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Abstract 
Lagoon soft bottoms are key habitats within coral reef seascapes. Coral reef fish use these habitats as nurseries, feeding grounds 
and transit areas. At present, most soft-bottom sampling methods are destructive (trawling, longlining, hook and line). We 
developed a remote, unbaited 360° video sampling method (RUV360) to monitor fish species assemblages in soft bottoms. 
A low-cost, high-definition camera enclosed in a waterproof housing and fixed on a tripod was set on the sea floor in New 
Caledonia from a boat. Then, 534 videos were recorded to assess the efficiency of the RUV360. The technique was successful 
in sampling bare soft bottoms, seagrass beds, macroalgae meadows and mixed soft bottoms. It is easy to use and particularly 
efficient, i.e., 88% of the stations were sampled successfully. We observed 10,007 fish belonging to 172 species, including 
45 species targeted by fishers in New Caledonia, as well as many key species. The results are consistent with the known charac-
teristics of the lagoon soft-bottom fish assemblages of New Caledonia. We provide future users with general recommendations 
and reference plots to estimate the proportion of the theoretical total species richness sampled, according to the number of 
stations or the duration of the footage.
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1. Introduction
Soft-bottom habitats constitute a major part of the coral 
reef seascape. These habitats make up extensive areas of 
mud, sand or rubble that marine plants can colonize [1,2]. 
In a lagoon environment, they are the key corridors be-
tween coral reefs, playing an essential role in ensuring con-
nectivity and energy transfer within a mosaic of reef and 
perireefal habitats [3,4]. Many fish species, along with sev-
eral emblematic species such as sea turtles or dugongs, use 
these habitats. Fish use such habitats as nurseries, feeding 
grounds or transit areas [5,6]. This very complex seascape 
is under increasing anthropogenic pressure, in particular 

due to the growing population and increased impacts such 
as fishing, coastal development, tourism, input from wa-
tersheds, the transformation of coastal landscapes,  and 
marine aquaculture.

Few studies have been devoted to soft-bottom habitats com-
pared to the other ecosystems of this seascape such as coral 
reefs or mangroves [7]. One of the main reasons for this is 
that soft-bottom fish assemblages are difficult to sample as 
individuals are scattered over very large areas and are often 
associated with significant depths. Most of the available data 
come from experimental fishing (essentially hook and line 
or trawl) or fish landings (e.g. [7–11]), which are extractive 

A blue-spotted stingray (Neotrygon kuhlii) glides by the camera (image: ©VISIOON)
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methods and present the typical problems of representative-
ness, sensitivity and repeatability. While standardized and 
nondestructive sampling methods such as underwater visual 
census (UVC) are extensively used on coral reefs, these ap-
proaches are not adapted to soft-bottom habitats because of 
the low occurrence of fish, specific fish behavior as well as 
the extent or the depth of these habitats. In New Caledonia, 
soft-bottom fish assemblages are, at present, known only 
from earlier programmes based on experimental catch data 
[11–16] and fisheries survey data [17–19].  

The recent development of underwater video systems 
[20,21] provides an opportunity to develop a standardized 
method to monitor fish assemblages over large areas such 
as soft-bottom habitats. This tool has the advantage of be-
ing nondestructive for the environment, has little influence 
on fish behaviour, and can record for long periods at vari-
ous frequencies. Different video techniques exist to sample 
fish, such as remote underwater video, whether baited or 
not, diver-operated video or towed video (see [21] for a 
review on video techniques). At present, the most widely 
used approach in perireefal habitats is the “BRUV” tech-
nique (Baited Remote Underwater Video) that attracts fish 
around the camera with bait (see [22–25] for applications 
on seagrass beds). In New Caledonia, video systems have 
been mainly used in censuses of coral reef fish [26–28] or 
sharks [29,30]. Pelletier et al. [26] used video techniques on 
soft-bottom habitats, but the performance of the method 
(required number and duration of videos) was not tested.

Pilot studies on method efficiency are important to validate 
and optimize sampling methods, as part of developing cost-
effective and statistically robust monitoring programmes. 
However, most sampling designs based on video techniques 
are used without such pilot studies, which may compromise 
their results [31–33]. Considerable variability in sampling 
times and number of replicates characterize published stud-
ies [21]. Recently, Garcia et al. [35] studied the possible 
trade-off between the number and the length of remote 
videos used in a rapid assessments of reef fish assemblages. 
With 46 videos on five sites, they indicated that increasing 
the sampling coverage in the reef area may be more effective 
than just extending the video length. 

The objective of this study was to perform a pilot study 
to present a standardized sampling protocol to monitor 
the diversity, abundance and structure of perireefal fish 
assemblages during daytime, in relation to the environment. 
We used a remote and unbaited 360° video system 
(RUV360). The 360° camera records simultaneously all 
the area around each sampling point. The aim of this pilot 
study was to assess: (1) the limits of the RUV360 sampling 
method (cost, visibility, current, bottom topography); 
(2) the fish species targeted by the technique; and (3) 
the optimal recording time per station and the number 
of stations required to obtain representative, stable and 
reproducible data on perireefal fish communities.

2. Material and methods

2.1. Study area and sampling design

The main island of New Caledonia is one of the largest 
coral reef lagoons in the world (19,385 km²). It includes 
16,874 km² of nonreef habitat, with certain areas listed as 
a UNESCO World Heritage site [34]. This very complex 
seascape is under increasing anthropogenic pressure, in par-
ticular due to the growing population (268,767 inhabitants 
in 2014 compared to 230,789 in 2004)7, and increased im-
pacts such as fishing, coastal development, tourism, mining 
and marine aquaculture. The study was conducted from the 
3rd May until the 18th July, 2018, in the Southwest Lagoon 
of New Caledonia. The study area is an 18.5 km long and 
4 km wide transect from the coastline to the barrier reef 
(Fig. 1). This area is representative of the coral reef seascape 
of the  main island, near Nouméa, the capital city. The la-
goon includes 67.5 km² of soft-bottom habitats and two 
rows of coral reefs and coralline islets along a shore-barrier 
reef gradient. Coral heads are scattered on the lagoon bot-
tom. Habitats with more than 50% hard substrate were ex-
cluded from the sampling..

In order to assess the optimal recording time for each station 
and the number of stations required to get representative 
and reproducible data on soft-bottom fish assemblages, we 
had to oversample the area. A systematic sampling protocol 
including 609 stations within a grid of 300 m wide cells was 
used. The distance between stations was sufficient to avoid 
overlap due to fish swimming from one station to another. 
The stations were sampled during daylight, at least one hour 
after sunrise and one hour before sunset, to avoid possible 
crepuscular variation in fish assemblages [36].

2.2. Sampling technique and images analysis 

This study used an autonomous, remote and unbaited 
video technique named “RUV360” (Fig. 2). The camera 
was a low-cost camera (€250) from KODAK (model 
PIXPRO SP360 4K) which can record videos in very 
high definition (1440 × 1440 pixels, 30 fps), featuring a 
spherical lens with a 360° horizontal and a 235° vertical 
view, pointed directly upward (Fig. 2). The camera was 
enclosed in a waterproof housing (limited to 60 m depth, 
€50), fixed to an aluminum tube 17 cm above the sea-
floor. A tripod system was used to position and stabilize 
the camera on the sea floor (Fig. 2). The video system was 
deployed from a boat without the need for the crew to 
enter the water. This method allowed us to maximize the 
number of observations while minimizing disturbance to 
the environment (no boat and no human were present 
near the video system during the recordings). To evaluate 
the minimum recording duration required to have repre-
sentative observations, we fixed the recording duration at 
25 minutes. This time was sufficient to observe sedentary 
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Figure 2. The remote underwater video system.
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Figure 1. Studied area and sampling design. Each dot represents a station.
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fish and then assess the amount of additional information 
(passing fish) obtained over time.  

To optimize sampling at sea, we used four video systems 
deployed by two people aboard a small boat (<8 m).  Af-
ter each sampling day at sea, all videos were checked to as-
sess (1) an appropriate field of view (visibility >5 m), (2) an 
appropriate orientation of the camera allowing for a clear 
view of the seabed, (3) a stable camera during filming and 
(4) that the habitat sampled was mainly soft (<50% of hard 
bottom). When a video was found to be invalid, a second 
attempt was made the following day.

All videos were analyzed by the same experienced observer 
using the camera software (Kodak Pixpro SP360 PC soft-
ware, v1.7.0). The habitat was characterized by estimating 
the percentage of abiotic and biotic coverage over the 360° 
images using the “MSA” protocol [37]. The abiotic cover 
was classified as bare sediment (mud, sand, gravel and small 
boulders < 30 cm) or nonliving hard substrate (dead corals, 
coral slab, blocks > 30 cm). The biotic cover (live substrate) 
was classified as live corals (carbonated edifices that were still 
in place and present a coral shape) or “marine plants” (sea-
grass and macroalgae). The videos did not allow us to dif-
ferentiate systematically between seagrass  (Cymodocea sp., 
Halophila sp., Halodule sp., Syringodium sp., Thalassia sp.) 
and macroalgae (Caulerpa sp., Halimeda sp., Lobophora sp., 
Sargassum sp., Turbinaria sp.). 

All fish were counted and identified at the lowest possible 
taxonomic level. To avoid counting the same fish several 
times, we used a conservative measure of relative abundance: 
“MaxN” [38]. This measure of abundance is the maximum 
number of individuals of the same species appearing at the 
same time throughout the entire video. To study the influ-
ence of camera soak time on species composition and abun-
dances, we calculated MaxN (by species) every 30 sec. This 
protocol made it possible to study the number of new spe-
cies and new individuals observed within each time interval. 
Some fish species from the same genus are similar and only 
differ in small details (eyes colour, small colour dots, etc.). 
These species are therefore difficult to distinguish on videos 
unless they are close enough to the camera. For our video 
analyses, we aggregated these species into groups (gp) as (i) 
Amphiprion gp for Amphiprion akindynos and Amphiprion 
clarckii; (ii) Lethrinus gp for Lethrinus variegatus and Leth-
rinus genivittatus; (iii) Nemipterus gp for Nemipterus pero-
nii, Nemipterus furcosus and Nemipterus zysron; (iv) Parap-
ercis gp for Parapercis australis and Parapercis millepunctata, 
and (v) Pomacentrus gp for Pomacentrus amboinensis and 
Pomacentrus moluccensis.

2.3. Sampling cost

We estimated the cost of sampling by the time required for 
fieldwork and videos analysis. The total time required for 
fieldwork each day included preparing the boat, the trip to 
the sampling area and the time spent within the sampling 
area (set-up of the video systems, deployment and retrieval 

of video systems, travel between stations). The time required 
to characterize the habitat, then identify and count the mac-
rofauna on the videos was noted for each video during the 
video analysis.

2.4. Data analysis

2.4.1. Typology of the habitat and fish assemblages

We selected all stations composed of less than 50% hard bot-
toms for our study on soft-bottom habitats. To identify the 
typology of the habitat, we performed a principal compo-
nent analysis (PCA) on raw data and a hierarchic ascend-
ing classification (HAC) on the first three axes of the PCA 
(100% of the inertia), using the squared Euclidean distance 
and Ward’s aggregation method [39].

In order to verify the discriminating nature of the type of soft 
bottom on the fish assemblages, a CAP (canonical analysis 
of principal coordinates) was carried out on the Bray Curtis 
similarity matrix between the stations according to species 
abundance, using habitat type as a classifier. We applied a 
square root transformation on the dataset prior to analysis 
to downweight the importance of the outlier species [40]. 
The results of the CAP were validated by a PERMANOVA 
(999 permutations).

2.4.2. Influence of soak time and number of stations sampled on 
fish assemblages

The relationship between soak time and the number of spe-
cies or individuals recorded was modelled using species ac-
cumulation curves and cumulative abundance curves. Spe-
cies richness and abundance were calculated at 30-second 
intervals until the 25 minutes of soak time elapsed, for the 
entire area and per habitat.

The species accumulation models used a rarefaction method 
based on raw data added in ascending order. The rarefaction 
model known as Mao Tau’s estimate [41] is a powerful tool 
for detecting species richness [42]. Abundance accumula-
tion models used the time required to reach MaxN at each 
station added in ascending order. The estimate of the theo-
retical total number of species or individuals in the area stud-
ied was calculated by fitting a nonlinear Michaelis–Menten 
model [43] (the most accurate of the models tested) to the 
accumulation data: y = (Vm x t) / (K + t), where “y” is the 
number of species or individuals after “t” min of recording, 
“Vm” is the theoretical total number of species or individu-
als in the study area, and “K” is the number of stations where 
half of the theoretical total number of species or individuals 
have been detected in the videos.

We calculated the proportion of the theoretical species rich-
ness (SR) according to the number of stations and the dura-
tion of the footage. These proportions were calculated as the 
average of the SR obtained by 180-second intervals using 
999 draws (without replacement) of the required number of 
stations in the overall data set (534 stations).  
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3. Results

3.1. Sampling cost 

We validated 534 stations out of the 609 stations of the sam-
pling protocol in the area, between 1 and 25 m depth (mean 
± SE = 12.9 ± 0.3 m). Fifty stations, located in a coral habi-
tat (more than 50% of live coral), were excluded from the 
study. It was not possible to position the camera correctly at 
58 stations due to the relief of the seabed. The visibility of 
the water was too low for 8 stations and the current was too 
high for 52 stations (especially in the channels). Depend-
ing on wind, wave and depth conditions, the preparation of 
the boat and the trips took between 19 min and 113 min 
(mean ± SE = 46 min ± 3 min) (Table 1). Each 25 min of 
video required an additional 10 min to set up, deploy and 
retrieve the video system. This time was reduced by using 
four RUV360 systems simultaneously, resulting in a total 
time of 40 min to 92 min to sample a set of four stations 
(mean ± SE = 40 min ± 3 min). The variations in time are 
mostly due to the requirement for correct positioning of the 
system on the seabed (depending on the percentage of hard 
corals, the depth and the relief ) and the distance between 
two stations. The analyses of the 534 videos took 425 h in 
all. The time to analyze one video was between 24 min and 
78 min (mean ± SE = 49 min ± 3 min), depending on the 
complexity (number of species and abundances) of the bio-
diversity in the video.  

3.2. Typology of the habitat 

The stations were mainly composed of bare sediment and 
marine plants. Overall, 31 stations were almost exclusively 
composed of bare sediment (more than 90% of the habitat), 
and 66 were almost exclusively composed of marine plants 
(more than 90% of the habitat); 119 stations had living cor-
als, which never exceeded 35%, and nonliving hard substrate 
(max 20%) was present at 52 stations.

It was possible to identify three habitats in the studied area 
(Fig. 3). The “vegetated soft-bottom habitat” (317 stations) 
was dominated by marine plants (from 52% to 100%) and 
very little hard substrate (from 0% to 10% of living corals 
and from 0% to 5% of nonliving hard substrates). The “bare 
soft-bottom habitat” (160 stations) was dominated by bare 
sediments (from 50% to 100%), very little hard substrate 
(from 0% to 10% of living corals and from 0% to 5% of 
nonliving hard substrates) and a lower percentage of marine 
plants (from 0% to 50%). The “mixed soft-bottom habitat” 
(57 stations) was characterized by hard substrate (from 10% 
to 40%), including nonliving hard substrate (from 0% to 
20%) and/or scattered living corals (from 0% to 35%).

Table 1. Sampling cost. Min, max and mean (± SE) 
correspond to the time required per day in minutes for 
fieldwork preparation, per set of four stations and per station 
for video analysis. Totals correspond to the time required to 
sample and analyze the 534 videos of the study.

Fieldwork

Time required  
(min)

Daily preparation 
of boat and mate-
rial+ trips to the 
sampling area

Sampling a 
set of four 

stations

Analysis of 
one video

Min 19 40 24

Max 113 92 78

Mean ± SE 46 ± 3 40 ± 3 49 ± 3

Total 1123 7839 25,494
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Figure 3. Principal component analysis of the habitats 
characteristics per station (A) and typology of the habitat (B)
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3.3. Fish assemblages

In all, 10,007 fish belonging to 172 species (98 genera and 37 
families) were observed; 3534 fish (26% of the fish) observed 
at 330 stations (62% of the stations) could not be identified, 
because they were too small (1774 - 50%), were located in 
the upper water column (607 - 17%) or were at the limit of 
detectability (506 - 14%). The rest of the unidentified fish 
showed no distinctive signs (361 - 10%), were blurred (260 - 
8%) or swam too quickly (26 - 1%) to be identified.

Among the fish identified, the most frequent and abun-
dant families were the Lethrinidae (frequency of occur-
rence (freq) = 33%, MaxN summed across all deployments 
(total MaxN) = 992), Pomacentridae (freq = 26.8%, total 

MaxN = 3390), Labridae (freq = 26.4%, total MaxN = 
1175) and Mullidae (freq = 25.8%, total MaxN = 811). 
Most of the species were carnivores (99 species, 4184 fish). 
Plankton feeders were second in terms of MaxN (3866 fish), 
but were also the least diverse (18 species) (Table 2).

On average, the video recorded 4.1 species and 19 fish per 
station for the full 25 minutes of deployment (Table 3).  
There were important variations between stations, from 
no fish at 119 stations to a maximum of 28 species and 269 
fish at one station. Commercial species made up 29% of 
the fish species per station and 33% of the individuals per 
station. The most diverse (34% of the commercial species) 
and abundant (30% of the MaxN of the commercial fish) 
commercial fish were Lethrinidae. Scaridae (21% of the spe-

Table 2. Number of families, genera, species and abundance of fish (MaxN) per trophic group.

Trophic group Families Genera Species MaxN

Carnivores 22 58 99 4184

Herbivores-detritus 7 14 29 1507

Piscivores 7 18 26 450

Plankton feeders 7 12 18 3866

Table 3. Mean specific richness and abundance per station (± SE) for all the ichthyofauna, for  
the commercial species and for the four more frequent commercial families.

Species richness  
per station

Abundance 
 per station (MaxN)

Total ichthyofauna 4.1 ± 0.2 19.0 ± 1.4

Commercial species 1.2 ± 0.1 6.3 ± 0.6

Lethrinidae 0.41 ± 0.03 1.86 ± 0.20

Scaridae 0.25 ± 0.03 1.44 ± 0.24

Carangidae 0.13 ± 0.02 0.95 ± 0.34

Acanthuridae 0.13 ± 0.02 0.53 ± 0.15
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cies and 23% of the MaxN of commercial fish), Carangidae 
(11% of the species and 15% of the MaxN of commercial 
fish) and Acanthuridae (11% of the species and 8% of the 
MaxN of commercial fish) followed in order of importance.

The fish species richness and MaxN were significantly in-
fluenced by habitat (PERMANOVA, p = 0.001). Species 
richness and MaxN were higher in the mixed soft-bottom 
habitat than in the bare or vegetated soft-bottom habitats 
(paired comparisons, p < 0.001). The fish assemblages 
were different on the three soft-bottom habitats (PER-
MANOVA, p = 0.001). A canonical analysis was carried 
out on the first 42 axes of the analysis in principal coordi-
nates (98.54% of the total inertia) (Fig. 4). The CAP was 
validated (p = 0.001) and indicated an overall percentage 
of correct and stable classification of 63%. First, the model 
discriminated mixed soft-bottom communities (88% cor-
rect classification). The discrimination of the assemblages in 
the two other habitats was lower, i.e., 59% on the vegetated 
soft bottoms and 59% on the bare soft bottoms. These as-
semblages shared more similarities (75% misclassification 
between them). The mixed soft-bottom fish assemblage 
was the most diverse. This assemblage was characterized by 
the presence of hard-bottom species associated with cor-
als, such as damselfish  (Dascyllus aruanus and unidentified 
damselfishes), butterfly fish (Chaetodon mertensii), angelfish 
(Centropyge tibicen), parrotfish (Chlorurus sordidus, Scarus 
schlegeli and unidentified parrotfish), one wrasse (Thalas-
soma lunare), one triggerfish (Sufflamen chrysopterum) and 
coral trout (Plectropomus leopardus). Several ubiquitous 
species also characterized this community, such as goatfish 
(Parupeneus barberinoides, Parupeneus multifasciatus) and 

sea bream (Gymnocranius sp.). The presence of species as-
sociated with seagrass beds or algae meadows characterized 
the vegetated soft bottom fish assemblage, in particular two 
emperors (Lethrinus variegatus and Lethrinus genivittatus), 
one leather jacket (Paramonacanthus japonicus) and two 
wrasses (Oxycheilinus bimaculatus and Suezichthys devisi). 
The bare soft-bottom fish assemblage was the least diverse. 
Its main characteristic was the absence of hard-bottom spe-
cies or vegetated soft-bottom species. The only fish observed 
on these bottoms were specimens moving between the other 
habitats of the lagoon. However, this assemblage was char-
acterized by the presence of spangled emperors (Lethrinus 
nebulosus), which frequent the large areas of the lagoon with 
a preference for sandy bottoms, where they find their food.

3.4. Influence of soak time and number of stations 
sampled on fish assemblages.

The deployment duration had a significant effect on the spe-
cies richness (SR) and abundance (MaxN) observed by sta-
tion (Friedman test, p < 0.001). The average number of spe-
cies observed per station increased from 1.2 ± 0.6 (SR ± SE) 
species with 30 sec of observation to 4.2 ± 1.5 species with 
25 min (Fig. 5A). The SR was stable after 7.5 min of obser-
vation (pairwise comparisons test, p > 0.05). The MaxN per 
station also increased significantly over time (MaxN ± SE = 
8.0 ± 6.6 fish after 30 sec and 18.8 ± 10.5 fish after 25 min) 
(Friedman test, p < 0.001). The MaxN was stable after 1.5 
min (pairwise comparisons test, p > 0.05). The SR increased 
very quickly over time at the beginning of the recording (Fig. 
5B), before dropping progressively to reach an asymptote 
corresponding to the total theoretical species richness ac-

-0.10 -0.05 0 0.05 0.10 0.15

CAP1 (r = 76.7%)

-0.10

-0.05

0

0.05

0.10

CA
P2

  (
r =

 4
7.

7%
)

Transform: Square root
Resemblance: S17 Bray-Curtis similarity

Habitat
FH
FN
FM

Figure 4. Canonical analysis of principal coordinates (CAP) of fish assemblage between stations, under constraint 
of habitat type. Species with a correlation ≥ 0.35 to the first factorial design are specified for each habitat.
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Table 4. Deployment duration necessary to observe 50, 80, 85, 90, 95% of the theoretical SR-time. Deployment durations were 
evaluated from the accumulation curves calculated as a function of time over all the stations and by habitat.

Proportion of the  
theoretical SR-time  

(%)

Deployment duration

All soft bottoms Bare soft bottoms Vegetated soft bottoms Mixed soft bottoms

50 1 min 06 3 min 15 1 min 15 1 min 18

80 5 min 00 11 min 00 5 min 00 4 min 30

85 7 min 00 14 min 00 9 min 00 7 min 30

90 10 min 00 15 min 30 11 min 30 10 min 30

95 14 min 00 17 min 00 14 min 30 15 min 30

cording to the footage duration (Michaelis–Menten model, 
theoretical SR-time = 173 species) in the study area: 80% 
of the theoretical SR-time was observed after 5 min and 
95% of the theoretical SR-time after 14 min (Table 4). The 
theoretical SR-time was not significantly different between 
habitats (Chi-squared test, p > 0.05). Within the vegetated 
and mixed soft bottoms, SR progressed very quickly at the 
beginning of the recordings: 80% of the theoretical SR-time 
was observed after 5 min on the vegetated soft bottoms and 
4.5 min on the mixed soft bottoms (Table 4). In contrast, 
the SR on the bare soft bottoms increased more slowly at 
the beginning of the recordings: 11 min were necessary 
to observe 80% of the theoretical SR-time on this habitat. 
However, 95% of the theoretical SR-time on the bare soft 
bottoms was observed within 17 min, which was only 1.5 to 
2.5 min more than for the other soft-bottom habitats.

There was no significant link between the number of sta-
tions and the estimates of SR or MaxN observed per station 
(Spearman correlation, p > 0.05). Indeed, the mean number 
of species observed per station was relatively stable regard-
less of the number of stations sampled. It varied from 3.9 
species on average per station with 2 stations to 4.1 spe-
cies on average per station with 534 stations. On the other 
hand, the standard error (SE) decreased significantly as the 
number of stations increased (SE for 2 stations = 2.5 and 
SE for 534 stations = 0.2). The average abundance (MaxN) 
per station followed the same trend. It was relatively stable 
and ranged, on average, from 19.0 fish per station for 2 sta-
tions to 18.9 fish per station for 534 stations. The SE of 
relative abundance per station also decreased significantly as 
the number of stations increased (SE for 2 stations = 13.4 
and SE for 534 stations = 1.4). The SR gradually increased 
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depending on the number of stations sampled (Fig. 6). 
The total theoretical SR according to the stations sampled 
(theoretical SR-station) estimated by the model within the 
study area was 195 species. Eighty per cent of the theoreti-
cal SR-station was observed with 369 stations (6.2 stations/
km² in the study area) while 88% was observed with all the 
stations sampled (534 stations or 9 stations/km²) (Table 
5). The theoretical SR-station was not significantly differ-
ent between habitats (Chi-squared test, p > 0.05). Within 
the vegetated and mixed soft bottoms, SR progressed 
more quickly than for bare soft bottoms. Eighty per cent 
of the theoretical SR-station was observed with 265 sta-
tions (7.5 stations/km²) on the vegetated soft bottoms and 
70 stations (11.1 stations/km²) on the mixed soft bottoms 
(Table 5). Again in contrast, the SR on the bare soft bottoms 
increased more slowly depending of the number of stations 
sampled: 320 stations (17.9 stations/km²) were necessary to 
observe 80% of the theoretical SR-station on this habitat.  
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Figure 6. Species accumulation curves per number of 
stations/ km² for all soft bottoms and by habitat (see legend). 
Equation of the curve for each habitat is given on the 
corresponding curves.

Table 5. Number of stations per km² required to observe 50, 80, 85, 90 and 95% of the theoretical SR-station. The number of stations 
per km² was estimated from the accumulation curves calculated for each habitat over 25 min.

Proportion of the 
theoretical SR-station

(%)

Number of stations per km²

All soft bottoms Bare soft bottoms Vegetated soft bottoms Mixed soft bottoms

50 1.6 4.3 2.0 2.7

80 6.2 18.0 7.5 11.1

85 7.8 24.4 11.5 15.9

90 14.1 38.8 18.2 24.6

95 29.5 83.7 38.4 55.6
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4. Discussion
An unbaited video technique was selected because we did 
not want to attract fish to the camera. Using bait to attract 
fish would modify the fish assemblage because fish species 
react differently to bait [21,33,44,45]. The objective was 
to get a less biased representation of the assemblage during 
daytime. A 360° video technique was selected to sample 
in all directions simultaneously and record all fish in the 
sampling area.

4.1. Fieldwork implementation and costs 

The RUV360 was easy to use and particularly efficient, since 
88% of the initially selected stations were successfully sam-
pled. The approach appears to be more efficient than other 
unbaited, multidirectional video systems. For instance, the 
“STAVIRO” (rotating video system), described by Pelletier 
et al. [26], for use on hard- and soft-substrate habitats suc-
cessfully sampled 70% of the stations during a pilot study 
and reached 81% validation in a subsequent studies. More 
recently, the “compact video lander” developed by Watson 
and Huntington [46] was used on rocky reefs, and success-
fully sampled 70% of the stations. When deploying video 
systems directly from a boat, one of the main causes of non-
validation is an inappropriate orientation of the camera to-
wards the seabed. Only 3.1% of nonvalidated stations of the 
present study were attributed to seafloor relief issues. Such 
problems were reduced with the RUV360 because (1) we 
targeted only soft bottoms, which are less complex than 
hard substrate, and (2) the camera had a 235° vertical field 
of view (V-FOV), compared to cameras generally used in 
other video techniques (BRUV, RUV or STAVIRO), that 
have a V-FOV of 60° for the wide angle lens of the latest 
Sony (specification of the model FDR-AX700 on www.
sony.com) and 94.4° for the wide angle lens of the latest Go-
Pro (specification of the model HERO8 Black on www.go-
pro.com). The RUV360 was also efficient in terms of other 

typical causes of nonvalidation. It was particularly stable 
(only 0.3% of nonvalidated stations were attributed to its in-
stability) and could be used in channels where tide currents 
occurred. The impact of a low visibility was limited because 
the FOV was good (only 0.7% of nonvalidated stations were 
attributed to the visibility).

The cost associated with the use of the RUV360 method was 
evaluated as a combination of the time required for sampling 
and video analyses. Fieldwork was estimated for the simulta-
neous deployment of four RUV360s within a systematic sam-
pling grid of 300 m width and a 25 min video recordings per 
station using one boat (< 8 m, two persons minimum). The 
RUV360 appears to be an efficient alternative to other video 
systems, although comparisons are complicated, as very few 
studies provided cost information related to the use of their 
video system. From a literature review on video techniques, 
we found four studies providing details on the performance 
of their video systems: Pelletier et al. [26] for STAVIRO, 
Gladstone et al. [31], Santana-Garcon et al. [47] and Lan-
glois et al. [48] for BRUVs. The size of the boat (small boat 
between 5 and 10 m), the number of persons required at sea 
(two persons minimum) and video analysis (one person as-
sisted by experts as required) were common to all approaches. 
The number of stations sampled per day varied between stud-
ies (from 10 to 30 stations/day) depending on the number of 
systems used simultaneously, the duration of the footage and 
the distance between stations. Two to ten video systems were 
used per boat, with footage lasting from 9 min [26] to 180 
min [47] and distance between stations varying from 200 to 
500 m. The time required to analyze videos depends on the 
complexity of the habitat, as well as the diversity and abun-
dance of fish. The analysis of RUV360 video was faster (49 
min for a 25 min video on average, corresponding to 2 min 
per minute of video) than for STAVIRO video (43 min for a 9 
min video on average, corresponding to 4 min 47 per minute 
of video) [26], because all fish present are visible within one 
frame, whereas six sectors of 60° are necessary for STAVIRO 
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to get a 360° frame. The RUV360 takes longer to analyze than 
the BRUV (65 min for a 60 min video on average which cor-
respond to 1 min per minute of video [31,47]) because fish 
are attracted to the camera with BRUV and easier to identify, 
whereas greater zooming in is necessary with the RUV360 for 
species identification. The performance of the RUV360 was 
also linked to the nature of the videos analyzed, as soft bot-
tom habitats are easier to analyze than complex habitats such 
as coral reefs.

4.2. Biodiversity sampled

The RUV360 method was successful at sampling bare soft-
bottom habitats, seagrass beds, macroalgae meadows and 
mixed soft bottoms. The fish assemblages were significantly 
different according to the type of the soft-bottom habitat. 
The differences were mainly driven by the presence of hard 
substrate, corroborating the observed relationship between 
the complexity of marine habitats and the composition of 
fish assemblages [2]. Structurally more diverse habitats are 
known to sustain fish communities that are more diverse 
and functionally complex in comparison with habitats with 
monotonous bare substrates [49]. The fish assemblages were 
first discriminated in the mixed soft bottoms (88% of correct 
classification), followed by vegetated or bare soft-bottom 
habitats (59% of correct classification for each habitat). 
There were no clear boundaries between the vegetated soft-
bottom and the bare soft-bottom assemblages, which form 
a continuum along a plant density gradient. Within the 
studied area marine plants were common (only 3% of the 
stations had less than 10% plant cover). Therefore, even if 
bare soft-bottom habitats were mainly composed of bare 
bottom, they also included marine plants to a lesser extent 
(< 50%). The presence of marine plants on these habitats, and 
their associated species, can explain the difficulty of better 
discriminating fish assemblages between the vegetated and 
bare soft-bottom habitats. It appears that fish communities 
change along a gradient of marine plant abundance.

We recorded 10,007 fish belonging to 172 species (98 gen-
era and 37 families), including 45 species (3365 individuals) 
targeted by fishing in New Caledonia and many emblematic 
species such as rays, sharks, turtles and dolphins; 104 sea 
snakes were also observed in the study area. For video analy-
sis, several species were aggregated into groups, because they 
are similar in appearance and difficult to distinguish from 
each other. Grouping species that share specific traits in 
relation to their habitat, biology, behavior and ecology is 
common for studies using video techniques [31,47,50,51]. 
Another group of species seen in videos during this study 
could not be identified (26%), as they were too small or 
at the limit of the detectability (too far or too high in the 
water column from the camera). The observation of cryp-
tic fish such as gobies (Gobiidae) and blennies (Blenniidae) 
is challenging using video, as they are too small and were 
often too far from the camera to be identified [21]. These 
two families represent a large number of species through-
out New Caledonia (255 species on reefs and soft bottoms; 
[52], a number of the unidentified individuals in this study 
belonged to these two families. The difficulty of undertak-
ing a census of cryptic fish species is not only related to the 
video analysis technique applied; it has also been reported 
in other, nonextractive sampling methods such as under-
water visual censuses (e.g. [53]). Our results are consistent 
with previous knowledge of the biodiversity of lagoon soft 
bottoms in New Caledonia. Invertivores species dominate 
the assemblages, ahead of herbivores, piscivores and plank-
ton feeders [1,11]. We observed 156 species out of the 
542 species (28%) recorded on soft bottoms in New Cale-
donia using trawls or underwater visual census techniques 
(MK, pers. comm) [1,11,54]. The videos captured 16 ad-
ditional species: 10 were hard-bottom species observed 
on mixed soft bottoms. Two were ubiquitous species, two 
were sharks and two were rays. The differences between vid-
eos and these other techniques are linked to the study area 
(location and size) and the techniques themselves. Bottom 
trawls census fewer hard-bottom species because mixed soft 
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bottoms cannot be trawled when the seafloor becomes too 
irregular, and most large species will avoid the trawl [54]. 
Video techniques are not adapted to census cryptic species 
[31,47,50,51]. Pelagic species are more frequently censused 
using UVCs than video techniques, and these species are sel-
dom targeted by bottom trawls [55].

Consumer grade, spherical camera systems are significantly 
less expensive than high-cost underwater cameras. How-
ever, the resolution may be sacrificed for the large field of 
view. Consequently, the range to which fish are identifiable 
will likely be reduced compared with high-cost standard 
cameras, and this effect could be species-specific. Previous 
field tests using underwater benchmarks for distances indi-
cated that we can identify fish at a typical maximum range 
of 8 m from the cameras [50]. As species size also has an 
impact on detectability, we propose a list of species iden-
tifiable on the habitat sampled and have grouped similar 
species together.

4.3. Optimization of the sampling design using RUV360

In order to optimize the sampling design (recording time 
per station and number of stations) using the RUV360, we 
had to collect representative, stable and reproducible data 
on soft-bottom fish communities. During our study, 99% 
of the theoretical total species richness according to foot-
age duration (= “theoretical SR-time”) was censused by 
the RUV360 in the area, using footage of 25 minutes. This 
demonstrates that it is not necessary to extend the duration 
of the footage, as 95% of the theoretical SR-time was ob-
served within 14 min. The duration of footage varies greatly 
between studies, depending on the video technique used 
and the purpose of the study (from 8 min to several days) 
[21,33]. None of the studies referenced here specified the 
proportion of theoretical SR recorded, according to the du-
ration of the footage taken. Therefore, subsequent results 
are strongly linked to the length of the selected footage. For 
example, according to the review on BRUVs by Whitmarsh 
et al. [33], 32% of BRUV studies used 60 min, 25% used 30 
min and 17% used soak times greater than 90 min.  

The RUV360 also recorded 88% of the theoretical species 
richness in the study area according to the station sampled, 
using nine stations/km². Very few studies using video inves-
tigated the optimal number of stations required to obtain 
stable observations of the biodiversity, and none of them 
reported this number in relation to the surface of the area 
studied. To the best of our knowledge, no experiments have 
investigated the impact of replicate spacing on observed as-
semblages ([33] for BRUV). For example, Santana-Garcon 
et al. [47] gave an optimal sample size of at least eight rep-
licates per treatment in sampling a pelagic fish assemblage 
with a BRUV technique, while Gladstone et al. [31] con-
cluded that for BRUV, there is no optimal value related 
to sampling precision, with values needing to be set by re-
searchers, according to the specific objective.

When designing a sampling strategy for soft-bottom fish 
communities using the RUV360, it is possible to adapt foot-
age duration and sampling effort. Therefore, it is possible to 
favour a strategy of either “short videos on many stations”, or 
“long videos on a limited number of stations”. Based on the 
data obtained in this study, we propose two reference plots to 
help in this process (Fig. 7). The choice will be a compromise 
between achieving acceptable precision, the variables and/or 
species of interest, and the need to manage costs [31,56].  

5. Conclusion
The results of this study support the proposed sampling 
protocol to monitor fish communities in perireefal habitats 
during the daytime. To date, most attention in the scientific 
literature has focused on reefs, mangroves and seagrass habi-
tats within the coral reef seascape. The sampling protocol 
described here offers the opportunity to obtain data on peri-
reefal habitats that are comparable in space and time (spe-
cific richness, abundance)using a consumer grade 360° video 
camera. The results are consistent with the known charac-
teristics of the lagoon soft-bottom fish assemblages, and the 
impacts of irregular seafloors, current and visibility were 
limited. We provide reference plots to estimate the propor-
tion of the theoretical total species richness, according to 
the number of stations or the duration of the footage. The 
approach can also discriminate the structure of fish assem-
blages in relation to habitat typology. Further development 
should include the refinement of the method to collect 
body-size data from stereo video or other means. Body-size 
and length data are valuable for a range of ecological stud-
ies, from those focused on the impact of fishing to those on 
ontogenetic shifts of fish assemblages.
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