Outline

Statistical Analysis of Corpus Data with R

Distributional properties of Italian NN compounds:
An Exploration with R

Designed by Marco Baroni ${ }^{1}$ and Stefan Evert ${ }^{2}$
${ }^{1}$ Center for Mind/Brain Sciences (CIMeC)
University of Trento
${ }^{2}$ Institute of Cognitive Science (IKW) University of Onsabrück

NN Compounds

- Part of work carried out by Marco Baroni with Emiliano Guevara (U Bologna) and Vito Pirrelli (CNR/LC, Pisa)
- Three-way classification inspired by theoretical (Bisetto and Scalise, 2005) and psychological work (e.g., Costello and Keane, 2001)
- Relational (computer center, angolo bambini)
- Attributive (swordfish, esperimento pilota)
- Coordinative (singer-songwriter, bar pasticceria)

Introduction

Data

Clustering
k-means
Dimenstionality reduction with PCA

Relational compounds

- Express relation between two entities
- Heads are typically information containers, organizations, places, aggregators, pointers, etc.
- M "grounds" generic meaning of, or fills slot of \mathbf{H}
- E.g., stanza server ("server room"), fondo pensioni ("pension fund"), centro città ("city center")

Attributive compounds

Coordinative compounds

- Interpretation of \mathbf{M} is reduced to a "salient" property of its full semantic content, and this property is attributed to \mathbf{H} :
- presidente fantoccio ("puppet president"), progetto pilota ("pilot project")

Ongoing exploration

- Data-set of frequent compounds: 24 ATT / 100 REL
- All ATT and REL compounds with freq $\geq 1,000$ in itWaC (2 billion token Italian Web-based corpus)
- Will the distinction between ATT and REL emerge from combination of distributional cues (also extracted from itWaC)?
- Cues:
- Semantic similarity between head and modifier
- Explicit syntactic link
- Relational properties of head and modifier
- "Specialization" of head and modifier

Outline

Data

k-means

Dimenstionality reduction with PCA

- Head and modifier denote similar/compatible entities, compound has coordinative reading
- HM is both \mathbf{H} and \mathbf{M}
- viaggio spedizione ("expedition travel"), cantante attore ("singer actor")
- Ignored here

The data

H Compound head (Italian compounds are left-headed!)
M Modifier
TYPE attributive or relational
COS Cosine similarity between \mathbf{H} and \mathbf{M}
DELLL Log-likelihood ratio score for comparison between observed frequency of $\boldsymbol{H} \mathrm{del} \boldsymbol{M}$ ("H of the \mathbf{M} ") and expected frequency under independence
HDELPROP Proportion of times \mathbf{H} occurs in context \boldsymbol{H} del NOUN over total occurrences of \mathbf{H}
DELMPROP Proportion of times \mathbf{M} occurs in context NOUN DEL M over total occurrences of \mathbf{M}
HNPROP Proportion of times \mathbf{H} occurs in context H NOUN over total occurrences of \mathbf{H}
NMPROP Proportion of times M occurs in context NOUN M over total occurrences of \mathbf{M}

Cue statistics

- Read the file comp. stats.txt into a data-frame named d and "attach" the data-frame
${ }^{133}$ load file with read. delim() function as recommended
${ }^{2}$ \&
- Compute basic statistics
- Look at the distribution of each cue among compounds of type attributive (at) vs. relational (re)
- Find out for which cues the distinction between attributive and relational is significant (using a t-test or Mann-Whitney ranks test)
- Also, which cues are correlated? (use cor () on the subset of the data-frame that contains the cues)

Outline

Introduction

Data

Clustering
k-means
Dimenstionality reduction with PCA

Data

Clustering
k-means
Dimenstionality reduction with PCA

Clustering
k-means

- k-means: one of the simplest and most widely used hard flat clustering algorithms
- For more sophisticated options, see the cluster and e1071 packages

Illustration of the k-means algorithm

See help (iris) for more information about the data set used

- The basic algorithm

1. Start from k random points as cluster centers
2. Assign points in data-set to cluster of closest center
3. Re-compute centers (means) from points in each cluster
4. Iterate cluster assignment and center update steps until configuration converges

- Given random nature of initialization, it pays off to repeat procedure multiple times (or to start from "reasonable" initialization)

Illustration of the k-means algorithm

See help (iris) for more information about the data set used

Illustration of the k-means algorithm

See help (iris) for more information about the data set used

Scaling and trying again

$>$ scaled <- scale(d[, 4:9])
$>$ summary $(\mathrm{d}[4: 9])$ \# distribution of original data
$>$ summary (scaled) \# after scaling
$>\mathrm{km}<-\mathrm{kmeans}(\mathrm{scaled}, 2$, nstart $=10$)
$>\mathrm{km}$
> table(km\$cluster, d\$TYPE) \# confusion matrix
k-means, first try

```
\# cues are in columns 4 to 9
\(>\mathrm{km}<-\) kmeans(d[,4:9], 2, nstart=10)
\(>\mathrm{km}\)
\# problem: extreme DELLL values dominate the clustering \# (relevant small cluster might be cluster 2 in your solution)
> DELLL[km\$cluster==1]
> head(sort (DELLL, decreasing=TRUE))
```

Outline

Data

Clustering

k-means
Dimenstionality reduction with PCA

Dimensionality reduction

- To find "latent" variables
- To reduce random noise
- For easier visualization

Preserving variance: examples

Principal component analysis (PCA)

- Find a set of orthogonal dimensions such that the first dimension "accounts" for the most variance in the original data-set, the second dimension accounts for as much as possible of the remaining variance, etc.
- The top k dimensions (principal components) are the best sub-set of k dimensions to approximate the spread in the original data-set
- Principal components represent correlations of original variables $\therefore>$ might reveal interesting underlying patterns

Preserving variance: examples

Preserving variance: examples

Adding an orthogonal dimension

Preserving variance: examples

PCA in R

> temp <- subset (d, select=c (HNPROP, NMPROP, DELLL, HDELPROP, DELMPROP, COS))
> pr <- prcomp (temp, scale=TRUE)
$>\mathrm{pr}$
$>$ plot (pr)
> biplot(pr)
> biplot(pr, xlabs=TYPE, $x \lim =c(-.25, .25), y \lim =c(-.25, .25))$

More refined plotting

> plot(pr\$x[,1:2], type="n", $\mathrm{xlim}=c(\min (\operatorname{pr} \$ \mathrm{x}[1]), 4)$, $\mathrm{ylim}=\mathrm{c}(\min (\operatorname{pr} \$ \mathrm{x}[, 2]), 4)) \quad$ \# only sets up plot region
> points(subset(pr\$x, TYPE=="re"), col="blue", pch=19, lwd=2) \# blue points for type "re"
> points(subset(pr\$x, TYPE=="at"), col="red", pch=19, lwd=2) \# red points for type "at"
> legend("topright", inset=.05, fill=c("red","blue"), cex=1.5, legend=c("ATT","REL")) \# legend explains colors

Trying k-means again

$>\mathrm{km}<-\mathrm{kmeans}(\operatorname{pr} \$ \mathrm{x}[, 1: 4], 2$, nstart=10)
> table(km\$cluster, d\$TYPE)
\# what happens with more/fewer dimensions?
$>\operatorname{plot}(p r \$ x[, 1: 2]$, type="n", $\mathrm{xlim}=c(\min (\operatorname{pr} \$ \mathrm{x}[1]), 4)$, $\mathrm{ylim}=c(\min (\operatorname{pr} \$ \mathrm{x}[, 2]), 4))$
$>$ text (pr\$x[,1], pr\$x[,2], col=km\$cluster, labels=TYPE)
\# now refine this plot as on previous slides

Adding the cues

$>$ text (pr\$rotation [1,1]*4, pr\$rotation [1,2]*4, label="H N", cex=1.7)
$>$ text (pr\$rotation $[2,1] * 4, \operatorname{pr} \$ r o t a t i o n[2,2] * 4$, label="N M", cex=1.7)
$>$ text (pr\$rotation [3,1]*4, pr\$rotation [3,2]*4, label="H DEL M", cex=1.7)
$>$ text (pr\$rotation [4, 1]*4, pr\$rotation [4, 2]*4, label="H DEL", cex=1.7)
$>$ text (pr\$rotation $[5,1] * 4$, pr\$rotation $[5,2] * 4$, label="DEL M", cex=1.7)
$>$ text (pr\$rotation $[6,1] * 4$, pr\$rotation $[6,2] * 4$, label="COS", cex=1.7)

