Unit 5: Word Frequency Distributions with the zipfR package Statistics for Linguists with R – A SIGIL Course

Designed by Marco Baroni¹ and Stefan Evert²

¹Center for Mind/Brain Sciences (CIMeC) University of Trento, Italy

²Corpus Linguistics Group Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

http://SIGIL.r-forge.r-project.org/

Copyright © 2007–2016 Baroni & Evert

SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

ZM & fZM Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

Lexical statistics

Zipf (1949, 1965); Baayen (2001); Baroni (2008)

- Statistical study of the frequency distribution of types (words or other linguistic units) in texts
 - remember the distinction between types and tokens?
- Different from other categorical data because of the extremely large number of distinct types
 - people often speak of Zipf's law in this context
- Key applications: productivity and vocabulary richness
 - prevalence of low-frequency types
 - vocabulary growth for incremental samples

Outline

Lexical statistics & word frequency distributions Basic notions of lexical statistics

Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

ZM & fZM Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

Basic terminology

- ► N: sample / corpus size, number of tokens in the sample
- ► V: vocabulary size, number of distinct types in the sample
- ► V_m: spectrum element m, number of types in the sample with frequency m (i.e. exactly m occurrences)
- V₁: number of hapax legomena, types that occur only once in the sample (for hapaxes, #types = #tokens)
- A sample: a b b c a a b a

•
$$N = 8$$
, $V = 3$, $V_1 = 1$

Rank / frequency profile

- The sample: c a a b c c a c d
- Frequency list ordered by decreasing frequency

- 3

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Rank / frequency profile

- The sample: c a a b c c a c d
- Frequency list ordered by decreasing frequency

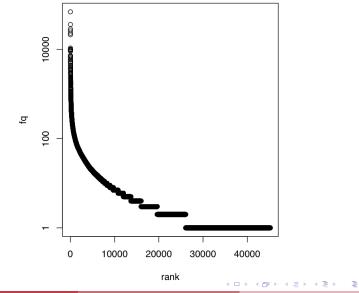
Rank / frequency profile: ranks instead of type labels

$$\begin{array}{c|cc}
r & f \\
\hline
1 & 4 \\
2 & 3 \\
3 & 1 \\
4 & 1
\end{array}$$

• Expresses type frequency f_r as function of rank r of a type

SIGIL (Baroni & Evert)

Rank/frequency profile of Brown corpus



SIGIL (Baroni & Evert)

Top and bottom ranks in the Brown corpus

top frequencies			bottom frequencies		
r	f	word	rank range	f	randomly selected examples
1	69836	the	7731 - 8271	10	schedules, polynomials, bleak
2	36365	of	8272 - 8922	9	tolerance, shaved, hymn
3	28826	and	8923 - 9703	8	decreased, abolish, irresistible
4	26126	to	9704 - 10783	7	immunity, cruising, titan
5	23157	а	10784 - 11985	6	geographic, lauro, portrayed
6	21314	in	11986 - 13690	5	grigori, slashing, developer
7	10777	that	13691 - 15991	4	sheath, gaulle, ellipsoids
8	10182	is	15992 - 19627	3	mc, initials, abstracted
9	9968	was	19628 – 26085	2	thar, slackening, deluxe
10	9801	he	26086 - 45215	1	beck, encompasses, second-place

< A

590

3

Frequency spectrum

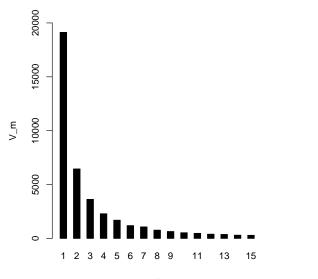
- The sample: c a a b c c a c d
- Frequency classes: 1 (b, d), 3 (a), 4 (c)
- Frequency spectrum:

т	V_m
1	2
3	1
4	1

- 3

< ロト < 同ト < ヨト < ヨト

Frequency spectrum of Brown corpus



m

SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

590

The sample: a b b c a a b a

э. 996

•
$$N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$$

< A

э.

990

The sample: a b b c a a b a

•
$$N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$$

• $N = 3, V = 2, V_1 = 1 (V_2 = 1, V_3 = 0, ...)$

The sample: a b b c a a b a

•
$$N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$$

- ▶ $N = 3, V = 2, V_1 = 1$ ($V_2 = 1, V_3 = 0, ...$)
- N = 5, V = 3, $V_1 = 1$ ($V_2 = 2$, $V_3 = 0$, ...)

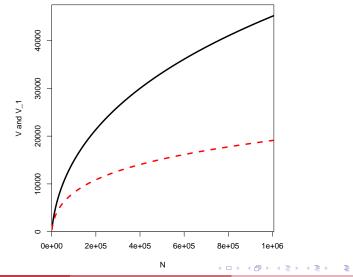
The sample: a b b c a a b a

•
$$N = 1, V = 1, V_1 = 1 (V_2 = 0, ...)$$

- $N = 3, V = 2, V_1 = 1 (V_2 = 1, V_3 = 0, ...)$
- ► N = 5, V = 3, $V_1 = 1$ ($V_2 = 2$, $V_3 = 0$, ...)
- ► N = 8, V = 3, $V_1 = 1$ ($V_2 = 0$, $V_3 = 1$, $V_4 = 1$, ...)

Vocabulary growth curve of Brown corpus

With V_1 growth in red (idealized curve smoothed by binomial interpolation)



SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

590

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns

Zipf's law Some applications

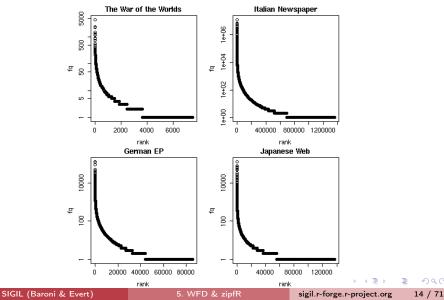
Statistical LNRE Models

ZM & fZM Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

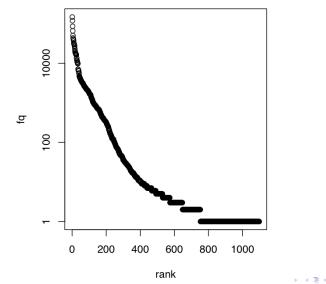
Typical frequency patterns

Across text types & languages



Typical frequency patterns

The Italian prefix ri- in the la Repubblica corpus



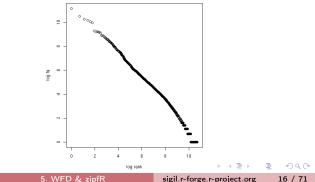
15 / 71

Is there a general law?

- Language after language, corpus after corpus, linguistic type after linguistic type, ... we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law

Is there a general law?

- Language after language, corpus after corpus, linguistic type after linguistic type, ... we observe the same "few giants, many dwarves" pattern
- Similarity of plots suggests that relation between rank and frequency could be captured by a general law
- Nature of this relation becomes clearer if we plot log f as a function of log r



Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

ZM & fZM Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

Zipf's law

- Straight line in double-logarithmic space corresponds to **power law** for original variables
- This leads to Zipf's (1949; 1965) famous law:

$$f(w) = \frac{C}{r(w)^a}$$

э

Zipf's law

- Straight line in double-logarithmic space corresponds to power law for original variables
- ► This leads to Zipf's (1949; 1965) famous law:

$$f(w) = \frac{C}{r(w)^a}$$

- With a = 1 and C = 60,000, Zipf's law predicts that:
 - most frequent word occurs 60,000 times
 - second most frequent word occurs 30,000 times
 - third most frequent word occurs 20,000 times
 - ► and there is a long tail of 80,000 words with frequencies between 1.5 and 0.5 occurrences(!)

Zipf's law Logarithmic version

Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

If we take logarithm of both sides, we obtain:

$$\log f(w) = \log C - a \cdot \log r(w)$$

3

Zipf's law Logarithmic version

Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

If we take logarithm of both sides, we obtain:

$$\underbrace{\log f(w)}_{y} = \log C - a \cdot \underbrace{\log r(w)}_{x}$$

 Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space Zipf's law Logarithmic version

Zipf's power law:

$$f(w) = \frac{C}{r(w)^a}$$

If we take logarithm of both sides, we obtain:

$$\underbrace{\log f(w)}_{y} = \log C - a \cdot \underbrace{\log r(w)}_{x}$$

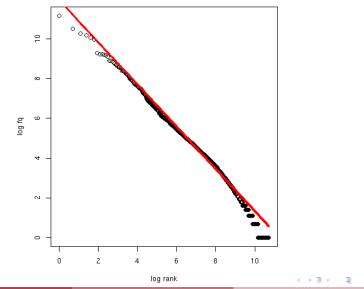
- Zipf's law predicts that rank / frequency profiles are straight lines in double logarithmic space
- Provides intuitive interpretation of a and C:
 - a is **slope** determining how fast log frequency decreases
 - log C is intercept, i.e., predicted log frequency of word with rank 1 (log rank 0) = most frequent word

SIGIL (Baroni & Evert)

19 / 71

Zipf's law

Least-squares fit = linear regression in log-space (Brown corpus)



SIGIL (Baroni & Evert)

Zipf-Mandelbrot law Mandelbrot (1953, 1962)

Mandelbrot's extra parameter:

$$f(w) = \frac{C}{(r(w)+b)^a}$$

- Zipf's law is special case with b = 0
- ► Assuming *a* = 1, *C* = 60,000, *b* = 1:
 - For word with rank 1, Zipf's law predicts frequency of 60,000; Mandelbrot's variation predicts frequency of 30,000
 - For word with rank 1,000, Zipf's law predicts frequency of 60; Mandelbrot's variation predicts frequency of 59.94
- Zipf-Mandelbrot law forms basis of statistical LNRE models
 - ZM law derived mathematically as limiting distribution of vocabulary generated by a character-level Markov process

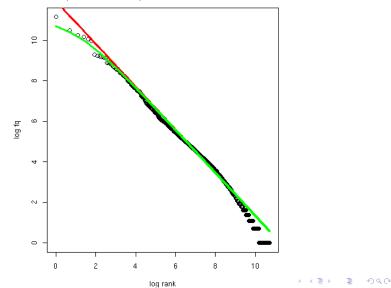
SIGIL (Baroni & Evert)

5. WFD & zipfR

21 / 71

Zipf-Mandelbrot vs. Zipf's law

Non-linear least-squares fit (Brown corpus)



SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

ZM & fZM Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

Applications of word frequency distributions

- Application 1: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
 - morphological productivity (e.g. Lüdeling and Evert 2005)
 - lexical richness in stylometry (Efron and Thisted 1976), language acquisition, clinical linguistics (Garrard *et al.* 2005)
 - language technology (estimate proportion of OOV words, unseen grammar rules, typos, ...)
- need method for predicting vocab. growth on unseen data

Applications of word frequency distributions

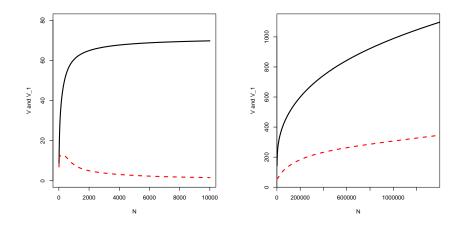
- Application 1: extrapolation of vocabulary size and frequency spectrum to larger sample sizes
 - morphological productivity (e.g. Lüdeling and Evert 2005)
 - lexical richness in stylometry (Efron and Thisted 1976), language acquisition, clinical linguistics (Garrard *et al.* 2005)
 - language technology (estimate proportion of OOV words, unseen grammar rules, typos, ...)
- need method for predicting vocab. growth on unseen data
 - ► Application 2: Zipfian frequency distribution across types
 - measures of lexical richness based on population (\neq sample)
 - population model for Good-Turing smoothing (Good 1953; Gale and Sampson 1995)
 - realistic prior for Bayesian language modelling
- ${\tt \tiny \ensuremath{\mathbb{R}}}$ need model of type probability distribution in the population

Vocabulary growth: Pronouns vs. ri- in Italian

N	V (pron.)	V (ri-)
5000	67	224
10000	69	271
15000	69	288
20000	70	300
25000	70	322
30000	71	347
35000	71	364
40000	71	377
45000	71	386
50000	71	400

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Vocabulary growth: Pronouns vs. ri- in Italian Vocabulary growth curves (V and V_1)



୬ ଏ ୯ 26 / 71

LNRE models for word frequency distributions

- ▶ LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus as random sample from population
 - population characterised by vocabulary of types w_k with occurrence probabilities π_k
 - ▶ not interested in specific types → arrange by decreasing probability: π₁ ≥ π₂ ≥ π₃ ≥ · · ·
 - ▶ NB: not necessarily identical to Zipf ranking in sample!

LNRE models for word frequency distributions

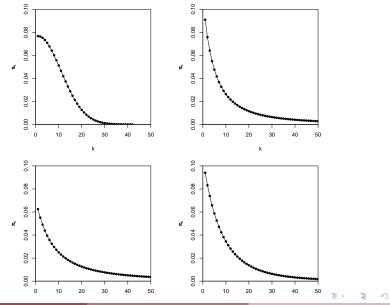
- ▶ LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus as random sample from population
 - population characterised by vocabulary of types w_k with occurrence probabilities π_k
 - ▶ not interested in specific types → arrange by decreasing probability: π₁ ≥ π₂ ≥ π₃ ≥ · · ·
 - ▶ NB: not necessarily identical to Zipf ranking in sample!
- ► LNRE model = population model for type probabilities, i.e. a function $k \mapsto \pi_k$ (with small number of parameters)
 - ► type probabilities π_k cannot be estimated reliably from a corpus, but parameters of LNRE model can

LNRE models for word frequency distributions

- ▶ LNRE = large number of rare events (cf. Baayen 2001)
- Statistics: corpus as random sample from population
 - population characterised by vocabulary of types w_k with occurrence probabilities π_k
 - ▶ not interested in specific types → arrange by decreasing probability: π₁ ≥ π₂ ≥ π₃ ≥ · · ·
 - ▶ NB: not necessarily identical to Zipf ranking in sample!
- ► LNRE model = population model for type probabilities, i.e. a function $k \mapsto \pi_k$ (with small number of parameters)
 - ► type probabilities π_k cannot be estimated reliably from a corpus, but parameters of LNRE model can

Parametric statistical model

Examples of population models



SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

28 / 71

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well

The Zipf-Mandelbrot law as a population model

What is the right family of models for lexical frequency distributions?

- We have already seen that the Zipf-Mandelbrot law captures the distribution of observed frequencies very well
- Re-phrase the law for type probabilities:

$$\pi_k := \frac{C}{(k+b)^a}$$

- Two free parameters: a > 1 and $b \ge 0$
- C is not a parameter but a normalization constant, needed to ensure that $\sum_k \pi_k = 1$
- This is the Zipf-Mandelbrot population model

글 🕨 🔺 글 🕨 👘

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

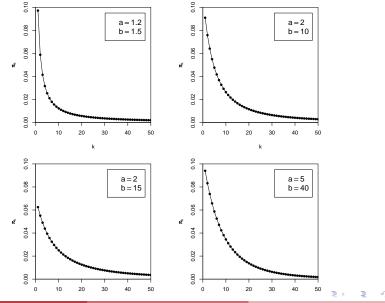
Statistical LNRE Models

ZM & fZM

Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

The parameters of the Zipf-Mandelbrot model

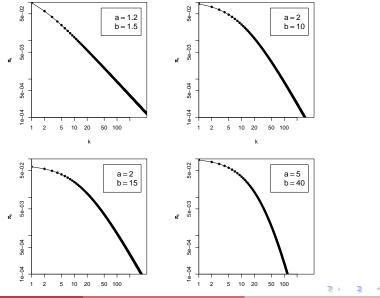


SIGIL (Baroni & Evert)

5. WFD & zipfR

31 / 71

The parameters of the Zipf-Mandelbrot model



SIGIL (Baroni & Evert)

The finite Zipf-Mandelbrot model

- Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small
- ▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-15}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)

The finite Zipf-Mandelbrot model

- Zipf-Mandelbrot population model characterizes an *infinite* type population: there is no upper bound on k, and the type probabilities π_k can become arbitrarily small
- ▶ $\pi = 10^{-6}$ (once every million words), $\pi = 10^{-9}$ (once every billion words), $\pi = 10^{-15}$ (once on the entire Internet), $\pi = 10^{-100}$ (once in the universe?)
- Alternative: finite (but often very large) number of types in the population
- We call this the population vocabulary size S (and write S = ∞ for an infinite type population)

The finite Zipf-Mandelbrot model Evert (2004)

- ► The finite Zipf-Mandelbrot model simply stops after the first S types (w₁,..., w_S)
- ► *S* becomes a new parameter of the model
 - ightarrow the finite Zipf-Mandelbrot model has 3 parameters

Abbreviations:

- ZM for Zipf-Mandelbrot model
- FZM for finite Zipf-Mandelbrot model

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

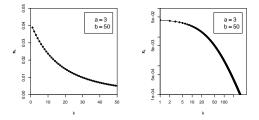
ZM & fZM

Sampling from a LNRE model

Great expectations Parameter estimation for LNRE models Reliability

zipfR

Assume we believe that the population we are interested in can be described by a Zipf-Mandelbrot model:



Use computer simulation to sample from this model:

- Draw N tokens from the population such that in each step, type w_k has probability π_k to be picked
- ► This allows us to make predictions for samples (= corpora) of arbitrary size N → extrapolation

SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

36 / 71

#1: 1 42 34 23 108 18 48 18 1 ...

∃ 990

イロト イポト イヨト イヨト

#1: 1 42 34 23 108 18 48 18 1 ... time order room school town course area course time ...

Image: A matrix

#1:	1	42	34	23	108	18	48	18	1	
	time	order	room	school	town	course	area	course	time	
#2:	286	28	23	36	3	4	7	4	8	

∃ 990

イロト イポト イヨト イヨト

#1:	1	42	34	23	108	18	48	18	1	
	time o	rder i	room se	chool [.]	town	course	area	course	time	
#2:	286	28	23	36	3	4	7	4	8	
#3:	2	11	105	21	11	17	17	1	16	

∃ 990

イロト イポト イヨト イヨト

aroni &	Evert)			5.\	NFD &	zipfR		sigil.	r-forge	.r-project.org	
:	÷	÷	÷	÷	÷	÷	:		: ₽ ► ◀	ヨト くヨト	
#8:	11	7	147	5	24	19	15	85	37		
#7 :	10	21	11	60	164	54	18	16	203		
#6:	3	65	9	165	5	42	16	20	7		
#5:	24	81	54	11	8	61	1	31	35		
#4:	44	3	110	34	223	2	25	20	28		
#3:	2	11	105	21	11	17	17	1	16		
#2:	286	28	23	36	3	4	7	4	8		
#1.								course			
#1.	1	42	34	23	108	18	48	18	1		

SIGIL (Ba

37 / 71

æ

Samples: type frequency list & spectrum

rank <i>r</i>	f _r	type <i>k</i>	т	Vm
1	37	6	1	83
2	36	1	2	22
3	33	3	3	20
4	31	7	4	12
5	31	10	5	10
6	30	5	6	5
7	28	12	7	5
8	27	2	8	3
9	24	4	9	3
10	24	16	10	3
11	23	8	:	:
12	22	14	•	•
÷	:	÷	san	nple #1

SIGIL (Baroni & Evert)

990 38 / 71

э

Samples: type frequency list & spectrum

rank <i>r</i>	f _r	type <i>k</i>	т	V_m
1	39	2	1	76
2	34	3	2	27
3	30	5	3	17
4	29	10	4	10
5	28	8	5	6
6	26	1	6	5
7	25	13	7	7
8	24	7	8	3
9	23	6	10	4
10	23	11	11	2
11	20	4	:	:
12	19	17	•	·
÷		÷	sam	nple #2

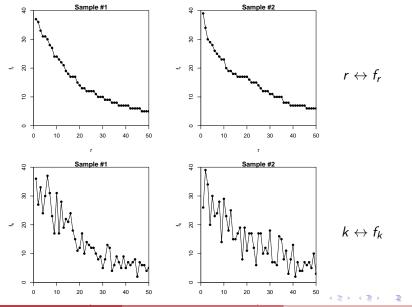
SIGIL (Baroni & Evert)

イロト イポト イヨト イヨト

୬ ଏ (୦ 39 / 71

э

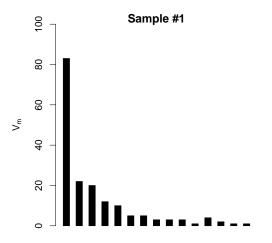
Random variation in type-frequency lists



SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org



m

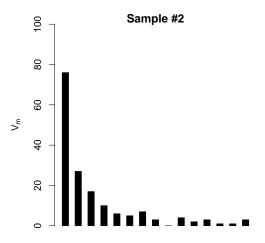
SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

୬ ୯.୯ 41 / 71

э



m

SIGIL (Baroni & Evert)

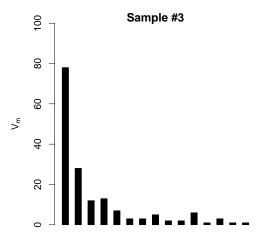
5. WFD & zipfR

sigil.r-forge.r-project.org

41 / 71

э

590



m

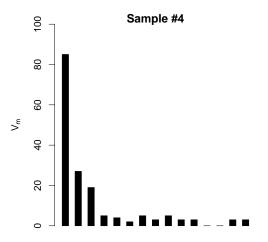
SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

э 41 / 71

590



m

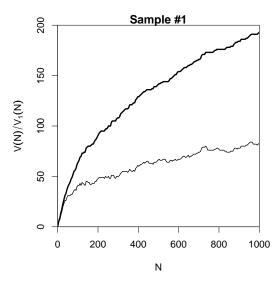
SIGIL (Baroni & Evert)

5. WFD & zipfR

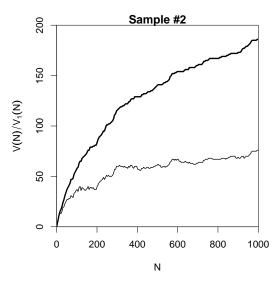
sigil.r-forge.r-project.org

୬ ୯.୯ 41 / 71

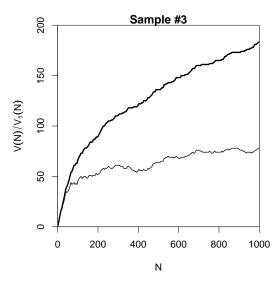
э



SIGIL (Baroni & Evert)

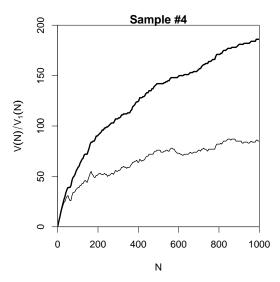


SIGIL (Baroni & Evert)



SIGIL (Baroni & Evert)

э



SIGIL (Baroni & Evert)

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

ZM & fZM Sampling from a LNRE model

Great expectations

Parameter estimation for LNRE models Reliability

zipfR

Expected values

- There is no reason why we should choose a particular sample to make a prediction for the real data – each one is equally likely or unlikely
- Take the average over a large number of samples, called expected value or expectation in statistics
- Notation: E[V(N)] and $E[V_m(N)]$
 - indicates that we are referring to expected values for a sample of size N
 - ▶ rather than to the specific values V and V_m observed in a particular sample or a real-world data set
- Expected values can be calculated efficiently without generating thousands of random samples

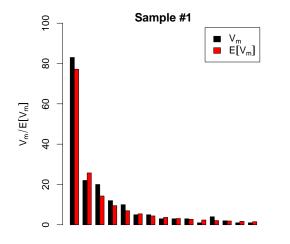
SIGIL (Baroni & Evert)

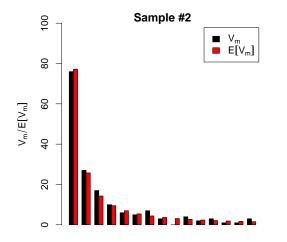
5. WFD & zipfR

sigil.r-forge.r-project.org

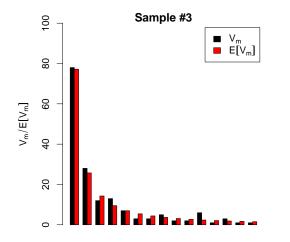
A B K A B K

44 / 71





m



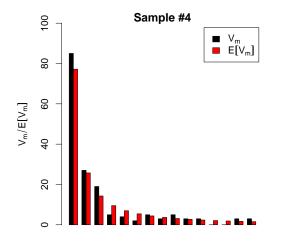
m

SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

45 / 71



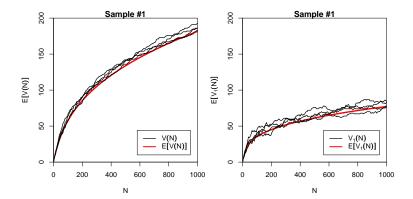
SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

୬ ଏ ୯ 45 / 71

The expected vocabulary growth curve



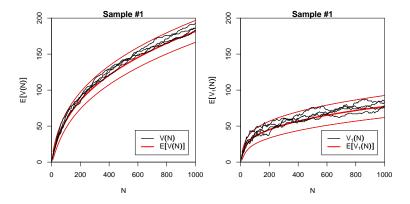
SIGIL (Baroni & Evert)

5. WFD & zipfR

sigil.r-forge.r-project.org

୬ ଏ ୯ 46 / 71

Prediction intervals for the expected VGC



"Confidence intervals" that indicate predicted sampling distribution:

Image of a samples generated by the LNRE model, VGC will fall within the range delimited by the thin red lines

SIGIL (Baroni & Evert)

5. WFD & zipfR

47 / 71

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

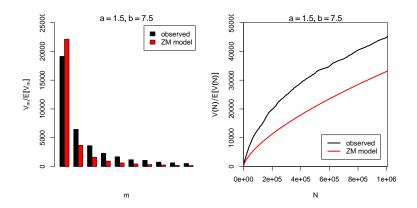
ZM & fZM Sampling from a LNRE model Great expectations

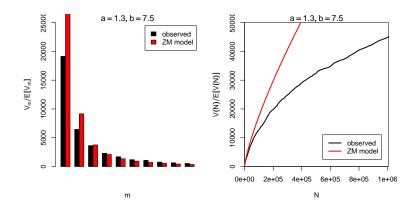
Parameter estimation for LNRE models

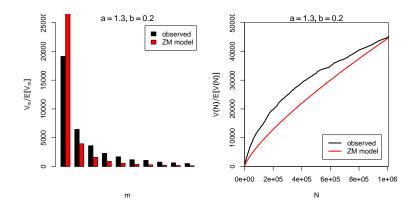
Reliability

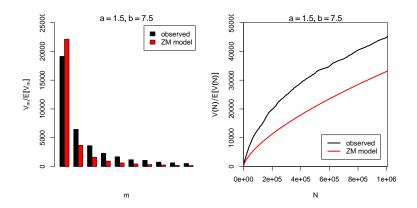
zipfR

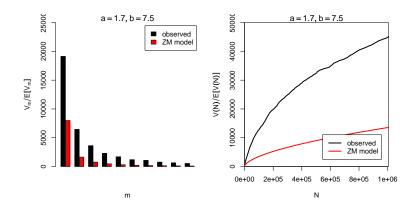
(B)

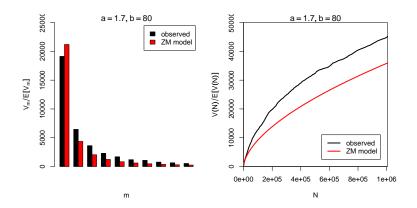


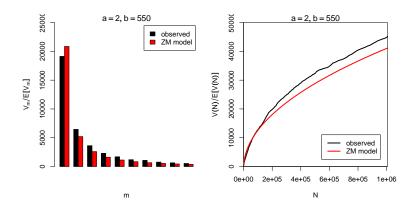




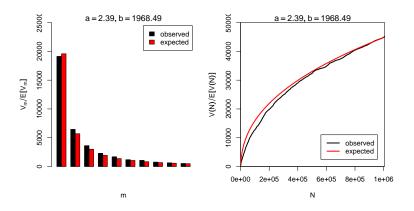








Automatic parameter estimation



- By trial & error we found a = 2.0 and b = 550
- Automatic estimation procedure: a = 2.39 and b = 1968

SIGIL (Baroni & Evert)

sigil.r-forge.r-project.org

50 / 71

Outline

Lexical statistics & word frequency distributions

Basic notions of lexical statistics Typical frequency distribution patterns Zipf's law Some applications

Statistical LNRE Models

ZM & fZM Sampling from a LNRE model Great expectations Parameter estimation for LNRE models Reliability

zipfR

Goodness-of-fit

- Goodness-of-fit statistics measure how well the model has been fitted to the observed training data
- ► Compare observed vs. expected frequency distribution
 - ▶ frequency spectrum (→ easier)
 - vocabulary growth curve

Goodness-of-fit

- Goodness-of-fit statistics measure how well the model has been fitted to the observed training data
- ► Compare observed vs. expected frequency distribution
 - ▶ frequency spectrum (→ easier)
 - vocabulary growth curve
- Similarity measures
 - ▶ mean square error (→ dominated by large V / V_m)
 - multivariate chi-squared statistic X² takes sampling variation (and covariance of spectrum elements) into account

Goodness-of-fit

- Goodness-of-fit statistics measure how well the model has been fitted to the observed training data
- ► Compare observed vs. expected frequency distribution
 - ▶ frequency spectrum (→ easier)
 - vocabulary growth curve
- Similarity measures
 - ▶ mean square error (→ dominated by large V / V_m)
 - multivariate chi-squared statistic X² takes sampling variation (and covariance of spectrum elements) into account
- Multivariate chi-squared test for goodness-of-fit
 - H₀: observed data = sample from LNRE model (i.e. fitted LNRE model describes the true population)
 - p-value derived from X^2 statistic ($X^2 \sim \chi_{df}$ under H_0)
 - in previous example: $p \approx 0$:-(

Three potential issues:

< A

э

SQC

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - RP. model cannot be adequate, regardless of parameter settings

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - ${\tt \ensuremath{\mathbb{S}}}$ model cannot be adequate, regardless of parameter settings
- Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - 🕫 optimization algorithm trapped in local minimum
 - can result in highly inaccurate model

Three potential issues:

- 1. Model assumptions \neq population
 - (e.g. distribution does not follow a Zipf-Mandelbrot law)
 - model cannot be adequate, regardless of parameter settings
- 2. Parameter estimation unsuccessful (i.e. suboptimal goodness-of-fit to training data)
 - 🕫 optimization algorithm trapped in local minimum
 - 🖙 can result in highly inaccurate model
- 3. Uncertainty due to sampling variation
 - (i.e. observed training data differ from population distribution)
 - model fitted to training data, may not reflect true population
 - ${}^{\scriptsize\mbox{\tiny IMS}}$ another training sample would have led to different parameters

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?

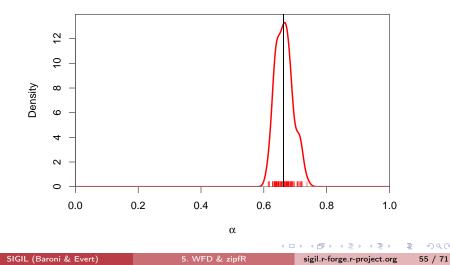
- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- Bootstrapping (Efron 1979)
 - resample from observed data with replacement
 - this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)

54 / 71

- An empirical approach to sampling variation:
 - take many random samples from the same population
 - estimate LNRE model from each sample
 - analyse distribution of model parameters, goodness-of-fit, etc. (mean, median, s.d., boxplot, histogram, ...)
 - problem: how to obtain the additional samples?
- Bootstrapping (Efron 1979)
 - resample from observed data with replacement
 - ► this approach is not suitable for type-token distributions (resamples underestimate vocabulary size V!)
- Parametric bootstrapping
 - use fitted model to generate samples, i.e. sample from the population described by the model
 - advantage: "correct" parameter values are known

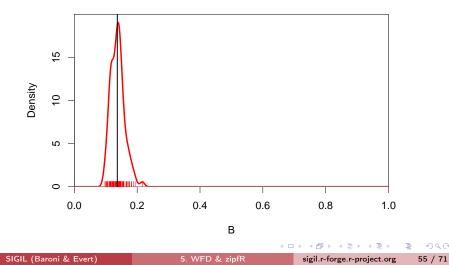
parametric bootstrapping with 100 replicates

Zipfian slope $a = 1/\alpha$



parametric bootstrapping with 100 replicates

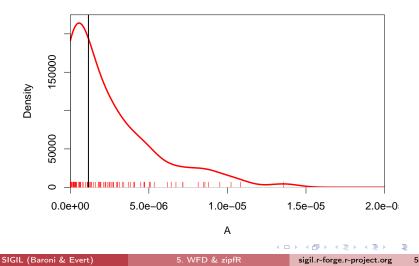
Offset $b = (1 - \alpha)/(B \cdot \alpha)$



Bootstrapping

parametric bootstrapping with 100 replicates

fZM probability cutoff $A = \pi_S$

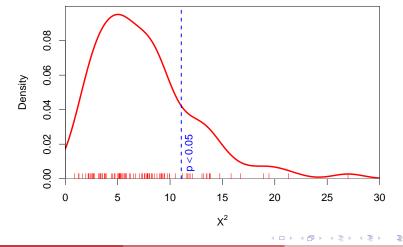


55 / 71

Bootstrapping

parametric bootstrapping with 100 replicates

Goodness-of-fit statistic X^2 (model not plausible for $X^2 > 11$)



SIGIL (Baroni & Evert)

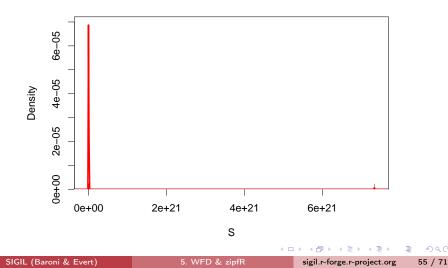
sigil.r-forge.r-project.org

55 / 71

Bootstrapping

parametric bootstrapping with 100 replicates

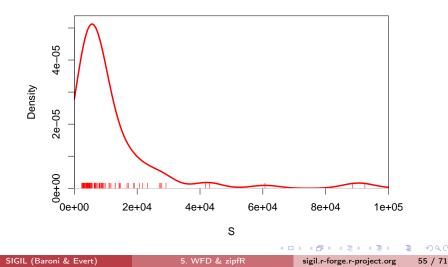
Population vocabulary size S



Bootstrapping

parametric bootstrapping with 100 replicates

Population vocabulary size S



LNRE modelling in a nutshell:

Image: A matrix

э

590

LNRE modelling in a nutshell:

1. Compile **observed** frequency spectrum (and vocabulary growth curves) for a given corpus or data set

э

LNRE modelling in a nutshell:

- 1. Compile **observed** frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- 2. Estimate parameters of LNRE model by matching observed and expected frequency spectrum

LNRE modelling in a nutshell:

- 1. Compile **observed** frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- 2. Estimate parameters of LNRE model by matching observed and expected frequency spectrum
- 3. Evaluate **goodness-of-fit** on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni and Evert 2007)
 - in principle, you should only go on if model gives a plausible explanation of the observed data!

LNRE modelling in a nutshell:

- 1. Compile **observed** frequency spectrum (and vocabulary growth curves) for a given corpus or data set
- 2. Estimate parameters of LNRE model by matching observed and expected frequency spectrum
- 3. Evaluate goodness-of-fit on spectrum (Baayen 2001) or by testing extrapolation accuracy (Baroni and Evert 2007)
 - in principle, you should only go on if model gives a plausible explanation of the observed data!
- 4. Use LNRE model to compute **expected** frequency spectrum for arbitrary sample sizes
 - → extrapolation of vocabulary growth curve
 - or use population model directly as Bayesian prior etc.

イモトイモト

zipfR

zipfR Evert and Baroni (2007)

- http://zipfR.R-Forge.R-Project.org/
- Conveniently available from CRAN repository
 - ▶ see Unit 1 for general package installation guides

zipfR

Loading

- > library(zipfR)
- > ?zipfR
- > data(package="zipfR")

package overview in HTML help leads to zipfR tutorial > help.start()

э.

< 円

zipfR

Importing data

> data(ItaRi.spc) # not necessary in recent package versions > data(ItaRi.emp.vgc)

```
# load your own data sets (see ?read.spc etc. for file format)
> my.spc <- read.spc("my.spc.txt")
> my.vgc <- read.vgc("my.vgc.txt")</pre>
```

> my.tfl <- read.tfl("my.tfl.txt")
> my.spc <- tfl2spc(my.tfl) # compute spectrum from frequency list</pre>

```
Looking at spectra
```

- > summary(ItaRi.spc)
- > ItaRi.spc
- > N(ItaRi.spc)
- > V(ItaRi.spc)
- > Vm(ItaRi.spc, 1)
- > Vm(ItaRi.spc, 1:5)

```
# Baayen's P = estimate for slope of VGC
```

> Vm(ItaRi.spc, 1) / N(ItaRi.spc)

```
> plot(ItaRi.spc)
> plot(ItaRi.spc, log="x")
```

★ ∃ ▶ 3

Looking at VGCs

- > summary(ItaRi.emp.vgc)
- > ItaRi.emp.vgc
- > N(ItaRi.emp.vgc)
- > plot(ItaRi.emp.vgc, add.m=1)

996

э.

Smoothing VGCs with binomial interpolation (for details, see Baayen 2001, Sec. 2.6.1)

interpolated VGC

- > ItaRi.bin.vgc <vgc.interp(ItaRi.spc, N(ItaRi.emp.vgc), m.max=1)</pre>
- > summary(ItaRi.bin.vgc)

comparison

ultra-

- Load the spectrum and empirical VGC of the less common prefix *ultra*-
- Compute binomially interpolated VGC for ultra-
- Plot the binomially interpolated ri- and ultra- VGCs together

Estimating LNRE models

fit a fZM model # (you can also try ZM and GIGP, and compare them with fZM)

- > ItaUltra.fzm <- lnre("fzm", ItaUltra.spc)</pre>
- > summary(ItaUltra.fzm)

Observed/expected spectra at estimation size

expected spectrum

```
> ItaUltra.fzm.spc <-
    lnre.spc(ItaUltra.fzm, N(ItaUltra.fzm))</pre>
```

compare

plot first 10 elements only

Compare growth of two categories

extrapolation of *ultra*- VGC to sample size of *ri*- data

> ItaUltra.ext.vgc < lnre.vgc(ItaUltra.fzm, N(ItaRi.emp.vgc))</pre>

compare

zooming in

> plot(ItaUltra.ext.vgc, ItaRi.bin.vgc, N0=N(ItaUltra.fzm), legend=c("ultra-", "ri-"), xlim=c(0, 100e3))

▲ 車 ▶ ▲ 車 ▶ → 車 → の Q @

Model validation by parametric bootstrapping

run bootstrapping procedure (default = 100 replicates)

> head(runs)

NB: don't try this with large samples (N > 1M tokens)

Model validation by parametric bootstrapping

distribution of estimated model parameters

- > hist(runs\$alpha, freq=FALSE, xlim=c(0, 1))
- > lines(density(runs\$alpha), lwd=2, col="red")
- > abline(v=ItaUltra.fzm\$param\$alpha, lwd=2, col="blue")

try the other parameters for yourself!

distribution of goodness-of-fit values

- > hist(runs\$X2, freq=FALSE)
- > lines(density(runs\$X2), lwd=2, col="red")

estimated population vocabulary size

> hist(runs\$S) # what is wrong here?

References I

- Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer Academic Publishers, Dordrecht.
- Baroni, Marco (2008). Distributions in text. In A. Lüdeling and M. Kytö (eds.), *Corpus Linguistics. An International Handbook*, chapter 39. Mouton de Gruyter, Berlin.
- Baroni, Marco and Evert, Stefan (2007). Words and echoes: Assessing and mitigating the non-randomness problem in word frequency distribution modeling. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*, pages 904–911, Prague, Czech Republic.
- Efron, Bradley (1979). Bootstrap methods: Another look at the jackknife. *The Annals of Statistics*, **7**(1), 1–26.
- Efron, Bradley and Thisted, Ronald (1976). Estimating the number of unseen species: How many words did Shakespeare know? *Biometrika*, **63**(3), 435–447.
- Evert, Stefan (2004). A simple LNRE model for random character sequences. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), pages 411–422, Louvain-la-Neuve, Belgium.

Evert, Stefan and Baroni, Marco (2007). zipfR: Word frequency distributions in R. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Posters and Demonstrations Sessions, pages 29–32, Prague, Czech Republic.

69 / 71

References II

- Gale, William A. and Sampson, Geoffrey (1995). Good-Turing frequency estimation without tears. *Journal of Quantitative Linguistics*, **2**(3), 217–237.
- Garrard, Peter; Maloney, Lisa M.; Hodges, John R.; Patterson, Karalyn (2005). The effects of very early alzheimer's disease on the characteristics of writing by a renowned author. *Brain*, **128**(2), 250–260.
- Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. *Biometrika*, **40**(3/4), 237–264.
- Lüdeling, Anke and Evert, Stefan (2005). The emergence of productive non-medical *-itis*. corpus evidence and qualitative analysis. In S. Kepser and M. Reis (eds.), *Linguistic Evidence. Empirical, Theoretical, and Computational Perspectives*, pages 351–370. Mouton de Gruyter, Berlin.
- Mandelbrot, Benoit (1953). An informational theory of the statistical structure of languages. In W. Jackson (ed.), *Communication Theory*, pages 486–502. Butterworth, London.
- Mandelbrot, Benoit (1962). On the theory of word frequencies and on related Markovian models of discourse. In R. Jakobson (ed.), *Structure of Language and its Mathematical Aspects*, pages 190–219. American Mathematical Society, Providence, RI.

70 / 71

References III

Zipf, George Kingsley (1949). Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge, MA.

Zipf, George Kingsley (1965). *The Psycho-biology of Language*. MIT Press, Cambridge, MA.

A B F A B F

A I >
 A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A