$) has been estimated from the sample

Sample variance and the chi-squared test

• This motivates the following definition of sample variance S^2

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

with sampling distribution $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$ • S^2 is an unbiased estimator of variance: $E[S^2] = \sigma^2$

ヨトィヨト

Sample variance and the chi-squared test

• This motivates the following definition of sample variance S^2

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

with sampling distribution $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$

- S^2 is an unbiased estimator of variance: $E[S^2] = \sigma^2$
- We can use S² to test H₀: σ = σ₀ without making any assumptions about the true mean μ → chi-squared test
- Remarks
 - ► sample variance $\left(\frac{1}{n-1}\right)$ vs. population variance $\left(\frac{1}{m}\right)$
 - χ² distribution doesn't have parameters σ² etc., so we need to
 specify the distribution of S² in a roundabout way
 - ▶ independence of S^2 and \bar{X} will play an important role later

Sample data for this session

Let us take a reproducible sample from the population of Ingary

- > library(SIGIL)
- > Census <- simulated.census()</pre>
- > Survey <- Census[1:100,]</pre>

We will be testing hypotheses about the distribution of body heights

- > x <- Survey\$height # sample data: n items</pre>
- > n <- length(x)</pre>

Chi-squared test of variance in R

Chi-squared test for a hypothesis about the s.d. (with unknown mean) # $H_0: \sigma = 12$ (one-sided test against $\sigma > \sigma_0$) > sigma0 <- 12 # you can also use the name σ 0 in a Unicode locale > S2 <- sum((x - mean(x))^2) / (n-1) # unbiased estimator of σ^2 > S2 <- var(x) # this should give exactly the same value > X2 <- (n-1) * S2 / sigma0^2 # has χ^2 distribution under H_0 > pchisq(X2, df=n-1, lower.tail=FALSE)

How do you carry out a one-sided test against $\sigma < \sigma_0$?

Here's a trick for an approximate two-sided test (try e.g. with σ₀ = 20)
> alt.higher <- S2 > sigma0²
> 2 * pchisq(X2, df=n-1, lower.tail=!alt.higher)

▲ Ξ ► ▲ Ξ ► Ξ = •○ < ○</p>

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean Testing the variance **Student's** *t* test

B ▶ B

Student's t test

Student's t test for the mean

- ▶ Now we have the ingredients for a test of H_0 : $\mu = \mu_0$ that does not require knowledge of the true variance σ^2
- \blacktriangleright In the z-score for \overline{X}

$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

replace the unknown true s.d. σ by the unbiased sample estimate $\hat{\sigma} = \sqrt{S^2}$, resulting in a so-called **t-score**:

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}}$$

William S. Gosset worked out the precise sampling distriution of T and published it under the pseudonym "Student"

Student's *t* test for the mean

• Because \bar{X} and S^2 are independent, we find that

 $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$

Student's *t* distribution with df = n - 1 degrees of freedom

ヨト ▲ ヨト ヨ つへ⊙

Student's t test for the mean

• Because \bar{X} and S^2 are independent, we find that

 $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$

Student's *t* distribution with df = n - 1 degrees of freedom

In order to carry out a one-sample t test, calculate the statistic

$$t = \frac{\bar{x} - \mu_0}{\sqrt{s^2/n}}$$

and reject $H_0: \mu = \mu_0$ if |t| > C

Student's *t* test for the mean

• Because \bar{X} and S^2 are independent, we find that

$$T \sim t_{n-1}$$
 under $H_0: \mu = \mu_0$

Student's *t* distribution with df = n - 1 degrees of freedom

In order to carry out a one-sample t test, calculate the statistic

$$t = \frac{\bar{x} - \mu_0}{\sqrt{s^2/n}}$$

and reject $H_0: \mu = \mu_0$ if |t| > C

► Rejection threshold C depends on df = n - 1 and desired significance level α (in R: $-qt(\alpha/2, n-1)$)

so very close to z-score thresholds for n > 30

Student's t distribution characterizes the quantity

$$rac{Z}{\sqrt{V/k}}\sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

3

Student's t distribution characterizes the quantity

$$rac{Z}{\sqrt{V/k}}\sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

► $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}}$$

SIGIL (Baroni & Evert)

sigil.r-forge.r-project.org

Student's t distribution characterizes the quantity

$$rac{Z}{\sqrt{V/k}}\sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

► $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}}$$

Student's t distribution characterizes the quantity

$$rac{Z}{\sqrt{V/k}}\sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

► $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}}$$

Student's t distribution characterizes the quantity

$$rac{Z}{\sqrt{V/k}}\sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

► $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}}$$

sigil.r-forge.r-project.org

Student's t distribution characterizes the quantity

$$rac{Z}{\sqrt{V/k}}\sim t_k$$

where $Z \sim N(0,1)$ and $V \sim \chi_k^2$ are independent r.v.

► $T \sim t_{n-1}$ under $H_0: \mu = \mu_0$ because the unknown population variance σ^2 cancels out between the independent r.v. \bar{X} and S^2

$$T = \frac{\bar{X} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{X} - \mu_0}{\sigma}}{\sqrt{\frac{S^2}{n\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{S^2}{\sigma^2}}} = \frac{\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}/(n-1)}}$$

with
$$Z=rac{ar{\chi}-\mu_0}{\sigma/\sqrt{n}}\sim {\it N}(0,1)$$
 and $V=rac{(n-1)S^2}{\sigma^2}\sim \chi^2_{n-1}$

One-sample t test in R

we will use the same sample x of size n as in the previous example

Student's t-test for a hypothesis about the mean (with unknown s.d.) # $H_0: \mu = 165 \text{ cm}$ > mu0 <- 165 > x.bar <- mean(x) # sample mean \bar{x} > s2 <- var(x) # sample variance s^2 > t.score <- (x.bar - mu0) / sqrt(s2 / n) # t statistic > print(t.score) # positive indicates $\mu > \mu_0$, negative $\mu < \mu_0$ > -qt(0.05/2, n-1) # two-sided rejection threshold for |t| at $\alpha = .05$ > 2 * pt(abs(t.score), n-1, lower=FALSE) # two-sided p-value # Mini-task: plot density function of t distribution for different d.f.

> t.test(x, mu=165) # agrees with our "manual" t-test # Note that t.test() also provides a confidence interval for the true µ!

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Outline

Inferential statistics Preliminaries

One-sample tests

Testing the mean Testing the variance Student's *t* test

Confidence intervals

→ < ∃ →</p>

3

- If we do not have a specific H₀ to start from, estimate confidence interval for μ or σ² by inverting hypothesis tests
 - ▶ in principle same procedure as for binomial confidence intervals
 - implemented in R for t test and chi-squared test
- Confidence interval has a particularly simple form for the t test

- If we do not have a specific H₀ to start from, estimate confidence interval for μ or σ² by inverting hypothesis tests
 - ▶ in principle same procedure as for binomial confidence intervals
 - implemented in R for t test and chi-squared test
- Confidence interval has a particularly simple form for the t test
- Given $H_0: \mu = a$ for some $a \in \mathbb{R}$, we reject H_0 if

$$|t| = \left|\frac{\bar{x} - a}{\sqrt{s^2/n}}\right| > C$$

with $C \approx 2$ for $\alpha = .05$ and n > 30

- If we do not have a specific H₀ to start from, estimate confidence interval for μ or σ² by inverting hypothesis tests
 - in principle same procedure as for binomial confidence intervals
 - implemented in R for t test and chi-squared test
- Confidence interval has a particularly simple form for the t test
- Given $H_0: \mu = a$ for some $a \in \mathbb{R}$, we reject H_0 if

$$|t| = \left|\frac{\bar{x} - a}{\sqrt{s^2/n}}\right| > C$$

with $C \approx 2$ for $\alpha = .05$ and n > 30

$$\Rightarrow \quad \bar{x} - C\frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + C\frac{s}{\sqrt{n}}$$

 \blacksquare this is the origin of the " ± 2 standard deviations" rule of thumb

SIGIL (Baroni & Evert)

- Can you work out a similar confidence interval for σ^2 ?
- ▶ Test hypotheses H₀: σ² = a for different values a > 0
 Image: Which H₀ are rejected given the observed sample variance s²?
- If H_0 is true, we have the sampling distribution

$$Z^2 := (n-1)S^2/a \sim \chi^2_{n-1}$$

- Reject H_0 if $Z^2 > C_1$ or $Z^2 < C_2$ (not symmetric)
- Solve inequalities to obtain confidence interval

$$(n-1)s^2/C_1 \le \sigma^2 \le (n-1)s^2/C_2$$

4 3 5 4 3 5 5