
Statistical Analysis of Corpus Data with R
A Gentle Introduction

for Computational Linguists and Similar Creatures

Designed by Marco Baroni1 and Stefan Evert2

1Center for Mind/Brain Sciences (CIMeC)
University of Trento

2Institute of Cognitive Science (IKW)
University of Onsabrück

Outline

General Information
What is R?
About this course

R Basics
Basic functionalities
External files and data-frames
A simple case study: comparing Brown and LOB documents

Why do we need statistics?

I Significance (control for sampling variation)
I all linguistic data are samples (of language, speakers, . . .)
I observed effects may be coincidence of particular sample

å inferential statistics

I Managing large data sets
I statistical summaries, data analysis, visualisation
I e.g. collocations as compact summary of word usage

å descriptive statistics

I Discovering latent (hidden) properties
I clustering, multivariate analysis, distributional semantics
I advanced statistical modelling (e.g. mixed-effects models)

å exploratory data analysis

R – An environment for statistical programming

I “Traditional” statistical software packages offer specialised
procedures (e.g. SAS) or interactive GUI (e.g. SPSS)

I New approach: statistical programming language S with
interactive environment (Bell Labs, since 1976)

I White Book (version 3, 1992); Green Book (version 4, 1998)
I commercial: S-Plus (Insightful Corporation, since 1987)

I R is an open-source implementation of the S language
I originally by Ross Ihaka and Robert Gentleman (Auckland)
I open-source development since mid-1997

R – An environment for statistical programming

I binary packages available for Linux,
Mac OS X and Windows

I 64-bit versions on Linux and OS X
I extensive documentation & tutorials
I hundreds of add-on packages ready

to install from CRAN

http://www.R-project.org/

Recommended Windows GUI:
Tinn-R from http://www.sciviews.org/

More about R

I Advantages of R
I free & open source
I many add-on packages with state-of-the-art algorithms
I large, enthusiastic and helpful user community
I easy to automate and extend (every analysis is a program)
I no point & click interface

I Disadvantages
I learning curve sometimes rather steep
I not good at manipulating non-English text (yet)
I no built-in data editor (spreadsheet)
I no point & click interface

Goals of the course

I Learn R basics and elementary R programming
I Get to know R implementations of statistical techniques,

data analysis and visualisation that are useful in various
areas of (computational) linguistics

I A little bit of background in the statistical analysis of corpus
frequency data along the way

I Practice your R skills on real-life data-sets

What this course is not about

I Theoretical foundations of statistics
I Specific statistical methods
I Cookbook recipes for particular analyses with R

What you should know

I Very basic math and statistics
(vectors, logarithms, correlation, t-tests, . . .)

I Some familiarity with programming/scripting
and/or with a command-line environment

I Interest in (computational) linguistics

Course syllabus

I Introduction to R: set-up, data manipulation and
exploration, plotting, basic statistics, input/output

I Hypothesis tests for corpus frequency data
I Using an R extension package:

modelling word frequency distributions with zipfR
I Unsupervised multivariate data exploration:

principal component analysis and clustering
I Co-occurrence statistics and frequency comparisons:

contingency tables, association measures, evaluation
I Efficient data processing using vector operations
I The limitations of random sampling models for corpus data

R textbooks for (computational) linguists
Much more comprehensive theoretical background and cookbook examples

I Stefan Th. Gries (to appear). Statistics for Lingustics
with R: A practical introduction. Mouton de Gruyter.

I German original is already available

I Shravan Vasishth (2006–2009). The foundations of
statistics: A simulation-based approach.

I http://www.ling.uni-potsdam.de/~vasishth/SFLS.html

I R. Harald Baayen (2008). Analyzing Linguistic Data: A
practical introduction to statistics. CUP.

I http://www.ualberta.ca/~baayen/publications.html
I if you download the PDF, you should also buy the book

Other recommended textbooks on statistics and R

I Peter Dalgaard (2008). Introductory Statistics with R,
2nd ed. New York: Springer.

I Morris H. DeGroot and Mark J. Schervish (2002).
Probability and Statistics, 3rd ed. Addison Wesley.

I Stefan’s favourite statistics textbook

I John M. Chambers (2008). Software for Data Analysis:
Programming with R. New York: Springer.

I Christopher Butler (1985), Statistics in Linguistics.
Oxford: Blackwell.

I out of print and available online for free download
I http://www.uwe.ac.uk/hlss/llas/
statistics-in-linguistics/bkindex.shtml

Course materials

I Handouts, example scripts and data sets are available on
our homepage for this course:

http://purl.org/stefan.evert/SIGIL/

I You will also find additional material, software and
links to background reading there

Outline

General Information
What is R?
About this course

R Basics
Basic functionalities
External files and data-frames
A simple case study: comparing Brown and LOB documents

Outline

General Information
What is R?
About this course

R Basics
Basic functionalities
External files and data-frames
A simple case study: comparing Brown and LOB documents

R as an oversized calculator

> 1+1
[1] 2

> a <- 2 # assignment does not print anything by default

> a * 2
[1] 4

> log(a) # natural, i.e. base-e logarithm
[1] 0.6931472

> log(a,2) # base-2 logarithm
[1] 1

Basic session management
Some of it is not necessary if you only use the GUI

to start R on command line, simply type R

setwd("path/to/data") # or use GUI menus

ls() # probably empty for now

ls # notice difference with previous line

quit() # or use GUI menus
quit(save="yes")
quit(save="no")

NB: at least some interfaces support history recall, tab completion

Vectorial math

> a <- c(1,2,3) # c (for combine) creates vectors

> a * 2 # operators are applied to each element of a vector
[1] 2 4 6

> log(a) # also works for most standard functions
[1] 0.0000000 0.6931472 1.0986123

> sum(a) # basic vector operations: sum, length, product, . . .
[1] 6

> length(a)
[1] 3

> sum(a)/length(a)
[1] 2

Initializing vectors

> a <- 1:100 # integer sequence
> a

> a <- 10^(1:100)

> a <- seq(from=0, to=10, by=0.1) # general sequence

> a <- rnorm(100) # 100 random numbers

> a <- runif(100, 0, 5) # what you’re used to from Java etc.

Summary statistics

> length(a)

> summary(a) # statistical summary of numeric vector
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.02717 0.51770 1.05200 1.74300 2.32600 9.11100

> mean(a)

> median(a)

> sd(a) # standard deviation is not included in summary

> quantile(a)
0% 25% 50% 75% 100%

0.0272 0.5177 1.0518 2.3261 9.1107

> quantile(a,.75)

Basic plotting

> a<-2^(1:100) # don’t forget the parentheses!
> plot(a)

> x<-1:100 # most often: plot x against y
> plot(x,a)

> plot(x,a,log="y") # various logarithmic plots
> plot(x,a,log="x")
> plot(x,a,log="xy")
> plot(log(x),log(a))

> hist(rnorm(100)) # histogram and density estimation
> hist(rnorm(1000))
> plot(density(rnorm(100000)))

(Slightly less) basic plotting

> a <- rbinom(10000,100,.5)
> hist(a)

> hist(a, probability=TRUE)
> lines(density(a))

> hist(a, probability=TRUE)
> lines(density(a), col="red", lwd=3)

> hist(a, probability=TRUE,
main="Some Distribution", xlab="value",
ylab="probability")

better to type command on a single line!
> lines(density(a), col="red", lwd=3)

Help!

> help("hist") # R has excellent online documentation
> ?hist # short, convenient form of the help command

> help.search("histogram")

> ?help.search

> help.start() # searchable HTML documentation

or use GUI menus to access & search documentation

Installing add-on packages
I Much of R’s power comes from its add-on packages
I Can be downloaded from CRAN with GUI installer

I automatically installs other required packages
I Mac OS X: check “install dependencies”
I Windows: only most essential dependencies installed

I The “sumo” package for linguists: languageR
I data sets & utilities for Baayen (2008)
I also installs most other packages that you’ll need

I Magic command: install.packages("languageR",
.libPaths()[1], dependencies=TRUE)

I Other highly recommended packages:
I corpora for a few data sets used in this course
I rgl and misc3d for interactive 3D graphics
I plyr and gsubfn for convenience
I advanced: rggobi for high-dimensional visualisation

Your first R script

I Simply type R commands into a text file & save it
I Use built-in GUI functionality or external text editor

I Microsoft Word is not a text editor!
I nor is Apple’s TextEdit application . . .

I Execute R script from GUI editor or by typing
> source("my_script.R") # more about files later
> source(file.choose()) # select with file dialog box

I Just typing a variable name will not automatically print its
value in a script: use print(sd(a)) instead of sd(a)

Outline

General Information
What is R?
About this course

R Basics
Basic functionalities
External files and data-frames
A simple case study: comparing Brown and LOB documents

Input from an external file

I We like to keep our data in space- or TAB-delimited text
files with a first row (“header”) labeling the fields, like so:
word frequency cat
dog 15 noun
bark 10 verb

I This is an easy format to import into R, and it is easy to
convert from/to other tabular formats using standard tools

I We assume that external input is always in this format
(or can easily be converted to it)

I spreadsheet applications prefer CSV format
(comma-separated values)

I Microsoft Excel is a nice table editor,
but beware of localised number formats

Reading a TAB-delimited file with header

> brown <- read.table("brown.stats.txt",
header=TRUE)

if file is not in working directory, you must specify the full path
(or use setwd() function we introduced before)

exact behaviour of file.choose() depends on operating system
> brown <- read.table(file.choose(), header=TRUE)

more robust if you are sure file is in tab-delimited format
> brown <- read.delim("brown.stats.txt")

Reading and writing CSV files

R can also read and write files in CSV format
> write.csv(brown, "brown.stats.csv",
row.names=FALSE)

this is convenient for exchanging data with database and
spreadsheet software (or using Excel as a data editor)

NB: comma-separated values are not always separated by commas
(e.g. in German; use write.csv2 if Excel doesn’t recognise columns)
> write.csv2(brown, "brown.stats.csv",
row.names=FALSE)

TASK: load brown.stats.csv into Excel or OpenOffice.org

check generated CSV file (use read.csv2with write.csv2 above)
> brown.csv <- read.csv("brown.stats.csv")
> all.equal(brown.csv, brown)

Data-frames

I The commands above create a data frame
I This is the basic data structure (object)

used to represent statistical tables in R
I rows = objects or “observations”
I columns = variables, i.e. measured quantities

I Different types of variables
I numerical variables (what we’ve used so far)
I Boolean variables
I factor variables (nominal or ordinal classification)
I string variables

I Technically, data frames are collections of column vectors
(of the same length), and we will think of them as such

Data-frames

> summary(brown)

> colnames(brown)

> dim(brown) # number of rows and columns

> head(brown)

> plot(brown)

Access vectors inside a data frame

> brown$to

> head(brown$to)

TASK: compute summary statistics (length, mean, max, etc.)
for vectors in the Brown data frame

what does the following do?
> summary(brown$ty / brown$to)

> attach(brown) # attach data frame for convenient access
> summary(ty/to)
> detach() # better to detach before you attach another frame

More data access

> brown$ty[1] # vector indexing starts with 1
> brown[1,2] # row, column

> brown$ty[1:10] # use arbitrary vectors as indices
> brown[1:10,2]

> brown[1,]
> brown[,2]

Conditional selection

> brown[brown$to < 2200,] # index with Boolean vector
> length(brown$ty[brown$to >= 2200])
> sum(brown$to >= 2200) # standard way to count matches

> subset(brown, to < 2200) # no need to attach here
> lessdata <- subset(brown, to < 2200)

> a <- brown$ty[brown$to >= 2200]

equality: == (also works for strings)
inequality: !=
complex constraints: and &, or |, not !
NB: always use single characters, not && or ||

Outline

General Information
What is R?
About this course

R Basics
Basic functionalities
External files and data-frames
A simple case study: comparing Brown and LOB documents

Type, token and word length counts
in the Brown and LOB documents

Variables:
to Token count
ty Type count (distinct words)

se Sentence count
towl Average word length

(averaged across tokens in document)
tywl Average word length

(averaged across distinct types in document)

Procedure

I Collect basic summary statistics for the two corpora
I Check if there is a significant difference in the token counts

(since document length was controlled by corpus builders)
I If difference is significant (we will see that it is), then type

counts are not directly comparable, and sentence counts
should be normalized (divide by token count)

I Is word length correlated to document length? (in which
case, corpus comparison would also not be appropriate)

I Please read the LOB data set into a data frame named
lob now, and take a look at its basic statistics

I Also, plot the data frame for a first impression of
correlations between the variables

Comparing token counts
> boxplot(brownto,lobto)
> boxplot(brownto,lobto,names=c("brown","lob"))
> boxplot(brownto,lobto,names=c("brown","lob"),
ylim=c(1500,3000))

> ?boxplot

> t.test(brownto, lobto)
> wilcox.test(brownto, lobto)

> brown.to.center <- brown$to[brown$to > 2200
& brown$to < 2400]

> lob.to.center <- lob$to[lob$to > 2200
& lob$to < 2400]

> t.test(brown.to.center, lob.to.center)

how about sentence length?

Is word length correlated with token count?

average word length by tokens and types almost identical:

> plot(brown$towl, brown$tywl)
> cor.test(brown$towl, brown$tywl)
> cor.test(brown$towl, brown$tywl,
method="spearman")

correlation with token count

> plot(brown$to, brown$towl)
> cor.test(brown$to, brown$towl)

