WORKSHOP ON PACIFIC INSHORE FISHERY RESOURCES

(Noumea, New Caledonia, 14-25 March 1988)

A COST EFFECTIVE APPROACH TO STOCR ASSESSMENT AND MONITORING OF SMALL-SCALE COASTAL FISHERIES IN THE SOUTH PACIFIC REGION

BY

J.L. MINNRO

ICLARM
South Pacific Office
P.O. Box 438

Honiara, Solomon Islands
AND
S.T. FAKAHAD

Fisheries Division
P.O. Box 14

Nuku'Alofa, Kingdom of Tonga

A COST-EFFECTIVE AFYROACH TO STOCK ASSESSMENT AND MONITORING OF
SMALL-SCALE COASTAL FISHERIES IN THE SOUTH PAEIFIC REGION

by
J.L. MUNRD,
International Center for Living Aquatic Resources Management (ICLARM), South Pacific Office P.O. Rox 43B, Honiara, Solomon Islands

and
S.T. FAK.AHAU, Fisheries Division
P.0. Eox 14, Nuku'alofa, Tonga

1. INTRODUCTION

This paper outlines a possible methodology for appraisal and assessment of coastal fisheries resources in the South Facific region tased primarily upon routine fishing and the collection of length-frequency data. The paper is based on two reports (Muriro, 1986; Munro and Fakahau, 1987) prepared for the Forum Fisheries Agency, which deal with the scientific background to this paper and the practical aspects of monitoring, assessment and management of these fisheries.

Assessment, in essence, means evaluating the state of exploitation of the stocks. Are they fully exploited or are they yielding less than the economic or biological optimum, either as a result of "underfishing" or "overfishing"? If they are underfished the reasons for such a state need to be examined. Often economic reasons are the cause, the costs of fishing being too great or the market value of the product too low. If they are fully exploited or over-exploited the fishery needs to be monitored and managed to ensure that the harvests are optimized and that further "developments" are not needlessly initiated. The economic structure of the fishery also needs to be examined to see if there are any ways in which profitatility can be increased.

2. PROPOSED METHODOLOGY FOR ASSESSING AND MONITORING FISHERIES

A basic system is proposed here as a model for monitoring, and assessing small scale coastal fisheries in the tropics. The characteristics of such fisheries are that they produce multispecies harvests, use a wide variety of fishing gears (often changing seasonally) and land catches at widely dispersed bays, beaches and small harbours and seldom at centralized fishing forts.

SPC/Inskore Fish. Res./BP. 53

- Page 3

Abstract

Jndustrial-ecale fisherjes, in which vessels discharge their catches at a limited numt - of centralized processing clepots from which the fish enter i. distribution system, are uncommon in tropical coastal areas but where they exist they are more readily amenable to data collection and monitoring than the small-scale activities arid can be treated somewhat differently. Nevertheless, the system proposed here is afpplicable to both types of fisheries. It is also based upon the assumpition that, $a s i s$ the norm in most countries, trained manpower for execution of the work is in short supply and that budgets are limited.

Assessment and moritoring is a two-part process, with assessment being a necessary precursor of monitoring. That is, a fishery needs to be assessed to ascertairi the status of the resources, to determine whether or not it is over- or uriderexploited and to decide on measures ieading to further development or to management of the fishery. Thereafter the fishery neede to be monitored in such a way that any changes in the fishery and the fish stocks will be observed and can acted upon if necessary.

The variety of methode available for fishery assessment have been described by Gulland (1983) and Munro (1986). The methods are numerous and no single method can be prescribed as being appropiriate for the assessment of all species and all fisheries. However it was argued that a system based primarily upon length-frequency data is likely to be the most costeffective (Munro, 1983). The suggested assessment and monitoring system is outlined in the following pages and summarized in Fig. 1. The actions needed for implementing the system are outlined in Fig 2.

The scheme is tased upon the assumption that no previous data are available. However, in many fisheries it is likely that all least some of the information is already available and that it will be possible to omit some of the activities or at least reduce the work to some degree. The importance of searching old files and records for such data cannot be overemphasized. Data gathered at earlier times, particularly when coastal population densities were less or conditions were different can give an invaluable insight into the changes which have occurred in the fishery. For example, length-frequency and catch per unit effort data collected in the early stages of a fishery can give invaluable insights into the mortality rates in virgin or near-virgin populations and of the relative biomasses of such populations. Feplication of an exploratory fishing cruise made many years ago can provide comparative data which will give an immediate insight into the state of a fishery. For example, if an exploratory trip in, say, the 1920 's yielded 20 kg of a species per unit effort and a replicate trip this year yielded only $2 \mathrm{~kg} / \mathrm{per}$ unit effort there would be very strong evidence that stocks had been reduced to around $1 / 10 t h$ or less of their original densities. As the greatest harvests are taken when stocks are reduced to about one half to one third of their original densities it could be concluded that such a stock must
now be grossly overfished.
Statistical systems for the continuous monitoring of catch and fishing effort are the norm in industrial fisheries throughout the world, where the very great values of the catches justify the costs of collection, where much of the information is in any event recorded for busiriess purposes and where stilled manpower is available. However, there are relatively few industrial fisheries in the tropics and they are virtually unknown in Dceania. Exceptions are the skipjack tuna fisheries, trawl fisheries for prawns and some spiny lobster fisheries.

Attempts have been made to establish statistical systems to monitor the artisanal fisheries in many tropical countries but we know of no example of successful sustained implementation. The problems of dispersed landings, the multitude of species, variations in fish prices and of unrecorded subsistence catchess normally combine to mate the syetems inaccurate and inordinately expensive in terms of maripower. Additionally, the fact that most tropical fisheries are also multigear fisheries mates the derivation of any but the crudest expressions of fishing effort almost impossible. The result has been that few meaningful or beneficial results have ever been perceived to emerge from statistical systems in multispecies, multigear fisheries and there has been a strong tendency to ecale-down the work to meaningless levels or abandon it altegether.

Where statistics are gathered systematically, the output is information on trends in the annual catches and in the catch of the dominant species per unit of fishing effort. Where a long time series of data are available over the history of the fishery, curves similar such as those shown in fig. 1 can be constructed for each species and for the total catch. However, where the fisheries have undergone major technological changes over time it becomes very difficult to assess fishing effort in meanirigful units. Likewise, in a tropical multispecies fishery where different gears may be targeted on different species at different times, of on the same species at different parts of its life cycle, any simple measure of "fishing effort" is almost impossible to achieve.

For purposes of stock assessment, the main use of fishing effort data is to provide an indirect estimate of fishing mortality ithe fraction of the fish stocl: which dies as a result of being captured). This is usually achieved by constructing an age-structured catch curve, which is a plot of the jogarithms of the abundances of successive age groups against their respective ages. The slope of the line between successive points is a measure of the total mortality rate (Z) in the time between those ages (Fig. उa). If there is a measure of fishirig effort, the mortality generated by different amounts of fishing effort can be estimated ands if the data are reliable, the mortality generated by different amounts of fishing can be plotted against the corresponding amounts of effort to get an estimate of the mortality generated by one unit of fishing effort (the catchability, q). The natural mortality rate can
also be estimated (e.g. Fig 3ty Widrig 1954). However, the result of much effort is often a non-significant plot owing to the large numbers of variables affecting the estimates. The process of sampling the fish stocks to get unbiased samples, ageing the fishes in the samples and estimating fishing effort is an expensive and tedious process at best but has formed the basis of fisheries assessments in temperate waters. However, in tropical fishes ages are difficult (but not impossible) to estimate from scales on other hard parts and there is always a multiplicity of species of roughly similar importance.

Abstract

Mariy of these problems have now been circumvented as a result of the development of length-converted catch curves (Fauly 1983; 1984) which give a relatively robust measure of size-specific mortality rates in fish stocks. This is probably one of the most important developments in fisheries science in the last two decades. In length converted catch curves the logarithms of the frequencies of successive length groups divided by the time required to grow through those groups (Ln(N;dt)) are plotted against the relative ages of the fishes in those length groups. The result is a graph with a descending right-hand arm; the slope of which is a direct measure of the mortality rate at the size or ages in question (Fig. Se).

The use of length converted catch curves derived fromi routine measurement of the lengths of fishes is therefore seen as a prime tool for assessing and monitoring fisheries because the mortality rates so derived give a direct insight into what is currently happening to a fish stact and the measure is entirely independent of the sorts of fishing gears which are contributing to the mortality. However, it is important to note that much care has to be taken in attempting to obtain lengthfrequency samples which are untiased and which really reflect the size structure of the $f i s h$ stack in question.

2.1 Sample surveys of the fishing industry

As indicated in Fig. 2, the initial need is for a sample survey of the fishirig industry which will give a baseline for the planning of future work and of the assessment and monitoring scheme. Guidelines for the establishment of statistical monitoring systems or for undertaking periodic frame surveys, together with a full list of references, are giver, by Caddy and Bazigos (1985) and need not be repeated here.

However, it is most important that fisheries officers implementing sample surveys or establishing statistical systems have a very clear appreciation of what $c a n$ be expected tomerge from such work. Statistical monitoring systems can range from the internittent collection of data to a continuous programme of monitoring landings and fishing effort. The former is hardly worth pursuing and the latter will lock up large amounts of manpower. A well executed sample survey carried out over a full year should:
(a) give an inventory of the fishing grounds and areas

SPC/Inshore Fish. Res./BP. 53
Page 6
based on their natural ecological characteristics and not on arbitrary boundaries,
(b) produce an estimate of the total tonnage of fish caught, broken down by principal species fishing gears and areas,
(c) provide an inventory of all fishing boats and fishing gears,
(d) give estimates of the numbers of
(i) full-time or part time artisanal (= commercial) fishermen and
(ii) subsistence fishermen (who are always part-time even though they might be specialists within their village), and
(e) show the basic seasonal trends in the fishery.

Such a survey could be repeated at intervals of, say, five years and will provide a basis for assessing changes in the productivity of the fishery.

However, sample surveys do not give any real insight inta the poteritial productivity of a fishery or how harvests might change in response to changes in the sorts of fishing gears used and only a limited insight into the effect of changes in fishing effort using the existing array of gears. Thus, while a single well-executed frame survey can provide information of use to planners and economists, it does not provide more than a baseline for further work in the management of the fishery. In particular it normally provides very little information on the status of particular fish stocks.

One of the prime needs, often overlooked, is for an inventory to te made of the fishing grounds, dividing the fishing grounds into reef, lagoon, outer shelf, seagrass, mangroves or other appropriate habitats and also into depth zones and measuring the area of each habitat in each fishing area. The amount of detail available will vary from place to place. The tasic features of total area of shelf or lagoon can often be derived from a large-scale nautical chart or other maps. Detailed information is now becoming available from satellite imagery and it is most important that full use be made of the availatle information (e.g. Quinn et al 1985).

Given the total landings and the areas of the fishing grounds, the harvest per unit area can be calculated and comparisons can be made with reported harvests from similer areas elsewhere and some judgement formed about the relative production rates from the fishery. Alternatively, fishing intensity surplus yield curves could be prepared in which the catch per unit effort in different, but ecologicelly similar, areas are plotted against the fishing intensity fishing effort/unit area) (Munro 1978, 1984).

One common shortcoming of many sample surveys or statistical systems is that they fail to provide information on the most important species in the catches. For example, catches might be grouped by some economic category or ty gears so that categories designated, say, as "groupers and snappers", "reef
fish" and "emall pelagics" might totally obscure the fact that one species of grouper, one species of surgeon fish and big eye scad are dominant in those categories. The tiological interpretation of the results can be greatly improved if the most important species can be identified ard categorized separately: for example, as grouper species A, surgeon fish species B, big eye scad and "all other species" might be far more mearingful than the broader groupings mentioned above. It $i s$ recognized that in tropical seas there are enormous numbers of species mostly of about equal importance. Nevertheless there are always a few species which by virtue of a combination of abundance and value are the most significant in the fishery. These could be considered as "indicator species" to be investigated in more detail or the grourids that, for example, the mortality rates of a common species caught by a particular gear will te similar to that of less common species in the same family.

2.2. Inventory of fishing gears, vessels, fisherfolk and socioeconomic factors

An inventory of fishing gears, toats and fisherfolk is an important adjunct to sample surveys in that it provides the "raising factors" for converting average catert; rates to an estimate of total catch. Similarly, finowledge of village populations, stratified if possible by sey and age will give same indication of the magnitude of subsistence catches.

Like the sample surveys the inventories need to be made in detail periodically. However within the context of what is being suggested here ari attempt should also be made to monitor any changes in the fishing gear and fishing power of the communities

A wide variety of social and economic factore affect the response of the fishing community to changes in the fishery, including proposed management measures. These include such items as the costs of different fishing gears, fuel, fish prices, availatility and costs of competing products, transportation costs, vessel maintenance, fuel and labour costs, catch sharing arrangements or boris systems and other generalized economic factors such as the consumer price inde\%, wages and opportunities for employment in other industries, and interest rates and the availability of loans.

Additionally, social factors must be identifjed and recorded. These include such things as constraints on the fishing operations for example, strict observance of the Sabbath in some countries but rot in others), traditional beliefs about fishing, customery law relating to fishing and access to fishing grounds and to disposal of catches, social pressures mitigating for or againet accumulation of capital and any other factors which will bear on the profitability of fishirg and the amount of fistimg.

The services of social scjentists and economists should be sought. The works of Smith et al (1933), Eailey (1982a,b), Smith and Mines (1982) and Lockwood et al (in press) arre important guides to this part of the work.

2.3. Routine fishing with standardized gear

After a frame survey has teen executed, as a single periodic exercise (say every five years) it is suggested that a major part of the manpower and funding in the intervening period should te directed towards routine fishing with standardized arrays of gear. It is not suggested that sophisticated research. vessels be employed; preferably, the gear and methods should be as similar as possible to those employed in the fishery, with two important exceptions.
(a) the gear should not be varied seasonally tut should be fished as best it can throughout the year
(b) some of the gear should be designed Epecially to sample fishes at a somewhat smaller (prerecruit) size than that at which they are normally tatien by the fishery.

The Essence of the routine fishing is therefore that the same set of gears are used repeatedly in every lunar month throughout the year. Fishing effort should not be varied greatly in response to changes in catch rates, i.e. the temptation to continue fishing in a good spot should be resisted if it is at the expense of coverage of the scheduled fishing stetions.

An important aspect of this suggested methodology is that it should be under the control of fisheries officers, techricians or biologists who appreciate the reasoris for undertaking the work, the need for careful recording of data and who have a positive interest in the fishermen and fisheries. It also underscores our belief that fisheries officers who regularly go fishing will have a better appreciation of the needs of the industry that those who only navigate their dest:s through the bureaucratic maze.

All fishes captured by routirie fishing should be identified to species and measured from the smout to the end of the middle caudel ray (i.e. total length if fishes have truncate or rounded tails or fork length for fork or lunate-tailed fishes). In the first year numerous fishes should also te weighed in order to establish the length-weight relationships.

The number of fishes which should be measured each month in a study area is difficult to specify, but $200-500$ of each of the five to ten commonest species and all of the less common species is a reasonable target figure. The rarest speries will never te taten in sufficient numbers to provide realistic estimates of growth and mortality. However, this is not really a constraint unless those rare species are particularly valuable e.g. spiry lotsters.

Clearly, the amount of fishirig effort needed to catch a statistically adequate sample of the most important species will be inversely related to stock abundance and in very heavily explaited fisheries it might never be possible to acquire adequate samples. Some species might also have more inherent variability than others as a result of biological variability and/or af distribution over wide bathymetric ranges. In these cases, or in the case of particularly valuable species, a separate sampling program needs to be established to supplement: the routine fishing data. Such sampling would preferably be done at the landirig places or in the markets. A preferred option for supplementing the length and catch composition data from routine fishing is to monitor the catches of selected fishermen, who are perhaps paid a small retainer to compensate for the inconvenience of having their catches enumerated. However, it would be unwise to rely eritirely upon sampling commercial catches tecause fishermen are prone to change their fishing gears in response to seasonal changes in availability of selected fish epecies or in response to changes in the weather or might even cease fishing during the best feriods simply because the markets are glutted and fish canot be sold or because other food crops need to be harvested.

The routine fishing needs to be targeted on specific "typical" fishing grounds and this might include, for example, areas on the winclward and leeward coasts of selected isjands or island groups including in each case areas which are heavily fished, which are remote from population centres and therefore lightly fished and, if possible, very remote umexploited areas. The range of depths, hatitats and geographic spread of the fishing is very much dependent upon the individual country and it is difficult to make generalizations. It is suggested that ten days of fishing per lursar mantr per area would normally provide sufficient data. If the area is too large to be covered in that time then several technical crews would be needed even if the same vessel crew operated continuously.

Data on catch rates will tend to be variable often for entirely unknown reasons and there is no reason to expect great consistency in the data. The average catch per unit of effort and any underlying trende in catch rates and composition will undoubtedly emerge over time and this is all that is required.

It is also important that areas are visited at the same time of each lunar month so that lunar or tidal variability is eliminated from the data and that every attempt to made to reduce any other sources of variation e.g. the same bait should be used at all times, the same mesh sizes, arid the same basic techniques and under no circumstances should there any any attempt to "improve" the technique after it hae beeni established. Of course, a new technique could be added to the routine fishing repertoire but could only replace an established technique if the techniques were operated in parallel for at least a year. This would be an extreme step as it could introduce unexpected problems and it highlights the rieed for careful consideration of methods tefore the system is formelly
establistied.
2.4. Data collection

Standardized, conventional biological data collection methods need to be established and maintained. The essential features are as follows:
(a) Catches should be examined every few tiours and riever gilled, gutted or otherwise processed before examinations (b) Catches from different gears, from different fishing grounds or taken in different hook or mesh sizes should be recorded separately:
(c) All catches should be sorted to species, counted and the total weight recorded. Each fish should should be measured and the sex and state of the gonads noted. Male and female fishes very often have different growth rates and therefore need to be recorded separately, at. least until there is certainty that a particular species is not sexumlly dimorphic.
(d) If the catches are too large to be measured in toto, the total weight and number should be recorded and a few randomly selected entire coritainers of fish should te measured. Alternatively, some catches could be set aside for measuring on return to port. In practice this is usually difficult to organize and can lead to errors. Shrinkage or weight loss can also occour in iced or frozen fish.
(e) Length measurement are best accumulated on waterproof rolls of graduated paper which are simply mart:ed with a pencil arid the frequencies tallied directlys clearly latelled and returned to base for processing.
(f) A detailed "cruise log" reeds to be maintained, giving details of the fishing gear used, fishing effort, times, dates, details of weight and numbers of catches by species, weather conditions, water temperatures, wind speeds, etc. The cruise log should be a copy note book, preferatily of the sort that does not require carbon paper. and containirig not more than fifty pages. The larger the notebooks are, the greater will be the loss if the entire book: is mislaid. The top copies should be removed several times daily arid stored in a safe, dry place.
(g) At the end of a fishing trip the "cruise log" should be chected by the "cruise" leader and any errors or omissions corrected. The "cruise" log toctse are very valuatle documents and should be numbered and carefully filed in a secure room when filled. The top, torn off, copies should be filed separately and used for future work. (h) Details of catches, fistirig effort and other factors should be entered into a computerized data base, preferably by the tectmical or scientific staff members who gathered the data. This minimizes errors.
(i) Length frequency data should likewise be compiled using the ELEFAN \square or similar computer programs and after one year of data are available the data should be used for the estimation of growth and mortality rates and selectivity of the fisting gears. For this purpose the

ELEFAN I and II programs (Erey and Fauly 1986; Fauly, in press) can te utilized or other length-frequency based programe that are now tecoming available (Sparre, 1987). It is most important that every attempt be made to validate results by cross-analysis of the data using whatever aralytical tools are available and sutjecting the results to sensitivity analyses whenever poseible.

2.5. Data analysis and stock assessments

The methods currently available for data analysis and stock assessments have been reviewed by Munro (198S) and key references supplied and the details will not be repeated fiere. The methods are constantly teing improved arid, often, simplified but the detailed analyeis of data still remains a specialized field and qualified personnel are needed to ensure that correct interpretations are made.

Training in these fields is becoming widely available as post-graduate university courses. In addition, short term courees are available through agencies such as FAO, ICLARM and SFC. Specialist assistance in data analysis is also available from euch agencies. The most satisfactory training would be on-the-job experience in a pilot project.

Microcomputers are considered to be adequate for mast purposes and suitatle computers (preferably two) are essential for data compilation and analysis. The essential features of the data analysis programme are shown in Fig 1. The output from the analysis should in the first instance be single-species yield curves and yield isopleth diagrams (Fig $4 a$ and b) which will indicate whether or not the principal species are underfished or overfished. More elaborate multispecies summations can be attempted as more data becomes availatle culminating in multi-species summations for different fisheries.

2.6. A permanent monitoring system

As shown in fig. 2 it seeme likely that within $3-4$ years the basic elements of a stock aseessment programme could te completed. Thereafter, muct of the data collection can be placed on a routine permanent monitoring tasis. The experience gained in the first three or four years of the program will indicate the most cost-effective routes for further monitoring of the fishery. It will also indicate the reeds for additional work on Particularly valuatle or problematical species.

It is highly likely that several "indicator" species will emerge, the mortality rates of which can be taken to be representative of or related to those of whale sections of the exploited communities. Likewise, it is likely that some elements of the routine fishing array could te elimiriated and the level of activity reduced or refocuseed on gathering length frequency and catch per unit effort data from selected boats or individual fistiermen.

Continued inventories of fishermen，bisats and fishing gears combined with knowledge of catch per unit of effort and information on the relative frequency with which gears are used will provide reasomably accurate estimates of total catches which would certairly be adequate for statistical purposes and general economic planning．

The assesement wort will provide the basic information upor， which maragement policies can be formulated．Continued monitoring will provide the means whereby the effectiveness of management can be evaluated and the effects of natural variatility in recruitment to the fisheries distinguished from the effects of enploitation．

3．REFERENCES

Bailey，C．1982．Small－Ecale fieferies in San Miguel Eay， Fhilippines：Occupational and geographic mobility．．ICLAFM Techrical Feports 10：57 p．

Bailey，C．（ed．）．，19日2．Small－Ecele fisheries of San Miguel Bay：Social aspects of production and marketing．ICLARM Technical Feparts 9：57 p．

Brey，T．and D．Pauly，1986．A user＇s guide to ELEFAN $a, 1$ and 2 （revised arid expanded version）．Ber．Inst．f．Meeresk．Univ． Kjel．149： 77 p ．

Caddy，J．F．and G．P．Eazigos．1985．Fracticel guidelines for statistical monitoring of fisheries in manpower limited situatione．FAO Fish．Tech．Fap．257：1－85．

Gulland，J．A．1983．Fish stock assessemrit：A manual of basic methods．John Wiley and Sons，Cichester．22． F ．

Lockwood，B，M．D．Nahan and I．R．Smith．19日5．The acquisition of socio－Economic information on fisheries iwith special reference to small－scale fisheries）：A Manual．ICLAFM Feport prepared fot the Fishery Development Flanning Service，United Nations Food and fgriculture Organization． 49 P.

Munro，J．L．1978．factual and potential fieh production from the curplline shelves of the Caribtean Sea．FAO Fish．Rept．200：S01－ 321.

Munro，J．L．19日ड．A cost－effective date acquisition system for assessment and management of tropical，multi－species，multi－gear fistieries．Fishbyte 1 （1）：7－12．

Munro，J．L．1984．Yjelds from coral reef fisheries．Fishbyte $2(3): 13-15$.

Munro，J．L．1986．Methode for appraisal and aseesenient of coastal fishery rescurces iu the South Farific region．ICLARM

South Facific Office Feport (to the Forum Fisheries Agency) . 40 P.

Munros J.L. and S. Fakahau. 1987. Monitoring and management of coastal fishery resources in the South Facific Fegion. ICLARM South Facific Office Feport (to the Forum Fisheries Agency). J4 P.

Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fish. Tech. Fap. 234:1-52.

Fauly, D. 1984. Fish population dynamics in tropical waters: A manual for use with programmable calculators. ICLAFM Studies and Feviews. 8: 325 p.

Pauly, D. and G. Morgan. (eds). Theory and application of length-based methods for stock assessment. ICLARM, and kilwait Inst. for Scientific Research: ICLAFM Conf. Frocs. (in press)

Quinn, N. J., F. Dalzell and E. L. Kojis. 17日s. Landsat as a management tool for mapping shallow water hatitats in Fapua New Guinea. Froc. Sth Int. Coral Feef Congr. E: 545-550.

Smith, I. R. and A. N. Mines. (eds.) 1982. Small-scale fisheries of San Miguel Eay Fhilipfines: Economics of production and marketing. ICLAFM Technical Feporte 8: 143 p .

Smith, I. R., D. Pauly and A. No. Mines. 1985. Small-scale fisheries of San Miquel Bay, Fhilippines: Options for management and research. ICLARM Techinical Reports 11:

Sparre, P. 1997. Computer programs for fish stack assessment. Length based fish stack assessment for Apple II computers. FAO Fist. Tech. Fap. 101 Suppl. 2:

Widrig, T. M. 1954. Methode of estimating fieh populations with applications to Facific sardines. Fish. Eull. U.S. Fish. Wild. Serv. 56:141-166.
(File: SFCSESS2)

Figure' 1 . Flay chart for blological end flshery paraseter estifatlona leading to fismery assesseents. Required laputs are shom in the boxes on the leftehand alde, outputs on the right. The motation and duflinltions are as follows:

```
B.....日lomasg. The total velght of 0 popyletlon (or stock) of e
    pertleular epecles.
C.... Cetch. The ceteh of - specles by \Deltaumbers or velght.
F......Flshing mortellty coefflelent. The death rate caused by
    flahlag.
K.....0rowth coofflcient. The rate of deceleration of greoth. A
        parameter in the Von Bertalanfty Gorth Function which is
        used to descrlbe the groyth cervez of flshes.
Le.....Mean length et flrat cepture. The aversge slie ot which a
        specles of fish firat becomes llable to ceptere by the
        flshery.
Loo.-Asymptotic length. Avorage moxlmun leagta toveres mhich
        the tlish are groving.
M.....Natural mortality coctilicleat. The death rate caused by
    notural factorz.
p.....Probablility of retention. Probablility that a flsm of o
        glven length wlli be retsined by a perticular tlahing
        gear.
q.....Catchabllity. The fraction of a flsh population vhlch la
        kllied by one unlt of flahing effort.
q'....Catehablilty Index. An ladex of catchabllity equal to the
        emount of flablag mortellty genereted on e specles la e
        particular year.
R......&ecrultmeat. The number of flahes reachlng Le in a year.
R'....Recrultment index. An index of the relictive number of
        recrulta in Emulti-specles lishery derived by dividing
        the total mortality rate by the catch per unlt eftort lR'
        -2.C/4).
Moo...Aaymptotle velght. The average maxlaum velght tomerds
        whleh the flsh are groulng.
z.....Total mortality coofflciont. Tho doath rate iram dil
        ceuses (z m F + M).
```

SPC/Inshore Fish. Res./BP. 53
Page 15

Figure 2.
Time fraes, actions, decisjons and outputs of aystess approach to stock essessatit, abnitoring and asnageent.

TIME
ACTION
OUTPUT
DECISIDNS

Figure Ba. Conventlonal agestructured cateh curve in which the logarlthms of the frequencles of suceesslve ege groups ore plotted agalnst age. The slope of the descending right-hend arm of the curve is equal to the coefficient of total mortality, z.

Flgure 3 b . $1 f$ mortality rates are known for years in which fishing effort differed regression of total mortality rate agalnst fishling effort mey glve posltive regression in whleh the slope of the regrescion ilne is the amount of mortality generated by one unlt of fishlng effort ond the y-exis intercept, where fishlng effort is zero, Is en estimate of the coefflcient of notural mertellty, M.

Flgure Ee. Length converted catch curve, In vhlch the logarlithas of the relat lve abundences of successlve length groups are plotted ogalnst thelr rolative agese Only the overoge difierenceln ogo between suecesslve length-groups needs be known and the absolute oges need not be known.

Page 18

a)

b)

Figure 4.
a) Yield curves showing the relationship between yield per recrult and flshling mortality for varlous values of C, where C is the ratlo of the size at entry to the flshery to the asymptotic size (from Munro 1983).
b) Yleld isopleth diogram showling the expected yleld per recrult for all combinotions of oge at entry (T_{c}) to the flshery and fishing mortallty (F). The heavy llne shows the optlmum comblnations of T_{c} and F. Comblnotions follling below the Ilne constltute "overflshlng", whlle those above the lline constltute "underfishlng".

