
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recommended diagnostics for large statistical stock assessment 
models 

 
 
 

 

 

Shelton J. Harley and Mark N. Maunder  
 

Inter-American Tropical Tuna Commission 
8604 La Jolla Shores Drive 
La Jolla, CA 92037-1508 

USA 
 

June 2003 

SCTB16 Working Paper 
 

MWG–3 



 

 



 1 

Recommended diagnostics for large statistical stock 

assessment models 

 

Shelton J. Harley and Mark N. Maunder 

June 25, 2003 

 

Executive Summary 

This report summarizes the discussions and recommendations of the participants of a 

meeting on diagnostics for large statistical stock assessment models held in La Jolla, 

U.S.A., on October 2-4, 2002 (see Appendix 1 for a list of participants). The use of such 

models is becoming more common in the assessment of pelagic species. Because these 

models are large and complex, there is a need to determine how to best summarize their 

results so that the quality of the model fit can be investigated. This report is divided into 

three sections discussing: (1) diagnostics that should be evaluated regularly (i.e., at every 

assessment); (2) diagnostics that should be evaluated periodically (i.e., every few 

assessments); and (3) some specific research questions. Included are recommendations 

about the types of information (i.e., model output) that might be presented at assessment 

meetings and what should be included in assessment reports, or made available in 

electronic form to interested parties. Other analyses are possible, and it is expected that in 

the future other analyses will be found to be appropriate for other data sets. The examples 

described here are based on data for bigeye tuna in the eastern Pacific Ocean (EPO).  

 

Introduction 

A full range of assessment models are used in the assessment of the pelagic fish stocks. 

Many stocks are assessed with very basic stock production models with only a few 

parameters and limited data requirements, but increasingly stocks are being assessed 

using large age-structured statistical stock assessment models, often with over 1000 

parameters. These large complex models require considerable data and knowledge of 

biological parameters. 
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The majority of the parameters in these models arise because of the relaxing of the 

critical assumption in traditional cohort analyses – catch-at-age is not assumed to be 

known without error. Fishing mortality at age is assumed to be separated into selectivity-

at-age and an annual fishing mortality scalar. Most parameters are catchability effort 

deviates – due to not solving the catch equation or using an approximation (e.g., Pope’s 

approximation). This requires the estimation of selectivity parameters and effort deviates 

to remove the catch. Because of the large number of parameters, a thorough evaluation of 

convergence and model sensitivity is necessary, but difficult. 

 

We evaluated several types of diagnostic analyses and assigned them to two broad 

categories: 

 

1. Regular: analyses that should be undertaken every time a stock assessment is 

conducted. 

2. Periodic: analyses that do not need to be undertaken every assessment, but should 

be undertaken every so often. These analyses should be undertaken if there have 

been significant changes in either the data or model structure. 

 

Some specific research questions related to stock assessment that were raised during the 

evaluation of model diagnostics are also described. 

 

Regular model diagnostics 

The group considered that these analyses/activities should be done every time an 

assessment is conducted. It is recognized that some of these recommendations may 

reflect the specific data sets used in the analyses, rather than a general issue. 

 

1. Creation of data objects  

Given the large number of parameters, it is very difficult to easily evaluate convergence 

or identify potential problem areas. To help overcome this we developed a suite of S-

PLUS functions that read in the output from the assessment model. This data object 

contains all of the important information about the parameters, e.g., starting values, 
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bounds, values at each phase of estimation, final estimates, and precision of the final 

estimates. 

 

This was found to be useful to determine which parameters to estimate in each phase and 

the use of alternative starting values (both described in detail in the section of periodic 

diagnostics). In our examples, we increased the number of estimation phases from four to 

nine to allow for a more detailed investigation. We can see that while the starting values 

were close to the final values, the model assumptions during the first two phases resulted 

in a large change in the estimates, but that the estimates remained stable over the final six 

phases (Table 1). Ideally, for important parameters, the final phases of the model should 

not result in large changes in parameter values. 

 

This summary was also repeated for all components of the objective function. It was very 

useful to see how the values of various penalties varied over time and how the overall 

objective function changed with the addition of more model parameters (Table 2). We 

can see that some penalties were added to the objective function in the early phases, but 

not in the later phases, e.g., sm.Ftot.penalty. It is clear that the estimation of growth in the 

final phase greatly reduced the selectivity penalty for the third difference (s.3d.penalty). 

 

2. Likelihood profile for important management quantities 

Realistic representation of uncertainty is critical for any stock assessment. For small 

models, there is a range of options for determining uncertainty e.g., normal 

approximations, likelihood profiles, bootstrapping, or Bayesian posterior distributions, 

but few of these can be used with the large statistical models.  

 

Presently, uncertainty is most often presented based on normal approximations via the 

Hessian matrix and the delta method. It is clear that the uncertainty in many parameters is 

not symmetrical, so confidence intervals based on normal approximations can be 

inappropriate. It is strongly recommended that likelihood profiles be calculated for a 

small range of important management quantities. These may have to be done “manually”, 

i.e., fix a particularly parameter at a range of values and estimate all the other parameters. 
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The obvious candidates for likelihood profiling include the standard biological reference 

points, e.g., BMSY or MSY. Analytical solutions for these quantities seldom exist for these 

large-scale models so thus they are usually estimated outside of the model with a fishing 

mortality scalar that will provide the largest long-term yield, given the estimates for all 

other model parameters. It is not clear whether present computing technologies will allow 

for profiling of these quantities in large models, as it involves penalizing derived 

parameters. 

 

3. Sensitivity analyses: selectivity and data weighting 

There are many possible sensitivity analyses that can be undertaken, but it is not practical 

to do them all. Also, many of these result in little change in the results from the basecase 

model. The group recommended that only a select number of sensitivity analyses be 

conducted regularly. 

 

Selectivity 

Modeling results and yield estimates are often sensitive to different selectivity curves. 

Often, estimates of selectivity-at-age can be sensitive to smoothness penalties used to 

ensure that selectivity does not vary greatly from one age class to the next. Estimates of 

growth (and growth variability) can also lead to uncertainty in selectivity parameters. It is 

recommended that a small number of sensitivity analyses to the weighting factors used to 

control smoothness be presented.  

 

When different assumptions are made regarding these penalties, the estimated selectivity 

curves can be very different (Figure 1), resulting in differing interpretations of the 

patterns and magnitude of recent fishing mortality (Figure 2). While the relative biomass 

trajectory in our example was quite insensitive to these changes, the sensitivity to the 

weighting factors is evident in the scaling effect on the absolute biomass trajectories 

(Figure 3) and important management quantities (e.g., BMSY and MSY). 
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Data weighting 

Most often these models fit to two types of data: (1) catch and effort data; and (2) length-

frequency samples of the catch (tagging data are often included in analyses using 

MULTIFAN-CL). Due to the differences in these data types, different likelihood 

functions are used for each. As there are often more length-frequency samples than catch 

and effort observations, the likelihood associated with the length-frequency data often 

dominates the overall objective function. This can lead to a trade-off between fitting the 

trend in relative abundance from the catch and effort data and fitting to the length-

frequency data. The effects of the trade-off between fitting to each data source can be 

seen in Figures 4 and 5. The biomass trajectory and impressions about the current status 

of the stock relative to 1980 is much different when the length-frequency data are given 

greater weight (ss100) (Figure 4) and recruitment variability is greater as the model 

attempts to better fit the various modes in the length-frequency data (Figure 5). It is 

recommended that a small number of sensitivity analyses to the sample sizes assumed for 

the length-frequency data be presented. 

 

4. Comparisons with model estimates/predictions  

It is recommended that several comparisons be made between estimates of quantities 

from the current assessment compared to those made in the previous assessment. Some of 

these are briefly discussed below, and will be further discussed in the section on 

retrospective analyses. 

 

Observed versus predicted catches 

Each year predictions should be made for catches in the next few time periods. The 

predictions will be based on assumptions about overall fleet selectivity, catchability, and 

assumed fishing effort. These predictions should be compared to actual catch estimates 

when these become available. These comparisons might provide useful insights into 

model inadequacies, and should be used to help provide a more realistic indication of 

uncertainty in future catch predictions. 
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Estimated recruitment in recent years  

Estimates of recruitment for the most recent few year classes will generally be uncertain, 

as there will be few observations of them in the length-frequency data. Previous model 

estimates should be compared to recent estimates to determine if there is any systematic 

trend, e.g., initially “strong” year class being estimated to be much weaker than they first 

appeared or vice versa. Any general information gained from these comparisons can 

provide useful information in projecting future catches and auxiliary information for 

management advice. 

 

5. Residual plots for the basecase model 

Residual plots from large nonlinear models can be difficult to interpret. Nevertheless, 

they should be presented for the main model fits, e.g., the length-frequency data and the 

effort deviates. QQ-plots can be used to determine if the model is over- or under-fitting 

the data relative to its assumed variance. 

 

The residual plots presented here (Figures 6 and 7) indicate several things. First, the 

standardized residuals are highly under-dispersed, i.e., there are few residuals more than 

one standard deviation from the observed value. This indicates that we are fitting the data 

much better than we would expect, given the assumed sample size. We can see that this 

effect is greater with some gears (e.g., fishery 9) than others (e.g., fishery 3). Second, 

most of the larger residuals are negative, indicating that the model is predicting a higher 

proportion of fish than was observed. This is not surprising, given the often large number 

of observed zeros with the 1-cm length bins, as assumed for the bigeye analysis. 

 

6. Correlation plots for key management quantities from the basecase 

model 

Often quantities such as recent estimates of recruitment deviates and fishing mortality can 

be highly correlated. This type of information can be important, as it indicates a flat 

solution surface that implies that a range of alternative states of nature might be equally 

likely (given the data). For example, a state of nature indicating high recent recruitment 
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and low fishing mortality might be as likely as one with lower recent recruitment and 

high fishing mortality. This type of information might be useful for management advice. 

 

Correlation coefficients derived for quantities from large nonlinear models may not 

always accurately reflect the true relationship between the parameters because of the 

required assumption of bivariate normality. Scatter plots based on the results of Monte 

Carlo Markov Chain simulations may be more accurate, but are generally not available 

for these models because of the enormous computational requirements. 

 

As the surface fisheries in the assessment catch smaller, more recently recruited, 

individuals, there is generally a strong negative correlation between the effort deviates for 

those fisheries and the recruitment deviates at the end of the time period (Figure 8). This 

correlation is lagged from the age at recruitment to the age at which they are selected by 

the fisheries. The correlation between spawning biomass and recruitment reflects the 

extent to which spawning biomass in a year is “recruitment-driven”, i.e., spawning 

biomass is made up primarily of first-time spawners (Figure 9). The correlation is 

positive, and the highest correlations are off the diagonal because of the lag between 

recruitment to the fishery and the age-at-maturity. 

 

7. Catch-at-age and fishing mortality-at-age matrices. 

Many assessment reports of VPA-like analyses routinely include tables of the catch-at-

age (input) and fishing mortality-at-age (output). In many statistical models, both may be 

outputs from the model. These tables should be compared from year to year for 

consistency. Also, estimated catch-at-age could be used as input for an alternative age-

structured assessment. These tables could be made available in an electronic form to 

interested parties. 

 

When considering alternative models, it will be important to ensure that the assumptions 

of both models are the same to allow valid comparisons (e.g., biological parameters). 

Also, most of the current large statistical models assume the fishing mortality can be 
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separated into age- and year-specific components. This assumption will be reflected in 

the predicted catch-at-age and is different to the assumptions of many VPA-like models. 

 

8. Model output by phase 

The data object created in (1) above will be most useful for evalua ting the order of 

estimation (described later) but may be of general interest to some analysts for 

evaluating/reviewing an assessment. It includes parameter values, likelihood components, 

and penalties. This object could be made available in an electronic form (presently a S-

PLUS list-object). As mentioned in (1), this object could be examined to investigate 

model performance in the final phases, i.e., do the values of the important parameters 

change much. 

 

 It may also be useful to provide an electronic version of the data used in the analysis. 

 

Periodic model diagnostics 

It is recommended that the following diagnostics and analyses be undertaken every few 

assessments (in addition to the regular items), particularly when there have been 

significant changes in either the data (e.g., acquisition of tagging data) or the model 

structure. The full set of analyses is thought to reflect a thorough review of a stock 

assessment. 

 

1. Sensitivity analyses: all model and data components 

A thorough evaluation of model sensitivity might include the varying the following 

parameters or assumptions: 

• Natural mortality; 

• Spawner-recruitment parameters; 

• Alternative abundance indices; 

• Inclusion/exclusion of environmental factors; 

• Alternative starting values for selectivity-at-age; 

• Weighting factors; 

o priors on growth parameters 
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• Inclusion of otolith age- length data; 

• Variation in length-at-age. 

 

Some model outputs may be robust to some sensitivity analyses, but not to others. Useful 

model outputs to compare include: 

• Biomass (total and spawning) and recruitment trajectories (both absolute and 

relative); 

• Selectivity curves for the major fisheries; 

• Biological reference points, e.g., BMSY, MSY, and FMSY; 

• Stock status in relation to the reference points; 

• Mean recruitment ; 

• Fishing mortality patterns in the most recent years. 

 

2. Retrospective analyses 

Retrospective analyses, which first became widespread in conjunction with VPA-like 

models, are useful for evaluating large statistical models. The analyses are simple: the 

assessment model is rerun several times, each time excluding another year’s data. There 

are several things that can be compared. For example, if one has six analyses (basecase 

plus removing 1-5 years data) you can compare the following quantities up to the first 

year that data were excluded: 

• Biomass (total and spawning) and recruitment trajectories (both absolute and 

relative); 

• Biological reference points, e.g., BMSY or MSY; 

• Stock status in relation to the reference points. 

 

These comparisons will illustrate how much recent data have changed our perspective of 

the past. Also, it can provide insights on which data are best to use for estimating 

reference points. For example, the most recent estimates of fishing mortality are often 

quite uncertain, and may provide biased estimates of important reference points when 

compared to estimates using the some time period (for fishing mortality), but with 

additional years data (i.e., multiple observation of the cohorts). 
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If one retains the observed effort data in the retrospective analyses it will be possible to 

predict catches into the “future” and compare these to the observed catches. This can be 

used to evaluate prediction error in forecasting catches given known levels of effort, i.e., 

we can evaluate the prediction variance by comparing the predicted catches from the 

retrospective analyses to the observed catches. 

 

In our example there is a clear indication that recruitment during 1997-98 was 

overestimated by the data available at the time the cohorts first entered the fishery, as the 

estimates are always lower with the addition of new data (Figure 10). This has a 

magnified effect on the projected biomass trajectories where the models that excluded the 

last 3-4 years data predicted higher biomass at the end of the data and further increases in 

the short term. These estimates were also “revised” downward with the addition of 

further data. 

 

3. Evaluation of phases of estimation 

To obtain convergence in large nonlinear statistical models, it is often necessary to 

estimate parameters in a number of phases, i.e., several sets of parameters are estimated 

in the first phase, and then more and more parameters are added to the model in 

subsequent phases. For example, important scaling parameters like mean recruitment and 

catchability might be estimated in the first phase, recruitment deviates estimated added in 

the second phase, and selectivity added in the final phase. The aim of estimation- in-

phases is to help the model converge at a global solution by keeping the model in a 

realistic part of the high-dimension parameter space. Essentially, it involves getting good 

parameter estimates before adding more parameters. 

 

Because the role of estimation in phases is to improve convergence, often the results may 

not be robust to alternative orders of estimating parameters. For this reason, it is 

important to carefully evaluate different approaches. This can be best achieved by 

evaluating the values of parameters at each phase. Ideally, the important model 
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parameters should not change much in the final phase; rather the model should only be 

“fine-tuned”. 

 

In the example presented above, growth was estimated in the final phase after selectivity 

had been estimated. While the starting values for growth were generally quite good, the 

model estimated smaller sizes (than the starting values) for the youngest fish. This 

significantly changed selectivity estimates (Table 3). While the recruitment estimates 

changed little in phases 6 and 7, some changed considerably in the final phase (Table 4). 

This type of result is not ideal, but may be unavoidable (without very good information of 

growth) for highly correlated parameters such as growth, selectivity, and recruitment. 

Note that in practice, the parameter estimation is not spread out as much; in fact we 

obtained identical final results using four and nine phases with the bigeye example. 

 

4. Examination of the solution surface using alternative starting 

values 

In large statistical models the solution surface will be very complex. This is often why we 

use estimation- in-phases described in (11) above. To ensure that the model has converged 

to a “global” solution, rather than a local minimum, it is important to start the model 

using alternative starting values for the model parameters. 

 

In models with large numbers of parameters it is not feasible to manually change the 

starting values of all the parameters. To overcome this, we used an indirect approach in 

which a strong penalty is imposed on average fishing mortality in the second-to-last 

phase and then released in the last phase.  Multiple runs should be performed with 

different values of fishing mortality for the penalty. This represents a simple way to 

examine alternative starting values for all parameters. Imposing the penalty on fishing 

mortality has the extra benefit as F is related to stock status, i.e., we are examining 

convergence from a point of qualitatively different stock status. It is important to see how 

much parameter values differ in the second-to- last phase to evaluate how thorough the 

analysis was. In particular, it will be important to see how selectivity varies in the 

analyses as this is a key parameter. 
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It was found that the penalty did effect a considerable change in some of the variables in 

the second-to-last phase. Fishing mortality-at-age did differ as expected (Figure 12), and 

the model was able to converge back to essentially the same place in the final phase 

(Figure 13). 

 

 

Special research questions 

 

During the meeting some specific research questions were raised that were believed to be 

of critical importance to assessments using large statistical models. These were projects 

that should be evaluated in the interval between assessments, rather than at assessments. 

The group did not discuss the relative importance of each or any priority.   

 

1. Using retrospective analyses to evaluate model predictions and 

estimates of key parameters 

While it is recommended that retrospective analyses be used periodically, it was also 

considered important to investigate how well the approach would work for answering 

some critical assessment questions, including: 

• Determining realistic bounds for catch predictions ; 

• Evaluating the quality of environmental index predictions; including internal 

versus external estimation; 

• Best period to determine the average fishing mortality-at-age for estimating yields 

and biological reference points; 

• Evaluating alternative assumptions about selectivity by comparisons of catch 

predictions. 
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2. Evaluation of selectivity functional forms 

Selectivity is a key model parameter, and parameter estimates are sensitive to alternative 

assumptions about how smooth selectivity is from one age to the next. In A-SCALA 

there are four smoothness penalties that are imposed: 

 

1. The first difference of selectivity-at-age; 

2. The second difference of selectivity-at-age; 

3. The third difference of selectivity-at-age; 

4. Selectivity penalized to be monotonic for longline fisheries. 

 

For each of these penalties there is a weighting factor; when this is set to zero the penalty 

is ignored, but there is no objective way to determine non-zero scalars for each of the 

penalties. The critical question is whether there is an objective way to choose between 

alternative assumptions about the smoothness of the selectivity curves. Presently, 

different assumptions for the weighting factors can lead to considerable differences in the 

estimated curves and important management quantities.  

 

Though a separate selectivity parameter is generally estimated for each age class, the use 

of smoothness penalties effectively reduces the number of degrees of freedom by some 

amount. If the effective number of degrees of freedom can be determined, then 

likelihood-based hypothesis testing could be used to choose between models, but there 

maybe other methods that don’t rely on determining the effective number of degrees of 

freedom. The research should include: 

 

1. Searching the literature for methods to estimate approximate degrees of freedom 

in the presence of smoothness penalties; 

2. Investigating generalized/nested selectivity functions that can be used for 

hypothesis testing; 

3. Investigating alternative methods to select smoothness penalties, e.g., cross-

validation. 
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3. Numerically solving the catch equation in A-SCALA 

A preliminary investigation of incorporating a method to numerically solve the catch 

equation within A-SCALA was presented at the meeting. Insufficient testing of the 

method had been undertaken to fully investigate the performance of this approach over 

the “effort-deviate” approach presently implemented. As, the model almost exactly fits 

the observed catch; elimination of effort deviates would greatly reduce the number of 

parameters to be estimated. For example, in the bigeye model 785 out of 970 (80%) of 

the parameters were effort deviates. This reduction in the number of parameters may 

reduce the amount of time required to estimate the parameters and the Hessian matrix 

(required for deriving confidence limits). This method may make the use of Bayesian 

methods of integration feasible (through increased computing power). 

 

The initial analysis showed that the new method is not necessarily faster, and that there 

are some stability issues that must be overcome. There are two main issues that need to 

be examined are: 

• Comparison of computing time required for each approach. In particular 

examining how any differences scale with increased model complexity (i.e., 

increased number of fishing fleets); 

• Technical issues relating to implementation: Often the simple theoretical 

approach to a problem like the catch equation does not immediately work in a 

large-nonlinear model. In order to effectively implement the approach there may 

be several computational “tricks” required. 

 

4. Investigation of changes in fishing power 

In the absence of fishery- independent abundance indices, stock assessments of most large 

pelagic fisheries rely heavily on catch-per-unit-effort (CPUE) indices. For example, in 

the bigeye assessment, trends in adult biomass were driven almost solely by the CPUE 

data from the Japanese longline fleet. Assuming that this index is proportional to 

abundance, the model estimates significant increases in fishing power of the purse-seine 

fleets. In reality, we do not know if the longline CPUE is proportional to abundance. In 

fact, there is strong evidence that nominal CPUE is not. 
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The group recommended that sensitivity analyses be developed that allow for alternative 

hypotheses about changes in the fishing power in different fleets. Part of this will involve 

evaluating how CPUE is presently standardized. 

 

5. Simulation studies 

Simulation studies play an important role in testing assessment models for both precision 

and accuracy of parameter estimates and model predictions. Researchers at the South 

Pacific Community (SPC) have developed a large simulation model that can be used to 

create “realistic” data sets for testing models such as MULTIFAN-CL and A-SCALA. 

Results from a simulation pilot study were presented at the Methods Working Group at 

SCTB 15 (18-19 July, 2002). The Methods Working Group recommended that these 

studies continue with more simulated data sets. The group strongly supported 

involvement in this study. 

 

6. CPUE time series for purse seine fisheries 

Over the past several decades there have been many attempts to derive abundance indices 

from purse-seine catch and effort data. Even given this, the catch and effort data from 

purse seiners is often given very low weight in the assessment of tuna stocks. The recent 

increased catches of bigeye tuna associated with floating objects (FADs) has made this 

task of critical importance to assessing these stocks (worldwide). It is a recommendation 

of this group (also made at the most recent ICCAT bigeye assessment) that considerable 

efforts be made analyzing and interpreting the catch and effort data from FAD fisheries, 

with the goal of calculating indices of abundance for juvenile bigeye. 

 

7. Weighting length-frequency data 

We have shown here that the biomass trajectory from the model is sensitive to the 

assumed sample sizes used for the length-frequency data (Figure 5). Presently, there is no 

objective method for determining these sample sizes, in particular the relative sample 

sizes assumed for samples from purse-seine vessels versus longline vessels that are 
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collected in very different ways. We recommend detailed modeling of the sampling 

process for different fisheries to attempt to derive effective sample sizes for these data. 
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Table 1: Summary of information about the mean catchability coefficients for each fleet in the bigeye model. Included in order presented are: 
phase of estimation, lower and upper bounds, estimates at the end of each phase, and estimated standard error and coefficient of variation. This 
information is also provided for all other estimated parameters and some derived model quantities and contained in a single S-PLUS list object. 

 
 phz lb ub start ph1 ph2 ph3 ph4 ph5 ph6 ph7 final sd cv 
1 1 -500 5 -8.25 -12.38 -12.38 -7.87 -7.93 -7.77 -7.76 -7.76 -7.77 0.1977 0.0255 
2 1 -500 5 -6.19 -10.46 -10.46 -5.84 -5.76 -5.92 -5.86 -5.87 -5.73 0.1807 0.0316 
3 1 -500 5 -5.49 -10.13 -10.13 -5.47 -5.43 -5.29 -5.25 -3.83 -3.92 0.2777 0.0708 
4 1 -500 5 -8.91 -13.04 -13.04 -8.34 -8.30 -8.00 -7.99 -7.99 -8.12 0.2423 0.0298 
5 1 -500 5 -8.29 -12.33 -12.33 -7.74 -7.67 -7.75 -7.69 -7.69 -7.57 0.1792 0.0237 
6 1 -500 5 -10.89 -15.03 -15.03 -10.56 -10.64 -10.44 -10.43 -10.43 -10.45 0.2021 0.0193 
7 1 -500 5 -6.99 -12.25 -12.25 -7.26 -7.30 -6.78 -6.76 -6.76 -6.94 0.2842 0.0409 
8 1 -500 5 -6.81 -11.62 -11.62 -6.99 -7.05 -6.59 -6.56 -6.57 -6.63 0.2614 0.0394 
9 1 -500 5 -3.03 -8.26 -8.26 -3.44 -3.52 -2.74 -2.70 -2.70 -2.88 0.5288 0.1836 
10 1 -500 5 -8.04 -13.40 -13.40 -9.30 -8.98 -8.80 -8.69 -8.70 -8.50 0.1247 0.0147 
11 1 -500 5 -7.33 -12.42 -12.42 -8.30 -7.99 -7.82 -7.71 -7.72 -7.53 0.1238 0.0165 
12 1 -500 5 -10.23 -14.95 -14.95 -10.83 -10.52 -10.35 -10.24 -10.25 -10.05 0.1239 0.0123 
13 1 -500 5 -8.16 -14.25 -14.25 -10.13 -9.82 -9.65 -9.54 -9.55 -9.36 0.1239 0.0132 
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Table 2: Values for the various penalties and likelihood components in the objective function at the end of each phase of estimation. 

 phase 1 phase 2 phase 3 phase 4 phase 5 phase 6 phase 7 final 
TotalLike 504.802 504.802 -239032 -239092 -239440 -239448 -239458 -239452 
CatLike 6.36603 6.36603 5.9365 5.55654 5.89911 5.83344 5.6916 5.60212 

sLike 0 0 0 0 121.193 122.132 121.974 96.9887 
qLike 0 0 0 0 0 0 0 0 

EffLike 498.404 498.404 435.048 407.28 423.49 421.411 412.446 409.561 
steepLike 0 0 0 0 0 0 0 0 

RLike 0 0 63.3852 42.318 22.715 17.9488 17.9489 20.7262 
RinitLike 0 0 0 2.37745 1.99907 2.05656 2.05011 2.24703 

LLike 0 0 -239537 -239550 -240016 -240018 -240018 -240037 
GLike 0 0 0 0 0 0 0 50.2313 

mean.s.penalty 0 0 0 0 0.221721 0.221903 0.22108 0.123351 
monotonic.s.penalty 0 0 0 0 5.0E-05 4.8E-05 4.6E-05 3.2E-04 

s.1d.penalty 0 0 0 0 86.9934 87.1147 87.0069 88.2734 
s.2d.penalty 0 0 0 0 0 0 0 0 
s.3d.penalty 0 0 0 0 34.1991 35.0174 34.9672 8.71533 

mean.Effdev.penalty 0 0 0 0 0 0 0 0 
sum.Effdev.penalty 0.0117 0.0117 0.0045 0.0042 0.0066 0.0060 0.0051 0.0050 

Lsd.penalty 0 0 0 0 0 0 0 0 
Rd.penalty 0 0 0 0 0 0 0 0 

autocor.logR.penalty 0 0 0 0 0 0 0 0 
cv.logR.penalty 0 0 0 0 0 0 0 0 

abs.Rdev.penalty 0 0 0 0 0 0 0 0 
avg.Ftot.penalty 0 0 0 0 0 0 0 0 

qbeta.penalty 0 0 0 0 0 0 0 0 
Finit.penalty 0 0 0 0 0 0 0 0 

lg.Ftot.penalty 0 0 0.0303 0.0840 0 0 0 0 
sm.Ftot.penalty 0.0198 0.0198 0 0 0 0 0 0 
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Table 3: Estimates of the natural logarithm of selectivity at age by phase for a purse seine fishery. 

phz lb ub start phase 1 phase 2 phase 3 phase 4 phase 5 phase 6 phase 7 final sd c.v. 
5 -500 5 -13.211 -13.211 -13.211 -13.211 -13.211 -13.211 -13.211 -13.211 -13.211 NA NA 
5 -500 5 -6.281 -6.281 -6.281 -6.281 -6.281 -4.594 -4.487 -4.486 -7.322 0.783 0.107 
5 -500 5 -1.461 -1.461 -1.461 -1.461 -1.461 -0.056 0.078 0.078 -3.025 0.876 0.290 
5 -500 5 1.219 1.219 1.219 1.219 1.219 1.015 1.113 1.114 -0.387 0.568 1.466 
5 -500 5 1.962 1.962 1.962 1.962 1.962 0.804 0.867 0.876 0.715 0.264 0.370 
5 -500 5 1.704 1.704 1.704 1.704 1.704 0.636 0.681 0.693 0.980 0.230 0.235 
5 -500 5 1.389 1.389 1.389 1.389 1.389 0.659 0.710 0.715 1.043 0.219 0.210 
5 -500 5 1.334 1.334 1.334 1.334 1.334 0.660 0.718 0.710 1.166 0.222 0.191 
5 -500 5 1.434 1.434 1.434 1.434 1.434 0.671 0.723 0.725 1.220 0.226 0.185 
5 -500 5 1.480 1.480 1.480 1.480 1.480 0.714 0.747 0.759 1.223 0.219 0.179 
5 -500 5 1.214 1.214 1.214 1.214 1.214 0.689 0.692 0.689 1.245 0.223 0.179 
5 -500 5 0.662 0.662 0.662 0.662 0.662 0.561 0.539 0.513 1.131 0.232 0.205 
5 -500 5 -0.079 -0.079 -0.079 -0.079 -0.079 0.435 0.388 0.356 0.960 0.257 0.268 
5 -500 5 -0.927 -0.927 -0.927 -0.927 -0.927 0.432 0.351 0.327 0.844 0.312 0.370 
5 -500 5 -1.842 -1.842 -1.842 -1.842 -1.842 0.594 0.485 0.488 0.826 0.367 0.445 
5 -500 5 -2.808 -2.808 -2.808 -2.808 -2.808 0.915 0.804 0.851 0.860 0.359 0.418 
5 -500 5 -3.812 -3.812 -3.812 -3.812 -3.812 1.279 1.200 1.276 0.804 0.390 0.485 
5 -500 5 -4.851 -4.851 -4.851 -4.851 -4.851 1.444 1.410 1.442 0.481 0.803 1.669 
5 -500 5 -5.924 -5.924 -5.924 -5.924 -5.924 1.116 1.116 1.041 -0.272 1.330 4.886 
5 -500 5 -6.992 -6.992 -6.992 -6.992 -6.992 0.114 0.136 -0.029 -1.458 1.688 1.158 
5 -500 5 -7.951 -7.951 -7.951 -7.951 -7.951 -1.465 -1.437 -1.635 -2.946 1.784 0.606 
5 -500 5 -8.659 -8.659 -8.659 -8.659 -8.659 -3.373 -3.348 -3.525 -4.561 1.637 0.359 
5 -500 5 -9.000 -9.000 -9.000 -9.000 -9.000 -5.332 -5.315 -5.442 -6.136 1.308 0.213 
5 -500 5 -9.000 -9.000 -9.000 -9.000 -9.000 -7.080 -7.071 -7.140 -7.508 0.867 0.115 
5 -500 5 -9.000 -9.000 -9.000 -9.000 -9.000 -8.368 -8.365 -8.388 -8.510 0.396 0.047 
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Table 4: Estimated of the recruitment deviates by phase for the last 20 quarters for which length-frequency data was available. 

phz lb ub start phase 1 phase 2 phase 3 phase 4 phase 5 phase 6 phase 7 final sd cv 
3 -15 15 0 0 0 0.656 0.713 0.648 0.104 0.091 -0.210 0.400 1.908 
3 -15 15 0 0 0 0.181 0.225 0.046 -0.549 -0.544 0.254 0.334 1.314 
3 -15 15 0 0 0 -0.120 -0.068 0.415 -0.243 -0.216 0.071 0.363 5.097 
3 -15 15 0 0 0 0.636 0.737 0.937 0.717 0.744 0.985 0.352 0.357 
3 -15 15 0 0 0 0.931 1.033 0.491 0.234 0.244 0.816 0.281 0.345 
3 -15 15 0 0 0 1.682 1.772 1.107 0.618 0.638 -0.098 0.367 3.748 
3 -15 15 0 0 0 0.447 0.492 0.439 -0.036 -0.027 -0.955 0.368 0.385 
3 -15 15 0 0 0 0.156 0.245 -0.045 -0.161 -0.158 -0.970 0.344 0.355 
3 -15 15 0 0 0 -0.757 -0.655 -0.672 -0.514 -0.510 -0.696 0.363 0.522 
3 -15 15 0 0 0 -1.529 -1.437 -1.008 -0.902 -0.899 -0.420 0.316 0.752 
3 -15 15 0 0 0 -1.314 -1.199 -0.835 -0.646 -0.647 -0.185 0.306 1.656 
3 -15 15 0 0 0 -0.594 -0.487 -0.448 -0.206 -0.205 -0.460 0.385 0.837 
3 -15 15 0 0 0 0.271 0.260 -0.339 -0.173 -0.167 -0.748 0.358 0.478 
3 -15 15 0 0 0 -0.357 -0.429 -0.562 -0.457 -0.453 -0.356 0.389 1.093 
3 -15 15 0 0 0 -0.890 -0.995 -0.751 -0.304 -0.306 0.210 0.429 2.041 
3 -15 15 0 0 0 0.222 -0.159 -0.248 0.397 0.397 -0.374 0.457 1.221 
3 -15 15 0 0 0 0.819 -0.656 -0.115 0.481 0.493 -0.101 0.547 5.406 
3 -15 15 0 0 0 -0.005 -1.050 -0.812 -0.549 -0.535 0.237 0.555 2.341 
3 -15 15 0 0 0 4.108 0.716 0.193 0.287 0.306 -0.165 0.554 3.359 
3 -15 15 0 0 0 0.150 -0.069 -0.064 -0.019 -0.020 -0.060 0.569 9.428 
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Figure 1: Estimated selectivity curves for a purse seine fishery for bigeye tuna based on different assumptions for the weightings applied to the 

smoothness parameters. 
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Figure 2: Estimated average fishing mortality-at-age for the most recent two years using different assumptions for the weightings applied to the 

smoothness parameters. 
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Figure 3: Estimated biomass trajectories using different assumptions for the weightings applied to the smoothness parameters. 
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Figure 4: Estimated biomass trajectories for the basecase model and two sensitivity analyses to the weighting applied by the model to the catch 

and effort data and the length-frequency data. 
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Figure 5: Estimated recruitment time series for the basecase model and two sensitivity analyses to the weighting applied by the model to the catch 

and effort data and the length-frequency data. 
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Figure 6: Standardized residuals by length class and fishery for the fit to the length-frequency data for the basecase model for bigeye. A weighted 

mean trend line is fit through the data as a summary. 
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Figure 7: Standardized residuals by year and fishery for the fit to the length-frequency data for the basecase model for bigeye. A weighted mean 

trend line is fit through the data as a summary. 
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Figure 8: Correlations between estimates of recruitment deviates and effort deviates for five surface fisheries from the basecase model for bigeye 

for the last twenty quarters. The top right corner of each panel represents the most recent period. 
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Figure 9: Correlations between spawner biomass and recruitment for the basecase model for bigeye. 
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Figure 10: Estimated recruitment trajectories from the retrospective analyses. The solid points represent the last estimate for which data were 

available. Lines after the point represent average recruitment for each model. 
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Figure 11: Estimated biomass trajectories from the retrospective analyses. The solid points represent the last estimate for which data were 

available. Lines after the points represent predictions based on observed effort. 
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Figure 12: Estimated average fishing mortality-at-age for the last two years at the end of the second to last phase of estimation for different 

penalties. 
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Figure 13: Estimated average fishing mortality-at-age for the last two years at the end of the final phase of estimation for different penalties. All 

runs converged to the same solution. 
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