Statistics for Linguists with \mathbf{R} - a SIGIL course

Unit 8: Non-Randomness of Corpus Data \& Generalised Linear Models

Marco Baroni ${ }^{1}$ \& Stefan Evert ${ }^{\text { }}$
http://pur1.org/stefan.evert/SIGIL

${ }^{1}$ Center for Mind/Brain Sciences, University of Trento ${ }^{2}$ Institute of Cognitive Science, University of Osnabrück

Introduction \& Reminder

Problems with statistical inference

Problems with statistical inference

Mathematical problems: Significance

Mathematical problems: Significance

- Inherent problems of particular hypothesis tests and their application to corpus data

Mathematical problems: Significance

- Inherent problems of particular hypothesis tests and their application to corpus data
- X^{2} overestimates significance if any of the expected frequencies are low (Dunning 1993)
- various rules of thumb: multiple $E<5$, one $E<1$
- especially highly skewed tables in collocation extraction

Mathematical problems: Significance

- Inherent problems of particular hypothesis tests and their application to corpus data
- X^{2} overestimates significance if any of the expected frequencies are low (Dunning 1993)
- various rules of thumb: multiple $E<5$, one $E<1$
- especially highly skewed tables in collocation extraction
- G^{2} overestimates significance for small samples (well-known in statistics, e.g. Agresti 2002)
- e.g. manual samples of $100-500$ items (as in our examples)
- often ignored because of its success in computational linguistics

Mathematical problems: Significance

- Inherent problems of particular hypothesis tests and their application to corpus data
- X^{2} overestimates significance if any of the expected frequencies are low (Dunning 1993)
- various rules of thumb: multiple $E<5$, one $E<1$
- especially highly skewed tables in collocation extraction
- G^{2} overestimates significance for small samples (well-known in statistics, e.g. Agresti 2002)
- e.g. manual samples of $100-500$ items (as in our examples)
- often ignored because of its success in computational linguistics
- Fisher is conservative \& computationally expensive
- also numerical problems, e.g. in R version 1.x

Mathematical problems:
 Effect size

Mathematical problems: Effect size

- Effect size for frequency comparison
- not clear which measure of effect size is appropriate
- e.g. difference of proportions, relative risk (ratio of proportions), odds ratio, logarithmic odds ratio, normalised $\boldsymbol{X}^{2}, \ldots$

Mathematical problems: Effect size

- Effect size for frequency comparison
- not clear which measure of effect size is appropriate
- e.g. difference of proportions, relative risk (ratio of proportions), odds ratio, logarithmic odds ratio, normalised $\boldsymbol{X}^{2}, \ldots$
- Confidence interval estimation
- accurate \& efficient estimation of confidence intervals for effect size is often very difficult
- exact confidence intervals only available for odds ratio

Mathematical problems: Multiple hypothesis tests

- Each individual hypothesis test controls risk of type I error ... but if you carry out thousands of tests, some of them have to be false rejections
- recommended reading: Why most published research findings are false (Ioannidis 2005)
- a monkeys-with-typewriters scenario

Mathematical problems:
 Multiple hypothesis tests

Mathematical problems: Multiple hypothesis tests

- Typical situation e.g. for collocation extraction
- test whether word pair co-occurs significantly more often than expected by chance

Mathematical problems: Multiple hypothesis tests

- Typical situation e.g. for collocation extraction
- test whether word pair co-occurs significantly more often than expected by chance
- hypothesis test controls risk of type I error if applied to a single candidate selected a priori

Mathematical problems: Multiple hypothesis tests

- Typical situation e.g. for collocation extraction
- test whether word pair co-occurs significantly more often than expected by chance
- hypothesis test controls risk of type I error if applied to a single candidate selected a priori
- but usually candidates selected a posteriori from data \rightarrow many "unreported" tests for candidates with $f=0$!

Mathematical problems: Multiple hypothesis tests

- Typical situation e.g. for collocation extraction
- test whether word pair co-occurs significantly more often than expected by chance
- hypothesis test controls risk of type I error if applied to a single candidate selected a priori
- but usually candidates selected a posteriori from data \rightarrow many "unreported" tests for candidates with $f=0$!
- large number of such word pairs according to Zipf's law results in substantial number of type I errors
- can be quantified with LNRE models (Evert 2004), cf. Unit 5 on word frequency distributions with zipfR

Why a corpus isn't a random sample

Corpora

Corpora

- Theoretical sampling procedure is impractical
- it would be very tedious if you had to take a random sample from a library, especially a hypothetical one, every time you want to test some hypothesis
- Use pre-compiled sample: a corpus

Corpora

- Theoretical sampling procedure is impractical
- it would be very tedious if you had to take a random sample from a library, especially a hypothetical one, every time you want to test some hypothesis
- Use pre-compiled sample: a corpus
- but this is not a random sample of tokens!
- would be prohibitively expensive to collect 10 million VPs for a BNC-sized sample at random
- other studies will need tokens of different granularity (words, word pairs, sentences, even full texts)

The Brown corpus

- First large-scale electronic corpus
- compiled in 1964 at Brown University (RI)
- 500 samples of approx. 2,000 words each
- sampled from edited AmE published in 1961
- from 15 domains (imaginative \& informative prose)
- manually entered on punch cards

The British National Corpus

- 100 M words of modern British English
- compiled mainly for lexicographic purposes: Brown-type corpora (such as LOB) are too small
- both written (90\%) and spoken (10\%) English
- XML edition (version 3) published in 2007
- 4048 samples from 25 to 428,300 words
- 13 documents < 100 words, $51>100,000$ words
- some documents are collections (e.g. e-mail messages)
- rich metadata available for each document

Unit of sampling

- Key problem: unit of sampling (text or fragment) \neq unit of measurement (e.g. VP)
- recall sampling procedure in library metaphor ...

Unit of sampling

- Random sampling in the library metaphor
- walk to a random shelf ...
... select a random book...
... open it on a random page
... and pick a random sentence from the page repeat n-times for sample size n.

Unit of sampling

- Random sampling in the library metaphor
- walk to a random shelf ...
... select a random book...
... open it on a random page ..
d... and pick a random sentence from the page repeat n-times for sample size n
- Corpus = random sample of books, not sentences!
- we should only use-1 sentence from each book
\Rightarrow sample size: $n=500$ (Brown) or $n=4048$ (BNC) RIIII

Pooling data

- In order to obtain larger samples, researchers usually pool all data from a corpus
- i.e. they include all sentences from each book
- Do you see why this is wrong?

Pooling data

- Books aren't random samples themselves
- each book contains relatively homogeneous material
- but much larger differences between books
- Therefore, the pooled data do not form a random sample from the library
- for each randomly selected sentence, we co-select a substantial amount of very similar material
- Consequence: sampling variation increased

Pooling data

Pooling data

- Let us illustrate this with a simple example ...
- assume library with two sections of equal size
- e.g. spoken and written language in a corpus
- population proportions are 10% vs. 40% \rightarrow overall proportion of $\pi=25 \%$ in the library
- this is the null hypothesis H_{0} that we will be testing

Pooling data

- Let us illustrate this with a simple example ...
- assume library with two sections of equal size
- e.g. spoken and written language in a corpus
- population proportions are 10% vs. 40% \rightarrow overall proportion of $\pi=25 \%$ in the library
- this is the null hypothesis H_{0} that we will be testing
- Compare sampling variation for
- random sample of 100 tokens from the library
- two randomly selected books of 50 tokens each
- book is assumed to be a random sample from its section

Duplicates

Duplicates

- Duplication = extreme form of non-randomness
- Did you know the British National Corpus contains duplicates of entire texts (under different names)?

Duplicates

- Duplication = extreme form of non-randomness
- Did you know the British National Corpus contains duplicates of entire texts (under different names)?
- Duplicates can appear at any level
- The use of keys to move between fields is fully described in Section 2 and summarised in Appendix A

Duplicates

- Duplication = extreme form of non-randomness
- Did you know the British National Corpus contains duplicates of entire texts (under different names)?
- Duplicates can appear at any level
- The use of keys to move between fields is fully described in Section 2 and summarised in Appendix A
- 117 (!) occurrences in BNC, all in file HWX
- very difficult to detect automatically

Duplicates

- Duplication = extreme form of non-randomness
- Did you know the British National Corpus contains duplicates of entire texts (under different names)?
- Duplicates can appear at any level
- The use of keys to move between fields is fully described in Section 2 and summarised in Appendix A
- 117 (!) occurrences in BNC, all in file HWX
- very difficult to detect automatically
- Even worse for newspapers \& Web corpora
- see Evert (2004) for examples

Measuring non-randomness

A sample of random samples is a random sample

- Larger unit of sampling is not the original cause of non-randomness
- if each text in a corpus is a genuinely random sample from the same population, then the pooled data also form a random sample
- we can illustrate this with a thought experiment

The random library

- Suppose there's a vandal in the library

The random library

- Suppose there's a vandal in the library
- who cuts up all books into single sentences and leaves them in a big heap on the floor

The random library

- Suppose there's a vandal in the library
- who cuts up all books into single sentences and leaves them in a big heap on the floor
- the next morning, the librarian takes a handful of sentences from the heap, fills them into a book-sized box, and puts the box on one of the shelves

The random library

- Suppose there's a vandal in the library
- who cuts up all books into single sentences and leaves them in a big heap on the floor
- the next morning, the librarian takes a handful of sentences from the heap, fills them into a book-sized box, and puts the box on one of the shelves
- repeat until the heap of sentences is gone
$=-$ library of random samples

The random library

- Suppose there's a vandal in the library
- who cuts up all books into single sentences and leaves them in a big heap on the floor
- the next morning, the librarian takes a handful of sentences from the heap, fills them into a book-sized box, and puts the box on one of the shelves
- repeat until the heap of sentences is gone
\Rightarrow library of random samples ${ }^{\prime}$
- Pooled data from 2 (or more) boxes 퓩 form a perfectly random sample of sentences from the original library!

A sample of random samples is a random sample

A sample of random samples is a random sample

- The true cause of non-randomness
- discrepancy between unit of sampling and unit of measurement only leads to non-randomness if the sampling units (i.e. the corpus texts) are not random samples themselves (from same population)
- with respect to specific phenomenon of interest

A sample of random samples is a random sample

- The true cause of non-randomness
- discrepancy between unit of sampling and unit of measurement only leads to non-randomness if the sampling units (i.e. the corpus texts) are not random samples themselves (from same population)
- with respect to specific phenomenon of interest
- No we know how to measure non-randomness
- find out if corpus texts are random samples
- i.e., if they follow a binomial sampling distribution
\Rightarrow tabulate observed frequencies across corpus texts

Measuring non-randomness

- Tabulate number of texts with k passives
- illustrated for subsets of Brown/LOB (310 texts each)
- meaningful because all texts have the same length
- Compare with binomial distribution
- for population proportion $H_{0}: \pi=21.1 \%$ (Brown) and $\pi=22.2 \%$ (LOB); approx. $n=100$ sentences per text
- estimated from full corpus \rightarrow best possible fit
- Non-randomness \rightarrow larger sampling variation

Passives in the Brown corpus

Passives in the Brown corpus

Passives in the LOB corpus

Tag

Consequences

Consequences of nonrandomness

Consequences of nonrandomness

- Accept that corpus is a sample of texts
- data cannot be pooled into random sample of tokens
- results in much smaller sample size ... (BNC: 4,048 texts rather than 6,023,627 sentences)
- ... but more informative measurements (relative frequencies on interval rather than nominal scale)

Consequences of nonrandomness

- Accept that corpus is a sample of texts
- data cannot be pooled into random sample of tokens
- results in much smaller sample size ... (BNC: 4,048 texts rather than 6,023,627 sentences)
- ... but more informative measurements (relative frequencies on interval rather than nominal scale)
- Use statistical techniques that account for the overdispersion of relative frequencies
- Gaussian distribution allows us to estimate spread (variance) independently from location
- Standard technique: Student's t-test

A case study:
Passives in AmE and BrE

A case study: Passives in AmE and BrE

- Are there more passives in BrE than in AmE?
- based on data from subsets of Brown and LOB
- 9 categories: press reports, editorials, skills \& hobbies, misc., learned, fiction, science fiction, adventure, romance
- ca. 310 texts / 31,000 sentences / 720,000 words each

A case study: Passives in AmE and BrE

- Are there more passives in BrE than in AmE?
- based on data from subsets of Brown and LOB
- 9 categories: press reports, editorials, skills \& hobbies, misc., learned, fiction, science fiction, adventure, romance
- ca. 310 texts / 31,000 sentences / 720,000 words each
- Pooled data (random sample of sentences)
- AmE: 6584 out of 31,173 sentences $=21.1 \%$
- BrE: 7091 out of 31,887 sentences $=22.2 \%$

A case study: Passives in AmE and BrE

- Are there more passives in BrE than in AmE?
- based on data from subsets of Brown and LOB
- 9 categories: press reports, editorials, skills \& hobbies, misc., learned, fiction, science fiction, adventure, romance
- ca. 310 texts / 31,000 sentences / 720,000 words each
- Pooled data (random sample of sentences)
- AmE: 6584 out of 31,173 sentences $=21.1 \%$
- BrE: 7091 out of 31,887 sentences $=22.2 \%$
- Chi-squared test (\rightarrow pooled data, binomial) vs. t-test (\rightarrow sample of texts, Gaussian)

Let's do that in R ...

\# passive counts for each text in Brown and LOB corpus
> Passives <- read.delim("passives_by_text.tbl")
\# display 10 random rows to get an idea of the table layout
> Passives[sample(nrow(Passives), 10),]
\# add relative frequency of passives in each file (as percentage)
> Passives <- transform(Passives,
relfreq $=100$ * passive / n_s)
\# split into separate data frames for Brown and LOB texts
> Brown <- subset(Passives, lang=="AmE")
> LOB <- subset(Passives, lang=="BrE")

A case study:
Passives in AmE and BrE

A case study: Passives in AmE and BrE

- Chi-squared test: highly significant
- p-value: . 00069 < . 001
- confidence interval for difference: $0.5 \%-1.8 \%$
- large sample \rightarrow large amount of evidence

A case study: Passives in AmE and BrE

- Chi-squared test: highly significant
- p-value: . 00069 < . 001
- confidence interval for difference: $0.5 \%-1.8 \%$
- large sample \rightarrow large amount of evidence
- R code: pooled counts + proportions test
> passives. $\mathrm{B}<-$ sum(Brown\$passive)
> n_s.B <- sum(Brown\$n_s)
> passives.L <- sum(LOB $\$$ passive)
> n_s.L <- sum(LOB\$n_s)
> prop.test(c(passives.L, passives.B), c(n_s.L, n_s.B)

A case study:
Passives in AmE and BrE

A case study: Passives in AmE and BrE

- t-test: not significant
- p-value: . 1340 > . 05 ($t=1.50, \mathrm{df}=619.96$)
- confidence interval for difference: $-0.6 \%-+4.9 \%$
- H_{0} : same average relative frequency in AmE and BrE

A case study: Passives in AmE and BrE

- t-test: not significant
- p-value: . 1340 > . 05 ($t=1.50, \mathrm{df}=619.96$)
- confidence interval for difference: -0.6\% - +4.9\%
- H_{0} : same average relative frequency in AmE and BrE
- R code: apply t.test () function
> t.test (LOB\$relfreq, Brown\$relfreq)
\# alternative syntax: "formula" interface
> t.test(relfreq ~ lang, data=Passives)

What are we really testing?

What are we really testing?

- Are population proportions meaningful?
- corpus should be balanced and representative (broad coverage of genres, ... in appropriate proportions)
- average frequency depends on composition of corpus
- e.g. 18% passives in written $\mathrm{BrE} / 4 \%$ in spoken BrE

What are we really testing?

- Are population proportions meaningful?
- corpus should be balanced and representative (broad coverage of genres, ... in appropriate proportions)
- average frequency depends on composition of corpus
- e.g. 18% passives in written BrE / 4% in spoken BrE
- How many passives are there in English?

What are we really testing?

- Are population proportions meaningful?
- corpus should be balanced and representative (broad coverage of genres, ... in appropriate proportions)
- average frequency depends on composition of corpus
- e.g. 18% passives in written $\mathrm{BrE} / 4 \%$ in spoken BrE
- How many passives are there in English?
- 50% written $/ 50 \%$ spoken: $\quad \pi=13.0 \%$

What are we really testing?

- Are population proportions meaningful?
- corpus should be balanced and representative (broad coverage of genres, ... in appropriate proportions)
- average frequency depends on composition of corpus
- e.g. 18% passives in written $\mathrm{BrE} / 4 \%$ in spoken BrE
- How many passives are there in English?
- 50% written $/ 50 \%$ spoken: $\quad \pi=13.0 \%$
- 90% written $/ 10 \%$ spoken: $\pi=16.6 \%$

What are we really testing?

- Are population proportions meaningful?
- corpus should be balanced and representative (broad coverage of genres, ... in appropriate proportions)
- average frequency depends on composition of corpus
- e.g. 18% passives in written $\mathrm{BrE} / 4 \%$ in spoken BrE
- How many passives are there in English?
- 50% written $/ 50 \%$ spoken: $\quad \pi=13.0 \%$
- 90% written / 10% spoken: $\quad \pi=16.6 \%$
- 20% written $/ 80 \%$ spoken: $\pi=6.8 \%$

Average relative frequency?

Average relative frequency?

> library(lattice)
> bwplot(relfreq ~ lang | genre, data=Passives)
\# bw = "Box and Whiskers"

pres reporage		

Average relative frequency?

Average relative frequency?

Average relative frequency?

Problems with statistical inference

Problems with statistical inference

Rethinking corpus frequencies

Studying variation in language

- It seems absurd now to measure \& compare relative frequencies in "language" (= library)
- proportion π depends more on composition of library than on properties of the language itself
- Quantitative corpus analysis has to account for the variation of relative frequencies between individual texts (cf. Gries 2006)
- research question \rightarrow one factor behind this variation

Studying variation in language

Studying variation in language

- Approach 1: restrict study to sublanguage in order to eliminate non-randomness
- data from this sublanguage (= single section in library) can be pooled into large random sample

Studying variation in language

- Approach 1: restrict study to sublanguage in order to eliminate non-randomness
- data from this sublanguage (= single section in library) can be pooled into large random sample
- Approach 2: goal of quantitative corpus analysis is to explain variation between texts in terms of
- random sampling (of tokens within text)
- stylistic variation: genre, author, domain, register, ...
- subject matter of text \rightarrow term clustering effects
- differences between language varieties $_$research question

Eliminating non-randomness

Eliminating non-randomness

Eliminating non-randomness

Eliminating non-randomness

Explaining variation

Explaining variation

- Statisticians explain variation with the help of linear models (and other statistical models)
- linear models predict response ("dependent variable") from one or more factors ("independent variables")
- simplest model: linear combination of factors

Explaining variation

- Statisticians explain variation with the help of linear models (and other statistical models)
- linear models predict response ("dependent variable") from one or more factors ("independent variables")
- simplest model: linear combination of factors
- Linear model for passives in AmE and BrE:

Explaining variation

- Statisticians explain variation with the help of linear models (and other statistical models)
- linear models predict response ("dependent variable") from one or more factors ("independent variables")
- simplest model: linear combination of factors
- Linear model for passives in AmE and BrE:

Linear model for passives

Linear model for passives

Linear model predictions ($p \sim 1$)

Unexplained residuals of linear model

Linear model for passives

Linear model predictions (p ~1+genre)

Unexplained residuals of linear model

Linear model for passives

Linear model predictions ($\mathrm{p} \sim 1+$ genre $+\mathrm{Am} / \mathrm{Br}$)

Unexplained residuals of linear model

Linear model for passives

Linear model for passives

- Goodness-of-fit (analysis of variance)
- total variance (sum of squares): 189,861

Linear model for passives

- Goodness-of-fit (analysis of variance)
- total variance (sum of squares): 189,861
- explained by genre ${ }^{* * *}$: 112,113 (= 59.0\%)

Linear model for passives

- Goodness-of-fit (analysis of variance)
- total variance (sum of squares): 189,861
- explained by genre ${ }^{* * *}$:
- explained by AmE/BrE*:

$$
\begin{array}{r}
112,113(=59.0 \%) \\
687(=0.4 \%)
\end{array}
$$

Linear model for passives

- Goodness-of-fit (analysis of variance)
- total variance (sum of squares): 189,861
- explained by genre ${ }^{* * *}$:
- explained by AmE/BrE*:
- unexplained (residuals):

$$
\begin{aligned}
112,113 & (=59.0 \%) \\
687 & (=0.4 \%) \\
77,061 & (=40.6 \%)
\end{aligned}
$$

Linear model for passives

- Goodness-of-fit (analysis of variance)
- total variance (sum of squares): 189,861
- explained by genre ${ }^{* * *}$:
- explained by AmE/BrE*:
- unexplained (residuals):

$$
\begin{aligned}
112,113 & (=59.0 \%) \\
687 & (=0.4 \%) \\
77,061 & (=40.6 \%)
\end{aligned}
$$

- Is variance explained well enough?

Linear model for passives

- Goodness-of-fit (analysis of variance)
- total variance (sum of squares): 189,861
- explained by genre ${ }^{* * *}$:
- explained by AmE/BrE*:
- unexplained (residuals):

$$
\begin{aligned}
112,113 & (=59.0 \%) \\
687 & (=0.4 \%) \\
77,061 & (=40.6 \%)
\end{aligned}
$$

- Is variance explained well enough?
- binomial sampling variation: ca. 10,200 (= 5.4\%)

Linear models in R

\# linear model "formula": response ~ explanatory factors
\# (here, only main effects without genre/language interaction)
> LM <- lm(relfreq ~ genre + lang, data=Passives)
\# analysis of variance shows which factors are significant
> anova(LM) \# see ?anova.lm for details
\# individual coefficients + standard errors
> summary (LM)
> confint(LM) \# corresponding confidence intervals
\# interaction term improves model fit, but is not quite significant
> LM <- lm(relfreq ~ genre + lang + genre:lang, data=Passives)
> anova(LM)

Linear model for passives

- F-tests show significant effects of genre ($\mathrm{p}<10^{-15}$) and AmE / BrE ($\mathrm{p}=.0198$)
- 95% confidence intervals for effect sizes:
- AmE / BrE: 0.3\% ... 3.8\%
- genre = learned
13.4%... 19.3\%
- compared to "press reportage" genre as baseline
- genre = romance

$$
-20.8 \% \ldots-13.4 \%
$$

- genre = ...

Linear models in R

\# more intuitive than coefficients: model predictions for each \# genre and language variety; based on "dummy" data frame with \# all possible genre/language combinations (ordered by genre)
> Predictions <- unique(
Passives[, c("genre", "lang")])
> Predictions <- Predictions[order (Predictions\$genre, Predictions\$lang),]
\# predicted average relative frequency of passives in each category
> transform(Predictions, predicted=predict(LM, newdata=Predictions))
\# confidence and prediction intervals
> cbind(Predictions, predict(LM, newdata=Predictions, interval="confidence"))
> cbind(Predictions, predict(LM, newdata=Predictions, interval="prediction"))

Linear models are not appropriate!

$$
\begin{aligned}
& >\operatorname{par}(m f r o w=c(2,2)) \\
& >\operatorname{plot}(\operatorname{LM}) \\
& >\operatorname{par}(m f r o w=c(1,1))
\end{aligned}
$$

Linear models are not appropriate!

Why linear models are not appropriate for frequency data

Why linear models are not appropriate for frequency data

- Binomial sampling variation not accounted for

Why linear models are not appropriate for frequency data

- Binomial sampling variation not accounted for
- Normality assumption (error terms)
- Gaussian approximation inaccurate for low-frequency data (with non-zero probability for negative counts!)

Why linear models are not appropriate for frequency data

- Binomial sampling variation not accounted for
- Normality assumption (error terms)
- Gaussian approximation inaccurate for low-frequency data (with non-zero probability for negative counts!)
- Homoscedasticity (equal variances of errors)
- variance of binomial sampling variation depends on population proportion and sample size
- different sample sizes (texts in Brown/LOB: 40-250 sentences; huge differences in BNC)

Why linear models are not appropriate for frequency data

- Binomial sampling variation not accounted for
- Normality assumption (error terms)
- Gaussian approximation inaccurate for low-frequency data (with non-zero probability for negative counts!)
- Homoscedasticity (equal variances of errors)
- variance of binomial sampling variation depends on population proportion and sample size
- different sample sizes (texts in Brown/LOB: 40-250 sentences; huge differences in BNC)
- Predictions not restricted to range 0\% - 100\%

Generalised linear models

- Generalised linear models (GLM)
- account for binomial sampling variation of observed frequencies and different sample sizes
- allow non-linear relationship between explanatory factors and predicted relative frequency (π_{i})

Generalised linear models

- Generalised linear models (GLM)
- account for binomial sampling variation of observed frequencies and different sample sizes
- allow non-linear relationship between explanatory factors and predicted relative frequency $\left(\pi_{i}\right)$
$f_{i} \sim B\left(n_{i}, \pi_{i}\right)^{\text {binomial sampling }} \underset{\text { ("family") }}{\text { (}}$

$$
\pi_{i}=\frac{1}{1+e^{-\theta_{i}}} \longleftarrow \text { "link" function }
$$

linear predictor $\longrightarrow \theta_{i}=\beta_{0}+\beta_{1}($ genre $)+\beta_{2}(\mathrm{AmE} / \mathrm{BrE})$

GLM for passives

GLM for passives

- Goodness-of-fit (analysis of deviance)
- total deviance ("unlikelihood"): 13,265

GLM for passives

- Goodness-of-fit (analysis of deviance)
- total deviance ("unlikelihood"): 13,265
- explained by genre ${ }^{* * *}$:

$$
8,275(=62.4 \%)
$$

GLM for passives

- Goodness-of-fit (analysis of deviance)
- total deviance ("unlikelihood"): 13,265
- explained by genre ${ }^{* * *}$:
- explained by $\mathrm{AmE} / \mathrm{BrE}^{* * *}$:

$$
\begin{aligned}
8,275 & (=62.4 \%) \\
36 & (=0.3 \%)
\end{aligned}
$$

GLM for passives

- Goodness-of-fit (analysis of deviance)
- total deviance ("unlikelihood"): 13,265
- explained by genre ${ }^{* * *}$:
- explained by $\mathrm{AmE} / \mathrm{BrE}^{* * *}$:

$$
\begin{array}{r}
8,275(=62.4 \%) \\
36(=0.3 \%)
\end{array}
$$

- unexplained (residual deviance): 4,953 (= 37.3\%)

GLM for passives

- Goodness-of-fit (analysis of deviance)
- total deviance ("unlikelihood"): 13,265
- explained by genre ${ }^{* * *}$:
- explained by $\mathrm{AmE} / \mathrm{BrE}^{* * *}$:

$$
\begin{array}{r}
8,275(=62.4 \%) \\
36(=0.3 \%)
\end{array}
$$

- unexplained (residual deviance):
- binomial sampling variation: $\quad \approx 1,000(=7.5 \%)$

GLM for passives

- Goodness-of-fit (analysis of deviance)
- total deviance ("unlikelihood"): 13,265
- explained by genre ${ }^{* * *}$:

$$
\begin{array}{r}
8,275(=62.4 \%) \\
36(=0.3 \%)
\end{array}
$$

- explained by $\mathrm{AmE} / \mathrm{BrE}^{* * *}$:
- unexplained (residual deviance):
- binomial sampling variation: $\quad \approx 1,000(=7.5 \%)$
- Interpretation of confidence intervals difficult

GLM in R

 (note the extra options needed!)\# for GLM with binomial family, responses are paris of \# passive / active counts $\left(f_{k}, n_{k}-f_{k}\right)=$ "successes" / "failures"
> response.matrix <- cbind(Passives\$passive, Passives\$n_s - Passives\$passive)
\# genre * lang is shorthand for main effects + all interactions
> GLM <- glm(response.matrix ~genre * lang, family="binomial", data=Passives)
\# individual coefficients + standard errors
> anova(GLM, test="Chisq") \# interaction significant now
> summary (GLM) \# even more difficult to interpret than for LM
> confint(GLM)
\# diagnostics plot (; separate multiple commands in single line)
> par(mfrow=c (2,2)); plot(GLM); par(mfrow=c(1,1))

GLM in R

(note the extra options needed!)

\# predictions for each genre and language variety
> transform(Predictions, predicted = 100 * predict(GLM, type="response", newdata=Predictions))
\# calculate confidence intervals from standard errors
> res <- predict(GLM, type="response", newdata=Predictions, se.fit=TRUE)
> transform(Predictions, predicted=100*res\$fit, lwr=100*(res\$fit - 1.96*res\$se.fit), upr=100* (res\$fit + 1.96*res\$se.fit))
\# we can't compute prediction intervals for new texts - why?

Model diagnostics comparison

Linear Model

Still no satisfactory explanation for observed variation in frequency of passives between texts!

Take-home messages

- Don't trust statistic(ian)s blindly
- You know how complex language really is!
- linguists and statisticians should work together
- No excuse to avoid significance testing
- good reasons to believe that binomial sampling distribution is a lower bound on variation in language
- Needed: large corpora with rich metadata
- study \& "explain" variation with statistical models
- full data need to be available (not Web interfaces!)

References (1)

- Agresti, Alan (2002). Categorical Data Analysis. John Wiley \& Sons, Hoboken, 2nd edition.
- Baayen, R. Harald (1996). The effect of lexical specialization on the growth curve of the vocabulary. Computational Linguistics, 22(4), 455-480.
- Baroni, Marco and Evert, Stefan (2008). Statistical methods for corpus exploitation. In A. Lüdeling and M. Kytö (eds.), Corpus Linguistics. An International Handbook, chapter 38. Mouton de Gruyter, Berlin.
- Church, Kenneth W. (2000). Empirical estimates of adaptation: The chance of two Noriegas is closer to $\mathrm{p} / 2$ than p^{2}. In Proceedings of COLING 2000, pages 173-179, Saarbrücken, Germany.
- Church, Kenneth W. and Gale, William A. (1995). Poisson mixtures. Journal of Natural Language Engineering, 1, 163-190.
- Dunning, Ted E. (1993). Accurate methods for the statistics of surprise and coincidence. Computational Linguistics, 19(1), 61-74.

References (2)

- Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. Dissertation, Institut für maschinelle Sprachverarbeitung, University of Stuttgart. Published in 2005, URN urn:nbn:de:bsz:93-opus-23714.
- Evert, Stefan (2006). How random is a corpus? The library metaphor. Zeitschrift für Anglistik und Amerikanistik, 54(2), 177-190.
- Gries, Stefan Th. (2006). Exploring variability within and between corpora: some methodological considerations. Corpora, 1(2), 109-151.
- Gries, Stefan Th. (2008). Dispersions and adjusted frequencies in corpora. International Journal of Corpus Linguistics, 13(4), 403-437.
- Ioannidis, John P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 696-701.

References (3)

- Katz, Slava M. (1996). Distribution of content words and phrases in text and language modelling. Natural Language Engineering, 2(2), 15-59.
- Kilgarriff, Adam (2005). Language is never, ever, ever, random. Corpus Linguistics and Linguistic Theory, 1(2), 263-276.
- Rayson, Paul; Berridge, Damon; Francis, Brian (2004). Extending the Cochran rule for the comparison of word frequencies between corpora. In Proceedings of the 7èmes Journées Internationales d'Analyse Statistique des Données Textuelles (JADT 2004), pages 926-936, Louvain-la-Neuve, Belgium.
- McEnery, Tony and Wilson, Andrew (2001). Corpus Linguistics. Edinburgh University Press, 2nd edition.
- Rietveld, Toni; van Hout, Roeland; Ernestus, Mirjam (2004). Pitfalls in corpus research. Computers and the Humanities, 38, 343-362.

