
Regression 3: Logistic Regression

Marco Baroni

Practical Statistics in R



Outline

Logistic regression

Logistic regression in R



Outline

Logistic regression
Introduction
The model
Looking at and comparing fitted models

Logistic regression in R



Outline

Logistic regression
Introduction
The model
Looking at and comparing fitted models

Logistic regression in R



Modeling discrete response variables

I In a very large number of problems in cognitive science
and related fields

I the response variable is categorical, often binary (yes/no;
acceptable/not acceptable; phenomenon takes place/does
not take place)

I potentially explanatory factors (independent variables) are
categorical, numerical or both



Examples: binomial responses

I Is linguistic construction X rated as “acceptable” in the
following condition(s)?

I Does sentence S, that has features Y, W and Z, display
phenomenon X? (linguistic corpus data!)

I Is it common for subjects to decide to purchase the good X
given these conditions?

I Did subject make more errors in this condition?
I How many people answer YES to question X in the survey
I Do old women like X more than young men?
I Did the subject feel pain in this condition?
I How often was reaction X triggered by these conditions?
I Do children with characteristics X, Y and Z tend to have

autism?



Examples: multinomial responses

I Discrete response variable with natural ordering of the
levels:

I Ratings on a 6-point scale
I Depending on the number of points on the scale, you might

also get away with a standard linear regression
I Subjects answer YES, MAYBE, NO
I Subject reaction is coded as FRIENDLY, NEUTRAL,

ANGRY
I The cochlear data: experiment is set up so that possible

errors are de facto on a 7-point scale
I Discrete response variable without natural ordering:

I Subject decides to buy one of 4 different products
I We have brain scans of subjects seeing 5 different objects,

and we want to predict seen object from features of the
scan

I We model the chances of developing 4 different (and
mutually exclusive) psychological syndromes in terms of a
number of behavioural indicators



Binomial and multinomial logistic regression models

I Problems with binary (yes/no, success/failure,
happens/does not happen) dependent variables are
handled by (binomial) logistic regression

I Problems with more than one discrete output are handled
by

I ordinal logistic regression, if outputs have natural ordering
I multinomial logistic regression otherwise

I The output of ordinal and especially multinomial logistic
regression tends to be hard to interpret, whenever possible
I try to reduce the problem to a binary choice

I E.g., if output is yes/maybe/no, treat “maybe” as “yes”
and/or as “no”

I Here, I focus entirely on the binomial case



Don’t be afraid of logistic regression!

I Logistic regression seems less popular than linear
regression

I This might be due in part to historical reasons
I the formal theory of generalized linear models is relatively

recent: it was developed in the early nineteen-seventies
I the iterative maximum likelihood methods used for fitting

logistic regression models require more computational
power than solving the least squares equations

I Results of logistic regression are not as straightforward to
understand and interpret as linear regression results

I Finally, there might also be a bit of prejudice against
discrete data as less “scientifically credible” than
hard-science-like continuous measurements



Don’t be afraid of logistic regression!

I Still, if it is natural to cast your problem in terms of a
discrete variable, you should go ahead and use logistic
regression

I Logistic regression might be trickier to work with than linear
regression, but it’s still much better than pretending that the
variable is continuous or artificially re-casting the problem
in terms of a continuous response



The Machine Learning angle

I Classification of a set of observations into 2 or more
discrete categories is a central task in Machine Learning

I The classic supervised learning setting:
I Data points are represented by a set of features, i.e.,

discrete or continuous explanatory variables
I The “training” data also have a label indicating the class of

the data-point, i.e., a discrete binomial or multinomial
dependent variable

I A model (e.g., in the form of weights assigned to the
dependent variables) is fitted on the training data

I The trained model is then used to predict the class of
unseen data-points (where we know the values of the
features, but we do not have the label)



The Machine Learning angle

I Same setting of logistic regression, except that emphasis is
placed on predicting the class of unseen data, rather than
on the significance of the effect of the features/independent
variables (that are often too many – hundreds or thousands
– to be analyzed singularly) in discriminating the classes

I Indeed, logistic regression is also a standard technique in
Machine Learning, where it is sometimes known as
Maximum Entropy
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Classic multiple regression

I The by now familiar model:

y = β0 + β1 × x1 + β2 × x2 + ... + βn × xn + ε

I Why will this not work if variable is binary (0/1)?
I Why will it not work if we try to model proportions instead

of responses (e.g., proportion of YES-responses in
condition C)?



Modeling log odds ratios
I Following up on the “proportion of YES-responses” idea,

let’s say that we want to model the probability of one of the
two responses (which can be seen as the population
proportion of the relevant response for a certain choice of
the values of the dependent variables)

I Probability will range from 0 to 1, but we can look at the
logarithm of the odds ratio instead:

logit(p) = log
p

1− p
I This is the logarithm of the ratio of probability of

1-response to probability of 0-response
I It is arbitrary what counts as a 1-response and what counts

as a 0-response, although this might hinge on the ease of
interpretation of the model (e.g., treating YES as the
1-response will probably lead to more intuitive results than
treating NO as the 1-response)

I Log odds ratios are not the most intuitive measure (at least
for me), but they range continuously from −∞ to +∞



From probabilities to log odds ratios
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The logistic regression model

I Predicting log odds ratios:

logit(p) = β0 + β1 × x1 + β2 × x2 + ... + βn × xn

I Back to probabilities:

p =
elogit(p)

1 + elogit(p)

I Thus:

p =
eβ0+β1×x1+β2×x2+...+βn×xn

1 + eβ0+β1×x1+β2×x2+...+βn×xn



From log odds ratios to probabilities
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Probabilities and responses

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

logit(p)

p

●●● ● ●● ●● ● ●

●●●●●●●●●●



A subtle point: no error term

I NB:

logit(p) = β0 + β1 × x1 + β2 × x2 + ... + βn × xn

I The outcome here is not the observation, but (a function of)
p, the expected value of the probability of the observation
given the current values of the dependent variables

I This probability has the classic “coin tossing” Bernoulli
distribution, and thus variance is not free parameter to be
estimated from the data, but model-determined quantity
given by p(1− p)

I Notice that errors, computed as observation− p, are not
independently normally distributed: they must be near 0 or
near 1 for high and low ps and near .5 for ps in the middle



The generalized linear model

I Logistic regression is an instance of a “generalized linear
model”

I Somewhat brutally, in a generalized linear model
I a weighted linear combination of the explanatory variables

models a function of the expected value of the dependent
variable (the “link” function)

I the actual data points are modeled in terms of a distribution
function that has the expected value as a parameter

I General framework that uses same fitting techniques to
estimate models for different kinds of data



Linear regression as a generalized linear model

I Linear prediction of a function of the mean:

g(E(y)) = Xβ

I “Link” function is identity:

g(E(y)) = E(y)

I Given mean, observations are normally distributed with
variance estimated from the data

I This corresponds to the error term with mean 0 in the linear
regression model



Logistic regression as a generalized linear model

I Linear prediction of a function of the mean:

g(E(y)) = Xβ

I “Link” function is :

g(E(y)) = log
E(y)

1− E(y)

I Given E(y), i.e., p, observations have a Bernoulli
distribution with variance p(1− p)



Estimation of logistic regression models

I Minimizing the sum of squared errors is not a good way to
fit a logistic regression model

I The least squares method is based on the assumption that
errors are normally distributed and independent of the
expected (fitted) values

I As we just discussed, in logistic regression errors depend
on the expected (p) values (large variance near .5,
variance approaching 0 as p approaches 1 or 0), and for
each p they can take only two values (1− p if response
was 1, p − 0 otherwise)



Estimation of logistic regression models

I The β terms are estimated instead by maximum likelihood,
i.e., by searching for that set of βs that will make the
observed responses maximally likely (i.e., a set of β that
will in general assign a high p to 1-responses and a low p
to 0-responses)

I There is no closed-form solution to this problem, and the
optimal ~β tuning is found with iterative “trial and error”
techniques

I Least-squares fitting is finding the maximum likelihood
estimate for linear regression and vice versa maximum
likelihood fitting is done by a form of weighted least squares
fitting
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Interpreting the βs

I Again, as a rough-and-ready criterion, if a β is more than 2
standard errors away from 0, we can say that the
corresponding explanatory variable has an effect that is
significantly different from 0 (at α = 0.05)

I However, p is not a linear function of Xβ, and the same β
will correspond to a more drastic impact on p towards the
center of the p range than near the extremes (recall the S
shape of the p curve)

I As a rule of thumb (the “divide by 4” rule), β/4 is an upper
bound on the difference in p brought about by a unit
difference on the corresponding explanatory variable



Goodness of fit

I Again, measures such as R2 based on residual errors are
not very informative

I One intuitive measure of fit is the error rate, given by the
proportion of data points in which the model assigns p > .5
to 0-responses or p < .5 to 1-responses

I This can be compared to baseline in which the model
always predicts 1 if majority of data-points are 1 or 0 if
majority of data-points are 0 (baseline error rate given by
proportion of minority responses over total)

I Some information lost (a .9 and a .6 prediction are treated
equally)

I Other measures of fit proposed in the literature, no widely
agreed upon standard



Binned goodness of fit

I Goodness of fit can be inspected visually by grouping the
ps into equally wide bins (0-0.1,0.1-0.2, . . . ) and plotting
the average p predicted by the model for the points in each
bin vs. the observed proportion of 1-responses for the data
points in the bin

I We can also compute a R2 or other goodness of fit
measure on these binned data



Deviance

I Deviance is an important measure of fit of a model, used
also to compare models

I Simplifying somewhat, the deviance of a model is −2 times
the log likelihood of the data under the model

I plus a constant that would be the same for all models for
the same data, and so can be ignored since we always look
at differences in deviance

I The larger the deviance, the worse the fit
I As we add parameters, deviance decreases



Deviance

I The difference in deviance between a simpler and a more
complex model approximates a χ2 distribution with the
difference in number of parameters as df’s

I This leads to the handy rule of thumb that the improvement
is significant (at α = .05) if the deviance difference is larger
than the parameter difference (play around with pchisq()
in R to see that this is the case)

I A model can also be compared against the “null” model
that always predicts the same p (given by the proportion of
1-responses in the data) and has only one parameter (the
fixed predicted value)
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Back to the Graffeo et al.’s discount study
Fields in the discount.txt file

subj Unique subject code
sex M or F
age NB: contains some NA

presentation absdiff (amount of discount), result (price after
discount), percent (percentage discount)

product pillow, (camping) table, helmet, (bed) net
choice Y (buys), N (does not buy)→ the discrete

response variable



Preparing the data

I Read the file into an R data-frame, look at the summaries,
etc.

I Note in the summary of age that R “understands” NAs
(i.e., it is not treating age as a categorical variable)

I We can filter out the rows containing NAs as follows:
> e<-na.omit(d)

I Compare summaries of d and e
I na.omit can also be passed as an option to the modeling

functions, but I feel uneasy about that
I Attach the NA-free data-frame



Logistic regression in R

> sex_age_pres_prod.glm<-glm(choice~sex+age+
presentation+product,family="binomial")

> summary(sex_age_pres_prod.glm)



Selected lines from the summary() output

I Estimated β coefficients, standard errors and z scores
(β/std. error):
Coefficients:

Estimate Std. Error z value Pr(>|z|)
sexM -0.332060 0.140008 -2.372 0.01771 *
age -0.012872 0.006003 -2.144 0.03201 *
presentationpercent 1.230082 0.162560 7.567 3.82e-14 ***
presentationresult 1.516053 0.172746 8.776 < 2e-16 ***

I Note automated creation of binary dummy variables:
discounts presented as percents and as resulting values
are significantly more likely to lead to a purchase than
discounts expressed as absolute difference (the default
level)

I use relevel() to set another level of a categorical
variable as default



Deviance

I For the “null” model and for the current model:

Null deviance: 1453.6 on 1175 degrees of freedom
Residual deviance: 1284.3 on 1168 degrees of freedom

I Difference in deviance (169.3) is much higher than
difference in parameters (7), suggesting that the current
model is significantly better than the null model



Comparing models

I Let us add a presentation by interaction term:

> interaction.glm<-glm(choice~sex+age+presentation+
product+sex:presentation,family="binomial")

I Are the extra-parameters justified?

> anova(sex_age_pres_prod.glm,interaction.glm,
test="Chisq")

...
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 1168 1284.25
2 1166 1277.68 2 6.57 0.04

I Apparently, yes (although summary(interaction.glm)
suggests just a marginal interaction between sex and the
percentage dummy variable)



Error rate
I The model makes an error when it assigns p > .5 to

observation where choice is N or p < .5 to observation
where choice is Y:

> sum((fitted(sex_age_pres_prod.glm)>.5 & choice=="N") |
(fitted(sex_age_pres_prod.glm)<.5 & choice=="Y")) /
length(choice)

[1] 0.2721088

I Compare to error rate by baseline model that always
guesses the majority choice:

> table(choice)
choice
N Y

363 813
> sum(choice=="N")/length(choice)
[1] 0.3086735

I Improvement in error rate is nothing to write home about. . .



Binned fit

I Function from languageR package for plotting binned
expected and observed proportions of 1-responses, as
well as bootstrap validation, require logistic model fitted
with lrm(), the logistic regression fitting function from the
Design package:
> sex_age_pres_prod.glm<-
lrm(choice~sex+age+presentation+product,
x=TRUE,y=TRUE)

I The languageR version of the binned plot function
(plot.logistic.fit.fnc) dies on our model, since it
never predicts p < 0.1, so I hacked my own version, that
you can find in the r-data-1 directory:
> source("hacked.plot.logistic.fit.fnc.R")
> hacked.plot.logistic.fit.fnc(sex_age_pres_prod.glm,e)

I (Incidentally: in cases like this where something goes
wrong, you can peek inside the function simply by typing
its name)



Bootstrap estimation

I Validation using the logistic model estimated by lrm() and
1,000 iterations:
> validate(sex_age_pres_prod.glm,B=1000)

I When fed a logistic model, validate() returns various
measures of fit we have not discussed: see, e.g., Baayen’s
book

I Independently of the interpretation of the measures, the
size of the optimism indices gives a general idea of the
amount of overfitting (not dramatic in this case)



Mixed model logistic regression

I You can use the lmer() function with the
family="binomial" option

I E.g., introducing subjects as random effects:
> sex_age_pres_prod.lmer<-
lmer(choice~sex+age+presentation+
product+(1|subj),family="binomial")

I You can replicate most of the analyses illustrated above
with this model



A warning

I Confusingly, the fitted() function applied to a glm
object returns probabilities, whereas if applied to a lmer
object it returns odd ratios

I Thus, to measure error rate you’ll have to do something
like:
> probs<-exp(fitted(sex_age_pres_prod.lmer)) /
(1 +exp(fitted(sex_age_pres_prod.lmer)))

> sum((probs>.5 & choice=="N") |
(probs<.5 & choice=="Y")) /
length(choice)

I NB: Apparently, hacked.plot.logistic.fit.fnc dies
when applied to an lmer object, on some versions of R (or
lme4, or whatever)

I Surprisingly, fit of model with random subject effect is
worse than the one of model with fixed effects only
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Practice time

I Go back to Navarrete’s et al.’s picture naming data
(cwcc.txt)

I Recall that the response can be a time (naming latency) in
milliseconds, but also an error

I Are the errors randomly distributed, or can they be
predicted from the same factors that determine latencies?

I We found a negative effect of repetition and a positive
effect of position-within-category on naming latencies – are
these factors also leading to less and more errors,
respectively?



Practice time

I Construct a binary variable from responses (error vs. any
response)

I Use sapply(), and make sure that R understands this is a
categorical variable with as.factor()

I Add the resulting variable to your data-frame, e.g., if you
called the data-frame d and the binary response variable
temp, do:
d$errorresp<-temp

I This will make your life easier later on
I Analyze this new dependent variable using logistic

regression (both with and without random effects)
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