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Preliminary caveat

I Mixed models, aka multilevel models, aka hierarchical
models are an important and very active field of research

I Implications extend well beyond accounting for subjects
and items, towards sophisticated structured statistical
models of many natural and social phenomena

I Mixed models are often developed within the Bayesian
statistics framework

I In the simple mixed models we consider below, inference of
subject-/item-specific intercepts is treated in Bayesian
terms by defining prior cross-subject/-item distributions

I This is a cutting edge area, and there is relatively little
“received wisdom” to go by

I Expect hand-waving, discordant opinions, changes in R
implementations



The problem of subjects and “items”

I In many research settings, the collected data are grouped
into units such as subjects, “items” (words, specific
objects), experimental locations, etc.

I These are typically discrete nuisance variables, but unlike
with other discrete nuisance variables, it does not make
sense to include them in the analysis as “factors”

I We would be swamped by uninteresting parameters to be
estimated (if you have 20 subjects, you will need 19 dummy
variables: one for John Smith, one for Mary White, etc.)

I The number of levels in our sample are just a very small
proportion of the possible levels in the population (we are
not interested in John and Mary in particular, and the next
sample might include Paul and Laura instead)



The problem of subjects and “items”

I From now on, I will use the term random effects for
variables having these characteristics (because we will
treat their levels attested in our data-set as samples from a
random variable), whereas traditional continuous and
discrete factors will be called fixed effects

I A model with fixed and random effect is thus called a
mixed effects model or a mixed model



The problem of subjects and “items”

I Random effects should not be ignored, since they might
have an impact on the dependent variable that would make
our results look worse or better than they really are:

I Worse: e.g., because John and Mary are essentially
reacting in the same way to a variable of interest, but Mary
is in general faster than John

I Better: e.g., because many of our “animal” stimuli are
pictures of dogs, and we believe we are discovering
something about animal concepts in general, but we are
actually modeling idiosyncrasies of the dog concept



The problem of subjects and “items”

I Sometimes you can control for some of these factors in
your design, but many times you cannot

I You have only so many subjects available, and you don’t
want to collect a single observation from each subject (it
might not even make sense to do so, e.g., in a longitudinal
study)

I There are only so many pictures of lemmings with the
characteristics you need

I You are stuck with “observational” data with an unequal
distribution across subjects and items

I . . .



Some common alternatives to mixed models

I Ignore the problem
I Often OK, but not always safe

I Average across subjects, items
I Not an efficient way to use the data; things get involved

when you have more than one nuisance variable to average
across; you still have no model for unseen subjects, items

I Subject- or item-level bootstrap validation (sample with
replacement from the data of n − k subjects, test on
original data-set; iterate)

I Again, things get involved if we have multiple variables to
handle; we are still not accounting for the “random” nature
of the specific levels of these factors
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Mixed models

I In the simple approach we are taking here, we assume that
subject and item effects (or location effects, or whatever
other grouping factor of this sort) are subject- and
item-specific adjustments to the intercept (although
framework can also be extended to slopes)

I I.e., the responses to the same conditions for different
subjects (or items) differ only by an additive constant (i.e.,
they can be seen as effects on the intercept)

I Gelman and Hill call this the “varying intercept model”
I NB: no need for nesting of the subject and item effects

I E.g., you can use mixed models to analyze a design where
subject A saw items 1, 2 and 3, subject B saw 2 and 4, C
saw 1, 4 5, etc.



Same slopes, adjusted intercepts
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Mixed models
The varying intercept model

I Suppose we want to model subjects as a random effect
I On top of the usual intercept term, we add, for each

subject, a quantity adjsubj sampled from a normally
distributed random variable with mean 0 and variance
estimated from the data

I The classic linear regression model:

y = β0 + β1 × x1 + β2 × x2 + ... + βn × xn + ε

I The mixed model with a random subject effect:

y = β0 + adjsubj + β1 × x1 + β2 × x2 + ... + βn × xn + ε

where adjsubj , the subject-specific intercept adjustment, is
sampled once for all the data points of a subject, from a
normal distribution with µadjsubj

= 0 and variance σadjsubj

estimated from the data grouped by subject



Mixed models
The varying intercept model

I The mixed model with a random subject effect:

y = β0 + adjsubj + β1 × x1 + β2 × x2 + ... + βn × xn + ε

where adjsubj , the subject-specific intercept adjustment, is
sampled once for all the data points of a subject, from a
normal distribution with µadjsubj

= 0 and variance σadjsubj

estimated from the data grouped by subject
I For each random effect, we have only one extra parameter

to estimate (the variance of the adjraneff random variable)
I Much less than n − 1 coefficients for n subjects

I Equivalently, you can think of adjsubj as another error term
(similar to ε) sampled once for each subject (or other
random effect)
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Estimating mixed effect models

I . . . is not for the faint-hearted!
I No closed-form solution, various iterative “trial-and-error”

methods are implemented
I The lmer() function we will use in R combines the

Expectation-Maximization and Newton-Raphson algorithm
to maximize the (restricted) maximum likelihood

I Bayesian Markov Chain Monte Carlo fitting methods are
also popular



Shrinkage estimates of level-specific intercepts

I The specific adjustments for the levels of a random effect
(e.g., specific subjects) are not among the parameters
estimated when fitting the model

I However, once the model is fitted, we can use it to derive
estimates for these level-specific adjustments

I Such estimates are weighted averages of the adjustment
estimate we would get if we only used the level-specific
data and the average adjustment across levels (0 by
definition)



Shrinkage estimates of level-specific intercepts

I Importantly, the larger the number of instances of the level
(e.g., the more data we have from a specific subject), the
more weight will be given to the level-specific adjustment
estimate; the less data, the more weight will be given to the
pooled average (0)

I I.e., level-specific adjustments are “regressed towards the
mean”, the more so the less data we have for the level,
which should make intuitive sense

I This “shrinkage” procedure shields us from overfitting
where we have little data, while allowing bolder estimated
at levels that are better represented in the sample



Shrinkage
A toy example
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Significance of the fixed effects

I A mixed model analysis in R will return coefficient
estimates, standard errors and t values for the fixed effects
(just like plain old lm()), but no corresponding p-values

I A hypothesis test based on the t statistic requires us to
know the degrees of freedom, and it is not clear how to
derive those for a model with random effects

I If we have many data points, the t distribution approaches
a normal curve (for which shape does not depend on
degrees of freedom); thus, for large data-sets we can
informally state that if t value is above 2, corresponding
coefficient is significant at α = .05



Significance of the fixed effects

I Significance of fixed effects can also be tested by
simulation, using Markov chain Monte Carlo sampling

I Starting with the fitted model estimates, we perform a
random walk in the parameter space, sampling subset of
parameters conditional on the data and the other
parameters

I Empirical confidence intervals for the parameters of
interest (typically: the fixed effect coefficients) can then be
computed from these samples



Model comparison

I It does not make sense to check whether the variance
parameter of a random effect “is significantly different from
0” since random effect variances are always positive

I However, we can compare models with or without the
random effect(s) of interest

I In this case, an appropriate comparison can be carried out
by a log-likelihood ratio test, the (log of the) ratio of
likelihoods of the data under the smaller and larger models

I −2llr approximates a χ2 distribution with degrees of
freedom given by the difference in parameters between the
models

I (In the presence of random effects, the p-values obtained
in this way will be conservative)



Goodness of fit

I We can calculate the (unadjusted) R2 of a fitted mixed as
above

I However, this quantity will not tell us much about the
variance explained by the fixed effects alone

I Indeed, comparing the fit of a model with only intercept
and random effects to that of a model with also the fixed
effects of interest is often a sobering experience!



Prediction

I Prediction with a mixed model works differently depending
on whether you want to predict an unseen observation for
familiar subject/item levels

I In which case you can use the model-derived adjustment to
the intercept for the specific subject and item(s)

I If you are predicting an unseen subject/item level, then you
can draw the relevant adjustment from normal distributions
with mean 0 and variance as estimated by the model for
the random effect

I AFAIK, no cross-validation function for mixed models
currently implemented in R

I You can write your own
I But keep in mind that mixed model fitting can be really slow!
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Mixed model in R

I Using the lme4 library (automatically loaded when we load
languageR)

I See:
I J. Pinheiro and D. Bates. Mixed-Effects Models in S and

S-PLUS. Springer, 2000 (book-length introduction,
somewhat outdated)

I H. Baayen, D. Davidson and D. Bates. Mixed-effects
modeling with crossed random effects for subjects and
items. To appear in the Journal of Memory and
Language (highly recommended article-length introduction
especially geared towards psycholinguists)

I H. Baayen. Analyzing Linguistic Data, CUP, 2008 (Chapter
7 is the best non-technical introduction to mixed models in
R I am aware of)

I D. Bates. Linear mixed model implementation in lme4. R
documentation, 2007 (the gory details)

I D. Bates. Fitting linear mixed models in R. R News 5:27-30
(a 5-page survey)
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The Navarrete et al.’s
Cumulative Within-Category Cost data

I Part of a larger study by Eduardo Navarrete, Brad Mahon
and Alfonso Caramazza (article submitted)

I We look at their Experiment 1, in which they replicate the
Cumulative Within-Category Cost effect on picture naming
found by Howard and colleagues in 2006



The Cumulative Within-Category Cost effect
As described by Navarrete et al.

I “When participants name a series of pictures drawn from
multiple superordinate semantic categories (animals, fruit,
vehicles, etc.), naming latencies to each picture are a
linear function of the ordinal position within-category in
which that picture appeared in the naming sequence.”

I “For instance, participants may name pictures in the
sequence pig. . . house. . . sheep. . . apple. . . car. . .
horse. . . etc.. It is found that naming latencies to the
second animal in the sequence (sheep) are slower than
naming latencies to the first animal; likewise, the naming
latencies to the third animal (horse) are again slower, and
by the same amount, than naming latencies to the second
item.”



The cwcc.txt data-set

response The picture naming latency in milliseconds (or
error for wrong or anomalous responses)

ordpos The ordinal position of the item within its category
in the current block (is this the first, second, . . . ,
fifth animal?)

block Each subject sees 4 repetitions of the whole
stimulus set, presented in different orders

category 12 superordinate categories (animals , body parts,
buildings, etc.)

item The specific objects presented in the pictures
(pears, pianos, houses)

subj A unique id for each of the 20 subjects



Setup

I Start R or clean up your workspace (in particular, detach
any attached data-frame)

I Load the languageR library (that will in turn load all the
other necessary packages, in particular lme4)

I Read the cwcc.txt data-set into a data-frame, e.g., d
I Remove the data points with error responses (it’s easier to

filter whole data-frames with subset() than by index
filtering):
> noerror<-subset(d,response!="error")
> attach(noerror)



Setup

I Because of the error entries, R is now treating response
as a factor (you can see that if you try a summary()); we
need some crazy code to convert it to a numeric variable:
> numresp<-
as.numeric(levels(response)[response])

I From the summary, we also note that R is treating subj as
a numeric variable, let’s fix that as well:
> subjcode<-as.factor(subj)
> summary(subj)
> summary(subjcode)



A quick look at the Cumulative Within-Category Cost
effect

> mean(numresp[ordpos==1])
> mean(numresp[ordpos==2])
> mean(numresp[ordpos==3])
> mean(numresp[ordpos==4])
> mean(numresp[ordpos==5])

> positions<-1:5
> ordposmeans<-
sapply(positions,
function(x){mean(numresp[ordpos==x])})

> plot(positions,ordposmeans)
> abline(lm(ordposmeans~positions))
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Analysis with no random effects

I Run a traditional regression with numresp as dependent
variable and ordpos, block and their interaction as
independent variables

I It could be interesting to also look at the effect of
superordinate categories, but we’ll skip that here



Fitting a model with random effects

I Use the lmer() function
I Model specified as with lm, adjustments to the intercept

are expressed as (1|effect)
I Recall that the intercept, being constant, corresponds to a

column of 1s in the matrix view of a linear model
I We’ll start simple, and progressively add variables if

justified by the log-likelihood ratio test
I Random effects only:
> subj.lmer<-lmer(numresp~(1|subjcode))
> item.lmer<-lmer(numresp~(1|item))
> subj_item.lmer<-lmer(numresp~(1|item)
+(1|subjcode))



Model comparison

> anova(subj.lmer,subj_item.lmer)
Data:
Models:
subj.lmer: numresp ~ (1 | subjcode)
subj_item.lmer: numresp ~ (1 | item) + (1 | subjcode)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
subj.lmer 2 56695 56707 -28345
subj_item.lmer 3 55494 55513 -27744 1202.6 1 < 2.2e-16



Model comparison
The important information in the anova() output

I The log likelihoods of the two models are
llr(subj .lmer) = −28345 and
llr(subj_item.lmer) = −27744, respectively

I The estimated coefficients (reported in the Df column) are
2 and 3, respectively (intercept estimate plus 1 or 2
random effect variances)

I Apparently, other versions of lmer() give 3 and 4 Dfs:
don’t ask me why, but difference in any case is still 1

I The log ratio of likelihoods is the same as the difference
between log likelihoods, and we multiply this quantity by
−2 to get the approximated X 2 statistic:

> -2*(-28345 - (-27744))
[1] 1202



Model comparison
The important information in the anova() output

I We compare this against the χ2 table with 1 degree of
freedom (difference in estimated coefficients between
larger and smaller model):

> 1-pchisq(1202,1)
[1] 0

I This analysis suggests that both effects should be kept



Model comparison

I We keep both random effects, and we build increasingly
complex fixed effect models:

> ordpos.lmer<-lmer(numresp~ordpos+(1|item)+
(1|subjcode))

> block.lmer<-lmer(numresp~block+(1|item)+
(1|subjcode))

> ordpos_block.lmer<-lmer(numresp~ordpos+block+
(1|item)+(1|subjcode))

> ordpos_block_interaction.lmer<-
lmer(numresp~ordpos+block+ordpos:block+
(1|item)+(1|subjcode))



Model comparison

I We might want to go for the most complex model with
interactions, although improvement compared to the model
without interactions is small:
> anova(subj_item.lmer,ordpos.lmer)
> anova(subj_item.lmer,block.lmer)
> anova(ordpos.lmer,ordpos_block.lmer)
> anova(block.lmer,ordpos_block.lmer)
> anova(ordpos_block.lmer,
ordpos_block_interaction.lmer)
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A look at the output model

> print(ordpos_block_interaction.lmer,corr=FALSE)
Linear mixed-effects model fit by REML
Formula: numresp ~ ordpos + block + ordpos:block + (1 | item) + (1 | subjcode)

AIC BIC logLik MLdeviance REMLdeviance
55142 55181 -27565 55145 55130

Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 7479.2 86.482
subjcode (Intercept) 3173.6 56.335
Residual 16031.7 126.616

number of obs: 4382, groups: item, 60; subjcode, 20

Fixed effects:
Estimate Std. Error t value

(Intercept) 781.834 20.160 38.78
ordpos 20.870 3.365 6.20
block -19.125 4.000 -4.78
ordpos:block -2.493 1.213 -2.06



The random effects

I Estimated variance of the item- and subject-specific
intercept adjustments, and residual variance (that can be
seen as another random effect):
Random effects:
Groups Name Variance Std.Dev.
item (Intercept) 7479.2 86.482
subjcode (Intercept) 3173.6 56.335
Residual 16031.7 126.616

I NB: Std.Dev. is simply the square root of variance



Fixed effects

I No p-values, for the issues with df’s discussed above
Fixed effects:

Estimate Std. Error t value
(Intercept) 781.834 20.160 38.78
ordpos 20.870 3.365 6.20
block -19.125 4.000 -4.78
ordpos:block -2.493 1.213 -2.06

I Rough and ready t-value-based estimates of significance
would indicate that both main effects and interaction are
significant (the latter barely so)

I As expected, ordinal position within category has positive
effect on naming latencies, whereas repetition has a
negative effect (people get faster in reacting to pictures
they have already seen)



P-values from MCMC sampling

# 50,000 samples take a while...
> mcmcpvals<-pvals.fnc(ordpos_block_interaction.lmer,nsim=50000)

> mcmcpvals$fixed
Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)

(Intercept) 781.834 781.880 742.024 822.6893 0.0000 0.0000
ordpos 20.870 20.846 14.191 27.3950 0.0000 0.0000
block -19.125 -19.151 -26.937 -11.2470 0.0000 0.0000
ordpos:block -2.493 -2.483 -4.943 -0.1701 0.0429 0.0399



P-values from MCMC sampling

I HPD (highest posterior density) intervals enclose the
shortest range of values with total probability of 95%

I Like the pMCMC values, there are computed empirically
on the sample

I At least for the interaction, we see that the p value is larger
than the one produced by the t-test (although still
significant):

Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|)
...
ordpos:block -2.493 -2.483 -4.943 -0.1701 0.0429 0.0399



Goodness of fit

I R2 of a model without random effects is 0.04
I Fits of model with random effects only, and with random

plus fixed effects:

> 1-(var(residuals(subj_item.lmer))/
var(numresp))

[1] 0.3664654
> 1-
(var(residuals(ordpos_block_interaction.lmer))/
var(numresp))

[1] 0.4152701

I As is often the case, most of the variance is accounted for
by the random effects



Reconstructing the model-fitted latencies

I We look at the first data point in our set:
> noerror[1,]
subj item category ordpos block response

1 1 cup tableware 1 1 724

I The model predicts:
> fitted(ordpos_block_interaction.lmer)[1]
[1] 792.1652



Reconstructing the model fitted latencies
Do it yourself

> adjustedintercept<-
fixef(ordpos_block_interaction.lmer)[1] +
ranef(ordpos_block_interaction.lmer)$subjcode["1",] +
ranef(ordpos_block_interaction.lmer)$item["cup",]

> adjustedintercept +
(fixef(ordpos_block_interaction.lmer)[2]*ordpos[1]) +
(fixef(ordpos_block_interaction.lmer)[3]*block[1]) +
(fixef(ordpos_block_interaction.lmer)[4]*
(ordpos[1]*block[1]))

(Intercept)
792.1652



Outline

Mixed models with subject and item effects

Mixed models in R
Pre-processing
Fitting and comparing models
Exploring the fitted model
Practice



More cochlear implant data
From Elena Nava’s study

I The file cochlear-2.txt contains data from multiple
subjects, with information on deafness onset, time from
implant, side of implant:

subj Codes identifying the subjects
onset Pre(verbal) or post(verbal) onset of deafness

implant_time Time from implant (in years)
implant_location Left or right implant

stimlr Source of stimulus: left or right
loc_stim Is source of stimulus on same side of implant?

stimfb Source of stimulus: front or back
stimdist Source of stimulus: nearer or “far” from ears?

error Difference between stimulus and response
(degrees/30)



Practice

I Try a traditional linear regression on error using some of
the other variables as explanatory variables

I Try some mixed models with subjects as random effects
I Compare mixed models of different complexity
I Choose a model and use MCMC to compute p-values and

confidence intervals for the fixed effect coefficients
I Look at the R2 fit of the traditional model, of the model with

the random effect only, and of your chosen mixed model
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