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Clustering and dimensionality reduction

I Techniques that are typically appropriate when:
I You do not have an obvious dependent variable
I You have many, possibly correlated variables

I Clustering:
I Group the observations into n groups based on how they

pattern with respect to the measured variables
I Dimensionality reduction

I Find fewer “latent” variables with a more general
interpretation based on the patterns of correlation among
the measured variables
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(Hard partitional) clustering

I We only explore here:
I Hard clustering: an observation can belong to one cluster

only, no distribution of a single observation across clusters
I PCA below can be interpreted as a form of soft clustering

I Partitional clustering: “flat” clustering into n classes, no
hierarchical structure

I Look at ?hclust for a basic R implementation of the
hierarchical alternative

I Hard partitional clustering has many drawbacks, but it
leads to clear-cut, straightforwardly interpretable results
(which is part of what causes the drawbacks)



Why clustering?

I Perhaps you really do not know what are the underlying
classes in which your observations should be grouped

I E.g., which areas of the brain have similar patterns of
activation in response to a stimulus?

I Do children cluster according to different developmental
patterns?

I You know the “true” classes, but you want to see whether
the distinction between them would emerge from the
variables you measured

I Will a distinction between natural and artificial entities arise
simply on the basis of color and hue features?

I Is the distinction between nouns, verbs and adjectives
robust enough to emerge from simple contextual cues
alone?

I When you do not know the true classes, interpretation of
the results will obviously be very tricky, and possibly
circular



Logistic regression and clustering
Supervised and unsupervised learning

I In (binomial or multinomial) logistic regression (supervised
learning), you are given the labels (classes) of the
observations, and you use them to tune the features
(independent variables) so that they will maximize the
distinction between observations belonging to different
classes

I You go from the classes to the optimal feature combination
I The dependent variable is given and you tune the

independent variables
I In clustering (unsupervised learning), you are not given the

labels, and you must use some goodness-of-fit criterion
that does not rely on the labels to reconstruct them

I You go from the features to the optimal class assignment
I The independent variables are fixed and you tune the

dependent variable
I Although as part of this process you can also reweight the

independent variables, of course!



Logistic regression and clustering
Supervised and unsupervised learning

I Unsupervised learning might be a more realistic model of
what children do when acquiring language and other
cognitive skills

I . . . although the majority of work in machine learning
focuses on the supervised setting

I Better theoretical models, better quality criteria, better
empirical results
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k-means

I One of the simplest and most widely used hard partitional
clustering algorithms

I For more sophisticated options, see the cluster and e1071
packages



k-means

I The basic algorithm
1. Start from k random points as cluster centers
2. Assign points in dataset to cluster of closest center
3. Re-compute centers (means) from points in each cluster
4. Iterate cluster assignment and center update steps until

configuration converges (e.g., centers stop moving around)
I Given random nature of initialization, it pays off to repeat

procedure multiple times (or to start from “reasonable”
initialization)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



Illustration of the k-means algorithm
See ?iris for more information about the data set used

●●● ●●

●

●
●●

●
●●

●●

●

●●

● ●●
●

●

●

●

●●

●

●● ●●

●

●
●●●●

●

● ●
●
●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

petal width (z−score)

pe
ta

l l
en

gt
h 

(z
−

sc
or

e)



How many clusters?

I When clustering is exploratory (we do not want to
reconstruct the labels we know, we want to see which
classes emerge from the data) setting k is a big issue

I Classic approach to find optimal k , given measure of
clustering fit (typically measuring intra-cluster similarity):

I Try clustering with a range of ks
I Pick k that optimizes fit



Outline

Introduction

Clustering

Clustering in R

Dimensionality reduction

Dimensionality reduction in R



The concrete concept dataset

I 43 concrete concepts from the subject-generated norms
of:

I McRae, K., Cree, G., Seidenberg, M., & McNorgan,
C. (2005). Semantic feature production norms for a large
set of living and nonliving things. Behavior Research
Methods, 37, 547–559.

I Macro-categories of properties from ongoing work with
Gerhard Kremer and Alessandro Lenci

I Download and unpack r-data-2.zip
I Load concrete-concepts.txt, attach data and take a

quick look at them



The concrete concept dataset

CONCEPT elephants, lettuce, ship. . .
CLASS6 bird, fruit, green, groundAnimal, tool, vehicle
CLASS3 animal, artifact, vegetable
CLASS2 natural, manMade

FEATURE an_animal, is_edible, made_of_metal. . .
TYPE (of feature) behaviour, category, context, function,

part, quality, related



Creating a concept by feature matrix

# table() will count the number of times each feature was produced
# for each concept

# The columns of the resulting matrix are the
# variables we will use for clustering

> concept_by_feature<-table(CONCEPT,FEATURE)

> concept_by_feature[1:4,1:4]



Clustering into 6 classes
on the basis of the feature distribution

# [,] forces R to treat our table as a matrix

> partition6<-kmeans(concept_by_feature[,],6)

> partition6$cluster



Exploring the solution

# Unique concept-class6 pairs

> c6<-unique(cbind(as.character(CONCEPT),
as.character(CLASS6)))

> head(c6)

# Class by cluster

> table(c6[,2],partition6$cluster)

1 2 3 4 5 6
bird 0 0 0 0 0 7
fruit 4 0 0 0 0 0
green 0 0 4 0 0 0
groundAnimal 0 1 0 0 7 0
tool 0 13 0 0 0 0
vehicle 0 3 0 4 0 0



Exploring the solution

# The ground animal in the tool cluster

> c6[,1][c6[,2]=="groundAnimal" &
partition6$cluster==2]

[1] "snail"

# The features with the highest values on the centroids

> head(partition6$centers[1,][order(
partition6$center[1,],decreasing=TRUE)],20)

> head(partition6$centers[2,][order(
partition6$center[2,],decreasing=TRUE)],20)

# etc. (I wished there was an easier way to sort in R!)



Trying multiple starts

> partition6_100starts<-kmeans(
concept_by_feature[,],6,nstart=100)

# The clusters got more tight, as shown by the total within-cluster
# sum of squares:

> sum(partition6$withinss)
[1] 61715.47
> sum(partition6_100starts$withinss)
[1] 61498.13

# However, no obvious improvement in clustering quality:

> table(c6[,2],partition6$cluster)
> table(c6[,2],partition6_100$cluster)



Practice

I Try clustering into the 3- and 2-way superordinate classes
I Repeat the same analyses, but remember to compare the

results against CLASS3 and CLASS2
I Try clustering by feature TYPEs

I Can the simple information that, e.g., a concept has many
functional features reveal that the concept is a tool?
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Dimensionality reduction

I We measured n variables, but we reduce them to k “latent”
variables

I From a m × n matrix to a m × k matrix, where k << n
I Typically, latent variables can be interpreted as

generalizations of the patterns in the observed variables
I Why?

I To be able to visually inspect trends in the data (especially
if k = 2)

I Hope that latent dimensions will capture “deeper” patterns
of correlation

I Efficiency/storage
I Resulting matrix will be easier to store and process, but most

dimensionality reduction procedures require the full matrix
as input and are computationally intensive!
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Principal component analysis (PCA)

I One of the oldest and most commonly used dimensionality
reduction techniques

I Find a set of orthogonal dimensions such that the first
dimension “accounts” for the most variance in the original
dataset, the second dimension accounts for as much as
possible of the remaining variance, etc.

I The top k dimensions (principal components) are the best
subset of k dimensions to approximate the spread in the
original dataset

I I.e., they are the k orthogonal dimensions in which the
projections of the original data-points (observations) have
the largest variance

I Correlation of original variables to principal components
might reveal interesting underlying factors



Preserved variance: examples
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Preserved variance: examples
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Preserved variance: examples
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Preserved variance: examples
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Preserved variance: examples
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Preserved variance: examples
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Adding an orthogonal dimension
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NB: PCA vs. least squares line fitting
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Dimensionality reduction as generalization

I (Simplifying somewhat,) correlated variables will be
(partially) collapsed onto same dimensions in reduced
space

I In the concept description norms, “has feathers” and “flies”
might be both highly correlated with a reduced space
“birdness” dimension (but “has feathers” might also be
correlated to a “part” dimension)

I Pattern of co-activation of voxels might reveal larger
functionally correlated areas that are mapped to same
reduced dimensions



Dimension reduction as generalization
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Dimensionality reduction as soft clustering

I In some lucky cases, the reduced space dimensions can
be interpreted as categories (the “birdness” dimension, the
“toolness” dimension)

I Then, the principal components (reduced space
orthogonal dimensions) can be seen as clusters, and the
values of the original points when projected in the new
dimensions can be interpreted as the “degree of
membership” of the points in each cluster

I E.g., a horse might have high values on both the “animal”
and the “vehicle” dimensions

I Of course, you can also run standard hard clustering using
the reduced dimensions as features!



PCA and SVD

I Principal components are typically extracted using a
technique called Singular Value Decomposition

I Given original observation matrix M, SVD decomposes it
into:

M = UΣV T

I First k columns of UΣ give projections of target words into
reduced space

I V is the eigenvector matrix, specifying the correlation of
each original variable with each principal component

I In R, it is instructive to reproduce the rotation and x
contents of an object created by prcomp() with the
matrices created by svd()



How many ks?

I If purpose is plotting, we will use top 3 or 2 principal
components

I It might make sense to look at multiple 2-dimensional plots:
first vs. second component, second vs. third, etc.

I Heuristic criteria to choose k :
I Pick minimum number of dimensions that have n% of

original variance (e.g., 90%)
I Look at histogram of variance on each dimension, cut

where you see a sharp decrease



Beyond PCA

I Loads of other dimensionality reduction techniques
I Two trendy ones: Independent Component Analysis and

Positive Matrix Factorization
I When the issue is scaling up, consider Random Indexing
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Back to the concrete noun dataset

I If you haven’t already, load concrete-concepts.txt
and attach

I Create a concept by feature table as above:
> concept_by_feature<-table(CONCEPT,FEATURE)



PCA in R

# Centering is important (but prcomp() does it by default)

> c_by_f.pca<-prcomp(concept_by_feature,
center=TRUE,scale=TRUE)

# Variance of the top principal components

> summary(c_by_f.pca)
Importance of components:

PC1 PC2 PC3 ...
Standard deviation 4.1610 4.0027 3.9239 ...
Proportion of Variance 0.0465 0.0431 0.0414 ...
Cumulative Proportion 0.0465 0.0896 0.1310 ...
# NB: 43 components because we have 43 observations (concepts)
# and thus maximally 43 orthogonal dimensions

# Variance plot

> plot(c_by_f.pca)



Looking inside the PCA object

> head(c_by_f.pca$sdev)
[1] 4.161032 4.002719 3.923918 3.746610 3.705787 3.628330

> c_by_f.pca$rotation[1:3,1:3]
PC1 PC2 PC3

a_baby_is_a_kitten -0.04963951 0.034148523 -0.02587115
a_baby_is_a_piglet -0.10091012 0.090070350 -0.08258978
a_bird -0.04648581 0.007532426 0.01030939

> c_by_f.pca$x[1:3,1:2]
CONCEPT PC1 PC2

banana 0.2973792 -1.4367816
boat 0.2261732 -0.7561464
bottle 1.9571371 -3.1795953



Looking inside the PCA object

# Original variables most associated with the third component

> head(sort(c_by_f.pca$rotation[,3],decreasing=TRUE),3)
a_vegetable grows_in_gardens is_edible

0.1357469 0.1252715 0.1203748

# Concepts most associated with the third component

> head(sort(c_by_f.pca$x[,3],decreasing=TRUE),5)
lettuce potato pineapple mushroom screwdriver

10.075616 7.208782 6.725311 3.889524 3.363768

# Don’t ask me why here sort() works as I would like it to...



Visualizing the reduced space

# In principle biplots are very useful, but with so many
# original variables we just get a beautiful mess:

> biplot(c_by_f.pca)

# Manual plots of the points on PC1 vs. PC2
# and PC1 vs. PC3 dimensions

> c6<-unique(cbind(as.character(CONCEPT),
as.character(CLASS6)))

> plot(c_by_f.pca$x[,1], c_by_f.pca$x[,2],type="n")
> text(c_by_f.pca$x[,1],c_by_f.pca$x[,2],labels=c6[,1],

col=rank(c6[,2]))

> plot(c_by_f.pca$x[,1],c_by_f.pca$x[,3],type="n")
> text(c_by_f.pca$x[,1],c_by_f.pca$x[,3],labels=c6[,1],

col=rank(c6[,2]))

# Try also adding a few of the original features



Clustering in reduced space

> partition6<-kmeans(c_by_f.pca$x[,1:30],6)

> table(c6[,2],partition6$cluster)

# Compare to results obtained with the full matrix



Concept by type PCA
Just for the sake of producing a readable biplot

> concept_by_type<-table(CONCEPT,TYPE)

> concept_by_type<-prcomp(concept_by_type,
center=TRUE,scale=TRUE)

> biplot(concept_by_type)



The preschoolers’ dataset

I Data provided by Alessandro Chinello, from ongoing work
with Cattani, Bonfiglioli and Piazza

I The development of parietal lobe in preschoolers
I One research question: what are the patterns of

correlations between various cognitive ability indices
measured on preschoolers? Do they group into sets
corresponding to broader functional (and neural) classes?

I Clean up workspace, detach, load preschoolers.txt
dataset, take a look at it, create version without NAs:
nona<-na.omit(d)



The preschoolers’ dataset

SUBJECT subject id
AGE age in months

FINGER error count in finger discrimination
SPAN max number of visual elements that can be

memorized
ATTENTION difference between RTs in congruent

vs. incongruent cue-target conditions
DFACE D prime measure of face sensitivity

DOBJ D prime measure of object sensitivity
NUMBER Weber fraction in point quantity discrimination task

(the lower, the better the discrimination)
GRASPING Maximum thumb-index distance when grasping

objects



PCA of the preschoolers’ data

> ps.pca<-prcomp(nona[,3:9],center=TRUE,scale=TRUE)

> summary(ps.pca)

> plot(ps.pca)

> biplot(ps.pca)

# More meaningful to plot subject age

> biplot(ps.pca,xlabs=nona$AGE)

# Do it yourself:

> plot(ps.pca$x[,1],ps.pca$x[,2],type="n")
> text(ps.pca$rotation[,1]*4,ps.pca$rotation[,2]*4,

labels=names(nona)[3:9],col="grey",cex=1.5)
> text(ps.pca$x[,1],ps.pca$x[,2],labels=nona$AGE)



Our last practice: multidimensional scaling

I Multi-dimensional scaling (MDS) is another popular
dimensionality reduction technique, that attempts to
preserve the distances between points as faithfully as
possible in the reduced space

I It is mostly used for visualization purposes
I Perform an MDS analysis of the concrete concept data,

based on the sets of cues we described



MDS Practice

1. MDS operates on a distance matrix, a symmetric matrix of
distances between each point in the dataset and each other
point

I Look at the documentation for the dist() function, and
generate distance matrices from the original
concept-by-feature table, using two different methods to
compute distance

2. Perform MDS with the cmdscale() function: take a look at its
documentation, and run MDS on each of your distance matrices

I For further exploration of MDS, take a look at sammon()
and isoMDS() from the MASS package

3. Plot the concepts in the first two dimensions produced by the
MDS analyses, using different colours for different classes
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