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Lexical statistics & word frequency distributions

Lexical statistics
Zipf (1949, 1965); Baayen (2001); Baroni (2008)

I Statistical study of the frequency distribution of types (words
or other linguistic units) in texts

I remember the distinction between types and tokens?

I Different from other categorical data because of the extremely
large number of distinct types

I people often speak of Zipf’s law in this context

I Key applications: productivity and vocabulary richness
I prevalence of low-frequency types
I vocabulary growth for incremental samples
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Basic terminology

I N: sample / corpus size, number of tokens in the sample
I V : vocabulary size, number of distinct types in the sample
I Vm: spectrum element m, number of types in the sample

with frequency m (i.e. exactly m occurrences)
I V1: number of hapax legomena, types that occur only once

in the sample (for hapaxes, #types = #tokens)

I A sample: a b b c a a b a
I N = 8, V = 3, V1 = 1
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Rank / frequency profile

I The sample: c a a b c c a c d
I Frequency list ordered by decreasing frequency

t f
c 4
a 3
b 1
d 1

I Rank / frequency profile: ranks instead of type labels
r f
1 4
2 3
3 1
4 1

I Expresses type frequency fr as function of rank r of a type
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Rank/frequency profile of Brown corpus
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Top and bottom ranks in the Brown corpus

top frequencies bottom frequencies
r f word rank range f randomly selected examples
1 69836 the 7731 – 8271 10 schedules, polynomials, bleak
2 36365 of 8272 – 8922 9 tolerance, shaved, hymn
3 28826 and 8923 – 9703 8 decreased, abolish, irresistible
4 26126 to 9704 – 10783 7 immunity, cruising, titan
5 23157 a 10784 – 11985 6 geographic, lauro, portrayed
6 21314 in 11986 – 13690 5 grigori, slashing, developer
7 10777 that 13691 – 15991 4 sheath, gaulle, ellipsoids
8 10182 is 15992 – 19627 3 mc, initials, abstracted
9 9968 was 19628 – 26085 2 thar, slackening, deluxe

10 9801 he 26086 – 45215 1 beck, encompasses, second-place
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Frequency spectrum

I The sample: c a a b c c a c d
I Frequency classes: 1 (b, d), 3 (a), 4 (c)
I Frequency spectrum:

m Vm

1 2
3 1
4 1
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Frequency spectrum of Brown corpus
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Vocabulary growth curve

I The sample: a b b c a a b a

I N = 1, V = 1, V1 = 1 (V2 = 0, . . . )
I N = 3, V = 2, V1 = 1 (V2 = 1, V3 = 0, . . . )
I N = 5, V = 3, V1 = 1 (V2 = 2, V3 = 0, . . . )
I N = 8, V = 3, V1 = 1 (V2 = 0, V3 = 1, V4 = 1, . . . )
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Lexical statistics & word frequency distributions Basic notions of lexical statistics

Vocabulary growth curve of Brown corpus
With V1 growth in red (idealized curve smoothed by binomial interpolation)
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Lexical statistics & word frequency distributions Typical frequency distribution patterns
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Lexical statistics & word frequency distributions Typical frequency distribution patterns

Typical frequency patterns
Across text types & languages
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Lexical statistics & word frequency distributions Typical frequency distribution patterns

Typical frequency patterns
The Italian prefix ri- in the la Repubblica corpus

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 15 / 71



Lexical statistics & word frequency distributions Typical frequency distribution patterns

Is there a general law?

I Language after language, corpus after corpus, linguistic type
after linguistic type, . . . we observe the same “few giants,
many dwarves” pattern

I Similarity of plots suggests that relation between rank and
frequency could be captured by a general law

I Nature of this relation becomes clearer if we plot log f as a
function of log r
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Lexical statistics & word frequency distributions Zipf’s law
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Lexical statistics & word frequency distributions Zipf’s law

Zipf’s law

I Straight line in double-logarithmic space corresponds
to power law for original variables

I This leads to Zipf’s (1949; 1965) famous law:

f (w) =
C

r(w)a

I With a = 1 and C =60,000, Zipf’s law predicts that:
I most frequent word occurs 60,000 times
I second most frequent word occurs 30,000 times
I third most frequent word occurs 20,000 times
I and there is a long tail of 80,000 words with frequencies

between 1.5 and 0.5 occurrences(!)
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Lexical statistics & word frequency distributions Zipf’s law

Zipf’s law
Logarithmic version

I Zipf’s power law:

f (w) =
C

r(w)a

I If we take logarithm of both sides, we obtain:

log f (w) = logC − a · log r(w)

I Zipf’s law predicts that rank / frequency profiles are straight
lines in double logarithmic space

I Provides intuitive interpretation of a and C :
I a is slope determining how fast log frequency decreases
I logC is intercept, i.e., predicted log frequency of word with

rank 1 (log rank 0) = most frequent word
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Lexical statistics & word frequency distributions Zipf’s law

Zipf’s law
Least-squares fit = linear regression in log-space (Brown corpus)
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Lexical statistics & word frequency distributions Zipf’s law

Zipf-Mandelbrot law
Mandelbrot (1953, 1962)

I Mandelbrot’s extra parameter:

f (w) =
C

(r(w) + b)a

I Zipf’s law is special case with b = 0
I Assuming a = 1, C = 60,000, b = 1:

I For word with rank 1, Zipf’s law predicts frequency of 60,000;
Mandelbrot’s variation predicts frequency of 30,000

I For word with rank 1,000, Zipf’s law predicts frequency of 60;
Mandelbrot’s variation predicts frequency of 59.94

I Zipf-Mandelbrot law forms basis of statistical LNRE models
I ZM law derived mathematically as limiting distribution of

vocabulary generated by a character-level Markov process
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Lexical statistics & word frequency distributions Zipf’s law

Zipf-Mandelbrot vs. Zipf’s law
Non-linear least-squares fit (Brown corpus)
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Lexical statistics & word frequency distributions Some applications
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Lexical statistics & word frequency distributions Some applications

Applications of word frequency distributions

I Application 1: extrapolation of vocabulary size and frequency
spectrum to larger sample sizes

I morphological productivity (e.g. Lüdeling and Evert 2005)
I lexical richness in stylometry (Efron and Thisted 1976),

language acquisition, clinical linguistics (Garrard et al. 2005)
I language technology (estimate proportion of OOV words,

unseen grammar rules, typos, . . . )

+ need method for predicting vocab. growth on unseen data

I Application 2: Zipfian frequency distribution across types
I measures of lexical richness based on population (6= sample)
I population model for Good-Turing smoothing (Good 1953;

Gale and Sampson 1995)
I realistic prior for Bayesian language modelling

+ need model of type probability distribution in the population
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Lexical statistics & word frequency distributions Some applications

Vocabulary growth: Pronouns vs. ri- in Italian

N V (pron.) V (ri-)
5000 67 224

10000 69 271
15000 69 288
20000 70 300
25000 70 322
30000 71 347
35000 71 364
40000 71 377
45000 71 386
50000 71 400
. . . . . . . . .
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Lexical statistics & word frequency distributions Some applications

Vocabulary growth: Pronouns vs. ri- in Italian
Vocabulary growth curves (V and V1)
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Statistical LNRE Models

LNRE models for word frequency distributions

I LNRE = large number of rare events (cf. Baayen 2001)
I Statistics: corpus as random sample from population

I population characterised by vocabulary of types wk with
occurrence probabilities πk

I not interested in specific types Ü arrange by decreasing
probability: π1 ≥ π2 ≥ π3 ≥ · · ·

I NB: not necessarily identical to Zipf ranking in sample!

I LNRE model = population model for type probabilities, i.e. a
function k 7→ πk (with small number of parameters)

I type probabilities πk cannot be estimated reliably from a
corpus, but parameters of LNRE model can

å Parametric statistical model
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Statistical LNRE Models

Examples of population models
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Statistical LNRE Models

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency
distributions?

I We have already seen that the Zipf-Mandelbrot law captures
the distribution of observed frequencies very well

I Re-phrase the law for type probabilities:

πk :=
C

(k + b)a

I Two free parameters: a > 1 and b ≥ 0
I C is not a parameter but a normalization constant,

needed to ensure that
∑

k πk = 1
I This is the Zipf-Mandelbrot population model
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Statistical LNRE Models ZM & fZM
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Statistical LNRE Models ZM & fZM

The parameters of the Zipf-Mandelbrot model
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Statistical LNRE Models ZM & fZM

The parameters of the Zipf-Mandelbrot model
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Statistical LNRE Models ZM & fZM

The finite Zipf-Mandelbrot model

I Zipf-Mandelbrot population model characterizes an infinite
type population: there is no upper bound on k , and the type
probabilities πk can become arbitrarily small

I π = 10−6 (once every million words), π = 10−9 (once every
billion words), π = 10−15 (once on the entire Internet),
π = 10−100 (once in the universe?)

I Alternative: finite (but often very large) number
of types in the population

I We call this the population vocabulary size S
(and write S =∞ for an infinite type population)
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Statistical LNRE Models ZM & fZM

The finite Zipf-Mandelbrot model
Evert (2004)

I The finite Zipf-Mandelbrot model simply stops after the first
S types (w1, . . . ,wS)

I S becomes a new parameter of the model
→ the finite Zipf-Mandelbrot model has 3 parameters

Abbreviations:
I ZM for Zipf-Mandelbrot model
I fZM for finite Zipf-Mandelbrot model
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Statistical LNRE Models Sampling from a LNRE model

Outline

Lexical statistics & word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf’s law
Some applications

Statistical LNRE Models
ZM & fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
Reliability

zipfR
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Statistical LNRE Models Sampling from a LNRE model

Sampling from a population model

Assume we believe that the population we are interested in can be
described by a Zipf-Mandelbrot model:
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Use computer simulation to sample from this model:
I Draw N tokens from the population such that in

each step, type wk has probability πk to be picked
I This allows us to make predictions for samples (= corpora) of

arbitrary size N Ü extrapolation
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Statistical LNRE Models Sampling from a LNRE model

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .

time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 37 / 71



Statistical LNRE Models Sampling from a LNRE model

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 37 / 71



Statistical LNRE Models Sampling from a LNRE model

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 37 / 71



Statistical LNRE Models Sampling from a LNRE model

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 37 / 71



Statistical LNRE Models Sampling from a LNRE model

Sampling from a population model

#1: 1 42 34 23 108 18 48 18 1 . . .
time order room school town course area course time . . .

#2: 286 28 23 36 3 4 7 4 8 . . .

#3: 2 11 105 21 11 17 17 1 16 . . .

#4: 44 3 110 34 223 2 25 20 28 . . .

#5: 24 81 54 11 8 61 1 31 35 . . .

#6: 3 65 9 165 5 42 16 20 7 . . .

#7: 10 21 11 60 164 54 18 16 203 . . .

#8: 11 7 147 5 24 19 15 85 37 . . .

...
...

...
...

...
...

...
...

...
...

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 37 / 71



Statistical LNRE Models Sampling from a LNRE model

Samples: type frequency list & spectrum

rank r fr type k

1 37 6
2 36 1
3 33 3
4 31 7
5 31 10
6 30 5
7 28 12
8 27 2
9 24 4
10 24 16
11 23 8
12 22 14
...

...
...

m Vm

1 83
2 22
3 20
4 12
5 10
6 5
7 5
8 3
9 3

10 3
...

...

sample #1
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Statistical LNRE Models Sampling from a LNRE model

Samples: type frequency list & spectrum

rank r fr type k

1 39 2
2 34 3
3 30 5
4 29 10
5 28 8
6 26 1
7 25 13
8 24 7
9 23 6
10 23 11
11 20 4
12 19 17
...

...
...

m Vm

1 76
2 27
3 17
4 10
5 6
6 5
7 7
8 3

10 4
11 2
...

...

sample #2
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Statistical LNRE Models Sampling from a LNRE model

Random variation in type-frequency lists
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Statistical LNRE Models Sampling from a LNRE model

Random variation: frequency spectrum

Sample #1
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Statistical LNRE Models Sampling from a LNRE model

Random variation: frequency spectrum
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Statistical LNRE Models Sampling from a LNRE model

Random variation: frequency spectrum
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Statistical LNRE Models Sampling from a LNRE model

Random variation: frequency spectrum
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Statistical LNRE Models Sampling from a LNRE model

Random variation: vocabulary growth curve
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Statistical LNRE Models Sampling from a LNRE model

Random variation: vocabulary growth curve
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Statistical LNRE Models Sampling from a LNRE model

Random variation: vocabulary growth curve
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Statistical LNRE Models Sampling from a LNRE model

Random variation: vocabulary growth curve
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Statistical LNRE Models Great expectations

Outline

Lexical statistics & word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf’s law
Some applications
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Reliability
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Statistical LNRE Models Great expectations

Expected values

I There is no reason why we should choose a particular sample
to make a prediction for the real data – each one is equally
likely or unlikely

I Take the average over a large number of samples, called
expected value or expectation in statistics

I Notation: E
[
V (N)

]
and E

[
Vm(N)

]
I indicates that we are referring to expected values for a sample

of size N
I rather than to the specific values V and Vm

observed in a particular sample or a real-world data set

I Expected values can be calculated efficiently without
generating thousands of random samples
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Statistical LNRE Models Great expectations

The expected frequency spectrum
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Statistical LNRE Models Great expectations

The expected frequency spectrum

Vm

E[[Vm]]

Sample #2

m

V
m

E
[[V

m
]]

0
20

40
60

80
10

0

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 45 / 71



Statistical LNRE Models Great expectations

The expected frequency spectrum
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Statistical LNRE Models Great expectations

The expected frequency spectrum
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Statistical LNRE Models Great expectations

The expected vocabulary growth curve
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Statistical LNRE Models Great expectations

Prediction intervals for the expected VGC
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“Confidence intervals” that indicate predicted sampling distribution:
+ for 95% of samples generated by the LNRE model, VGC will

fall within the range delimited by the thin red lines
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Statistical LNRE Models Parameter estimation for LNRE models

Outline

Lexical statistics & word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf’s law
Some applications

Statistical LNRE Models
ZM & fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
Reliability

zipfR

SIGIL (Baroni & Evert) 5. WFD & zipfR sigil.r-forge.r-project.org 48 / 71



Statistical LNRE Models Parameter estimation for LNRE models

Parameter estimation by trial & error

observed
ZM model
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Statistical LNRE Models Parameter estimation for LNRE models

Parameter estimation by trial & error

observed
ZM model

a == 1.3,,  b == 7.5
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Statistical LNRE Models Parameter estimation for LNRE models

Parameter estimation by trial & error
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Statistical LNRE Models Parameter estimation for LNRE models

Automatic parameter estimation

observed
expected
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I By trial & error we found a = 2.0 and b = 550
I Automatic estimation procedure: a = 2.39 and b = 1968
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Statistical LNRE Models Reliability

Outline

Lexical statistics & word frequency distributions
Basic notions of lexical statistics
Typical frequency distribution patterns
Zipf’s law
Some applications

Statistical LNRE Models
ZM & fZM
Sampling from a LNRE model
Great expectations
Parameter estimation for LNRE models
Reliability

zipfR
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Statistical LNRE Models Reliability

Goodness-of-fit

I Goodness-of-fit statistics measure how well the model has
been fitted to the observed training data

I Compare observed vs. expected frequency distribution
I frequency spectrum (Ü easier)
I vocabulary growth curve

I Similarity measures
I mean square error (Ü dominated by large V / Vm)
I multivariate chi-squared statistic X 2 takes sampling variation

(and covariance of spectrum elements) into account
I Multivariate chi-squared test for goodness-of-fit

I H0 : observed data = sample from LNRE model
(i.e. fitted LNRE model describes the true population)

I p-value derived from X 2 statistic (X 2 ∼ χdf under H0)
I in previous example: p ≈ 0 :-(
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Statistical LNRE Models Reliability

How reliable are the fitted models?

Three potential issues:

1. Model assumptions 6= population
(e.g. distribution does not follow a Zipf-Mandelbrot law)

+ model cannot be adequate, regardless of parameter settings

2. Parameter estimation unsuccessful
(i.e. suboptimal goodness-of-fit to training data)

+ optimization algorithm trapped in local minimum
+ can result in highly inaccurate model

3. Uncertainty due to sampling variation
(i.e. observed training data differ from population distribution)

+ model fitted to training data, may not reflect true population
+ another training sample would have led to different parameters
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Statistical LNRE Models Reliability

Bootstrapping

I An empirical approach to sampling variation:
I take many random samples from the same population
I estimate LNRE model from each sample
I analyse distribution of model parameters, goodness-of-fit, etc.

(mean, median, s.d., boxplot, histogram, . . . )
I problem: how to obtain the additional samples?

I Bootstrapping (Efron 1979)
I resample from observed data with replacement
I this approach is not suitable for type-token distributions

(resamples underestimate vocabulary size V !)
I Parametric bootstrapping

I use fitted model to generate samples, i.e. sample from the
population described by the model

I advantage: “correct” parameter values are known
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Statistical LNRE Models Reliability

Bootstrapping
parametric bootstrapping with 100 replicates

Zipfian slope a = 1/α
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Statistical LNRE Models Reliability

Bootstrapping
parametric bootstrapping with 100 replicates

Offset b = (1− α)/(B · α)
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Statistical LNRE Models Reliability

Bootstrapping
parametric bootstrapping with 100 replicates

fZM probability cutoff A = πS
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Statistical LNRE Models Reliability

Bootstrapping
parametric bootstrapping with 100 replicates

Goodness-of-fit statistic X 2 (model not plausible for X 2 > 11)
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Statistical LNRE Models Reliability

Bootstrapping
parametric bootstrapping with 100 replicates

Population vocabulary size S
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Statistical LNRE Models Reliability

Bootstrapping
parametric bootstrapping with 100 replicates

Population vocabulary size S
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Statistical LNRE Models Reliability

Summary

LNRE modelling in a nutshell:

1. Compile observed frequency spectrum (and vocabulary
growth curves) for a given corpus or data set

2. Estimate parameters of LNRE model by matching observed
and expected frequency spectrum

3. Evaluate goodness-of-fit on spectrum (Baayen 2001) or by
testing extrapolation accuracy (Baroni and Evert 2007)

I in principle, you should only go on if model gives a plausible
explanation of the observed data!

4. Use LNRE model to compute expected frequency spectrum
for arbitrary sample sizes
Ü extrapolation of vocabulary growth curve

I or use population model directly as Bayesian prior etc.
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zipfR

zipfR
Evert and Baroni (2007)

I http://zipfR.R-Forge.R-Project.org/
I Conveniently available from CRAN repository

I see Unit 1 for general package installation guides
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zipfR

Loading

> library(zipfR)

> ?zipfR

> data(package="zipfR")

# package overview in HTML help leads to zipfR tutorial
> help.start()
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zipfR

Importing data

> data(ItaRi.spc) # not necessary in recent package versions
> data(ItaRi.emp.vgc)

# load your own data sets (see ?read.spc etc. for file format)
> my.spc <- read.spc("my.spc.txt")
> my.vgc <- read.vgc("my.vgc.txt")

> my.tfl <- read.tfl("my.tfl.txt")
> my.spc <- tfl2spc(my.tfl) # compute spectrum from frequency list
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zipfR

Looking at spectra

> summary(ItaRi.spc)
> ItaRi.spc

> N(ItaRi.spc)
> V(ItaRi.spc)
> Vm(ItaRi.spc, 1)
> Vm(ItaRi.spc, 1:5)

# Baayen’s P = estimate for slope of VGC
> Vm(ItaRi.spc, 1) / N(ItaRi.spc)

> plot(ItaRi.spc)
> plot(ItaRi.spc, log="x")
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zipfR

Looking at VGCs

> summary(ItaRi.emp.vgc)
> ItaRi.emp.vgc

> N(ItaRi.emp.vgc)

> plot(ItaRi.emp.vgc, add.m=1)
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zipfR

Smoothing VGCs with binomial interpolation
(for details, see Baayen 2001, Sec. 2.6.1)

# interpolated VGC
> ItaRi.bin.vgc <-

vgc.interp(ItaRi.spc, N(ItaRi.emp.vgc), m.max=1)

> summary(ItaRi.bin.vgc)

# comparison
> plot(ItaRi.emp.vgc, ItaRi.bin.vgc,

legend=c("observed", "interpolated"))
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ultra-

I Load the spectrum and empirical VGC of the less common
prefix ultra-

I Compute binomially interpolated VGC for ultra-
I Plot the binomially interpolated ri- and ultra- VGCs together
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zipfR

Estimating LNRE models

# fit a fZM model
# (you can also try ZM and GIGP, and compare them with fZM)

> ItaUltra.fzm <- lnre("fzm", ItaUltra.spc)

> summary(ItaUltra.fzm)
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zipfR

Observed/expected spectra at estimation size

# expected spectrum
> ItaUltra.fzm.spc <-

lnre.spc(ItaUltra.fzm, N(ItaUltra.fzm))

# compare
> plot(ItaUltra.spc, ItaUltra.fzm.spc,

legend=c("observed", "fzm"))

# plot first 10 elements only
> plot(ItaUltra.spc, ItaUltra.fzm.spc,

legend=c("observed", "fzm"), m.max=10)
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zipfR

Compare growth of two categories

# extrapolation of ultra- VGC to sample size of ri- data
> ItaUltra.ext.vgc <-

lnre.vgc(ItaUltra.fzm, N(ItaRi.emp.vgc))

# compare
> plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,

N0=N(ItaUltra.fzm), legend=c("ultra-", "ri-"))

# zooming in
> plot(ItaUltra.ext.vgc, ItaRi.bin.vgc,

N0=N(ItaUltra.fzm), legend=c("ultra-", "ri-"),
xlim=c(0, 100e3))
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zipfR

Model validation by parametric bootstrapping

# define function to extract relevant information from fitted model
> extract.stats <- function (m)

data.frame(alpha=m$param$alpha, A=m$param$A,
B=m$param$B, S=m$S, X2=m$gof$X2)

# run bootstrapping procedure (default = 100 replicates)
> runs <- lnre.bootstrap(ItaUltra.fzm, N(ItaUltra.fzm),

lnre, extract.stats, type="fzm")

> head(runs)

# NB: don’t try this with large samples (N > 1M tokens)
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Model validation by parametric bootstrapping

# distribution of estimated model parameters
> hist(runs$alpha, freq=FALSE, xlim=c(0, 1))
> lines(density(runs$alpha), lwd=2, col="red")
> abline(v=ItaUltra.fzm$param$alpha, lwd=2, col="blue")

# try the other parameters for yourself!

# distribution of goodness-of-fit values
> hist(runs$X2, freq=FALSE)
> lines(density(runs$X2), lwd=2, col="red")

# estimated population vocabulary size
> hist(runs$S) # what is wrong here?
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