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The general setting

I In many many many research contexts, you have a number
of measurements (variables) taken on the same units

I You want to find out whether the distribution of a certain
variable (response, dependent variable) can be, to a
certain extent, predicted by a combination of the others
(explanatory, independent variables), and how the latter
are affecting the former

I We look first at case in which response is continuous (or
you can reasonably pretend it is)

I Simple but extremely effective model for such data is
based on assumption that response is given by weighted
sum of explanatory variables, plus some random noise (the
error term)

I We must look for a good setting of the weights, and at how
well the weighted sums predict observed response
distribution (the fit of the model)



The linear model

y1 = β0 + β1x11 + β2x12 + · · ·+ βnx1n + ε1

y2 = β0 + β1x21 + β2x22 + · · ·+ βnx2n + ε2

· · ·
ym = β0 + β1xm1 + β2xm2 + · · ·+ βnxmn + εm



The matrix-by-vector multiplication view

~y = X~β + ~ε


y1
y2
· · ·
ym

 =


1 x11 x12 · · · x1n
1 x21 x22 · · · x2n
· · · · · · · · · · · · · · ·
1 xm1 xm2 · · · xmn

×


β0
β1
β2
· · ·
βn

 +


ε1
ε2
· · ·
εm





The matrix-by-vector multiplication view
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· · ·
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The linear model
I Value of continuous response is given by weighted sum of

explanatory continuous or discrete variables (plus error
term)

I Simplified notation:

y = β0 + β1 × x1 + β2 × x2 + ... + βn × xn + ε

I The intercept β0 is the “default” value of the response
when all explanatory variables are set to 0 (often, not a
meaningful quantity by itself)

I Steps of linear modeling:
I Construct model
I Estimate parameters, i.e., the β weights and the variance of

the error term ε (assumed to be normally distributed with
mean 0)

I Look at model fit, check for anomalies, consider alternative
models, evaluate predictive power of model. . .

I Think of what results mean for your research question
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Choosing the independent variables

I Typically, you will have one or more variables that are of
interest for your research

I plus a number of “nuisance” variables you should take into
account

I E.g., you might be really interested in the effect of colour
and shape on speed of image recognition, but you might
also want to include age and sight of subject and familiarity
of image among the independent variables that might have
an effect

I General advice: it is better to include nuisance
independent variables than to try to build artificially
“balanced” data-sets

I In many domains, it is easier and more sensible to
introduce more independent variables in the model than to
try to control for them in an artificially dichotomized design

I Free yourself from stiff ANOVA designs!
I As usual, with moderation and commonsense



Choosing the independent variables

I Measure the correlation of independent variables, and
avoid highly correlated variables

I Use a chi-square test to compare categorical independent
variables

I Intuitively, if two independent variables are perfectly
correlated you could have an infinity of weights assigned to
the variables that would lead to exactly the same response
predictions

I More generally, if two variables are nearly interchangeable
you cannot assess their effects separately

I Even if no pair of independent variables is strongly
correlated, one variable might be highly correlated to a
linear combination of all the others (“collinearity”)

I With high collinearity, the fitting routine will die



Choosing the independent variables

I How many independent variables can you get away with?
I If you have as many independent variables as data points,

you are in serious trouble
I The more independent variables, the harder it is to

interpret the model
I Various techniques for variable selection: more on this

below, but always keep core modeling questions in mind
(does a model with variables X, Y and Z make sense?)



Dummy coding of categorical variables
I Categorical variables with 2 values coded by a single 0/1

term
I E.g., male/female distinction might be coded by term that is

0 for male subjects and 1 for females
I Weight of this term will express (additive) difference in

response for female subjects
I E.g., if response is reaction times in milliseconds and

weight of term that is set to 1 for female subjects is -10,
model predicts that, all else being equal, female subjects
take 10 less milliseconds than males to respond

I Multi-level categorical factors are split into n − 1 binary
(0/1) variables

I E.g., from 3-valued “concept class” variable (animal, plant,
tool) to:

I is animal? (animal=1; plant=0; tool=0)
I is plant? (animal=0; plant=1; tool=0)

I Often, choosing sensible “default” level (the one mapped to
0 for all binary variables) can greatly improve the
qualitative analysis of the results



Interactions
I Suppose we are testing recognition of animals vs. tools in

males and females, and we suspect men recognize tools
faster than women

I We need a male-tool interaction term (equivalently,
female-animal, female-tool, male-animal), created by
entering a separate weight for the product of the male and
tool dummy variables:

y = β0 + β1 × male + β2 × tool + β3 × (male × tool) + ε

I Here, β3 will be added only in cases in which a male
subject sees a tool (both male and tool variables are set to
1) and will account for any differential effect present when
these two properties co-occur

I Categorical variable interactions are the easiest to
interpret, but you can also introduce interactions between
categorical and continuous or two continuous variables



Pre-processing

I Lots of potentially useful transformations I will skip
I E.g., take logarithm of response and/or of some

explanatory variables
I Center variable so that mean value will be 0, scale it (these

operations will not affect fit of model, but they might make
the results easier to interpret)

I Look at documentation for R’s scale() function
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Estimation (model fitting)

I The linear model:

y = β0 + β1 × x1 + β2 × x2 + ... + βn × xn + ε

I ε is normally distributed with mean 0
I We need to estimate (assign values) to the β weights and

find the standard deviation σ of the normally distributed ε
variable

I Our criterion will be to look for β’s that minimize the error
terms

I Intuitively, the smaller the ε’s, the better the model



Big and small ε’s
Some (unrealistically neat) data
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Big and small ε’s
Bad fit
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Big and small ε’s
Large ε’s
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Big and small ε’s
Good fit
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Big and small ε’s
(Relatively) small ε’s
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Minimizing the sum of square errors
The method of least squares

I Rewrite:

y = β0 + β1 × x1 + β2 × x2 + ... + βn × xn + ε

I as:

ε = y − (β0 + β1 × x1 + β2 × x2 + ... + βn × xn)

I Sum of ε across rows (data points) should be zero (why?)
I However, we can minimize sum of squared ε’s
I I.e., pick β’s such that the sum of squared ε’s, computed as

above, takes its minimum value



Minimizing the sum of square errors

I There is a closed-form expression to find the β’s that
minimize the sum of squared errors

I This means that we have an easy-to-compute formula to
find the optimal β’s, no need to look for them by
trial-and-error

I (Incidentally, the β’s satisfying the least square criterion
are also the maximum likelihood estimates, i.e., the
estimates that make the seen data maximally likely (ignore
this for now if it doesn’t make sense to you))

I Once we estimate the β’s, we can also find the parameter
σ expressing the standard deviation of the error term



Standard errors of the β estimates

I The standard errors of the β’s (indicating the margin of
uncertainty in our estimates) depend on:

I the number of data points (more data points, more precise
estimates)

I the variance of the corresponding independent variable xi
(the larger the range of variation of the independent
variable, the more precise the βi estimate)

I σ (the more unexplained error we are left with, the less
certain we are about our β estimates)
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Sanity checks after fitting

I Plenty of sanity checks we might want to perform after
estimating a model

I See, e.g., Baayen, Gelman/Hill, Dalgaard, . . .



Residual plots

I A pretty easy and potentially revealing diagnostic looks at
the distribution of residuals over the range of fitted values

I Fitted values: the y ’s predicted by the model for the data
points in the set

I Residuals: the attested y ’s minus the predicted y ’s, i.e., the
empirical error terms in the estimated model

I If residuals do not look random across fitted values, our
modeling assumption that response can be explained by a
weighted sum of the explanatory variables plus random
noise does not hold (noise is not random)

I What to do in case?
I Ignore the problem (a common strategy)
I Transform the response (e.g., take the logarithm, square

root. . . ) or the independent variables (e.g., square one of
the variables)

I Try other forms of analyses (e.g., could the data be more
appropriate for an ordinal logistic regression?)

I etc.



Good-looking residuals
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Very suspicious-looking residuals
How could you try to fix this?
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Goodness of fit
I How well does your model fit the data?
I How much of the variance in the y ’s does the model

“explain”?
I Variance in the unmodeled y ’s:

s2
y =

∑
i(µy − yi)

2

m − 1
I Variance of residuals (“what is left to get from the

model-predicted line to the actual y ’s”):

σ2 =

∑
i(yi − (β0 + β1xi1 + β2xi2 + · · ·+ βn × xin))

2

m − n

I R2, the standard measure of fitness, is given by 1 - the
ratio of residual to response variance: R2 = 1− (σ2/s2

y )

I R2 ranges from 0 (no variance explained) to 1 (perfect fit)
I NB: this statistic is called adjusted R2 in the R linear model

output



Interpreting the β’s

I Positive β’s correspond to positive effects on the
dependent variable, vice versa for negative β’s: the higher
|β/s.e.(β)|, the stronger the corresponding effect

I If a β coefficient is 0 (i.e., the corresponding explanatory
variable has no effect whatsoever on the response), then
β/s.e.(β) has a t distribution with m − n degrees of
freedom (m: number of data points; n: number of weights
to estimate)

I In “quick and dirty” terms, if β ± 2× s.e.(β) crosses 0, the
corresponding explanatory variable (or interaction) is not
having a significant effect on the response at α = 0.05,
given the current model



Comparing nested models

I Does it help to include variable xi (that might be an
interaction), when we already include x0, . . . , xi−1? (the
“subset” model is said to be “nested” in the model with
extra-variable(s))

I Adding a variable will typically improve the fit (just because
we have an extra weight to play around with) – but is the fit
improvement good enough to justify complicating the
model? Or is it just in line with what we could expect by
chance?



Comparing nested models

I We assess the improvement by comparing the sum of
squared residuals of the smaller and larger models
(SS =

∑
i(yi − ~xiβ)2):

F =
SSsmaller − SSlarger/(nlarger − nsmaller )

SSlarger/(m − nlarger )

I Intuitions:
I The larger the difference in squared residuals between the

smaller and the larger model, the stronger the impact of the
extra terms

I The more extra terms we added, the less surprising it is
that the difference in squared residuals increased

I Significance of F value can be found in the
Fnlarger−nsmaller ,m−nlarger table you might be familiar with from
ANOVA (not by chance, in R we will perform this sort of
comparison with the anova() command)



Comparing nested models

I Multiple F-tests comparing increasingly larger models
(and/or increasingly smaller models) can be used for
incremental model building

I However, it is all too easy to get carried away with this
I Don’t forget that the model is indeed a “model” of the

phenomenon you are studying: it should make sense from
a qualitative point of view

I Some practical advice:
I Start with a model with the constant (intercept) term and

the important nuisance terms: keep these in any case
I When you add an interaction, always keep the

corresponding single variable terms
I If a set of independent variables constitute a meaningful

cluster (e.g., the variables that measure different aspects of
colour: hue, saturation and brightness), keep them all in the
model



Output statistics: summary

I While experimenting with nested models, look at the F
value of increasingly complex models to decide whether
the increase in complexity is justified

I Once you settle on a model, look at
I R2 for the overall fit of the model
I the β’s and their standard errors (and the corresponding t

values) to assess the separate impact of the explanatory
variables in the final model

I NB: it is easy to get confused between F and t values: the
former compare different regression models; the latter look
at the impact of a single variable in a specific model



Prediction

I Ultimately, we hope to have a model that will predict
responses in the “population” of interest, not only in our
sample

I E.g., we want to draw conclusions about how various
factors influence image perception in women and men in
general, not only in the data collected for our experiment

I The more parameters we have, the less data we have, the
less “truly random” our sample is. . .

I the more we run the risk of “overfitting”: estimating a model
that is adapted to idiosyncratic aspects of our data that we
would not encounter in other samples from the population
we are interested in



Prediction
I While statistical inference will give us an idea of how stable

our results should be across similar experiments, it does
not shield us from the risk that there is something really
idiosyncratic about some of our data, and that’s what our
model “learned” to simulate

I Statistical inference simply tells us how well our model
would generalize to more data with the same
idiosyncrasies!

I The ideal test for the model would be how well it predicts
data that have not been used for estimation

I This is the standard division between “training” and “test”
data in machine learning, where emphasis shifts almost
entirely on prediction of unseen data

I Modern validation techniques such as bootstrapping or
n-fold cross-validation estimate the model on a subset of
the data, and use the remaining part to evaluate it, iterating
the process with different data used as estimation and
evaluation sets



Bootstrap validation

I In bootstrap validation, we randomly resample m data
points from our original m data points with replacement

I I.e., at each step all data points have the same probability
of being sampled, including those that we have already
sampled in a previous step

I The estimation set has same number of data points m as
original data-set, but contains repeated data points and
misses some original data points

I We fit model to estimation set, but measure its
goodness-of-fit on the original data-set (that will contain
data points not used for estimation)

I We repeat this process many times, and we use averages
of R2 (or any other statistics) across the estimation and full
sets to assess how well the model generalizes
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The english data

I Load Baayen’s languageR library, that in turn loads
various useful packages and data-sets:

> library(languageR)

I We load and attach Baayen’s english data-set:

> data(english)
> ?english
> summary(english)
> attach(english)



The english data

I We will only look at a few variables from this data-set,
namely Familiarity, WordCategory, and WrittenFrequency

I Suppose that our theory of familiarity (Familiarity) predicts
that nouns feel in general more familiar than verbs
(WordCategory); we want to test this while taking into
account the obvious fact that familiarity is affected by the
frequency of usage of the word (WrittenFrequency)

I We will thus use only two independent variables (and their
interaction), but in a real life regression you should look at
the potential impact of many more variables



Preliminary checks

I The dependent variable looks reasonably “continuous”:
> summary(Familiarity)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.100 3.000 3.700 3.796 4.570 6.970

I A look at the distribution of WrittenFrequency (or at the
documentation!) reveals that these are log frequencies:
> summary(WrittenFrequency)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000 3.761 4.832 5.021 6.247 11.360

I And we have so many nouns and so many verbs:
> summary(WordCategory)

N V
2904 1664



Preliminary checks

I A sanity t-set suggests that WrittenFrequency and
WordCategory are not so strongly related as to worry
about using them as part of the same regression:

> t.test(WrittenFrequency[WordCategory=="V"],
WrittenFrequency[WordCategory=="N"])

...
t = 1.0129, df = 3175.109, p-value = 0.3112
...
sample estimates:
mean of x mean of y
5.058693 4.999629
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The linear model in R

I We estimate the model using the R “formula” notation:
dependent ∼ indep1 + indep2 + ...

I In our case:
> modelFrequencyCategory<-
lm(Familiarity~WrittenFrequency+WordCategory)

I lm() (for linear model) returns an R object that contains
various information about the fitted model

I Other functions, such as t.test(), also return an object,
except that in that case we rarely need to store the
information for further post-processing and analysis

I We store the object produced by fitting the regression in
the modelFrequencyCategory variable



A look at the estimated model with summary()

> summary(modelFrequencyCategory)

Call:
lm(formula = Familiarity ~ WrittenFrequency + WordCategory)

Residuals:
Min 1Q Median 3Q Max

-2.43148 -0.45094 -0.04207 0.41231 2.71238

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.225880 0.030547 40.13 <2e-16
WrittenFrequency 0.492205 0.005546 88.75 <2e-16
WordCategoryV 0.269772 0.021243 12.70 <2e-16

Residual standard error: 0.6909 on 4565 degrees of freedom
Multiple R-Squared: 0.6388, Adjusted R-squared: 0.6387
F-statistic: 4037 on 2 and 4565 DF, p-value: < 2.2e-16



The summary line by line

I The model we specified (a useful reminder when we start
having many variables containing lm objects):

Call:
lm(formula = Familiarity ~ WrittenFrequency + WordCategory)

I Distribution of residuals should be normal with mean 0
(and thus medians should not be far from 0):

Residuals:
Min 1Q Median 3Q Max

-2.43148 -0.45094 -0.04207 0.41231 2.71238

I This looks reasonably symmetrical and centered
reasonably near 0



The summary line by line

I The β coefficient estimates and their standard errors:
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.225880 0.030547 40.13 <2e-16
WrittenFrequency 0.492205 0.005546 88.75 <2e-16
WordCategoryV 0.269772 0.021243 12.70 <2e-16

I The intercept (β0) is significantly different from 0, which is
not a particularly interesting fact

I A noun with log frequency 0 (frequency 1) should get on
average a 1.22588 familiarity rating

I Not surprisingly, frequency has a significantly positive
impact on familiarity

I Notice that 0.492205/0.005546 = 88.75



The summary line by line

I The β coefficient estimates and their standard errors:
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.225880 0.030547 40.13 <2e-16
WrittenFrequency 0.492205 0.005546 88.75 <2e-16
WordCategoryV 0.269772 0.021243 12.70 <2e-16

I WordCategory has been recoded as the dummy variable
WordCategoryV (1 for verbs, 0 for nouns), thus we get a β
for the verbs, nouns are the “default” level

I Interestingly, WordCategoryV has a significantly positive
effect, i.e., all else being equal, verbs “feel” more familiar
than nouns



Changing the default level

I In this case, with only two levels of WordCategory, there is
no particular reason to pick nouns or verbs as the default,
but in other cases picking the right default level can
simplify the interpretation of the results

I Levels are ordered alphabetically by default, use
relevel() to pick a different default; Try:
> levels(WordCategory)
> WordCategoryBis<-relevel(WordCategory,"V")
> levels(WordCategoryBis)
> summary(lm(Familiarity~WrittenFrequency+
WordCategoryBis))

I What changed?



The summary line by line

I Next line gives standard error of residuals:

Residual standard error: 0.6909 on 4565 degrees of freedom

I And then we get the R2 and adjusted R2 value:

Multiple R-Squared: 0.6388, Adjusted R-squared: 0.6387



R2 and adjusted R2

I The R2 value is 1 minus the ratio of the variance of the
residuals to the variance of the original variable (note the
residuals() function):
> 1-(var(residuals(modelFrequencyCategory))/
var(Familiarity))

[1] 0.6388438

I The adjusted R2 corrects the variance estimates for the
number of parameters (weights) that have been estimated
(penalizing for the fact that the more parameters we have
to play with, the easier it is to fit the data):
> correctedResVar<-
(sum((residuals(modelFrequencyCategory)
-mean(residuals(modelFrequencyCategory)))^2)/
(length(Familiarity)-3))

> 1-(correctedResVar/var(Familiarity))
[1] 0.6386856



R2 and adjusted R2

I Notice that the square root of the corrected residual
variance is the residual standard error reported in the
summary:
> sqrt(correctedResVar)
[1] 0.6908534

I Relation between unadjusted and adjusted R2:
> unadjustedRsquared<-1-
(var(residuals(modelFrequencyCategory))/
var(Familiarity))

> m<-length(Familiarity)
> n<-3
> 1-((1-unadjustedRsquared)*((m-1)/(m-n-1)))
[1] 0.6386064



R2 and adjusted R2

I As (m − 1)/(m − n − 1) approaches 1 (because m, the
number of data points, is very high, and/or n, the number
of weights, is very low) the unadjusted and adjusted R2

become virtually identical
I A rule-of-thumb I’ve read somewhere on the Web: if

unadjusted and adjusted R2 differ by more than 5%, you
should worry that you are using too many dependent
variables for the amount of data you’ve got



The summary line by line

I Finally, we see a F value:
F-statistic: 4037 on 2 and 4565 DF, p-value: < 2.2e-16

I This is a test for the hypothesis that our model is
significantly better at explaining variance than an “empty”
model that predicts the dependent variable mean for all
data points: not a terribly interesting result

I Different from the F test we use in step-wise model
building, as discussed above and illustrated below



Interactions

I Is there an interaction between the effect of word
frequency and the one of word category?

> modelInteraction<-
lm(Familiarity~WrittenFrequency+WordCategory
+WrittenFrequency:WordCategory)

I Equivalent shorthand notation I don’t particularly like:

> modelInteraction<-
lm(Familiarity~WrittenFrequency*WordCategory)

I What does the summary() tell us?



Comparing nested models with anova()

I Incremental model construction confirms what we found
out by looking at the significant β coefficients in the largest
model, i.e., we should keep both the frequency and
category models in the model, whereas we don’t have
strong evidence for an effect of their interaction:

> modelFrequency<-lm(Familiarity~WrittenFrequency)
> modelCategory<-lm(Familiarity~WordCategory)

> anova(modelFrequency,modelFrequencyCategory)
> anova(modelCategory,modelFrequencyCategory)
> anova(modelFrequencyCategory,modelInteraction)



Comparing nested models with anova()

I Recall that we compare models computing the F statistic
as follows:

F =
SSsmaller − SSlarger/(nlarger − nsmaller )

SSlarger/(m − nlarger )

with nlarger − nsmaller and m − nlarger degrees of freedom

I Let us compute the relevant values for the comparison of
modelFrequencyCategory and modelInteraction



Comparing nested models with anova()

I Sum of squared residuals for the larger and smaller
models:
> ss_smaller<-sum(residuals(modelFrequencyCategory)^2)
> ss_larger<-sum(residuals(modelInteraction)^2)

I Total data points, parameters estimated in the two models:
> m<-length(Familiarity)
> n_smaller<-length(modelFrequencyCategory$coefficients)
> n_larger<-length(modelInteraction$coefficients)

I The F-statistic:
> myF<-((ss_smaller-ss_larger)/(n_larger-n_smaller))

/(ss_larger/(m-n_larger))

I The corresponding p-value:
1-pf(myF,n_larger-n_smaller,m-n_larger)

I Compare the results (and also the various quantities we
compute along the way) with the output of anova()



What to report

I After you picked the model you want to focus on, did all the
relevant checks, gave some serious thought to your
statistical model in the light of your theoretical model, etc.,
you might consider reporting the following results in your
paper:

I The number of data points used to estimate the model
I The model (mention also if you explored other smaller or

larger models via F-tests for nested models)
I The β values with their standard errors (marking the

significant ones)
I The R2 or adjusted R2 value (assuming they are

reasonably similar)
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A further look at the lm object

I The lm object stores many goodies – you can see the full
list in the Value section of the lm() documentation

I Among other things, you can extract coefficients (weights),
residuals and fitted values:
> coefficients(modelFrequencyCategory)
> modelFrequencyCategory$coefficients
> modelFrequencyCategory$coefficients[1]
> head(fitted.values(modelFrequencyCategory))
> head(modelFrequencyCategory$fitted.values)
> head(residuals(modelFrequencyCategory))
> head(modelFrequencyCategory$residuals)

I Use these data to make a plot of residuals by fitted values
I How does it look?



Practice with the lm output

I Use the fitted values and Familiarity to create a residuals
vector; check that it is (nearly) identical to
residuals(modelFrequencyCategory) (small
differences might be due to rounding errors)

I Create the WordCategoryV vector:
> WordCategoryV<-sapply(WordCategory,
function(x){if (x=="V"){1}else{0}})

I Now, use the coefficients from the model and the
WrittenFrequency and WordCategoryV vectors to recreate
the fitted values; then compare the ones obtained this way
with the fitted values stored in the lm object



The fitted values by matrix multiplication

> modelFrequencyCategory<-
lm(Familiarity~WrittenFrequency+WordCategory,
x=T,y=T)

> myFitted<-
modelFrequencyCategory$x %*%
modelFrequencyCategory$coefficients



Plotting the model lines
I This is relatively straightforward here, since we have only

one continuous and one two-level discrete independent
variables

# plot familiarity in function of frequency separately
# for nouns and verbs
> plot(WrittenFrequency[WordCategory=="N"],
Familiarity[WordCategory=="N"],col="red",pch=1,cex=.5)

> points(WrittenFrequency[WordCategory=="V"],
Familiarity[WordCategory=="V"],col="green",pch=1,cex=.5)

# the noun line: beta0 + beta1*frequency
> abline(a=modelFrequencyCategory$coefficients[1],
b=modelFrequencyCategory$coefficients[2],col="red")

# the verb line: beta0 + beta2 + beta1*frequency
> vIntercept<-modelFrequencyCategory$coefficients[1]+
modelFrequencyCategory$coefficients[3]

> abline(a=vIntercept,
b=modelFrequencyCategory$coefficients[2],col="green")



Plotting the lines with the interaction

# plot familiarity in function of frequency separately
# for nouns and verbs
> plot(WrittenFrequency[WordCategory=="N"],

Familiarity[WordCategory=="N"],col="red",pch=1,cex=.5)
> points(WrittenFrequency[WordCategory=="V"],

Familiarity[WordCategory=="V"],col="green",pch=1,cex=.5)

# the noun line: beta0 + beta1*frequency
> abline(a=modelInteraction$coefficients[1],

b=modelInteraction$coefficients[2],col="red")

# the verb line: beta0 + beta2 + (beta1+beta3)*frequency
> vIntercept<-modelInteraction$coefficients[1]+

modelInteraction$coefficients[3]
> vSlope<-modelInteraction$coefficients[2]+

modelInteraction$coefficients[4]
> abline(a=vIntercept,b=vSlope,col="green")



Prediction

I We need to use a different function (part of the Design
library, that was loaded by languageR) to fit a linear
model that then we can use with the validate() function
(also part of the Design library):

> modelFrequencyCategory<-
ols(Familiarity~WrittenFrequency+WordCategory,
x=TRUE,y=TRUE)

I The x and y arguments tell the function to store the
original independent variable matrix (x) and dependent
variable values (y ) in the resulting object; these are
necessary to perform the validation experiments

I We repeat the bootstrapping procedure 1,000 times:
> validate(modelFrequencyCategory,B=1000)



Prediction

I We only look at the bootstrap estimates of R2

I Different simulations will produce slightly different results,
but the training column reports the average R2

computed on the same bootstrapped sets used for
estimation whereas test reports the average R2 of the
bootstrapped models as computed on the whole data-set

I The optimism column is the difference between these
two values, and the index.corrected is the original R2

minus this optimism score
I The larger the optimism (or, equivalently, the larger the

difference between original and corrected R2), the more
the model is overfitting the training data, and the worse it
will be at predicting unseen data
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Back to the Elena Nava’s cochlear implant data

I Fields in the cochlear-1.txt file
source mono or bilateral

session 1st, 2nd, 3d or 4th meeting with the subject
stimulus position of stimulus wrt subject, in degrees

response response, in degrees
error absolute difference, in degrees, between

stimulus and response
I For stimulus and response, possible values are 30, 60,

120, 150 (source on the right, degrees measured
clockwise from 0 in front of subject), -30, -60, -120, -150
(source on the left, negative degrees measures
counterclockwise from 0 in front of subject)

I Possible error values: 0, 30, 60, 90, 120, 150, 180
I It is not entirely appropriate to treat this as a continuous

dependent variable!



Decomposing the stimulus

I Possible stimulus values are 30, 60, 120, 150 (source on
the right, degrees measured clockwise from 0 in front of
subject), -30, -60, -120, -150 (source on the left, negative
degrees measures counterclockwise from 0 in front of
subject)

I Ears are at -90 and 90 degrees
I We can break down the stimulus into more primitive

variables:
I Is stimulus presented from left (< 0) or right (> 0)?
I Is stimulus in front (|stim| < 90) or to the back (|stim| > 90)

of subject?
I Is stimulus “nearer” (60 ≤ |stim| ≤ 120) or further away

from the ears?



Decomposing the stimulus

front

back

left right

far

near

far

near

far

near

far

near



Decomposing the stimulus

> stimlr<-sapply(stimulus,
function(x)if (x<0)"left"else"right")

> stimfb<-sapply(stimulus,
function(x)if (abs(x)<90)"front"else"back")

> stimdist<-sapply(stimulus,
function(x)if ((abs(x)==60) || (abs(x)==120))
"near"else"far")

# we also scale the dependent variable to the 0-6 range
> normError<-error/30



Analyze!

I Try various linear models of normErr using (a selection of)
the following independent variables: source, session,
stimlr, stimdist, stimfb

I You might get a few “variable ’X’ converted to a factor”
warnings: to avoid them, wrap the variable creation
commands above with the as.factor() function

I Look at the models’ fit, look at the β’s and think of what
they mean, explore some interactions, compare nested
models, relevel some variable (you will have to use
as.factor() to be able to relevel the variables created
above)

I Inspect the distribution of residuals (not very reassuring)
I Run a bootstrap validation
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