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Preliminaries

library(SIGIL)
library(effects)
library(lattice)

In this exercise, we will try to answer the question whether there is a significant difference between the
frequency of passives in American English and in British English. While this has repeatedly been claimed in
the literature, these analyses are based on an invalid application of tests for contingency tables to pooled
frequency counts. Here, we will use a more appropriate linear regression model in order to take differences
between individual texts – and the resulting smaller effective sample size – into account.

Note that we use a standard linear model (LM) instead of the more appropriate binomial generalized linear
model (GLM) for reasons of simplicity. You can find GLM example code in Unit #8 of the SIGIL course.

The SIGIL package includes a data frame with per-text frequency counts for passive and active VPs in the
extended Brown Family of corpora (see ?PassiveBrownFam).

table(PassiveBrownFam$corpus)

##
## BLOB Brown LOB Frown FLOB
## 500 500 500 499 500

Let us first select the four corpora analysed in the literature, so we can compare AmE vs. BrE in the 1960s
vs. 1990s.

BF <- subset(PassiveBrownFam, corpus != "BLOB")

Note that the corpus variable is a so-called “factor” and remembers there all three categories (“levels” of the
factor) even though BF no longer contains any texts from the 1930s.

table(BF$period)

##
## 1930 1960 1990
## 0 1000 999

BF <- droplevels(BF) # remove unused factor levels
table(BF$period)

##
## 1960 1990
## 1000 999
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Linear models based on metadata

The goal of the linear model is to predict the relative frequency of passives (p.pass) based on various factors
such as language variety (AmE/BrE), time period (1960/1990) or text genre using an equation of the form

pi = β0 + βAmE/BrE + β1960/1990 + βgenre + . . .+ εi.

The parameters β will be chosen so as to minimize the error sum of squares (ESS)

ESS =
n∑

i=1
ε2i .

The goodness-of-fit of a “trained” LM is measure by the relative reduction in ESS compared to the baseline
model pi = β0 + εi, which corresponds to the variance of the dependent variable pi. For this reason, we can
think of the goodness-of-fit measure R2 as the percentage of variance “explained” by the LM.

Let us fit a first model that only considers differences between the language varieties and time periods:

lm1 <- lm(p.pass ~ lang + period, data=BF)
anova(lm1)

## Analysis of Variance Table
##
## Response: p.pass
## Df Sum Sq Mean Sq F value Pr(>F)
## lang 1 958 957.61 12.053 0.000528 ***
## period 1 1845 1844.79 23.221 1.553e-06 ***
## Residuals 1996 158575 79.45
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The analysis of variance consecutively tests each factor for significance, i.e. whether it explains significantly
more variance than the previous factors alone. In this case, both language variety and time period are highly
significant. A summary of the model shows the effect sizes with standard errors in a rather unintuitive form:

summary(lm1)

##
## Call:
## lm(formula = p.pass ~ lang + period, data = BF)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.649 -6.220 -1.754 3.755 53.867
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.8754 0.3452 40.191 < 2e-16 ***
## langBrE 1.3852 0.3987 3.474 0.000523 ***
## period1990 -1.9213 0.3987 -4.819 1.55e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.913 on 1996 degrees of freedom
## Multiple R-squared: 0.01737, Adjusted R-squared: 0.01638
## F-statistic: 17.64 on 2 and 1996 DF, p-value: 2.554e-08
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It is slightly more intuitive to compute confidence intervals for the model parameters based on their standard
errors

confint(lm1)

## 2.5 % 97.5 %
## (Intercept) 13.1983627 14.552494
## langBrE 0.6032814 2.167158
## period1990 -2.7032449 -1.139368

but a much better approach is to compute and visualize the partial effects of each factor:

Effect("lang", lm1)

##
## lang effect
## lang
## AmE BrE
## 12.91526 14.30047

plot(Effect("lang", lm1))
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plot(Effect(c("lang", "period"), lm1)) # combined effect
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lang*period effect plot
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plot(Effect(c("lang", "period"), lm1), multiline=TRUE, ci.style="bars")

4



lang*period effect plot

lang

p.
pa

ss

12

13

14

15

16

AmE BrE

period
1960 1990

The summary above also reveals that this LM only explains 1.6% of the variance, which is highly unsatisfactory.
One possible reason is that there may be an interaction between the two factors (i.e. the difference between
AmE and BrE changes between the 1990s and the 1960s). Let us fit a second LM with an interaction effect:

lm2 <- lm(p.pass ~ lang * period, data=BF)
anova(lm2)

## Analysis of Variance Table
##
## Response: p.pass
## Df Sum Sq Mean Sq F value Pr(>F)
## lang 1 958 957.61 12.0625 0.0005254 ***
## period 1 1845 1844.79 23.2378 1.54e-06 ***
## lang:period 1 197 197.45 2.4871 0.1149394
## Residuals 1995 158378 79.39
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(Effect(c("lang", "period"), lm2), multiline=TRUE, ci.style="bars")
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lang*period effect plot
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While the difference is more pronounced in the 1990s than the 1960s, this interaction effect is not significant!
Let us try to account better for frequency differences between texts by including the text genre as a factor:

lm3 <- lm(p.pass ~ lang + period + genre, data=BF)
anova(lm3)

## Analysis of Variance Table
##
## Response: p.pass
## Df Sum Sq Mean Sq F value Pr(>F)
## lang 1 958 957.6 21.171 4.467e-06 ***
## period 1 1845 1844.8 40.785 2.111e-10 ***
## genre 14 68925 4923.2 108.843 < 2.2e-16 ***
## Residuals 1982 89650 45.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(lm3)$adj.r.squared # 44% explained variance is much better

## [1] 0.4399845

It’s very hard to make sense of confidence intervals for the many levels of genre, so let us rather plot its
partial effects.
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plot(Effect(c("lang", "period", "genre"), lm3), multiline=TRUE, ci.style="bars", rotx=45)

lang*period*genre effect plot
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Again, there might be interactions between the three factors, so we should test their significance.

lm4 <- lm(p.pass ~ lang * period * genre, data=BF)
anova(lm4)

## Analysis of Variance Table
##
## Response: p.pass
## Df Sum Sq Mean Sq F value Pr(>F)
## lang 1 958 957.6 21.5884 3.606e-06 ***
## period 1 1845 1844.8 41.5891 1.418e-10 ***
## genre 14 68925 4923.2 110.9894 < 2.2e-16 ***
## lang:period 1 202 202.2 4.5592 0.03287 *
## lang:genre 14 601 42.9 0.9673 0.48478
## period:genre 14 2361 168.6 3.8014 2.170e-06 ***
## lang:period:genre 14 477 34.1 0.7689 0.70416
## Residuals 1939 86009 44.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Most interactions aren’t significant, but R2 has improved slightly to 0.4508143. This apparent improvement
in goodness-of-fit is misleading, though, because the LM with interactions has many more parameters than
the previous one, allowing it to fit random patterns in the data set. One way of assessing whether there is
an actual improvement is Akaike’s Information Criterion (AIC), which adjusts R2 for the number of model
parameters:
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AIC(lm1, lm2, lm3, lm4)

## df AIC
## lm1 4 14423.71
## lm2 5 14423.21
## lm3 18 13311.65
## lm4 61 13314.77

The AIC for lm4 is actually worse than for lm3, showing that we are indeed overfitting random patterns with
the interaction model. However, you may also have noticed that the interaction between language variety
became highly significant in lm4 – it is quite typical for such effects to become visible only when other sources
of variation are taken into account. Let us try another model that includes only this interaction effect:

lm5 <- lm(p.pass ~ lang * period + genre, data=BF)
anova(lm5)

## Analysis of Variance Table
##
## Response: p.pass
## Df Sum Sq Mean Sq F value Pr(>F)
## lang 1 958 957.6 21.2081 4.382e-06 ***
## period 1 1845 1844.8 40.8564 2.037e-10 ***
## genre 14 68925 4923.2 109.0341 < 2.2e-16 ***
## lang:period 1 202 202.2 4.4788 0.03444 *
## Residuals 1981 89448 45.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Take a look at the partial effects of lang and period and their confidence intervals. Use AIC to confirm that
this model is actually better than lm3. What is your (linguistic) interpretation of the analysis?

Linear models based on distributional features

As explained in the lecture slides, 44% of explained variance is still somewhat unsatisfactory, leaving a large
part of the frequency differences between texts unaccounted for. We will now try to use latent features
from an unsupervised distributional analysis of the Brown Family texts as additional predictors, starting
from the best model so far (lm5). These distributional features are included in the SIGIL package (see
?DistFeatBrownFam).

We could use the merge function to append these features to the data frame BF (needed because there is one
text missing in BF, so the two data frames wouldn’t align), but in this case there is a much easier solution.
The rows of DistFeatBrownFam have helpfully been labelled with text IDs, so we can directly extract the
desired rows:

BF <- cbind(BF, DistFeatBrownFam[BF$id, -1]) # -1 removes duplicate id column

Here is a linear model with all latent topic dimensions and latent registers (excluding verb tags to avoid
circularity). Unfortunately, the variable names have to be spelled out, but that’s what cut & paste is for.
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lm6 <- lm(p.pass ~ lang * period + genre
+ top1 + top2 + top3 + top4 + top5 + top6 + top7 + top8 + top9
+ reg1 + reg2 + reg3 + reg4 + reg5 + reg6 + reg7 + reg8 + reg9, data=BF)

anova(lm6)

## Analysis of Variance Table
##
## Response: p.pass
## Df Sum Sq Mean Sq F value Pr(>F)
## lang 1 958 957.6 41.9276 1.194e-10 ***
## period 1 1845 1844.8 80.7717 < 2.2e-16 ***
## genre 14 68925 4923.2 215.5567 < 2.2e-16 ***
## top1 1 11807 11806.6 516.9369 < 2.2e-16 ***
## top2 1 10924 10923.8 478.2856 < 2.2e-16 ***
## top3 1 592 591.6 25.9016 3.936e-07 ***
## top4 1 5925 5925.5 259.4389 < 2.2e-16 ***
## top5 1 2732 2732.3 119.6305 < 2.2e-16 ***
## top6 1 74 74.5 3.2601 0.071137 .
## top7 1 1458 1457.9 63.8305 2.290e-15 ***
## top8 1 3999 3999.3 175.1059 < 2.2e-16 ***
## top9 1 718 717.6 31.4191 2.373e-08 ***
## reg1 1 940 940.3 41.1697 1.745e-10 ***
## reg2 1 741 741.3 32.4549 1.404e-08 ***
## reg3 1 8 8.3 0.3621 0.547438
## reg4 1 289 288.9 12.6472 0.000385 ***
## reg5 1 3430 3429.6 150.1609 < 2.2e-16 ***
## reg6 1 376 376.1 16.4663 5.146e-05 ***
## reg7 1 431 430.7 18.8578 1.480e-05 ***
## reg8 1 0 0.0 0.0019 0.965458
## reg9 1 2 2.2 0.0965 0.756078
## lang:period 1 370 370.0 16.1983 5.921e-05 ***
## Residuals 1963 44834 22.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We have a wild mixture of significant and non-significant factors now. A common practice is to remove all
predictors that do not improve the model fit by stepwise feature selection:

lm7 <- step(lm6)
anova(lm7)

Have you noticed that the effects for language variety and time period as well as their interaction are all
highly significant now? The LM with distributional features also achieves a much better goodness-of-fit of
71.7%:

summary(lm7)$adj.r.squared

## [1] 0.7173145

AIC(lm5, lm6, lm7) # stepwise selection improves AIC
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## df AIC
## lm5 19 13309.13
## lm6 37 11964.44
## lm7 19 11946.07

Can you explain why the partial effects plots for the distributional features look different than before?

plot(Effect(c("top1", "lang", "period"), lm7), multiline=TRUE, ci.style="bands")

top1*lang*period effect plot
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If you look closely, you’ll find that genre is no longer included in the final model as a predictive factor. Can
you explain what might be going on here?

Finally, one should always look at the model diagnostics to check hints that model assumptions (such as
normality or the infamous homoscedasticity) may be violated or that outliers may have distorted the analysis.

plot(lm7)
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