Unit 7: A multivariate approach to linguistic variation
 Statistics for Linguists with R - A SIGIL Course
 Stephanie Evert
 Computational Corpus Linguistics Group
 FAU Erlangen-Nürnberg

Studying linguistic variation

- Univariate approach
- compare single feature across two or more conditions
- e.g. AmE vs. BrE vs. IndE vs. ... / male vs. female / etc.
- corpus frequency comparison
- Regression approach
- predict single quantity from multiple explanatory factors
- Multivariate approach
- identify common patterns of variation across multiple different features \rightarrow correlation analysis
- inductive techniques don't require pre-defined conditions

Linguistic variation

ERLANGEN-NORNEERG

Variation of a quantitative linguistic feature

- frequency of passive, past perfect, split infinitive, ...
- frequency of expression, semantic field, topic, ...
- association strength, lexical density, productivity, ...

```
across
    - languages and language varieties
    - regions & social strata
    - time (diachronic change)
    - individual speakers & discourses
```


CLAU
 Variation as a nuisance parameter

- Many aspects of linguistic variation are nuisance parameters in corpus linguistics
- e.g. difference in frequency of passives between AmE and BrE, as well as development from 1960s to 1990s (Unit \#2)
- ignore other dimensions such as genre/register variation by pooling frequency data from all texts of each corpus
- corpus is analyzed as a random sample of VP tokens
- Consequences
- variation \rightarrow non-randomness \rightarrow overestimate significance
- discussed in much more detail in Unit \#8

The multivariate approach

- Different linguistic features often show similar patterns of variation
- E.g. passives and nominalizations

SIGIL Unit \#7

The multivariate approach

The multivariate approach

- Different linguistic features often show similar patterns of variation
- E.g. passives and nominalizations
- Such correlations can be exploited to determine major dimensions of var.

The multivariate approach

- Multivariate analysis exploits correlations between features in order to determine latent dimensions
- interpreted as underlying "causes" of variation
- An inductive, data-driven approach
- no theoretical assumptions about linguistic variation and categories / sub-corpora to be compared
- Pioneering work by Doug Biber (1988, 1993, 1995, ...)
- "multidimensional analysis" of register variation
- Related approaches: correspondence analysis, distributional semantics, topic modelling, ...

CLI Biber's multidimensional analysis (MDA)

CL Pr

TABLE 2

Biber's MDA

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

Pitfalls

- Design bias: choice of quantitative features
- Design bias: selection of text samples
- Involves a miracle
- not clear what quantitative patterns are captured by FA
- magic number: how many factor dimensions?
- Interpretation bias
- arbitrary cutoff for feature weights ("loadings")
- risk of reading one's own expectations into features
- More subtle patterns of variation invisible
- Significance \& reproducibility of results?

CL
 Reproducing Biber's dimensions

- Sample of 923 medium-length published texts from written part of British National Corpus (BNC)
- Covers 4 different text types + male/female authors - academic writing, non-academic prose, fiction, misc.
- Biber features extracted automatically with Python script (Gasthaus 2007)
- all frequencies normalized per 1000 words
- data available in R package corpora (BNCbiber)
- Factor analysis with 4 latent dimensions + varimax
- seems to yield the most clearly structured analysis

 Design bias: choice of features

 Design bias: choice of text samples

C. F

Interpretation bias

CL Fr
Variation between texts is ignored

TABLE 2
Summary of the co-occurrence patterns underlying five major dimensions of English
$\left.\begin{array}{llllllllll}\hline \begin{array}{c}\text { DIMENSION } 1 \\ \text { (Informational vs. }\end{array} & & \begin{array}{c}\text { DIMENSION } 2 \\ \text { (Involved) }\end{array} & & & & \begin{array}{c}\text { DIMENSION } 3 \\ \text { (Narrative versus } \\ \text { Non-Narrative) }\end{array} & & & \\ \text { (Elaborated vs. } \\ \text { (ituated Reference) }\end{array}\right)$

CL FIU
Design bias: choice of texts (redux)

Blindness to subtle patterns
$\cdots \sqrt{\bullet-\text { female }}$ • But research shows

that author gender can be identified with high accuracy

- Koppel et al. (2003): 77.3% with function words + POS n-grams
- Gasthaus (2007): 82.9\% with SVM on Biber features
- This dataset:
82.3\% accuracy
- baseline: 73.1\%

CL FAU= Geometric Multivariate Analysis
 (Diwersy, Evert \& Neumann 2014; Evert \& Neumann 2017; Neumann \& Evert 2021)

Online supplements:
https://www.stephanie-evert.de/ PUB/EvertNeumann2017/
https://www.stephanie-evert.de/ PUB/NeumannEvert2021/

Geometric Multivariate Analysis

(Diwersy, Evert \& Neumann 2014; Evert \& Neumann 2017; Neumann \& Evert 2021)

- Axiom: (Euclidean) distance = similarity of texts
- depends crucially on theoretically motivated features
- Visualization \rightarrow interpret geometric configuration
- latent dimensions as geometric projections
- orthogonal projection $=$ perspective on data
- method: principal component analysis (PCA)
- Minimally supervised intervention
- based on externally observable, theory-neutral information
- method: linear discriminant analysis (LDA)
- Bootstrapping / cross-validation to assess significance
- Cautious interpretation of feature weights

Case study: CroCo

(Neumann 2013; Evert \& Neumann 2017)
re: language-externa
situation + purpose

- CroCo: parallel corpus English/Germa
- English-German and German-English trans
on pairs
- we use 298 texts from 5 different genres
(excluded: instruction manuals, tourism, fiction)
- 28 lexico-grammatical features (Neumann 2013)
- comparable between languages
- inspired by SFL and translation studies
- Text = point in 28-dimensional feature space
- Research hypotheses: shining through (Teich 2003), prestige effect (Toury 2012)

SIGIL Unit \#7

Feature scaling:
CL FAU= same contribution to Euclidean distances

Feature scaling:

optional signed log transformation

Latent dimensions
 as perspective on data configuration

- Instead of "magical" latent dimensions we focus on orthogonal projections as perspectives on the data - cf. photograph as 2D perspective on 3D object
- Different perspectives highlight different aspects
- Multivariate analysis \rightarrow choice of perspective
- principal component analysis (PCA) = perspective that reflects distances between texts as accurately as possible
- should reveal major dimensions of variation
- advantage over factor analysis (FA): dimensionality does not have to be fixed a priori

CroCo: correlation matrix


```
CroCo: 3-dimensional projection

CroCo: 4-dimensional projection


SIGIL Unit \#7


\section*{How about translationese?}
- PCA dim's can't separate translations from original texts
- \(62.1 \%\) accuracy on first 3 PCA dim's
- But SVM machine learner can do this with >80\% accuracy
- RBF kernel
- 10-fold c.v.
- Hints at shining through, but no clear-cut evidence

\section*{CroCo:genre distribution}
- Focus on latent dim's 1 and 3 (register variation)
- Describe genre by centroid + ellipse
- Comparison with Hotelling's \(t^{2}\) test
- essays vs. Web
\(-t^{2}=4.21, \mathrm{df}=2 / 141\), \(\mathrm{p}=.0167\) *
 Minimally supervised LDA
- Add minimal amount of supervised knowledge to find a more informative perspective
- evidence for shining through hypothesis from dimension that corresponds to contrast German vs. English
- supervised knowledge: language of original texts only
- Linear discriminant analysis (LDA)
- maximize separation between German / English originals
- minimize variability within each group
- classical technique related to PCA and ANOVA
- Project all texts onto LDA discriminant
- complemented by additional PCA dim's for visualization


Discriminant for DE vs. EN
C. Fin confirms shining through \& prestige effect


LDA significance:
CL bootstrapping / cross-validation
- LDA is a supervised ML technique \(\rightarrow\) overtrained?
- Would we find the same discriminant if we trained on a different set of texts?
- Verification with bootstrap resampling or 10 -fold cross-validation - LDA trained on \(90 \%\) of data
- discriminant axis shows "wobble" of approx. \(10^{\circ}\)
- Discriminant scores from c.v. ( \(10 \%\) test data per fold)


CV fold \#5

Cross-validated discriminant



Interpreting discriminant features


Unravelling translationese

\section*{CL Case study 2: French regional varieties} (Diwersy, Evert \& Neumann 2014)
- Lexical differences in regional varieties of French
- Two nation-wide newspapers each from 6 countries
- Cameroon, France, Ivory Coast, Morocco, Senegal, Tunisia
- two consecutive volumes from each newspaper
- total size approx. 14.5 million tokens
- Text samples = one week each
- Features: frequencies of shared colligations
- colligation = lemma-function pairs
- must occur in all subcorpora with \(\mathrm{f} \geq 100\)

SIGIL Unit \#7

\section*{FRV: PCA dimensions}

Using only shared words as features, PCA no longer reveals any patterns (just a few outliers)

Use LDA to find a meaningful perspective, based on newspaper source

Country would presume regional varieties exist!
sIGIL Unit \#7


FRV: poor choice of features


PCA not excluding country-specific words as features: perfect separation

Design bias results in a completely uninteresting model

FA not applicable: features >> texts
SIGIL Unit \#7


CL FRV: LDA dimensions (newspapers)


FRV:LDA dimensions (newspapers)


\section*{
}

\section*{References}

Biber, D. (1988). Variation Across Speech and Writing. Cambridge University Press, Cambridge.
Diwersy, S.; Evert, S.; Neumann, s. (2014). A weakly supervised multivariate approach to the study of language variation. In B. Szmrecsanyi \& B. Wälchli (eds.), Aggregating Dialectology, Typology, and Register Analysis. Linguistic Variation in Text and Speech. De Gruyter, Berlin.
Evert, S. \& Neumann, S. (2017). The impact of translation direction on the characteristics of
translated texts: a multivariate analysis for English and German. In G. De Sutter, M.-A. Lefer \& I. Delaere (eds.), Empirical Translation Studies. New Theoretical and Methodological Traditions (TiLSM 300), pages 47-80. Mouton de Gruyter, Berlin.
Gasthaus, J. (2007). Prototype-Based Relevance Learning for Genre Classification. B.Sc. thesis, Universität Osnabrück, Institute of Cognitive Science.
Koppel, M.; Argamon, S.; Shimoni, A. R. (2003). Automatically categorizing written texts by author gender. Literary and Linguistic Computing, 17(4), 401-412.
Neumann, S. (2013). Contrastive Register Variation. A Quantitative Approach to the Comparison of English and German. de Gruyter Mouton, Berlin.
Neumann, S. \& Evert, S. (2021). A register variation perspective on varieties of English. In E. Seoane \& D. Biber (eds.), Corpus based approaches to register variation. Benjamins, Amsterdam.
Teich, E. (2003). Cross-linguistic variation in system and text. A methodology for the investigation of translations and comparable texts. Berlin: Mouton de Gruyter.
Toury, G. (2012). Descriptive Translation Studies - and beyond: Revised edition. 2nd ed. Amsterdam: John Benjamins.

\section*{SIGII Unit \#7}

FRV: discriminant axes



\author{

}```

