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Executive Summary 

This report presents final results from the WCPFC SC Project 88 ‘Acoustic FAD analyses’, funded by the 

European Union and WCPFC. This is a continuation of the work started in previous years, in 

collaboration with three fishing companies. The available data comprise 4.7 million acoustic 

transmissions from buoys deployed on drifting Fish Aggregating Devices (dFADs). This included data 

from three different satellite echosounder buoys: Satlink, Zunibal and Kato, which present different 

operational characteristics, such as biomass estimates, depth bins, or transmission frequency. Given 

the amount of data available and the specific characteristics of these buoy brands, analyses presented 

in the paper are based on Satlink data only (3.8 million transmissions), which best suited the specific 

objectives of this project. 

Results from analyses associated with this project will be used to identify whether the following 

objectives might ultimately be addressed using acoustic data from satellite buoys deployed on dFADs: 

1) Whether acoustic buoys on drifting dFADs can provide a novel and efficient source of fishery-

independent data for stock assessments (e.g., indices of abundance or additional information 

for purse seine CPUE standardisation);  

2) Whether limiting sets to only those dFADs that have a large estimated biomass beneath them 

could reduce the proportion of small bigeye and yellowfin caught.  

Matching the trajectory of echosounder buoys attached to dFADs and dFAD activities from logsheet 

(associated fishing sets) and observer data (associated fishing sets and dFAD visits) was performed 

using date/time and position. This allowed estimated biomass levels and trends to be related to 

specific fishing events and associated catch records. 

To evaluate the utility of the acoustic biomass estimates, initial analyses examined the patterns of 

biomass accumulation following deployment, and related biomass estimates just prior to setting to 

the resulting catch levels achieved. Following deployment, a clear increase was detected in the 

estimated biomass up to around 30–40 days post deployment, with a maximum around 60 days. 

Pattern of biomass accumulation before a fishing set showed an increase through time from 10 to 1 

day before a set, with most buoys in the 3 days prior to a set having an estimated biomass between 

25 and 60 t (up to 140 t). Examining the level of catch relative to the estimated biomass around the 

time of setting, larger catches generally corresponded to larger estimated biomasses over a period of 

5-days before a fishing set. For very large catch events, the echosounder often underestimated the 

biomass or alternatively, the whole tuna school was not detected under the cone of the echosounder.  

 

Towards an independent biomass index for stock assessment 

For this project objective, the focus was on skipjack tuna given the regional concerns over the 

reduction in the spatial extent and volume of the current pole and line abundance index for this stock. 

Two alternative methods were developed to classify echosounder transmissions as a relative index of 

tuna abundance or as presence/absence of skipjack tuna. The first method is a clustering analysis that 

classified echosounder transmissions in four different clusters based on biomass at depth, total 

biomass and biomass accumulation rate. One cluster (0) corresponded to no biomass detected. Two 

clusters (2 and 3), detecting biomass with differing depth profiles, corresponded to almost all 

transmissions a few days before a fishing set and therefore likely indicated the presence of tuna. 
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Finally, the last one (cluster 1), might be a mix of bycatch and tuna. Spatial distribution of each cluster 

was investigated and clusters 2 and 3 displayed a higher proportion in the main purse seine fishing 

area, while cluster 0, corresponding to transmissions with no biomass associated to the dFAD, had a 

low proportion. Higher proportions of cluster 0 were however found outside the main purse seine 

fishing areas, as expected. General additive models (GAMs) were used to investigate factors 

influencing total tuna catch. The limited number of skunk sets precluded the investigation of tuna 

presence/absence. Explanatory variables in the best model of tuna catch explained 25.9% of deviance. 

An increase in tuna catch was detected with increasing echosounder biomass, up to approximately 

150 t, but for larger sets the biomass was underestimated by the echosounder. Other significant 

variables linked to higher tuna catch were time drifting, higher absolute values of biomass 

accumulation rates, full moon and higher biomass detected by the echosounder, latitude and 

longitude (higher tuna catch north of the equator and to the east of the WCPO). 

The second method is a Random Forest analysis that classified echosounder transmissions into 

presence/absence of skipjack tuna, based on a learning dataset of matched observer set/acoustic 

transmissions and Vessel Monitoring Systems/acoustic transmissions; and buoys with no associated 

biomass. Skipjack presence generally showed longer drift times (median of 79) compared to skipjack 

absence (median of 21). Skipjack presence was also associated with higher absolute biomass 

accumulation rate values. Finally, it was also found that skipjack presence was found in areas with 

higher vessel density compared to absences. Interestingly, the match in results between the random 

forest classification and the clustering analysis was very good, with more than 97% of transmissions 

in clusters 1, 2 and 3 classified as skipjack presence; and 92.7% of transmission from cluster 0 classified 

as absence. 

The classification of presence/absence of skipjack tuna was then used to explore an integrated 

standardization approach that combines CPUE time series from the purse seine fishery with 

presence/absence data from acoustic dFAD buoys drifting throughout the WCPO. Two models were 

compared, both included the WCPO-wide purse seine catch and effort data, while only one included 

the presence/absence data set. Both models predicted similar patterns, with notable differences in 

the magnitude of relative abundance; as well as lower predicted encounter probability for the 

combined data set, and higher predicted abundance during the dFAD closure period. The distribution 

of skipjack density was also notably different between the two models, mostly due to the information 

about skipjack encounters from the dFAD network. The positive catch rates showed similar patterns, 

but with a difference in magnitude. This analysis is a preliminary exploration of the methodology, with 

a relatively short time-series. These results are not intended to be indicative at this stage, but rather 

an opportunity to evaluate alternative approaches to obtain more reliable information on trends in 

skipjack abundance. 

• While further analyses are required on a larger data set, this preliminary study suggests that 

acoustic biomass estimates from regional drifting FADs could assist in the development of an 

independent biomass estimate for skipjack tuna in the WCPO. 

 

Exploration of bigeye and yellowfin tuna proportion in fishing sets related to estimated biomass 

Bigeye and yellowfin tuna proportions derived from the catch composition were examined in relation 

to the levels of total biomass estimated by the echosounder buoys in the days preceding a set. The 

proportion of yellowfin tuna in the catch appeared relatively constant with increasing levels of 
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estimated biomass, while the proportion of bigeye tuna appeared to increase with higher levels of 

biomass estimated by the echosounder buoy. GAMs were then used to investigate factors influencing 

bigeye and yellowfin catch proportions. Explanatory variables in the GAMs explained 23.8 and 27.0% 

of deviance of the bigeye and yellowfin tuna proportions. Biomass estimated by the echosounder was 

not significant for bigeye tuna models, but lower yellowfin tuna proportions were found for lower 

biomass estimated. Other variables influencing bigeye tuna proportions were drift time, low biomass 

accumulation rates just before the set (2-days), time relative to sunrise, longitude and the interaction 

between longitude and latitude. Other variables influencing yellowfin tuna proportions were moon 

phase and longitude. The limited number of sets considered here should be noted, as well as the fact 

that the echosounder is calibrated to detect skipjack tuna. The presence of a swim bladder for 

yellowfin and bigeye tuna, contrary to skipjack tuna, might therefore influence the acoustic signal. 

Accessing data from multi-frequency echosounder buoys that are now more frequently being 

deployed in the WCPO may allow these analyses to be refined.  

• While the current analysis suggests little relationship between biomass estimates and the 

catch proportion of bigeye tuna, statistical models showed a slight decrease in yellowfin 

proportion for larger estimated biomass. Other factors, including drift time and trends prior 

to setting (rather than at setting) showing more potential. 

 

It should be noted that the acoustic data available for this analysis represent a small subset, available 

through partnership with three fishing companies, of the full dFAD network in the WCPO. The 

assistance of those companies is gratefully acknowledged. Therefore, results presented in this report 

should be viewed as preliminary and highlighting potential methods to be further explored with a 

more complete data set. Our intent is that WCPFC members and fishing companies see the utility of 

the analyses presented, in particular towards improving the monitoring of tropical tuna stocks and 

encourage or commit to making their acoustic dFAD data available for these endeavors. 

We invite WCPFC-SC17 to: 

- Note the results from Project 88 on acoustic data from echosounder buoys deployed on 

dFADs. 

- Note that while the acoustically estimated biomass related to the proportion of bigeye in the 

catch, this proved non-significant within models, but statistical models showed a slight 

decrease in yellowfin proportion for larger estimated biomass and other identified variables 

may show some promise to pre-identify sets likely to lead to greater proportions of bigeye 

and yellowfin in the catch. 

- Note the potential, over the longer-term, to use echosounder data as a source of fishery-

independent data for stock assessments, either as an independent relative index of 

abundance or to provide additional information for purse seine CPUE standardization.  

- Recommend the need for better identification of particular dFAD buoys (e.g., via the buoy 

identification numbers) by commercial vessel operators or via observer reports. 

- Endorse the continued cooperative relationship with the fishing community to obtain 

commercially sensitive data for analysis for the purpose of scientific and other research, 

particularly with regard to dFADs, and the fishing strategies involved in their use. Highlight the 

need for additional data covering the whole WCPFC convention area, including that from now 

available multi-frequency echosounder buoys, and encourage other industry partners to 

become involved in the project. 
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1. Introduction 

The deployment of satellite and echosounder buoys on drifting Fish Aggregating Devices (dFADs) by 

purse seine vessel operators has dramatically increased over the last two decades in all ocean basins. 

In the Western and Central Pacific Ocean (WCPO), the reported number of dFAD sets and the number 

of dFADs deployed have been relatively stable over the last decade, the latter varying between 30,000 

and 40,000 each year (Escalle et al., 2021a). Harvest from dFAD sets accounts for approximately 40% 

of the WCPO purse seine tuna catch (Williams and Ruaia, 2021). Satellite and echosounder buoys are 

relatively new technological developments that allow fishers to track dFAD locations and monitor the 

relative biomass of tuna beneath the buoy, which has the potential to increase fishing efficiency (i.e., 

catch per unit effort - CPUE) dramatically (Lopez et al., 2014; Wain et al., 2021). DFADs also have the 

potential to be a useful source of information for scientific investigations (Moreno et al., 2016). In the 

WCPO, the majority of dFADs are now deployed with an echosounder (99% in 2020, Escalle et al., 

2021b). This represents a rich and robust data source that has the potential to help inform mitigation 

approaches to reduce catches of small bigeye and yellowfin tuna, increase our understanding of fleet 

dynamics, and potentially provide a new source of fishery-independent data on tuna abundance for 

regional stock assessments.  

In the WCPO, skipjack tuna Katsuwonus pelamis catches are the highest of all tuna species 

(approximately 1,769,202 tons in 2020), with 82% of the harvest coming from the purse seine sector 

(Williams and Ruaia, 2021). However, despite the substantial contribution of the purse seine fishery 

to the WCPO skipjack tuna harvest, CPUE time series from this fishery are largely absent from the 

assessment process (Vincent et al., 2019). The most recent assessment relied primarily on CPUE data 

from the pole-and-line fishery (a fishery which contributed about 6% of the total harvest in 2019, and 

has been spatially contracting through time) to inform the model on trends in abundance (Vincent et 

al., 2019). This absence of the purse seine CPUE data from skipjack stock assessments is in part due to 

the perceived hyperstability of purse seine catch rates ( Hoyle et al., 2014; Hamilton et al., 2016) and 

lack of proportionality with the underlying stock, but the consequence is a growing disconnect 

between the dominant fishery sector and the data used to assess the underlying stocks.  

Developing approaches to integrate data more fully from the purse seine fishery into tuna assessment 

and monitoring programs may be key to continued sustainability of these stocks. Approaches could 

either include fishery-independent relative abundance indices developed from the echosounder 

buoys deployed on dFADs throughout the WCPO (Diallo et al., 2019; Santiago et al., 2019; Uranga et 

al., 2021), or integration of dFAD acoustic data into the CPUE standardization approach (Maunder and 

Punt, 2004), by combining time series from the purse seine fishery with presence/absence data from 

echosounder buoys. 

Preliminary analyses, as previously reported to SC, identified that the format of available data, i.e., 

from single frequency echosounders, allowed some investigations to be performed (Escalle et al., 

2020b, 2019b). In particular, it was determined that acoustic dFAD data and logsheet/observer set 

data could be linked (although assumptions are required), and some signals in the acoustic data could 

be related to catch levels, with notable variability.  A subset of the dataset was selected, for which 

trajectory and fishing activities corresponded, with high confidence, to the same buoy attached to a 

dFAD (Escalle et al., 2020b). Additional parameters were also compiled and included dFAD soak time, 

drift speed, trends in biomass accumulation leading to a fishing set, biomass moving averages, biomass 
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by depth, total catch or catch per species, moon phase, time of the set, and spatial areas. It allowed 

for additional investigation that increased knowledge of biomass accumulation dynamics and of the 

signal captured by echosounder buoys.  

This report presents results from the WCPFC project 88 ‘FAD acoustics analyses’. This is a continuation 

of the work started in previous years (Escalle et al., 2020b, 2019b), in collaboration with two US-based 

private sector firms Cape Fisheries and South Pacific Tuna Corporation (located in San Diego, 

California) and one Solomon Islands-based firm National Fisheries Developments (NFD). The three 

firms own several large purse seine vessels that operate in the WCPO and exhibit broad spatial 

coverage of the purse seine fishing grounds, with operational characteristics that are representative 

of a large segment of the fishery. Results from analyses associated with this project will be used to 

identify whether the following objectives might ultimately be addressed using acoustic data from 

satellite buoys deployed on dFADs: 

1) Whether acoustic buoys on drifting dFADs can provide a novel and efficient source of fishery-

independent data for stock assessments (e.g., relative indices of abundance or additional 

information for purse seine CPUE standardization);  

2) Whether limiting sets to only those dFADs that have a large estimated biomass beneath them 

could reduce the proportion of small bigeye (Thunnus obesus) and yellowfin (Thunnus 

albacares) tunas caught.  

It should be noted that the acoustic data available for this analysis is a small subset, available through 

partnership with those three fishing companies, of the full dFAD network in the WCPO. Therefore, 

results presented in this report should be viewed as potential methods that could be further explored 

with a more complete data set. Our intent is that fishing companies will see the utility in improved 

monitoring of tropical tuna stocks and commit to making their acoustic dFAD data available for these 

endeavors. 

2. General description of the data and processing methods 

2.1 Available data 

Biomass estimates from echosounder buoys of the three partner fishing companies, Cape Fisheries, 

NFD, and South Pacific Tuna Corporation, were independently provided to SPC. These data were 

obtained from three satellite echosounder buoy providers (Satlink, Zunibal and Kato), with each brand 

encompassing unique data characteristics (Table S1). The characteristics of each buoy brand and the 

corresponding datasets are detailed in Appendix 1. The data available for analysis comprised over 4.7 

million acoustic transmissions from buoys deployed on dFADs in the WCPO in 2016–2018 (Table S1).  

Generally, the analyses performed on acoustic data must be tailored to the specific characteristics of 

the data obtained from different buoy brands, as they are not directly comparable at this time. 

Therefore, analyses need to be performed separately for each dataset. In this paper, we focused 

exclusively on acoustic data received from Satlink buoys for several reasons. Specifically, most of the 

Zunibal buoys did not include a precise hourly position nor depth-disaggregated acoustic signals, 

which precluded analyses of interest. For Kato buoys, acoustic data only corresponded to a relative 

index per depth layer (between 0 (no biomass) to 15 (very high biomass)), which will need specific 

investigations. The Satlink buoys represent the majority of transmissions from the data set we have 
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received, with a wider spatial distribution than the other two brands. In addition, Satlink data provide 

precise location and time of the dFAD buoy transmissions as well as biomass estimates by depth layer 

below the dFAD. Therefore, we have only considered Satlink data for the analyses presented in this 

report.  

2.2 Data processing 

Consistent with the analysis of the Parties to the Nauru Agreement (PNA) dFAD tracking dataset 

(Escalle et al., 2020a), and analyses performed previously on similar dFAD echosounder datasets 

(Escalle et al., 2019b), the raw position and acoustic dataset included transmissions from active buoys 

drifting at-sea but also included data from some that were still on-board a vessel (before deployment, 

or following recovery). Therefore, data were processed by identifying at-sea and on-board positions 

following the approach of Maufroy et al. (2015). Random Forest models (Breiman, 2001) were 

calibrated using a learning dataset, then used to predict the class (at-sea or on-board) of positions in 

the echosounder dataset. Models were applied using the R package randomForest (Liaw and Wiener, 

2002). Additional correction procedures were also performed to eliminate isolated or short at-sea or 

on-board sections surrounded by long on-board or at-sea positions (Escalle et al., 2019a). Each buoy 

trajectory with acoustic data then consisted of one or several drifting (‘at-sea’) segments, separated 

by ‘on-board’ positions. Deployment positions were identified as the first at-sea position. 

A total of 3,804,244 acoustic transmissions from Satlink buoys were available after the filtering process 

(Table S1). DFADs with no biomass estimates (only position, see Appendix 1) over the whole trajectory 

were removed. Only at-sea segments were selected, removing part of trajectories where dFADs were 

on-board a vessel. The trajectory data were then summarised to produce one record per dFAD buoy 

per day. For each dFAD buoy, we identified the transmission showing the maximum acoustic biomass 

for a given day (across all depth layers), and then retained additional summary statistics associated 

with that transmission including buoy ID number, dFAD segment ID (indicating each at-sea segment 

separated by a re-deployment), and the vessel(s) that received the transmission, date, time, and 

location. The echosounder recorded biomass at depth in ten depth layers of 11.2m, from 3m to 115m 

(Appendix 2). The time relative to sunrise was also calculated, as tunas tend to be more closely 

aggregated to dFADs around sunrise (Harley et al., 2009). After the aggregation of the data, there were 

1,420,371 acoustic unique daily transmissions available for analyses. 

In addition, the amount of time the buoys had been drifting since the last deployment was calculated 

(in days). However, given the common practice of exchanging buoys on a dFAD found drifting at-sea, 

some of the buoy deployments would not correspond to a dFAD deployment, but only deployed on a 

dFAD already drifting. To overcome this issue and isolate, when possible, the time that the dFAD had 

effectively been drifting at-sea, first deployments were identified when several deployments by the 

same vessel occurred in a row (see Appendix S1.3), hereafter referred to as “grouped deployments”.  

Finally, the relative biomass accumulation rate over the preceding period (5, 10, and 20 days) was 

calculated. In other oceans, it has been shown that biomass tends to increase after an initial 

colonization period (Baidai et al., 2020; Uranga et al., 2021) and, in an industry survey, fishers indicated 

that they monitor the accumulation of biomass at a dFAD with respect to deciding where and when 

to fish (Wichman and Vidal, 2021). The accumulation rate was calculated as the slope of the linear 
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biomass trend, over the preceding period, was predicted to be important when attempting to 

ascertain whether a dFAD was retaining tuna biomass or not.  

Five main areas of the WCPO were also considered: i) equator, between 2°S and 2°N; ii) southwest, 

south of 2°S and west of 175°E; iii) southeast, south of 2°S and east of 175°E; iv) northwest and west 

of 175°E; and v) northeast, north of 2°S and east of 175°E (Figure 1). This was based on changes in 

dFAD drifting speed, especially the latitudinal variability (Figure S5). For the analyses focused on the 

development of relative abundance indices for skipjack, we restricted the spatial extent of the data to 

the assessment regions associated with purse seine fishing activity (i.e., regions 6–8) from the most 

recent assessment (Vincent et al., 2019; Figure S7). 

 
Figure 1. Map of the delineated areas of the WCPO used in the study. 

2.3 Matching between echosounder buoy trajectories and fishery data 

In this study, matching between the trajectory of echosounder buoys attached to dFADs with dFAD 

activities from logsheet and observer data was performed using date, time and position. Associated 

fishing sets (sets in association with dFADs or logs) from all vessels in the WCPO from logsheet 

operational data were considered. For the observer data, associated fishing sets and dFAD visits that 

did not result in a fishing set, from all vessels in the WCPO, were extracted from the Pacific Islands 

Regional Fishery Observer Program (PIRFO). Observer coverage is mandated for 100% of observer 

trips, and the realized coverage averages around 84–98% (Panizza et al. (2021); excepting 2020, due 

to COVID-19). For both logsheet and observer data, information included position, date and time, and 

for fishing sets, the total catch and the catch per species (three tuna species, and bycatch per category 

for the observer data) and covered the 2016–2018 period in the WCPO to match the available time 

period of acoustic data. Note that the species composition is from operational logsheet and observer 

data, hence the regional species composition adjustment could not be performed at the set level. 

A total of 42,529 and 31,669 associated sets from all vessels in the WCPO were available for matching 

from the logsheet and observer data, respectively. In addition, 156,489 visits (visiting, servicing, or 

retrieving dFADs or buoys from all vessels in the WCPO) recorded by observers were available for 

matching with trajectories. Only visits to a dFAD for which the vessel did not have an associated set 

the same day were selected. As mentioned above, the acoustic trajectory data used for matching 

included 3,804,244 acoustic transmissions in the 2016– 2018 period (non-aggregated by day dataset).  

Each acoustic transmission was matched to the nearest associated set or dFAD visit from logsheet and 

observer data using the “distHaversine” function of the geosphere package in R (Hijmans, 2019) and 
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the time difference between the two data points calculated, in hours. Sets and visits were identified 

as from a vessel’s own dFAD, or the dFAD of the vessel’s parent company, and the number of unique 

vessels receiving each acoustic transmission was calculated. 

Once the datasets were matched, some criteria were developed to identify the matches that were 

likely to be real. In theory, observers record the dFAD buoy ID number; but in practice this is not always 

possible (buoy ID number recorded in 20% of the sets and 50% of the deployments, from all WCPO 

vessels) nor is it consistently recorded properly (Escalle et al., 2018). In addition, the transmission 

timing for dFAD acoustics may not align perfectly with the timing of a set or a visit. Therefore, 

exploratory and sensitivity analyses were performed using observer data to identify the best distance 

and time difference to reliably associate a transmission with a set or visit (Appendix 1.4). Following 

the sensitivity analyses, only matches where sets or visits were made less than 5 km distant and within 

8 hours of an acoustic transmission were considered. Only sets, or other dFAD-related activities, with 

the same buoy ID in observer and acoustic trajectory data were considered for analyses presented in 

this section.  

Finally, only matched acoustic records occurring within +/- 5 hours of sunrise were retained, as this is 

the time when tunas are known to aggregate near the surface. Signals outside of the time window 

were not predicted to reliably represent tuna presence. Selected matches included 638 logsheet sets, 

481 observer sets and 179 visits from observer data. 

3. Potential use of acoustic signal as index of tuna presence or 
abundance 

Although independent estimates of biomass are not available to ground-truth the estimates derived 

from the echosounder buoys, the relationship between estimated biomass and resulting catch can be 

used to provide some useful information.  

3.1 Colonization of biomass after dFAD deployment 

DFAD colonization processes after deployment were investigated for dFADs with no associated sets 

matched to the trajectory and classified as “grouped deployments” (Figure 2) or all dFADs with no 

associated sets matched to the trajectory (Figure S8). For dFADs with relatively certain drift time, a 

clear increase in the estimated biomass up to around 3–40 days post deployment is detected (Figure 

2), with a maximum around 60 days. Similar pattern is detected for all dFADs (Figure S8), although the 

biomass is sometimes higher for very short drift times, highlighting the fact that some deployments 

detected in this study might be a buoy deployment on a dFAD found drifting at-sea.  
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Figure 2. Evolution of the maximum biomass per day (t) estimated by the echosounder buoys (transmission 

within +/- 5h of sunrise) depending on time drifting, for dFADs deployed in “grouped deployments” and with no 

sets matched, with either all data considered (left) or only transmissions with estimated biomass >0 (right). 

Horizontal line corresponds to the median, boxes to the lower and upper quartiles.  

3.3 Biomass accumulation before a fishing set 

The pattern of the maximum daily biomass before a fishing set was examined (Figure 3). The range of 

maximum biomass the day prior to a set was from 0 to 140t, with most estimates being between 0 

and 30t. Biomass was generally highest from 10 to 1 days before a set. Within 3 days prior to a set, 

most buoys estimated between 25 and 60t (Figure 3). Similar patterns were found using the daily value 

and the 5-day moving average, although a more gradual increase leading to the fishing set was 

detected with moving averages (Figure 3). 

This was compared to the estimated biomass after a fishing set, specifically in the case that one or 

more fishing set was performed 10 days or more after the first set (Figure 4). If no set was performed, 

the biomass remained low (below 20t), however an increase was detected, specifically after 30 days. 

 
Figure 3. Evolution of the maximum daily biomass estimates (values >0.95 quantile not shown here, maximum 

of 340t) from Satlink echosounder buoys each day before a fishing set, using the daily value (top) or a 5-day 

moving average (bottom). 
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Figure 4.  Evolution of the maximum daily biomass estimates from Satlink echosounder buoys each day after a 

fishing set, for buoys with only 1 set (top) or more than one set (bottom) with a 10day interval between first and 

second set. 

Biomass accumulation rates before a fishing set were analysed using the slope and intercept from 

linear models of the estimated biomass per day over varying periods of time prior to the set. These 

were compiled (see linear regressions on Figures S9 and S10) over varying periods before a fishing set 

(40–2 days to the day before the set; Figure 4). In general, an increasing trend in biomass before a set 

was detected, except sometimes for periods just before the fishing set, when the slopes were 

sometimes negative. This might result from overall high biomass levels already reached and some day-

to-day variability.  

  
Figure 5. Slopes and intercepts from linear models of the maximum daily biomass estimates over varying periods 

prior to the set, depending on the period considered (40–2 days to the day before the set) from Satlink 

echosounder buoys. 

3.3 Relative index of tuna abundance  

While previous investigations have shown that the link between total biomass and catch per set was 

difficult to discern (Escalle et al., 2020b), the type of signal detected in terms of biomass at depth and 

biomass accumulation are likely to be an indication of different levels of tuna abundance. 

Development of a relative index of tuna abundance was therefore investigated. Given the type of data 
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available, this could only be examined for all tuna species combined but could potentially be examined 

for individual tuna species if multi-frequency echosounder buoys data were made available. 

A model-based clustering method (Fraley and Raftery, 2002) was used to identify groups of 

echosounder readings with similar data features in terms of biomass estimates and profile of biomass 

at depth and accumulation rates over previous days. This method was preferred compared to 

traditional clustering algorithms (Kaufman and Rousseeuw, 1990) because it assumes a data model 

and measures probability of cluster assignments. It can also be applied to very large datasets. The data 

in a model-based clustering are considered as coming from a distribution, in this case a normal 

distribution, that is mixture of two or more components or clusters. Each cluster is modeled by a 

Gaussian distribution characterized by some parameters: mean vector, covariance matrix, associated 

probability of belonging to each cluster. 

Clustering was performed using the mclust package (Fraley et al., 2012; Scrucca et al., 2016) applied 

to a dataset comprising, for each observation, the biomass estimated at each of the 10 depth layers 

(Appendix 2). Observations with total biomass across depth layers of 0, were separated before the 

clustering analyses and grouped as cluster 0. 

Different models, based on maximum likelihood, are fitted with different covariance matrix 

parameterizations and a range of clusters (Fraley et al., 2012; Scrucca et al., 2016). The best model is 

selected using Bayesian Information Criterion (BIC), balancing model fit and parsimony, to determine 

an optimum number of clusters. The selected best model was the ellipsoidal, equal shape model, 

which identified three clusters (four in total, with the additional cluster 0). Probability of belonging to 

each cluster was very high for all transmissions classified, with very few observations showing 

intermediate probability of being in one cluster or another (Figure 6).  

 
Figure 6.  Probability of belonging to each cluster classified used the model-based clustering analyses for each 

maximum daily biomass transmission. 

The four clusters (three identified by the model-based clustering and the additional cluster 0) showed 

very different profiles of biomass at depth, total biomass and biomass accumulation rate (Figure 7). 

Cluster 0 has no biomass detected and as expected, null or low decreasing biomass accumulation 

rates. Cluster 1 has relatively low biomass, mostly less than 10t and detected from 36 to 92m (layers 

4 to 8). Clusters 2 and 3 have higher total biomass and a generally increasing biomass accumulation 

rate over 2 and 20 day periods. The profile of biomass at depth is however different, with mostly 

biomass detected in the deepest layers in cluster 3, from 81 to 115m (layers 8 to 10) and mostly 

biomass from 36 to 92m (layers 4 to 8, Figure 7). 
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Figure 7.  Characteristics of each cluster, in terms of distribution of biomass at depth for each transmission (top), 

distribution of total biomass (middle) and biomass accumulation rates over 2 (blue) and 20 (red) days (bottom). 

Most echosounder transmissions (around +/- 5 hours of sunrise) were classified in cluster 0 (average 

of 47% of daily transmissions), indicating that on most days, there is no fish biomass detected under 

the majority of dFADs (Figure 8). Cluster 1 was associated with the next highest group association 

(average of 27%), following by cluster 3 (15%) and finally cluster 2 (7%). Some variability in the percent 

associations with each cluster was however detected depending on the area (Figures 9, 10 11 and 

S11), but not relative to the dFAD closure period (Figure S12). Higher proportions of clusters 2 and 3 

were detected in the main purse seine areas, from Kiribati Gilbert Islands, to Kiribati Line Island, 

between 10°N and 10°S (Figures 10 and 11). In this area, the proportion of cluster 0 was very low, but 

was very high in areas outside the purse seine fishing area, especially above 10°N and below 10°S in 

the west. In the northeast of the WCPO, high proportion of cluster 1, and to a lesser extent cluster 2, 

were detected (Figure 10 and 11). 

 
Figure 8.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise) per day that are within each 

of the clusters. 
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Figure 9.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise) per day that are within each 

of the clusters per area considered (see Figure 1), with cluster (top) on the x-axis or area (bottom). 

 
Figure 10.  Number of echosounder transmissions per 1° cell classified in each cluster. 

 
Figure 11.  Percentage of echosounder transmissions per 1° cell classified in each cluster. 

The percentage of transmissions classified within each cluster depending on dFAD drift time is also 

examined (Figure 12 and S13). For the first 10 days, the majority of transmissions were classified in 
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cluster 0, indicating no biomass aggregated, then the importance of the other clusters increases until 

60 days. Between 2 months and 5 months, cluster 3 is around 25% of the transmissions, cluster 2 is 

around 8%, cluster 3 around 25% and cluster 1 around 35%. After 5 months, the percentage of cluster 

0 transmissions increases again and the transmission of other clusters decreases, specifically clusters 

1 and 3. 

 
Figure 12.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise, and within 10°N and 10°S) 

per clusters depending on time drifting (only dFAD deployed in grouped deployments were considered). 

An increase in the percentage of transmissions from clusters 2 and 3 was also detected in the days 

preceding a fishing set (Figures 13, S14 and S15). In particular, it can be noted that from 20 days before 

a fishing set, the percentage of cluster 0 in the transmissions is less than 15% (almost 0 the day 

preceding a set), very low compared to the percentage before 20 days (25%) or any days for dFAD 

with no set performed (55%). The percentage of cluster 1 also decreased substantially during the 

period preceding a fishing set, until less than 5% the day before a fishing set. To the contrary, the 

percentage of clusters 2 and 3 increases rapidly in the days preceding a set, to reach 55% for cluster 3 

and 35% for cluster 2 one day before a fishing day. Hence, we can consider that clusters 2 and 3 may 

indicate tuna biomass, while cluster 1, a mix of species that would likely include bycatch. Sets that led 

to higher catch (>50t) showed a very high percentage (>80%) of both clusters 2 and 3 over the last 5 

days before a set, while smaller sets showed a progressive increase in the dominancy of clusters 2 and 

3 the few days before the set (Figure S15). 
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Figure 13.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise, and within 10°N and 10°S) 

per clusters on days relative to a fishing set (only sets with >5t of tuna catch were considered). 

This can be compared to trends before a dFAD visit that did not lead to a fishing set (Figure 14). It can 

be noted that the percentage of transmissions from cluster 1 is high in the days preceding a visit, 

indicating that the dFAD echosounder buoy was estimating some tuna biomass, potentially bycatch, 

but when the vessel came in the vicinity of the dFAD, it considered that it was not worth making a set. 

 
Figure 14.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise, and within 10°N and 10°S) 

per clusters on days relative to a fishing set (only sets with >5t of tuna catch were considered). 

3.4 Relation between achieved catch and estimated biomass  

3.4.1 Total catch 

Linear relationships between catch and 5-day moving average of biomass from echosounder buoys 

were compiled but no clear pattern could be identified (Figure 15). Similarly, a linear relationship 

between total catch and bycatch, and the biomass estimated the five days before a fishing set was 

investigated and showed similar trends (Figure 16). In general, larger sets corresponded to larger 

estimated biomasses over a period of 5-days before a fishing set (Figure 17), although some variations 

are detected. It should be noted that, for very large sets, the echosounder often underestimated the 
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biomass or alternatively, it can be hypothesised that the whole tuna school was not detected under 

the cone of the echosounder. The low levels of bycatch compared to tuna catch, generally below 5 t, 

lead to very few differences when including the bycatch in the total catch of a set. 

 
Figure 15. Relationship between catch per set (t) (from logsheet data) and the estimated biomass (t) from Satlink 

buoys over various periods preceding the set (note the low R2, below 0.15 for all the regressions). 

 
Figure 16. Relationship between total catch per set (t) (including targeted species and bycatch, from observer 
data) and the estimated biomass (t) from Satlink buoys over the 5-day period before a fishing set, for each cluster 
of echosounder transmission (note that the R2 was less than 0.15 for all regressions). Similar trends were found 
with tuna catch from logsheet data. 

 
Figure 17. Tuna catch from logsheet data (left) and tuna catch and bycatch (from observer data) depending on 

levels of biomass estimated from the echosounder buoys over 5 days before a fishing set. Colors indicate the 

cluster of each biomass transmission. 
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Investigation of biomass estimates per depth layer and total catch or catch per species was also 

conducted (Figure 18). As mentioned previously, almost no biomass was detected for the shallower 

depths from 3 to 37m. For total catch and skipjack catch, higher biomass levels were detected for the 

largest sets, indicating that catch and estimated biomass could be related, at least for large 

aggregations. Biomass levels were higher in the 81–115m layer, except for very large sets where the 

37–81m layer was of similar levels. For bigeye and yellowfin catch, higher biomass levels in the 91–

115m layer were detected for intermediate catch (10 to 50t). No large yellowfin catches were available 

in the selected data set, while large bigeye catches corresponded to high biomass detected in the 37–

81m layer (Figure 18). 

 
Figure 18. Daily biomass (t) estimated per depth layers over the 5 days prior to a fishing set function of total, 

skipjack, bigeye and yellowfin catch per set. 

General additive models (GAMs, Hastie and Tibshirani, 1986) were used to investigate factors 

influencing total tuna catch. The available explanatory variables used were: the cluster or the biomass 

estimated by the echosounder the day preceding the set (average over 3 days and 5 days were also 

tested); biomass accumulation rates over 2 days and 20 days; the geographic area or the latitude and 

longitude; the time relative to sunrise; drift speed of the buoy; moon phase and time drifting. Note 

that only biomass transmission at +/- 5 hours of sunrise were considered. A delta model approach was 

used, first looking at variables influencing presence/absences of tuna in a binomial model, then when 

present, factors influencing tuna biomass caught were considered in a lognormal model. GAMs were 

run in R using the mgcv package (Wood, 2013). 

A total of 314 fishing sets were considered for the models. However, the tuna presence/absence 

model could not be run because of the limited number of skunk sets (14 compared to 320 with tuna 

catch). The best models of tuna catch explained 25.9% of the deviance (Table 1). Tuna catch increased 

with time drifting, with high absolute values of biomass accumulation rates, around full moon, and for 

higher biomass detected by the echosounder (Figure 19 and S16). In particular, regarding tuna catch 

and biomass estimated by the echosounder, an increase was detected in tuna catch with increasing 

echosounder biomass, up to approximately 150 t; for larger sets the biomass was underestimated by 

the echosounder (Figure 19). Latitude and longitude were also significant, with higher tuna catch 

above the equator and to the East of the WCPO. 
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Table 1. GAM used to investigate the factors influencing tuna catch and bigeye tuna proportion in fishing sets, 

based on variables derived from echosounder buoy data. 

Model Distribution Explanatory variables Deviance explained R2 

Tuna presence Binomial -   
Tuna catch Log normal Time drifting; moon phase; time relative to 

sunrise; 20-days biomass accumulation rate; 2-
days biomass accumulation rate; biomass; 
latitude; ti(latitude,  longitude) 

25.9% 0.234 

Proportion 
BET 

Lognormal Time drifting; time relative to sunrise; longitude, 
ti(latitude, longitude) 

23.8% 0.197 

Proportion 
YFT 

Lognormal Moon phase; biomass; longitude; ti(latitude, 
longitude) 

27.0% 0.242 

 
Figure 19. Dot plot of the relationship between tuna catch in a set and echosounder biomass estimated the day 

before (observed), the curve (loess) corresponds to the predicted data from the GAM. 

3.4.1 Proportion of bigeye and yellowfin tuna 

The proportion of bigeye and yellowfin tuna derived from the catch composition was examined in 

relation to the levels of total biomass estimated by the echosounder buoys in the days preceding a set 

(Figures 20 and 21). The proportion of yellowfin tuna in the catch appears relatively constant with 

increasing levels of estimated biomass (Figure 20). The proportion of bigeye tuna, however, increases 

with higher levels of biomass estimated by the echosounder buoy (Figures 20 and 21). This may be 

due to the presence of a swim bladder for yellowfin and bigeye tuna, while the echosounder is 

calibrated to detect skipjack tuna, which does not have a swim bladder (Moreno et al., 2019). There 

was also a  tendency for the echosounder to underestimate the size of the school for very large sets, 

which might overestimate proportions as well. Finally, the limited number of sets considered here 

should be noted. The proportion of bigeye tuna from the catch composition for the sets considered 

was therefore assessed as well and did not show any trend with the level of actual total tuna catch 

(Figure 21). 
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Figure 20. Average percentage of each tuna species and bycatch, depending on the level of biomass estimated 

over a 5-days period before a fishing set from logsheet (left) and observer data (right). 

 
Figure 21. Percentage of bigeye and yellowfin tunas, depending on the level of total catch (top) or biomass 

estimated over a 5-days period before a fishing set (bottom) from logsheet (left) and observer data (right). 

GAMs were used to investigate factors influencing the proportion of bigeye and yellowfin tuna catch 

using the same data explanatory variables as for total catch, with a lognormal distribution. Models 

explained 23.8 and 27.0% of deviance for the bigeye tuna and yellowfin tuna models, respectively 

(Table 1). Higher bigeye tuna proportions were influenced by drift time around 40–60 days, decreasing 

biomass accumulation rates just before the set (2-days), time relative to sunrise (higher from 0 to 5h 

after sunrise) and area (higher in the east of the WCPO) (Figures 22 and S18). The biomass estimated 

by the echosounder, although showing a decreasing trend, was not a significant variable in the model. 

Higher yellowfin tuna proportions were found to be influenced by the moon (higher around new 

moon), longitude (higher in the west of the WCPO) and for lower biomass estimated from the 

echosounder (Figure 23 and S19). Note, however, the limited number of sets considered in these 

models (145 for bigeye and 204 for yellowfin). 
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Figure 22. Dot plot of the relationship between bigeye tuna proportion in a set and echosounder biomass 

estimated the day before (observed), the curve (loess) corresponds to the predicted data from the GAM. 

 
Figure 23. Dot plot of the relationship between yellowfin tuna proportion in a set and echosounder biomass 

estimated the day before (observed), the curve (loess) corresponds to the predicted data from the GAM. 

3.5 Identification of presence/absence of skipjack tuna 

A combination of observer, dFAD acoustic transmissions, and Vessel Monitoring Systems (VMS) data 

were used to work towards developing reliable criteria to identify presence or absence of skipjack 

tuna, from the acoustic signals alone. This is an important research area to improve upon the 

estimation of relative abundance trends for skipjack tuna from the purse seine fishery. The process of 

assuming presence or absence of tuna species from acoustic dFAD buoy signals alone is not yet 

straightforward; therefore, several steps were taken to establish criteria for this determination.  

3.5.1 Identification of presence and absence 

Using descriptive statistics and data visualization, we identified a subset of the data elements that 

showed contrast between skipjack presence and absence, based on the matched observer-dFAD 

acoustic and VMS-dFAD acoustic datasets. We developed a training data set associated with ‘known’ 

presence/absence of skipjack or that could be assumed with a high level of confidence. We then used 

a random forest classification (Breiman, 2001) to evaluate the classification accuracy using a suite of 

predictor variables from the acoustic data and the general fishing strategy.  

Confidently identifying skipjack presence from the acoustic data alone is challenging. We first used 

the matched observer-dFAD acoustic sets. Matched sets that had less than 1 t of tuna were removed, 

as they were considered a failed set and unlikely to be representative of true abundance. We then 
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explored the catch composition, and if there was any amount of skipjack tuna caught, the set was 

classified as a presence, otherwise an absence, of skipjack. The main limitation to this approach for 

informing on presence/absence more broadly is that skipjack are caught in a very high proportion of 

purse seine sets, thus resulting in very few absences. To address this limitation, we used the VMS and 

acoustic signals to impute additional zeros, as described below. 

Prediction of absences from the acoustic data is relatively straightforward because we can look to see 

which dFADs/buoys had no associated biomass. We can bolster this classification by evaluating 

biomass accumulation rates from the previous few days. We must recognize, however, that not all 

acoustic signals will be so clear, and to increase the utility of these data it is imperative to develop 

approaches to interpret noisier acoustic signals, relative to these research questions. For example, 

there may be an acoustic signal associated with non-target species only. This signal should be classified 

as an absence of tuna or skipjack more specifically, but with our simple classification criteria of no 

biomass, it would be left in the ‘unknown’ category.  

To begin to address this uncertainty around acoustic signals, we incorporated VMS data to identify 

situations where we could assume that a dFAD was not holding skipjack (or tuna more generally) based 

on location, acoustic signal, and local fishing effort/vessel proximity. At this point, we have no way to 

verify these classifications, but the intention is to employ a conservative approach to further evaluate 

the potential of this methodology. Absence values were therefore imputed using the following 

criteria: a dFAD had low biomass (<5 t), a non-positive 5-day accumulation rate, and the vessel 

registered to the dFAD came within 5 km of its location and 5 hours from the associated transmission 

time, but did not set. All observations under consideration were between +/- 5 hours of sunrise. Based 

on these criteria, we feel reasonably confident that the dFAD was unlikely to be supporting a tuna 

school, and therefore, it was unlikely that there were skipjack at that location, on that day.  

VMS data, from all vessels in the WCPO, were also used to estimate the local fishing effort surrounding 

a dFAD. For each buoy transmission, we estimated the number of purse seine vessels within 1, 5, 20, 

and 50km from the buoy location. This information was predicted to be potentially informative about 

relative productivity of fishing areas, using density of fishing vessels as a proxy; and therefore, 

potentially informative with respect to the predicted presence or absence of skipjack. 

A random forest approach was then applied to the training dataset using the R package randomForest 

(Liaw and Wiener, 2002). The random forest model was evaluated using classification accuracy based 

on the percentage of observations recovered accurately and Cohen’s κ statistic. Finally, the model was 

applied to the full acoustic data set to predict presence or absence of skipjack. Once the 

presence/absence data sets were predicted for the full data set, they were then combined in the 

standardization procedure with the purse seine catch-per-unit effort time series (see section 3.6). 

3.5.2 Preliminary results 

The combined matched and groomed data set (dFAD acoustic, observer, and VMS) included just over 

1 million records and 525 matched observer sets. Of the matched sets retained in the filtered data set, 

363 had skipjack catch while 7 reported no skipjack in the catch. The VMS data offered an additional 

26 absences, which was insignificant given the size of the data set. The absence imputation from the 

acoustic signal, assuming that if the biomass estimate from the same day was zero and the previous 

day was either zero or unavailable (potentially suggesting a new deployment), then there was no 

skipjack there, added 377,787 absences to the training data set.  



24 
 

The main data elements explored for patterns related to skipjack presence included: sum of acoustic 

biomass, biomass accumulation rates at dFADs, dFAD drifting time, and local fishing effort. The buoys 

that were set on with positive skipjack catch rates generally showed a broader distribution over higher 

biomass estimates as compared to the observations that we were unable to match sets to (Figure 24). 

The sets without skipjack showed evidence of relatively high acoustic signals for some observations, 

although it is important to keep in mind that these groups have very few observations, and though 

there was no skipjack harvested, yellowfin and/or bigeye were harvested from those sets. 

 
Figure 24. Distribution of acoustic biomass signal (aggregated across all depths), relative to whether skipjack 

was detected in observed sets (Yes) or not (No), or whether skipjack presence is unknown because a match to 

observer data was not found (Unknown). These data include only the observations from the dFAD-observer 

matched data set and does not include the imputed absences based on the acoustic signal. 

Accumulation rates are considered as important for interpreting acoustic signals (Baidai et al., 2020). 

Here we see a strong signal in the biomass accumulation rates, indicating that when a set was made, 

the accumulation rates tended to be more variable than the dFADs with an unknown status. Of course, 

this is largely influenced by sample size, as many of the dFAD acoustic transmissions with an ‘unknown’ 

skipjack status will not be associated with any biomass (Figure 25). It is interesting to note that sets 

that caught skipjack were generally associated with more variable accumulation rates. Typically, we 

assume that biomass accumulation would be increasing prior to a set, but it may also be the case that 

a large decrease in biomass is an equally useful indictor of tuna or skipjack presence, as it suggests 

that a large school has been associated recently.  
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Figure 25. Distribution of relative biomass accumulation from acoustic dFAD signals over 5, 10, and 20 days, 

relative to whether skipjack was detected in observed sets (Yes) or not (No), or whether skipjack presence is 

unknown because a match to observer data was not found (Unknown). These data include only the observations 

from the dFAD-observer matched data set and does not include the imputed absences based on acoustic signal. 

The amount of time a dFAD has been in the water has been used in other studies (Baidai et al., 2020; 

Santiago et al., 2019; Uranga et al., 2021) to filter out dFADs that may be unrepresentative as they 

have yet to be colonized (e.g., virgin segments). Here, we simply looked at the distribution of drifting 

time across the three categories of skipjack presence (Figure 26). For dFADs that were known to 

support skipjack, the drifting times ranged from 2 to 507 days, with a median of 79. For the dFADs 

holding tuna, but no skipjack, the drifting time ranged from 1 to 463 days, with a median of 21.  

 
Figure 26. Distribution of dFAD drifting time (days), relative to whether skipjack was detected in observed sets 

(Yes) or not (No), or whether skipjack presence is unknown because a match to observer data was not found 

(Unknown). These data include only the observations from the dFAD-observer matched data set, and does not 

include the imputed absences based on acoustic signal. 

We predicted vessel density to be potentially important with respect to skipjack presence as it may be 

an indication of local fish density. Fishers tend to aggregate in areas of relatively high density, and 

therefore, we may expect higher encounter rates in areas of high vessel density. Here, there is some 

indication of high vessel density in association with positive skipjack sets (Figure 27). The dFAD 

observations with no sets were generally in areas with lower vessel density, especially when looking 

at a 20 and 50km radius.  
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Figure 27. Distribution of proportion of vessel density (from the VMS database with all WCPO vessels) within 5, 

20, and 50km from the dFAD (by row), relative to whether skipjack was detected in observed sets (Yes) or not 

(No), or whether skipjack presence is unknown because a match to observer data was not found (Unknown). 

These data include only the observations from the dFAD-observer matched data set and does not include the 

imputed absences based on the acoustic signal. 

We randomly sampled 200 matched observations from activities where skipjack were classified as 

being present and 200 for which skipjack were classified as absent. Using a model with 150 trees, we 

evaluated the importance of each predictor variable included (Figure 28). We used a bootstrap 

approach (n=50 iterations), to evaluate the sensitivity of the prediction accuracy to the random 

subsample of the data. All models produced a prediction accuracy of 99%. The κ statistic varied 

between 0.90 and 0.99, with a mean of 0.96. This level of accuracy is perhaps not surprising given the 

minimal variability in the acoustic signals associated with skipjack absence. 

 
Figure 28. Mean variable importance identified by the random forest model, from the 50 bootstrap iterations. 

Across the 50 model iterations, the acoustic biomass signal from the previous day was the most 

important predictor variable followed by the absolute value of the 5-day biomass accumulation rates, 

the mean depth of the maximum acoustic biomass signal, the acoustic biomass on the same calendar 

day, and the 5-day accumulation rate (Figure 28). The geographic location and dFAD drifting time 

offered little to the classification of presence/absence.  
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Given the relatively good performance of the classification models, we sampled the training data set 

at a higher rate to more fully capture all the information associated with confirmed presence events 

(n = 724; 362 per classification category) to fit a random forest model and then used the model to 

predict presence/absence for the full acoustic data set (n ≈ 1.04 million). The model predicted 

approximately 411,000 records to be absent of skipjack while 622,000 were expected to have skipjack 

present. We then manually adjusted these assignments, based on conservative logic. Specifically, if 

the acoustic signal indicated no biomass on a given day as well as the previous day and the model 

estimated presence of skipjack, those were adjusted to be absences. Secondly, if the random forest 

model misclassified the presence for an observed set, we used the real observation instead. In total, 

we adjusted 92,828 records from presence to absence (about 11% of the data set). 

This adjustment has benefits and limitations at this point. The first limitation being the distinction 

between tuna presence and skipjack presence. In our data set, most of the observer sets with tuna, 

but no skipjack, were classified as presence. We included the depth layer of the maximum acoustic 

signal in the random forest, but at this point those data are not very precise. Obtaining more detailed 

data at depth from dual or multi-frequency echosounders is expected to improve these classifications. 

Secondly, we have made some assumptions from the acoustic and VMS data about what an absence 

is, but uncertainty in those criteria may be complicating our classification as well. It should be noted 

that the multi-cluster approach described earlier in the paper to distinguish tuna from bycatch and no 

biomass at all, could be used to further refine the classification here, especially if we are able to 

distinguish yellowfin and bigeye signals (tunas with a swim bladder) from skipjack (a species without 

one). 

3.5.3 Comparing with clusters of echosounder transmissions 

Results from the random forest were compared to results from the clustering analysis for the same 

echosounder transmissions (Table 2). In the training dataset, almost all transmissions from cluster 2 

and 3 were classified as skipjack presence (˃ 97%), and 83% of the transmission from cluster 1 as 

skipjack presence. 100% of transmissions from cluster 0, were classified as tuna absence. Results from 

the random forest classification on the whole echosounder dataset showed a very good match 

between both methods, more than 97% of transmissions in clusters 1, 2 and 3 were classified as 

skipjack presence. 92.7% of transmission from cluster 0 were classified as absence, a similar level as 

the training dataset. Finally, the random forest classification was adjusted to account for the fact that 

some tuna can be detected, but not necessarily skipjack. A more pronounced difference was then 

detected between results from the clustering and the random forest classification, in particular for 

clusters 0, 1 and 3 (Table 2). 

Table 2. Comparison between presence (yes)/absence (no) and skipjack and clusters of tuna biomass. 

 Training dataset 
Estimated by 

random forest 
Adjusted 

Cluster No Yes % No % Yes % No % Yes % No % Yes 

0 377,793 72 100.0 0.0 92.7 7.3 82.6 17.4 

1 22 105 17.3 82.7 0.0 100.0 22.2 77.9 

2 2 76 2.6 97.4 0.0 100.0 5.7 94.3 

3 3 110 2.7 97.3 2.3 97.7 12.6 87.4 
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3.6 Potential inclusion to estimate skipjack relative abundance index 

The previous section focused on identifying reliable signals in the dFAD acoustic data to detect 

presence or absence of skipjack tuna, using observer-reported and VMS data to develop these criteria. 

This information was then used to explore an integrated modeling approach that combined CPUE time 

series from the purse seine fishery with presence/absence data from acoustic dFAD buoys drifting 

throughout the WCPO. The idea behind combining these data sets is to provide a more realistic 

assessment of skipjack dynamics that are not entirely dependent on data from the fishery. Drifting 

dFADs provide a unique observation platform that could provide data throughout the spatial domain 

of interest, including spatial and temporal strata absent of fishing effort. Additionally, one of the 

challenges with purse seine CPUE time series, is that encounter probability for skipjack tuna is very 

high (excepting failed sets which are unlikely to be representative of an absence of tuna), largely 

because purse seiners do not set their nets unless a school is detected. As a result, predicted 

encounter probability from CPUE standardization models are likely to be inflated. Our hope is that by 

combining an additional source of information about skipjack presence and absence from fishery-

independent data, we can develop more reliable estimates of relative abundance trends. 

This approach is built on the work developed by Grüss and Thorson (2019), where they illustrated how 

combining data types (i.e., biomass, count, and encounter/non-encounter data) from different 

monitoring programs in the Gulf of Mexico improved the precision of reconstructed population trends 

and variables of habitat usage. For this analysis, the motivation for including presence/absence data 

was twofold: i) to better inform the model on ‘known’ absences, and ii) to incorporate realism in the 

encounter probability, across the spatial domain. 

3.5.1 Development of abundance indices 

The spatiotemporal modeling approach is described in Appendix 4 and followed an approach 

developed by Grüss and Thorson (2019) by using a Poisson-link delta model (Thorson, 2018). The 

spatiotemporal model was fit using the VAST R package (Thorson et al., 2015). Two models were fitted: 

one that included the purse seine catch and effort data only, and a second that combined the CPUE 

data with the presence/absence data set. The results were compared. Although we do not know the 

true underlying biomass with certainty, we would not expect the overall index values from the two 

models to vary significantly; and if they do, it would likely represent a problem with the modeling 

framework and assumptions being made. 

For the CPUE data we included only sets made around dFADs. Given that all acoustic data were 

obtained from dFADs, we wanted to ensure consistency in the analysis; however, it may be of interest 

to model both free-school and dFAD sets simultaneously in future model iterations. Figure 29 shows 

the distribution of dFAD fishing effort, by set type from 2016–2018.  The distribution of skipjack catch 

over the time series was almost identical to the effort distribution. 
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Figure 29. The spatial distribution of dFAD purse seine sets, from all vessels in the WCPO, used for the CPUE 

analysis, from 2016–2018. 

The spatial distribution of the acoustic data is more comprehensive than the fishery data, within the 

core drifting zones (Figure 30). Throughout the equatorial region, there are few dFADs due to oceanic 

current patterns. DFADs are deployed and are drifting throughout the tropical waters north of the 

equator, but we have yet to develop data sharing agreements with the fleets and companies 

associated with those dFAD networks. Therefore, at this point in time, we do not have access to those 

data, creating an important data gap for these analyses.  

 
Figure 30. Spatial distribution of acoustic transmissions used in the combined data analysis, from 2016–2018. 

The CPUE-only model demonstrated relatively stable trends in relative abundance over time (Figure 

31). It should be noted that there has been relatively little effort during the 3rd quarter of each year 

due to the dFAD closure period. There are, however, exemptions that allow dFAD fishing to occur, but 

those estimates are likely uncertain due to relatively small sample sizes. In regions 6 and 7 (Figure S7), 

we see a general decline in relative abundance, with a slight increase in Region 8 beginning around 

mid-year in 2017. 
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Figure 31. Area-weighted relative abundance indices for skipjack tuna from the CPUE-only model (left) and the 

combined data model (right), for the three regions of interest, from 2016–2018. 

The combined data model predicted similar patterns across the three regions, with notable 

differences in the magnitude of relative abundance, based on the area-weighting of the indices (Figure 

31). The predicted encounter probability was naturally much lower for the combined data set than 

predicted by the CPUE model alone. In addition, the impact of the additional data source is apparent 

during the dFAD closure period, during which the CPUE is not overly informative. 

The mean-standardized indices of relative abundance enable a more straightforward comparison of 

the differences in the abundance trends estimated from the two different models (Figure 32). For 

much of the time series the two models estimate very similar trends, but in a few time steps, there 

are notable departures. 

 
Figure 32. Mean-standardized index values from the CPUE only model (solid line) and the combined data (dashed 

line) model. 

The estimates of spatial (σε) and spatiotemporal variability (σω) were comparable within each linear 

predictor; however, the spatial variation tended to be greater than the spatiotemporal variability, in 

both models (Table 3). These patterns are not necessarily unexpected given the relatively short time 

series we have modeled here. In addition, it should be noted that the variability for the first linear 

predictor, related to encounter probability, is much greater from the combined data model.   
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Table 3. Estimates of spatial and spatiotemporal variability from the two linear predictors for the CPUE-only and 

combined data models. 

Model Spatial variability Spatiotemporal variability 

 1st linear 
predictor 

2nd linear 
predictor 

1st linear 
predictor 

2nd linear 
predictor 

CPUE-only σε=1.20 σε=0.84 σω=1.22 σω=0.73 
Combined σε=2.50 σε=0.58 σω=3.26 σω=0.58 

The distribution of skipjack density is also notably different between the two models, even though the 

trends in relative abundance are fairly similar (Figure 33). These differences arise largely from the 

information about skipjack presence from the dFAD network. When using catch and effort data alone, 

the estimated encounter probability is often greater than 0.9. This encounter probability is applied to 

the spatial domain, thereby assuming an almost guaranteed encounter of skipjack throughout the 

region. Skipjack is estimated to be a fairly abundant species, but we would not necessarily expect such 

a high encounter probability for a highly mobile pelagic fish species. When we combined the two data 

sources, we obtain what might be considered a more reasonable estimate of encounter probability, 

that maps more intuitively to the predicted spatial distribution of skipjack (Figure 34). The positive 

catch rates show similar patterns, but with a difference in magnitude.  

 

 
Figure 33. Estimate (log) skipjack density, at the level of the extrapolation grid (i.e., 1°x1°) from 2016 through 

2018, from the CPUE only model (top) and the combined data model (bottom). 
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Figure 34. Estimated encounter probability (left) and positive catch rates (right) from the CPUE only model (top) 

and the combined data model (bottom). 

The exploration of a combined data approach, using the VAST framework, for the estimation of 

relative abundance indices is novel. This is a preliminary exploration of the methodology, with a 

relatively short-time series. These results are not intended to be informative at this stage, but rather 

an opportunity to evaluate alternative approaches to obtain more reliable information on trends in 

skipjack abundance. The skipjack assessment is hindered by what is often believed to be an 

uninformative purse seine CPUE index, and a lack of alternative time series to inform the model on 

abundance trends. Our hope is that by combining additional information on the presence and absence 

of skipjack, these models made prove more informative. At this stage, the information from the dFAD 

network is fairly limited relative to the number of dFADs in the WCPO, but also with respect to the 

spatial distribution. There remains much development and exploration into the utility of this combined 

data approach for estimating abundance indices, but these preliminary results show promise to 

further explore the utility for potential use in the upcoming skipjack assessment, it would be valuable 

to secure greater access to the data from the dFAD network drifting across the whole of the WCPO. 

6. Discussion and Conclusion 

This report presents analyses using data from over 3.8 million acoustic transmissions from Satlink 

echosounder buoys deployed on dFADs in the WCPO from 2016 to 2018, provided under a cooperative 

agreement with three commercial fishing companies. The three brands of echosounder buoys 

presented different characteristics, including the basic algorithm used to estimate total aggregated 

biomass, making inter-brand comparison difficult. Given the data available and their characteristics, 

analyses presented in this report focused on Satlink buoys. Colonization and recolonization (i.e., after 

a fishing set) patterns were studied using echosounder and catch data (from logsheet and observer 

data). Refined analyses to more precisely identify sets and other dFAD-related activities performed on 

buoys with available echosounder data allowed a dFAD’s ‘life history’ to be followed, and to better 

characterise biomass levels in relation to catch per set. Biomass estimates in relation to total catch 

per set were investigated, as well as relative indices of tuna biomass and presence/absence of skipjack 

tuna.  

It was noted that the ability to accurately track a dFADs ‘life history’ (not only the buoy) was 

challenging here and could have significant implications for integration of dFAD associated 



33 
 

information into regional stock assessments. In addition, many factors may influence both the 

echosounder estimated biomass and the catch per set. First, the whole school might not be detected 

by the echosounder, or not completely caught during a set. Second, a mix of species will influence the 

echosounder readings; the algorithm for estimating biomass is programmed to estimate biomass for 

schools of skipjack only. In particular, bycatch species will also be detected by the echosounder, or 

yellowfin and bigeye tuna might have a stronger influence on the acoustic signal, due to the presence 

of a swim bladder.  

This study continues to increase our knowledge of biomass accumulation dynamics and of the signal 

captured by echosounder buoys. A big challenge within this project relates to identifying, with the 

most precision, fishing activities that are performed on the trajectories available. Although that 

information exists in the fishery data, identification of a precise record of buoy ID number remains a 

challenge. Accordingly, a subset of the dataset was selected, for which trajectory and fishing activities 

corresponded, with high confidence, to the same buoy attached to a dFAD. Several parameters were 

compiled here, that could be used in further analyses performed on the dataset. These parameters 

included: dFAD soak time, drift speed, trends in biomass accumulation leading to a fishing set, biomass 

moving averages, biomass by depth, total catch or catch per species, moon phase, time of the set, and 

spatial areas. Bycatch per set, as well as tuna discards, as recorded by observers were also added to 

better characterize the whole catch per set and compare it to the biomass estimated by the 

echosounder buoy. 

Following the two main objectives of the project, the investigations focused on: 

1) the potential use of acoustic buoys on dFADs to provide new fishery-independent data for 

stock assessments;  

2) the link between high aggregated biomass and the level of small of bigeye and yellowfin in the 

catch.  

Two alternative methods were developed to classify echosounder transmissions as a relative index of 

tuna abundance or as presence/absence of skipjack tuna. A very good match in results between the 

two methods was found. The first one distinguished three clusters of fish biomass indicating different 

profiles at depth and level of aggregated biomass, and a fourth cluster of tuna absence. This could be 

used as an indication of tuna biomass, however, it is not informative at this stage regarding species 

composition. The second method, however, has been tailored directly to detect skipjack tuna 

presence and absence, but the currently available biomass data could not be used to evaluate skipjack 

biomass. Previous analyses have explored presence/absence of tuna using a similar approach (Baidai 

et al., 2020) or the possibility to derive an index of abundance of skipjack tuna using a combination of 

echosounder buoy data and species composition and average size over large spatial areas. (Uranga et 

al., 2021). Accessing multi-frequency echosounder data might allow for species discrimination and 

investigation of estimated biomass per species (Diallo et al., 2019; Moreno et al., 2019). 

The classification of presence/absence of skipjack tuna was then used to explore an integrated 

standardization approach that combines CPUE time series from the purse seine fishery with 

presence/absence data from acoustic dFAD buoys drifting throughout the WCPO. This was compared 

to a standardization model with purse seine catch and effort data only. This preliminary exploration 

of the methodology was based on a relatively short time-series and data from three fishing companies 

only with specific operational regions. Hence, results are not intended to be informative at this stage, 
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but rather an opportunity to evaluate alternative approaches to obtain more reliable information on 

trends in skipjack abundance. Larger and more comprehensive datasets are needed to fully explore 

the approach developed. 

Analyses presented in this paper are based on a small subset of the full dFAD network in the WCPO, 

for three years only. An expansion of the current study, with a larger, longer and more comprehensive 

dataset from multiple fleets, should be promoted. In addition, accessing multi-frequency echosounder 

data would also allow additional investigation to be performed, in particular linked to species 

composition and proportion of bigeye and yellowfin tuna in aggregated tuna schools. 

We invite WCPFC-SC17 to: 

- Note the results from Project 88 on acoustic data from echosounder buoys deployed on 

dFADs. 

- Note that while the acoustically estimated biomass related to the proportion of bigeye in the 

catch, this proved non-significant within models, but statistical models showed a slight 

decrease in yellowfin proportion for larger estimated biomass and other identified variables 

may show some promise to pre-identify sets likely to lead to greater proportions of bigeye 

and yellowfin in the catch. 

- Note the potential, over the longer-term, to use echosounder data as a source of fishery-

independent data for stock assessments, either as an independent relative index of 

abundance or to provide additional information for purse seine CPUE standardization.  

- Recommend the need for better identification of particular dFAD buoys (e.g., via the buoy 

identification numbers) by commercial vessel operators or via observer reports. 

- Endorse the continued cooperative relationship with the fishing community to obtain 

commercially sensitive data for analysis for the purpose of scientific and other research, 

particularly with regard to dFADs, and the fishing strategies involved in their use. Highlight the 

need for additional data covering the whole WCPFC convention area, including that from now 

available multi-frequency echosounder buoys, and encourage other industry partners to 

become involved in the project. 
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Appendix 1. General description of the data and processing method 

S1.1 Available acoustic datasets 

Acoustic and position data from three different satellite echosounder buoy providers, Satlink, Zunibal 

and Kato, were available. 

Satlink buoys transmitted acoustic (echosounder readings) and position information separately, with 

generally two transmissions of position data and three acoustic readings (typically around sunrise) per 

day (Table S1). In order to access the position related to each acoustic transmission, we linearly 

interpolated the position dataset at those times. Hence, for each echosounder reading, we had access 

to estimated position, date/time, processed total biomass estimates (t) and biomass estimates at 

11.2m depth intervals or bins from 3 to 115m. 

Zunibal buoys transmitted every hour with data for both the position of the buoy and echosounder 

readings (Table S1). Transmissions included position, date/time and total estimated biomass (t). 

However, data received included fixed position per day (same latitude and longitude throughout the 

whole day, while normally one position per hour should be available), which led to very high and 

unrealistic drift speeds between days. In order to process the data (see following section), we 

therefore retained one transmission per day, corresponding to the highest biomass reading. For some 

of the data (provided by one of the fishing companies), transmissions included raw echosounder data 

at 1.6m depth bins from 1.6 to 120m. Finally, Zunibal buoys includes a sensor archiving in/out water 

position, allowing access to buoy deployment position, which was also available for a subset of the 

Zunibal data only (Table S1). 

Table S1. Summary of data parameters per echosounder buoy by commercial brand. 

Brand Satlink Zunibal Kato 

Year 2016–2018 2016–2018 2017–2018 

Frequency of 

echosounder readings 

Generally 3 per day 

(range 0-4) 

Generally 1 per hour with 

associated position 

1 per day with 

associated position 

Frequency of position 

transmission 
Generally 2 per day 

Generally 1 per hour with 

associated acoustic data 

1 per day with 

associated acoustic 

data 

Number of echosounder 

transmissions 
3,813,009 811,006 61,859 

Biomass estimates Total estimates in tons Total estimates in tons No 

Biomass estimates per 

depth bin 

Yes 

11.2m; from 3 to 115m 
No 

Raw data (strength of 

echosounder 6–100%) 

Echosounder raw data No 
Occasionally by depth bin of 

1.6m; from 1.6 to 120m 

Yes, by depth bin of 

10m; from 0 to 150m 

Buoy deployment 

position 
No Occasionally No 

Kato buoys transmitted once per day with data for both the position of the buoy and echosounder 

readings at the same time (Table S1). Transmissions included position, date/time and a signal 
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corresponding to the echosounder reading. This corresponds to the acoustic signal strength, with a 

relative index between 0 and 7 given for each 10m depth bin between 0 and 150m.  

S1.2 Maximum estimated biomass and influence of the time of the day 

The biomass estimated by Satlink and Zunibal echosounder buoys (no estimates in tons for Kato 

buoys) ranges from 0 to 350t (Figure S1). However, the profile of the distribution of maximum daily 

biomass estimates was different between Satlink and Zunibal buoys. For the majority of days, the 

maximum estimated value from Satlink buoys was between 1 and 5t. Note that when the echosounder 

estimated a biomass of less than 1t, no acoustic signal was sent, only a transmission of the position 

was received. The distribution of maximum daily biomass estimates decreases gradually from 5 to 

100t. Zunibal buoys presented maximum daily estimated biomass mostly between 0 and 25t, then a 

gradual decrease in the distribution of maximum daily biomass from 30 to 100t was seen (Figure S1). 

 
Figure S1. Maximum estimated biomass during the day for the Satlink and Zunibal echosounder buoys. Values 

above 200 t (0.4% of all values) were removed from the histogram to increase interpretability.  

Higher numbers of biomass readings were found during the three hours before sunrise for the Satlink 

buoys (Figure S2). Similarly, the maximum daily biomass also most commonly corresponded to this 

period before sunrise (Figure S2). Zunibal and Kato buoys showed different patterns. Zunibal 

transmitted biomass regularly throughout the day, with a maximum daily biomass being typically just 

after sunrise (Figure S3). Kato buoys transmitted one biomass reading per day, hence explaining the 

similarity in the histograms between the biomass transmissions and the maximum daily biomass 

transmission (Figure S4). The maximum daily biomass was found from 3 to 5 hours after sunrise (Figure 

S4). However, it should be noted that for Kato buoys, no general estimate across the whole 

echosounder detection cone is given, but only some index by depth bin. Adding those indices might 

not therefore be relevant, and additional exploratory analyses are needed. 
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Figure S2. Time relative to sunrise of acoustic data transmission (left) and of the maximum biomass estimated 

during the day (right) for Satlink buoys. 

 
Figure S3. Time relative to sunrise of acoustic data transmission (left) and of the maximum biomass estimated 

during the day (right) for Zunibal buoys. 

 
Figure S4. Time relative to sunrise of acoustic data transmission (left) and of the maximum biomass estimated 

during the day (right) for Kato buoys. 
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S1.2 Drift speed 
Drift speed of echosounder buoys showed some variability with latitude and longitude (Figure S5), 

which may influence the acoustic signal, with higher, potentially overestimated, biomass detected at 

higher drifting speed.   

 
Figure S5. Variability in dFAD drift speed with latitude and longitude. 

S1.3 Identification of grouped deployments and precise dFAD drifting 

duration 
Buoy deployment positions were identified using the Random Forest algorithm previously described 

and defined as the first at-sea position of a trajectory or of an at-sea segment (if more than one 

deployment per buoy was detected). This allowed the compilation of buoy drift time. However, more 

importantly for the study of tuna aggregation processes or re-aggregation processes after a fishing 

set, the actual initial deployment of the dFAD itself should also be identified. dFAD and buoy initial 

deployments and hence drift time, might be different as buoys can be deployed or re-deployed on 

dFADs found at-sea. 

In the acoustic dataset received, there is no information regarding deployments and time drifting. 

Therefore, dFAD deployments could be identified using records made by observers and matched to 

acoustic time series using buoy ID numbers. However, these identifiers remain rarely recorded. 

Another method to identify dFAD deployments is to look at multiple buoy deployments around the 

same time and location (‘grouped deployments’). Deployment of new dFADs (compared to buoys 

deployed on a dFAD found at-sea) were therefore identified with certainty when several buoys were 

deployed in a row by a vessel. Grouped deployments were identified using time difference (2h) and 

distance (30km, considering maximum cruising speed of 15 knots) between different deployments of 

the same vessel. 

S1.4 Sensitivity analyses in matching between echosounder buoy 

trajectories and fishery data 

In order to access the sets and related catch made on the buoy attached to dFADs considered in this 

study, a match between the trajectory and the date and position of associated sets from logsheet and 

observer data and dFAD visits from observer data was performed using data from all vessels in the 
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WCPO. Given that buoys rarely transmitted a position every hour, and only one position per day for 

some buoys, a match was made on the same calendar day (UTC), with a distance varying between 0 

and 10 km. Sensitivity analyses were then performed using observer data and recorded information 

about buoy owner (i.e., the vessel that initially deployed the dFAD and is paying the buoy satellite 

fees) to make sure the buoy considered in the acoustic data was the same as the one attached to the 

dFAD set on. Hence, distances and time difference between set information (observer) and acoustic 

transmission were compared for buoys: i) owned by a vessel of the same company as the vessel setting 

on the dFAD; ii) owned by the vessel actually performing the set; or iii) with the same buoy ID as the 

one recorded by the observer. The latter corresponded to the most confident matching but resulted 

in a limited number as the buoy ID number remains rarely recorded by observers. 

Most matching of buoys from the same company as the vessel making the set or of the same vessel 

were at 1–5km and 1–8 hours difference, and matching on the exact same buoy at 1–2 km and 1–3 

hours difference (Table S2).  Maximum distance of 5km and time difference of 8 hours was therefore 

considered for all matches between acoustic trajectories and logsheet or observer data (Table S3). 

This might underestimate all possible matches, but will allow selection of a subset of set and dFAD-

related activities from observer data for which we are almost certain that the buoy from the acoustic 

dataset corresponds to the one from the dFAD set upon. 

Table S2. Investigation of best distance and time difference between buoy trajectory and fishing set to correctly 

identify the same dFAD on both the acoustic and observer datasets. 

  All Company Vessel dFAD ID 
   Same Different Same Different Same Different 

Distance (km) Quantile 75% 7.06 5.49 8.10 5.32 7.50 1.93 7.90 
Quantile 90% 8.88 8.10 9.27 8.05 9.08 5.18 9.22 
Quantile 95% 9.46 9.14 9.64 9.09 9.54 7.29 9.58 

Time difference 
(h) 

Quantile 75% 10.60 7.84 12.18 7.65 11.35 2.47 9.87 
Quantile 90% 16.34 16.08 16.59 15.17 16.69 7.46 16.21 
Quantile 95% 18.94 19.09 18.74 17.29 19.25 18.27 19.31 

A total of 4,342 sets from the logsheet dataset and 2,769 sets from the observer dataset were matched 

with a buoy in the acoustic dataset (Table S3). If multiple buoys were matched to the same set, the 

closest one or the one with the same buoy ID (observer data only) were kept. If we also consider 

matching at <5km and +/- 8h, a total of 2,224 sets from the logsheet dataset and 1,339 sets from the 

observer dataset were selected. 

Other dFAD-related activities (deployments, visits, recoveries) from the observer data were also 

matched with acoustic trajectories (Table S4). In order to refine again the selection of sets and other 

activities matched with a buoy trajectory, we only selected those data where the observer’s recorded 

buoy ID and that ID for the trajectory matched. All the other activities (e.g., fishing sets) recorded at 

the same time were considered to be made on the same dFAD. This resulted in 661 sets in the logsheet 

data, 657 sets in observer data, 1,198 visits, 211 dFAD deployments, 194 dFAD retrievals, 462 buoy 

deployments and 458 buoy retrievals considered for further analyses (Tables S3 and S4). 
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Table S3. Matches between buoys in the acoustic dataset and sets in logsheets, or set and other dFAD related 

activities in the observer data from all vessels in the WCPO. 

 Logsheet Observer 

 All % 
<5 km 

+/- 8h 
% All % 

<5 km 

+/- 8h 
% 

Total number of sets (all WCPO vessels) 42,529 31,669 
Number of matching 4,342  2,378  2,769  1,403  
Unique set matched 3,935 7.3 2,224 4.2 2,531 6.4 1,339 3.4 
Unique buoy trajectory with matching 2,344 34.5 1,596 23.5 1,674 24.6 1,008 14.8 
Set with only 1 buoy matched 3,617 83.3 2,106 88.6 2,349 84.8 1,290 91.9 
Set with >1 buoy matched 318  118 5.0 181 6.5 48 3.4 
Average number of sets per buoy 2.8  2.5  2.5  1.8  
Number of buoys with grouped 
deployments 

1006  489  604  271  

Selected matching    661    657  

 

Table S4. Other matchings made between trajectories and the observer database, at less than 5km and 8h 

difference, from all vessels in the WCPO. 

 Visits dFAD 
deployment 

dFAD 
retrieval 

Buoy deployment Buoy retrieval 

Matching events 2,952 554 344 1,040 1,290 
Unique buoy 1,586 458 299 976 755 
Selected 
matching events 

1,198 211 194 462 458 
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Appendix 2. Biomass by depth layer 

 
Figure S6. Depth layers and characteristics of the echosounder cone for Satlink echosounder buoys. Beam width 

(or angle) (a), depth range (h), and diameter (d) at 115 m. Derived from Lopez et al. (2016) 
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Appendix 3. Additional figures 

S3.1 Skipjack tuna stock assessment regions 

 
Figure S7. Spatial structure from the most recent skipjack tuna stock assessment (Vincent et al., 2019). 

Regions primarily associated with purse seine fishing activity (i.e., Regions 6–8) are colored. 
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S3.2 Colonization of biomass after dFAD deployment 

 
Figure S8. Evolution of the maximum biomass per day (t) estimated by the echosounder buoys (transmission 

within +/- 5h of sunrise) depending on time drifting, for all dFADs with no set matched. 

S3.3 DFAD life history patterns and dFAD accumulation processes before a 

set 

Patterns of biomass estimates before and after a fishing set were investigated for some example 

dFADs to better understand the variability between catch and biomass (Figures S11 and S12). Figures 

were generated to follow the ‘life-history’ of buoys, with the different fishing sets, as well as any other 

activities recorded by observers, and periods when that same buoy was on-board a vessel. 

 
Figure S9. Example of biomass accumulation (t), from a Satlink buoy, before and after a fishing set. Color bars indicate the 

maximum biomass per day (40 days prior to and after a fishing set) and per depth bin, linear regression for 30-day, 20-day, 

10-day and 5-day periods are shown as blue lines. On the right panel, time drifting, grouped deployments, moon phase (also 

indicated with circles on the graph for the full moon), time of the beginning of the set relative to sunrise and depth layers. 

Red horizontal line = total recorded catch of the set from logsheet data; S = day of a fishing set; top brown arrow = recovery 

of a dFAD; top orange arrow = recovery of a buoy, vessel = buoy on-board; eye = visit of the dFAD.  
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Figure S10. Examples of biomass accumulation (t), from a Satlink buoy, before and after a fishing set. Color bars indicate the 

maximum biomass per day (40 days prior to and after a fishing set) and per depth bin, linear regression for 30-day, 20-day, 

10-day and 5-day periods are shown as blue lines. On the right panel, time drifting, grouped deployments, moon phase (also 

indicated with circles on the graph for the full moon), time of the beginning of the set relative to sunrise and depth layers. 

Red horizontal line = total recorded catch of the set from logsheet data; S = day of a fishing set; top/bottom brown arrows = 

recovery/deployment of a dFAD; top/bottom orange arrow = recovery/deployment of a buoy, vessel = buoy on-board; eye 

= visit of the dFAD.   
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S3.4 Clustering analyses of echosounder transmissions 

 
Figure S11.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise) per day in areas of varying 

fishing effort (Null = 0 fishing sets per 1° cell and month, Low = 1 or 2 fishing sets per 1° cell and month; Moderate 

= 3–15 fishing sets per 1° cell and month; High = >15 fishing sets per 1° cell and month). 

 
Figure S12.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise) per day during or outside 

the dFAD closure period. 

 
Figure S13.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise, and within 10°N and 10°S) 

per clusters depending on time drifting (only dFAD deployed in grouped deployments were considered) and 

fishing effort (Null = 0 fishing sets per 1° cell and month (top left), Low = 1 or 2 fishing sets per 1° cell and month 

(top right); Moderate = 3–15 fishing sets per 1° cell and month (bottom left); High = >15 fishing sets per 1° cell 

and month (bottom right)). 
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Figure S14.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise, and within 10°N and 10°S) 

per clusters on days relative to a fishing set (only sets with >5t of tuna catch were considered) and fishing effort 

(Null = 0 fishing sets per 1° cell and month (top left), Low = 1 or 2 fishing sets per 1° cell and month (top right); 

Moderate = 3–15 fishing sets per 1° cell and month (bottom left); High = >15 fishing sets per 1° cell and month 

(bottom right)). 

 
Figure S15.  Percentage of echosounder transmissions (around +/- 5 hours of sunrise, and within 10°N and 10°S) 

per clusters on days relative to a fishing set (only sets with >5t of tuna catch were considered) and level of tuna 

catch achieved (≤10t (top left); 11-50 t (top right); 51-100 t (bottom left); ≥100t (bottom right)). 
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S3.3 Models of tuna catch and bigeye and yellowfin proportions 

 
Figure S16. Smoothed fits of covariates modelling the total tuna catch in associated fishing sets using lognormal 

GAM. 

 
Figure S17. Percentage of bigeye (top) and yellowfin (bottom) tunas, depending on the level of biomass 

estimated over a 5-days period before a fishing set from logsheet (left) and observer data (right). 
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Figure S18. Smoothed fits of covariates modelling the bigeye tuna proportion in associated fishing sets using 

lognormal GAM. 

 
Figure S19. Smoothed fits of covariates modelling the yellowfin tuna proportion in associated fishing sets using 

lognormal GAM. 
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Appendix 4. Spatiotemporal modeling approach 

To develop the combined data model, we used a Poisson-link delta model (Thorson, 2018) and a model 

structure similar to that developed by Grüss and Thorson (2019). The echosounder data provided 

presence/absence data P which took on the value of 1 when a dFAD was classified as having skipjack 

present and 0 when no skipjack were detected (or predicted), and were modeled assuming a Bernoulli 

distribution 

𝑃 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑖𝑙𝑙𝑖(𝑝(𝑖)) 

where the probability of encounter (𝑝(𝑖)) follows a Poisson distribution with intensity equal to the 

local numbers density n(si, ti). 

𝑝(𝑖) = 1 − 𝑒𝑥𝑝 (−𝑛(𝑠𝑖 , 𝑡𝑖)) 

We can think of this in the sense that the true variable of interest, for which we are using encounter 

probability to represent, is a Poisson process (i.e., number of individual fish). By using the estimated 

numbers density as the Poisson intensity to estimate the probability of encounter, we ensure that as 

local density increases, the expected probability of encounter also increases. The CPUE sampling data 

C represents skipjack catch (in tonnes) per set c(s, t) at each location s and time step t (year-quarter), 

and could take on any positive value or zero if no skipjack were encountered. Using a Poisson-link 

delta model, biomass density d(si, ti) was predicted as the product of the encounter probability p(i) 

and the positive catch rates r(i). 

𝑟(𝑖) =
𝑛(𝑠𝑖,𝑡𝑖)

𝑝(𝑖)
 .  𝑤𝑖                                                                          (1) 

Assuming a gamma error distribution for the positive catch rate component (Thorson et al., 2021), the 

delta model for the CPUE data is defined as: 

Pr(𝑐(𝑖) = 𝐶) = {
1 − 𝑝(𝑖)                            𝑖𝑓 𝐶 = 0

𝑝(𝑖) .  𝑔(𝐶|𝑟(𝑖), 𝜎𝑜𝑏𝑠
2 )   𝑖𝑓 𝐶 > 0,

 

where 𝑔(𝐶|𝑟(𝑖); 𝜎𝑜𝑏𝑠
2  is the gamma error distribution for unexplained variation in the positive catch 

rates and 𝜎𝑜𝑏𝑠
2  is residual variability. As Grüss and Thorson (2019) demonstrate, this combined 

modeling approach is such that the likelihood components for each of the data types have shared 

parameters (n(si, ti)), making the spatiotemporal modeling process more straightforward. In their 

example, they also modeled count data, but here, we have a simpler application that combined 

biomass and presence/absence data. Briefly, the linear models used to estimate encounter probability 

p and magnitude of positive catch rates r were constructed as  

log(𝑛(𝑠𝑖 , 𝑡𝑖)) = ß𝑛(𝑡𝑖) + 𝜔𝑛(𝑠𝑖) + ε𝑛(𝑠𝑖, 𝑡𝑖) + ∑ 𝛾𝑚

𝑛𝑚

𝑚=1

𝐺(𝑖, 𝑚) 

log(𝑤𝑖(𝑠𝑖 , 𝑡𝑖)) = ß𝑤(𝑡𝑖) + 𝜔𝑤(𝑠𝑖) + ε𝑤(𝑠𝑖, 𝑡𝑖) 

where log(n) is defined as local numbers density and is used to estimate the encounter probability, 

and the biomass per individual is modeled as log(w). The ß terms are the intercepts (time indices), 

the ω parameters represent the spatial variation and the ε terms represent the spatiotemporal 

variation. Both ω and ε are modeled as Gaussian Markov random fields. Lastly, ∑ 𝛾𝑚𝐺(𝑖, 𝑚)
𝑛𝑚
𝑚=1 is the 

effect of sampling program m on the expected number of individuals sampled, where G(i, m) = 1 for 

sampling program m that collected the samples and 0 otherwise. This reformulation of the traditional 

delta-model is possible because of the relationship defined in Equation 1, where numbers density n(si, 
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ti) is converted to encounter probability p(i) and biomass per group w(si, ti) is converted to positive 

catch rates r(i) (see Thorson, (2018) for additional details). The spatiotemporal model was fit using 

the VAST R package (Thorson et al., 2015) with 50 spatial knots to create a uniform spatial surface for 

the estimation. To compare the results from the combined data model, we also fit a model to the 

CPUE data alone.  

 


