
 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 1

Decentralized Software Services Protocol – DSSP/1.0

Authors
Henrik Frystyk Nielsen, Microsoft
George Chrysanthakopoulos, Microsoft

Abstract
DSSP is a simple SOAP-based application protocol that defines a lightweight service model with
a common notion of service identity, state, and relationships between services. DSSP defines a
set of state-oriented message operations that provide support for structured data retrieval,
manipulation, and event notification. The intent of DSSP is to provide a flexible foundation for
defining applications as compositions of services interacting in a decentralized environment. The
functionality provided by DSSP is an extension of the application model provided by HTTP and is
expected to be used as an addition to existing HTTP infrastructure.

Terms of Use
Microsoft’s patent rights to this version 1.0 of the specification (the “Specification”) are being
made available under Microsoft’s Open Specification Promise, which you can review at
http://www.microsoft.com/interop/osp/default.mspx. Microsoft also grants you a royalty-free
copyright license to copy, distribute, publicly display, and publicly perform the Specification. By
providing any comments, feedback, or other input (“Feedback”) to Microsoft that is incorporated
into the Specification or any future version of the Specification, you agree that you will make your
and your affiliates’ patent rights in that Feedback available under the same terms and conditions
as Microsoft makes its patent rights available under the Open Specification Promise. You also
grant Microsoft, its affiliates, and third parties a perpetual, irrevocable and royalty-free copyright
license to copy, distribute, publicly display, publicly perform and create derivative works of such
Feedback. In addition, you represent and warrant that you have all rights necessary to provide
the Feedback subject to these terms and that the Feedback is not confidential.

Status of this Document
This document is part of Microsoft Robotics Studio. Please visit Microsoft Robotics Studio
Developer Center [8] for more details and the latest developments.

Table of Contents
1 Introduction ... 2

1.1 DSSP Overview ... 2
1.1.1 DSSP and HTTP .. 2

1.2 Terminology ... 3
1.3 Notational Conventions ... 3

2 Service Model ... 4
2.1 DSSP Service Identity ... 4
2.2 DSSP Service State... 4
2.3 DSSP Service Behavior ... 4
2.4 DSSP Service Context... 5

3 DSSP Application Model ... 5
3.1 DSSP Service Creation ... 5
3.2 DSSP Service Termination .. 7
3.3 Determining the Service Context ... 7
3.4 DSSP Service State Retrieval ... 7
3.5 DSSP Service State Modification .. 8

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 2

3.5.1 Inserting Service State ... 8
3.5.2 Deleting Service State ... 8
3.5.3 Changing Service State ... 8

3.6 Notifications of DSSP Service State Modifications .. 9
4 DSSP Protocol Model ... 9

4.1 Message Exchange Patterns ... 10
4.1.1 One-way... 10
4.1.2 Request-Response .. 10

4.2 Fault Handling .. 11
4.2.1 Generic DSSP Faults ... 11

5 DSSP Message Operations .. 12
5.1 Safe and Idempotent Operations ... 12
5.2 CREATE .. 12
5.3 DELETE ... 12
5.4 DROP .. 13
5.5 GET.. 13
5.6 INSERT .. 13
5.7 LOOKUP .. 14
5.8 QUERY .. 14
5.9 REPLACE .. 14
5.10 SUBSCRIBE .. 14
5.11 SUBMIT ... 15
5.12 UPDATE .. 15
5.13 UPSERT .. 16

6 DSSP Event notifications .. 16
7 References .. 16

1 Introduction

1.1 DSSP Overview
DSSP defines an application as a composition of services that can be harnessed to achieve a
desired task through orchestration. Services are lightweight entities that can be created,
manipulated, monitored, and destroyed repeatedly over the lifetime of an application by using
operations defined by DSSP.

A service consists of:

 Identity – The globally unique reference of the service.

 Behavior – The definition of the service functionality.

 Service State – The current state of the service.

 Service Context – The relationships the service has to other services.

DSSP provides a uniform model for creating, deleting, manipulating, subscribing, and
orchestrating services independent of the semantics of those services. DSSP achieves this by
separating state from behavior, allowing services to expose their state and hide their behavior.

DSSP enables but does not require a shared data model across all services. As a result, some
DSSP messages are concrete and others are polymorphic and must be tailored to the particular
content model of a service.

1.1.1 DSSP and HTTP

The DSSP operations are designed to be a superset of the methods provided by HTTP/1.1. In
particular, DSSP provides support for structured data manipulation and event notification as an
integral part of the service model. Because HTTP and DSSP have inherently different protocol

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 3

characteristics, DSSP is complementary to HTTP and not intended as a replacement. Rather, the
close relationship between DSSP and HTTP allows DSSP services to be accessed either as
regular HTTP resources or as DSSP services. This provides additional support for structured data
manipulation and event notification.

1.2 Terminology
The terminology used in this specification is based on the terminology defined in SOAP 1.2 with
the following additions:

Service

A computational unit that has identity, state, behavior, and context (see section 1.3).

Application
A composition of services that can be harnessed to achieve a desired task through
orchestration. (See section 3.)

Service identifier
The globally unique identifier of a service. (See section 2.1.)

Service state
The data representing a service at a specific point in time. (See section 2.2.)

Service behavior/contract
The combination of the content model describing the state and the messages exchanges
that a service defines for communicating with other services. (See section 2.3.)

Contract identifier
The globally unique identifier for the behavior of a service. (See section 2.3.)

Partner
A labeled reference representing a behavioral relationship between services. (See
section 2.3.)

Service context
The service context contains information about a service instance including which
contract it is using and which partners it communicates with (see section 2.4).

Message
A one-way message, request, or response participating in a DSSP operation. (See
section 4.1.)

Request
A message participating in a request-response message exchange pattern. (See section
4.1.2.)

Response
A message participating in a request-response message exchange pattern. (See section
4.1.2.)

1.3 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [1].

As a notational convention this specification uses the namespace prefixes listed in Table 1. A
namespace prefix is not semantically significant (see [4]).

Prefix Namespace

S http://www.w3.org/2003/05/soap-envelope

DSSP http://schemas.microsoft.com/xw/2004/10/dssp.html

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 4

Table 1 Prefixes and namespaces used in this specification.

DSSP follows the SOAP 1.2 fault model of a "code" followed by a "subcode" where the "code" is
dictated by the SOAP 1.2 specification. The notational convention for indicating a SOAP fault

code and subcode is "Code / Subcode" where Code and Subcode are XML Qualified Names.

2 Service Model

2.1 DSSP Service Identity
A DSSP service is identified by a URI. It is strongly recommended that a service identifier be
globally unique. The service identifier only provides identity; it does not convey any information
about the service state, behavior, or context.

2.2 DSSP Service State
The service state is a representation of a service at any given point in time. For example:

 The state of a service representing a motor may consist of rotations per minute, temperature,
oil pressure, and fuel consumption.

 A service representing a work queue may contain a list of all queued work items and their
current status. The work items themselves may be services allowing the work queue to
simply refer to them using their identity.

 A service representing a keyboard may contain information about which keys have been
pressed.

Any information that is to be retrieved modified, or monitored using DSSP must be expressed as
part of the service state. (See section 5.11 for information on semantics that does not alter the
service state.)

2.3 DSSP Service Behavior
The behavior of a service (the contract) is the combination of the content model describing the
state and the message exchanges that a service defines for communicating with other services.
The behavior of a service is identified by a globally unique URI known as the contract identifier.

The behavior of a service determines how it can compose with other services. Figure 1 illustrates
an example of such composition. In this case, Service A needs service B to have the correct
behavior in order to fulfill its task. Similarly, Service B needs Service C and E to have the correct
behavior for it to fulfill its task and so forth.

Such composition is called partnering. A partner is a labeled reference representing a particular
behavioral relationship that a service has to another service.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 5

Figure 1 Example of how services can compose. Service A has partner B. Service
B has partner C and E. Service C has partner D.

2.4 DSSP Service Context
While the contract of service A states the behavioral requirements on service B, a running
Service A must have an actual Service B to communicate with. Partners are initialized at service

creation (see section 3.1) and can be inspected using the LOOKUP operation (see section 3.2).

Aliasing is where two or more services share the exact same execution context. Like partners,

aliasing is part of the service context and can be inspected using the LOOKUP operation (see

section 3.2). While an implementation may choose to optimize aliasing by functionally exposing a
single execution context with multiple identifiers, logically there is always a 1:1 relationship
between a service and an identifier.

3 DSSP Application Model
An application is a composition of services that, through orchestration, can be harnessed to
achieve a desired task. This section describes mechanisms provided for creating and destroying
services, for retrieving and manipulating their state, and for subscribing for event notifications as
a result of state changes.

3.1 DSSP Service Creation
Services can be created using the CREATE operation (see section 5.2). A service that supports

the CREATE operation is called a constructor service. Constructor services are generic in the

sense that they can support the creation of arbitrary services. A CREATE request does not carry

any state specific to the newly created service. It may contain an optional service context
indicating which specific partners the new service should use. Figure 2 illustrates the creation of a
new service.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 6

Figure 2 Sample sequence diagram illustrating the creation of a service using a
constructor service. The service context can optionally be provided as part of the

CREATE request.

A consequence of the DSSP constructor model is that initial state must either be passed by

reference as part of an optional service context in the CREATE request, or by explicitly changing

the state of the newly created service. The benefit is that setting the initial state becomes an
explicit part of the behavior of a service. For example, a service may initialize itself simply by

performing a GET request on another service and use that as its initial state (see Figure 3). By

passing the appropriate service context as part of the CREATE request, the requesting party can

control which service is used as the initial state partner.

ConstructorClient New Service

Create Request

Create Response

Initial State partner

Get Request

Get Response

Figure 3 The newly created service gets its initial state from a partner service by
doing a GET on that partner. The initial state partner may have been provided as
part of the optional service context in the CREATE request or the newly created

service may have a default initial state partner.

Alternatively, a service may be initialized using an explicit DSSP operation like REPLACE as

illustrated in Figure 4.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 7

ConstructorClient New Service

Create Request

Create Response

Replace Request

Replace Response

Figure 4 Example of service initialization using an explicit REPLACE operation
after service has been constructed.

3.2 DSSP Service Termination
Existing services can be terminated using the DROP operation (see section 5.4).

A successful shut down of a service is indicated by the generation of a DROP response which

must be the final message sent by that service. After a DSSP service has been terminated it can
no longer send or receive messages of any type.

As part of processing a DROP request, a service may initiate communications with other services

as part of any cleanup processing required by the service such as removing itself from a directory
service or shutting down dependent services.

3.3 Determining the Service Context
The service context of a service can be retrieved using the LOOKUP operation (see section 5.7).

The LOOKUP operation is the only DSSP operation that provides a concrete definition for both

the request and response and is required to be supported by all DSSP services.

A LOOKUP response contains the following information:

 The service identifier.

 The service contract identifier

 The service context.

The service context retrieved in this manner cannot be modified directly; it can only be inspected.

3.4 DSSP Service State Retrieval
DSSP defines two operations for service state retrieval: GET (see section 5.5) and QUERY (see

section 5.8). While the two operations are similar, an important difference is that the QUERY

request contains a structured query against the service state whereas a GET request is an

application-independent request for the complete service state. This difference has two
consequences worth noting:

 A QUERY request requires specific schema and query language knowledge about the service

being queried whereas a GET request doesn't.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 8

 A QUERY request contains parameters (the structured query) that are not part of the service

identifier whereas a GET request provides all request parameters as part of the service

identifier.

In some situations, it may be beneficial to map a structured QUERY operation to an unstructured

GET operation. Creating a service which through service composition (partnering) maps a GET

operation to a specific structured QUERY operation on another service can be useful in situations
where the same query occurs in many different contexts and a single service identifier is easier to
handle in terms of logging, determining equality, etc. Note that such mapping can be done by any

service; it does not have to be related to the service against which the QUERY is ultimately

targeted.

3.5 DSSP Service State Modification
DSSP enables the state of a service to be modified using the INSERT, UPDATE, UPSERT,

DELETE, and REPLACE operations. These operations apply only to the state of a service. They

do not create or terminate services.

Note that the concrete representation of an INSERT, DELETE, UPDATE, and UPSERT request

(but not REPLACE) is service specific. If desired, these operations can be designed to include a

query identifying the specific part of the service state that is to be modified, for example, using an
XPath expression. DSSP does not mandate or require a particular query language.

3.5.1 Inserting Service State

When the state of a service is modified using the INSERT operation (see section 5.6), the state

included in the INSERT request is added to the service state. Assuming a service is being

observed in isolation, the result of an INSERT operation can be detected by looking at the

difference between a GET operation issued before the INSERT operation and a GET

operation issued after the INSERT operation.

3.5.2 Deleting Service State

When the state of a service is modified using the DELETE operation (see section 5.3), the part

of the service state identified in the DELETE request is deleted. Assuming a service is being

observed in isolation, the result of a DELETE operation can be detected by looking at the

difference between a GET operation issued before the DELETE operation and a GET

operation issued after the DELETE operation.

3.5.3 Changing Service State
DSSP defines three operations for changing service state:

 UPDATE (see section 5.11)

 UPSERT (see section 5.13)

 REPLACE (see section 5.9)

When the state of a service is modified using the UPDATE operation, the part of the current

service state identified in the UPDATE request is replaced with the new state included in the

UPDATE request. The UPDATE operation is similar to DELETE followed by INSERT

performed in a single operation. That is, UPDATE succeeds only if the existing service state is

successfully deleted and the new service state successfully inserted.

The UPSERT operation provides a commonly used variant: if the existing service state is already

present then UPSERT operates as UPDATE, otherwise UPSERT operates as INSERT.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 9

The REPLACE operation can be used to replace the entire service state regardless of the

existing service state.

Assuming a service is being observed in isolation, you can see the impact of all three operations

by looking at the difference between a GET operation issued before the UPDATE, UPSERT, or

REPLACE operation and a GET operation issued after the operation.

3.6 Notifications of DSSP Service State Modifications
DSSP defines an event as a state change in a service. For example, in the case of an UPDATE

operation on a service, the state of that service changes as a direct result of that UPDATE

operation. Furthermore, the UPDATE operation itself directly represents the state change and so

it is natural to think of the event notification as simply being the UPDATE operation (see Figure

5).

SourceService A Sink1

Update Request

Update Response

Sink2

Update Notification

Update Notification

Figure 5 The Update request is directly representing the state change on a service.

A service can receive event notifications by subscribing to a service (the publisher) using the

SUBSCRIBE operation (see section 5.10). While the SUBSCRIBE operation is abstract and can

be tailored to a particular service, it follows the common subscription model described here.

When a service subscribes to a publisher, any existing matches to the subscription are sent to the
subscription sink allowing the sink to "catch up" to the current state of the publisher. The use of
service-specific subscriptions enables filtered subscriptions using queries over the service state
for a particular publisher. As for queries, DSSP does not mandate or require a particular query
language for subscriptions.

Event notifications are one-way messages and are not acknowledged by the receiver. In order to
distinguish event notifications from the state changing operations themselves, the generated
events are marked as event notifications using a special SOAP Action value (see section 6).

Although there are similarities between a subscription and the QUERY operation, an important

difference is that a subscription results in an event notification being generated when the

subscription can be fulfilled. A QUERY operation can succeed even if no match was found and

the QUERY response is empty.

4 DSSP Protocol Model
DSSP communication happens between two services (see section 2) where the sending party is
called the initial sender and the receiving party is called the ultimate destination.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 10

DSSP messages are carried as part of the S:Body element information item of a SOAP

envelope. All DSSP message types are identified by unique SOAP Action values enabling
inspection at two levels:

 Intermediaries and other SOAP nodes that do not care about the specific type of a SOAP
Body or that cannot inspect the contents of the SOAP Body if it has been encrypted can use
the SOAP Action value.

 SOAP nodes that do have access to the SOAP Body can inspect the entire contents.

4.1 Message Exchange Patterns
DSSP operations are either one-way or single request/response interactions, meaning that no
state is maintained in the communication channel between two services beyond what is
necessary to correlate a request with a response. While some operations only support one
message exchange pattern, others can support both; depending on whether a response is
desired or not.

DSSP does not define any constraints on how long a DSSP operation can take to complete. For
operations that take significant amounts of time, a work-queue-style service supporting the DSSP
event notification model may be used to indicate the current state processing a work item (see
section 3.6).

4.1.1 One-way

The one-way message exchange pattern consists of a single message sent from an initial sender
to an ultimate receiver (see Figure 6):

Ultimate ReceiverInitial Sender

Message

Figure 6 One-way message exchange pattern.

If a one-way message results in the generation of a SOAP fault, no SOAP Fault message is
returned to the initial sender (see section 4.2).

4.1.2 Request-Response

The request-response, MEP (Message Exchange Pattern), consists of a single request message
sent from an initial sender to an ultimate receiver, followed by a single response sent from the
ultimate receiver to the initial sender of the request (see Figure 7).

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 11

Ultimate ReceiverInitial Sender

Request

Response

Figure 7 Request-response message exchange pattern.

No time constraints are imposed on this message exchange pattern and no expectation is made
whether the operations are implemented used synchronous or asynchronous programming
models. A robust implementation needs to take timeouts into account to avoid exhausting
resources and opening your system to DOS (Denial-Of-Service) attacks.

If the request message results in the generation of a SOAP fault, a SOAP Fault message is
returned to the initial sender (see section 4.2).

4.2 Fault Handling
Following the SOAP 1.2 processing rules, failure to successfully process a SOAP message
results in the generation of a SOAP fault as described in [7], section 5.4. The rules for handling
SOAP faults in DSSP are as follows:

1. If processing a DSSP request results in the generation of a SOAP fault then it MUST be
sent in a DSSP response if a response is requested by the sender.

2. If processing a DSSP response or a one-way message results in the generation of a
SOAP fault then no claims are made as to the handling of such faults.

Regardless of how a SOAP fault is generated, it MUST NOT be sent in response to another
SOAP fault since doing so can result in fault storms.

4.2.1 Generic DSSP Faults
DSSP follows the SOAP 1.2 fault model of a "code" followed by one or more "subcodes"; where
the "code" is dictated by the SOAP 1.2 specification and DSSP provides a set of "subcode"
values (see section 1.3 for notational conventions). In addition to specific SOAP faults defined in
section 5, DSSP operations can result in the following SOAP faults:

 S:Receiver/DSSP:OperationFailed
The operation could not be successfully completed due to a receiver side problem handling
the DSSP request.

 S:Sender/DSSP:OperationFailed
The operation could not be successfully completed due to a sender side problem in the
DSSP request.

 S:Receiver/DSSP:InsufficientResources
The operation could not be successfully completed due to insufficient resources on the
receiver side.

 S:Sender/DSSP:ActionNotSupported
The DSSP operation is not supported by the receiver.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 12

 S:Sender/DSSP:MessageNotSupported
The DSSP operation is supported but the DSSP message type is not.

5 DSSP Message Operations
A DSSP operation involves exchanging messages of specific types using one of the message
exchange patterns defined in section 4.1.

With the exception of the LOOKUP operation, all operations are optional. DSSP services MUST

support the LOOKUP operation (see section 5.7).

5.1 Safe and Idempotent Operations
In order to distinguish operations that strictly retrieve information from operations that manipulate
information, this specification uses the terms "safe" and "idempotent" as qualifiers on DSSP
operations:

 Idempotent
An operation is idempotent when the result of a successful execution is independent of the
number of times the operation is executed.

 Safe
An operation is safe if its semantics are limited to read-only access to the resource to which it
is applied.

A safe operation is idempotent by definition; the reverse is not true. Read-only operations are
both safe and idempotent.

A particular implementation of a safe or idempotent operation might have second-order side
effects associated with executing the operation. Typical examples of such side effects are
logging, processing associated with generating the read-only data in the case of dynamic
contents, and so on. Such second-order side effects do not affect the notion of safe and
idempotent operations.

5.2 CREATE
Services can be created using the CREATE operation as described in section 3.1.

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:createrequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:createresponse

Safe No

Idempotent No

Generates Event No

Table 2 Property sheet for CREATE

In addition to the generic faults (see section 4.2.1), this operation can result in the following
SOAP faults:

 S:Sender/DSSP:UnknownContract
If the constructor service cannot create a service of the given type then it should generate a

S:Sender/DSSP:UnknownContract SOAP fault.

5.3 DELETE
Service state can be deleted using the DELETE operation as described in section 3.5.2.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 13

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:deleterequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:deleteresponse

Safe No

Idempotent No

Generates Event Yes

Table 3 Property sheet for DELETE

In addition to the generic faults (see section 4.2.1), this operation can result in the following
SOAP faults:

 S:Sender/DSSP:UnknownEntry

If the service does not have the state which the DELETE operation is requesting be deleted

then the service should generate a S:Sender/DSSP:UnknownEntry SOAP fault.

5.4 DROP
The DROP operation can be used to terminate a service as described in section 3.2.

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:droprequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:dropresponse

Safe No

Idempotent No

Generates Event No

Table 4 Property sheet for DROP

There are no SOAP faults specific to the DROP operation.

5.5 GET
The GET operation can be used to retrieve the complete service state as described in section

3.4.

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:getrequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:getresponse

Safe Yes

Idempotent Yes

Generates Event No

Table 5 Property sheet for GET

There are no SOAP faults specific to the GET operation.

5.6 INSERT
The INSERT operation can be used to add to the service state as described in section 3.5.1.

Property Value

MEP One-way, Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:insertrequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:insertresponse

Safe No

Idempotent No

Generates Event Yes

Table 6 Property sheet for INSERT

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 14

In addition to the generic faults (see section 4.2.1), this operation can result in the following
SOAP faults:

 S:Sender/DSSP:DuplicateEntry
If a service has uniqueness constraints on its service state and the state carried in an

INSERT request conflicts with those constraints then it SHOULD generate a

S:Sender/DSSP:DuplicateEntry SOAP fault.

5.7 LOOKUP
The LOOKUP operation can be used to retrieve the service type and context as described in

section 3.3. All DSSP applications MUST support this operation.

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:lookuprequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:lookupresponse

Safe Yes

Idempotent Yes

Generates Event No

Table 7 Property sheet for LOOKUP

There are no SOAP faults specific to the LOOKUP operation.

5.8 QUERY
The QUERY operation can be used to query the service state as described in section 3.4.

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:queryrequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:queryresponse

Safe Yes

Idempotent Yes

Generates Event No

Table 8 Property sheet for QUERY

There are no SOAP faults specific to the QUERY operation.

5.9 REPLACE
The REPLACE operation can be used to replace all existing service state of a service as

described in 3.5.3.

Property Value

MEP One-way, Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:replacerequest
Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:replaceresponse
Safe No

Idempotent Yes

Generates Event Yes

Table 9 Property sheet for REPLACE

The REPLACE operation may result in one of the generic SOAP faults (see section 4.2.1).

5.10 SUBSCRIBE
The SUBSCRIBE operation can be used to subscribe to changes in the state of a service as

described in section 3.6.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 15

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:subscriberequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:subscriberesponse

Safe No

Idempotent No

Generates Event No

Table 10 Property sheet for SUBSCRIBE

In addition to the generic faults (see section 4.2.1), a SUBSCRIBE operation may generate the

following SOAP fault:

 S:Sender/DSSP:DuplicateSubscriber

If a service is already registered as a sink by the subscription manager the SUBSCRIBE

operation should generate a S:Sender/DSSP:DuplicateSubscriber SOAP fault.

5.11 SUBMIT
The SUBMIT operation is intended for capturing semantics that is not possible or practical to

represent as state manipulations. The SUBMIT operation is explicitly defined to allow

computations that do not change the state of a service.

Property Value

MEP Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:submitrequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:submitresponse

Safe No

Idempotent No

Generates Event No

Table 11 Property sheet for SUBMIT

There are no SOAP faults specific to the SUBMIT operation.

5.12 UPDATE
The UPDATE operation can be used to update existing service state as described in 3.5.3.

Property Value

MEP One-way, Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:updaterequest

Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:updateresponse

Safe No

Idempotent No

Generates Event Yes

Table 12 Property sheet for UPDATE

In addition to the generic faults (see section 4.2.1), this operation can result in the following
SOAP faults:

 S:Sender/DSSP:DuplicateEntry
If a service has uniqueness constraints on its service state and the state carried in an

UPDATE request conflicts with those constraints, it should generate a

S:Sender/DSSP:DuplicateEntry SOAP fault.

 S:Sender/DSSP:UnknownEntry
If the service does not have the state for which the operation is requesting an update, then

the service should generate a S:Sender/DSSP:UnknownEntry SOAP fault.

 Decentralized Software Services Protocol – DSSP/1.0

Jul 06 2007 Page 16

5.13 UPSERT
The UPSERT operation can be used to update existing state or add new state as described in

3.5.3.

Property Value

MEP One-way, Request-Response

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:upsertrequest
Response Action http://schemas.microsoft.com/xw/2004/10/dssp.html:upsertresponse
Safe No

Idempotent No

Generates Event Yes

Table 13 Property sheet for UPSERT

In addition to the generic faults (see section 4.2.1), this operation can result in the following
SOAP faults:

 S:Sender/DSSP:DuplicateEntry
If a service has uniqueness constraints on its service state and the state carried in an

UPSERT request conflicts with those constraints then it should generate a

S:Sender/DSSP:DuplicateEntry SOAP fault.

6 DSSP Event notifications
As described in section 3.6, an event notification is a one-way message containing a DSSP
request classified as Generates Event with the properties specified in Table 14.

Property Value

MEP One-way

Request Action http://schemas.microsoft.com/xw/2004/10/dssp.html:notify

Safe Yes

Idempotent Yes

Generates Event No

Table 14 Property sheet for event notifications

There are no SOAP faults specific to event notifications.

7 References
[1] IETF RFC 2119: "Keywords for use in RFCs to Indicate Requirement Levels", S. Bradner,

March 1997. (See http://www.ietf.org/rfc/rfc2119.txt.)
[2] IETF RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee,

R. Fielding, L. Masinter, August 1998. (See http://www.ietf.org/rfc/rfc2396.txt.)
[3] IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1", R. Fielding, J. Gettys, J. C.

Mogul, H. Frystyk, T. Berners-Lee, January 1997. (See http://www.ietf.org/rfc/rfc2616.txt.)
[4] W3C Recommendation "XML Information Set", John Cowan, Richard Tobin, 24 October

2001. (See http://www.w3.org/TR/2001/REC-xml-infoset-20011024/.)
[5] W3C Recommendation "XML Schema Part 1: Structures", Henry S. Thompson, David

Beech, Murray Maloney, Noah Mendelsohn, 2 May 2001. (See
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.)

[6] W3C Recommendation "XML Schema Part 2: Datatypes", Paul V. Biron, Ashok Malhotra,
2 May 2001. (See http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.)

[7] W3C Recommendation "SOAP Version 1.2 Part 1: Messaging Framework", M. Gudgin,
M. Hadley, N. Mendelsohn, J-J. Moreau, H. F. Nielsen, May 2003. (See
http://www.w3.org/TR/soap12-part1/.)

[8] Microsoft Robotics Studio Development Center (See http://www.microsoft.com/robotics)

