POPULATION STUDIES IN THE WESTERN PACIFIC

A.D. LEWIS

During the course of the Papua New Guinea pelagic fisheries research program, tagging skipjack has received priority until quite recently. Results of the tagqing experiments thus comprise a large part of the data potentially apolicable to skipjack population studies. other data likely to be useful include:
i) length/frequency data from research vessel ant commercial catches
ii) information on spawning periodicity
isi) variation in abunanne/avallability inferrod from the catch effort data
iv) genetic data
v) Growth rates

Sittle information is available in other potentially useful areas such as meristics, morniometrics and fecundity.

Many factors caution restraint in the interpretation of the avallabla lata. ronvlation structure in $9 . \sim$. anjamont waters is clearly not simple. Skipjack are available all year round, but ahundance as inferred from catch effort lata varies widely within years between years and between adjacent areas. The Ifmito length frequency iata indicates that the fighary is basically a size-specific one, dependent on more or less continuous recruitment. Some size specificity by area is also apparent (Iewis, MS). Spawning in the region appears to occur year round (Ueyanagi, 1969), although peak in soawning activity is discernible (Lewis et, al, 1974). Fishinq effort in surrounding areas, other than the Solomon Islands, is patchy, since the Japanese southern water fishery does not operate year round and effort is not uniformly distributed, being biassed towards areas of maximal skipjack availability. Difficulties posed hy this are exacerbated by the time lag between collection and distribution of catch statistics from this fishery. No reliable ageing method is yet available for skipjack although optimism surrounds the otolith "daily" arowth ring studies. All releases of tagqed skipjack were from agqreqations whose genetic makeup is unknown. Collection of biochemical data in confunction with tagging is a recent undertaking only and very few results are to hand.

Despite these difficulties, there are some positive factors. The data from the Papua New Guinea fishery are sound, and as the fleets operate on a short-range basis from fixed localities, can be used to qauge availability in these areas with some confidence. The sesults of the tagaing experiments compare favourably with others involving skipjack and are probably as good as can reasonably be expected.

Results of these for 1971-72, 1973, 1974 and 1975 have been sumarized in detail in a series of internal reports (Lewis et al, unpublished) but the following points are worth restating:
i) the local migration pattern observed (i.e. clockwise movement around the Bismarck Sea with later retracing), although complex, appears consistent within and between years
11) a high proportion of recoveries, even after long periods at liberty, were made within the P....G. area. Ren allowing for the irregular temporal and spatial distribution of effort in adjacent area, this indicates that the geographical range of elements of the exploited stock may centre on the D.V.G. area.

1ii) all 45 recoveries made beyond the P.N.G. area (Figure 1) lie within the proposed limits of Fufinc's wastern Pacific suh-population. Genetic analysis of all blood samples taken in the area have also ifentified the skipjack as belonging to the western sub-population.
iv) despite expenditure of consiterable amounts of effort by the Japanese home and southern wher fleets in the western pacific north of 10 N , no shipjack tagged in P.N.G. have been recovered there (rigure 1). However, skipjack tanged north of $10^{\prime}: \mathrm{b}$. Iz panese scientists have been recovered within the ?.7.;. area (Fiqure 2).
v) very low recovery rate has henn obtained from eish tagged by the usial methot in the northern Coral Sea. these fish do not appear to onter he Bismarck or Solomon sea fisheries to any extent.

Basic agrement with the broal asoects of Pufino's hyoothesis are indicated (noint ifi). is fivigion $\theta^{\text {" }}$ thestern subpopulation into two groups may however be an over-simplification. What seems more likely is the existence of a number of components, possibly genetically distinct, whose centres of distribution are geographically separated yt whose overall distribution overlaps to a large degree. For example, points (iv) and (v) suqgest that at least three components exist in the P.N.G. area alone - one centrad north of the Fquator, but ranging south into F.J.G.: another perhaps centred on the Bismarck Sea, but ranging west to Irjan Jaya, north of the Equator (but not further north than 10 N) east to the sub-population boundary an? at least as far south as the Solomon Islands, with a third aroun centred south of P.N.G., but ranging into the area. The total number of such groups or components making up the western sub population could well be much higher. In this respect i.e. internal structure, the P.N.G. data shows closer agreement with the models of Matsumoto (1974) and Kawasaki (1955a, 1955b, 1964), both of whom recognize the presence of moderate number of components within the western Pacific sub-population, or at least the area typically occupied by it. It would seem highly desirable in future tagging work in the area to collect genetic/biochemical data concurrently, enabling genetic identity and homogeneity within each lot of releases to be established.

Length frequency data

Data on size composition of the catch is available from two sources:

1) the daily catch statistics, from which the average size of skipjack and yellowfin taken each day can be read off. A sample ($20-30$ fish) is taken from the thoroughly mixed catch of each vessel during weighing operations on the mother ships to obtain this. Daily averages are rarely used in their own right, but contribute to the more frequently used monthly averages by company, boat and area.
ii) length frequency dats obtained at the same time by Government employees. The scarcity of adequately trained technicians has hampered collection of this information. There is a reasonable series of samples for 1972-73 (Fiqures 3, 4 \& 5) but very little for 1974-75.

Only the length frequency data for $1072-73$ is considere? here. In the figures for the Cape Lambert fishery (Figs. 3 \& 4) an absence of molal progression is immeriately evident i.e. the fishery tends to be size specific, presumarly because of continual movement of skipfack through the area. The data from the New Hanover fisherv, 100 miles north, shows more irreqularity (Fiqure 5) but still no ohvious modal orogression. tagaing results (Lewis et al, unpublished data) have shown movementa through this sector of the fishery to be more complex, with some influxes not denetrating as far south as the Cape Lambert fishery.

Cursory analysis of data from actiacert area (Solomon Islands, Caroline Islands) gives cause to felieve that a similar pattern (i.e. size specificity wit rontinuous recriftment though not always fish of ifentical size) may be conmmn to most equatorial areas, where internal structure of the nopulation may be \exists^{+}its most comnlex.

The rarity of large skipjack in the catch is ennspicuous as has been noted by Rearney (1975) and is not function gear selectivity (Lewis et al, 1974). This may prove to be an important characteristic of the western sub-moulation, possibily related to oceanoqraphic conditions.

Wider application of the lenath fremuency data nas there far been restricted by the lack of a reliable ageinc technifue for the species.

Spawning periodicity
(t) be inserted later)

Variations in CPUE

(not included)
Figures 6 \& 7 show the variation in CPUE (monthly) for two companies during the five year period 1971-75. These data in general, show the general absence of seasonality in the fishery and reflect the variation in availability between years. This tends to confirm what was inferred from the lentth frequency data i.e. recruitment occurs rather irregularly.

Genetic/biochemical data
At the time of writing, six large series, each consisting of at least 130 individual samples, had been collected for analysis of serum, esterase and transferrin allele frequencies by IATTC staff (Table 1). Pesults of the four analysed so far reveal considerable heterogenelty within each series with respect to esterase 2 frequencies: there is also heterogeneity in estorago 2 fremuencies betwsen series. This is in montrast with material collected in New zealand which exhibits striking homogeneity (G_{0}. Sharo - nors. comm.) and further hiahlights the complexity of the P.N.G. situation.

$$
\text { Ox maller lota (sample size } 14.30 \text {, total } 123 \text { fish }
$$

Table 1) have been sent to professor Fujino, as have three other samples (34 fish) collectes in the D.V.G. Trea by Tananese scientists in ovember-December 177. All orover, on the basis of the cremuency of the E'gj allclo to helong to the westorn Pacifi: sub nonulation (Fuylno. -4c).

It is hoper to expand involvement in this field and hegin collecting morphometric data at the same time, to facilitate more irect inter-areal somparisons.

Growth rates
In the absence of a reliahle agelng technirue and as the length frequency data does not lend itself to modal progression analysis, the release/coomptare information remains the best availahle data for estimates of skipjack arowth rates in the P.N.G. area. Over the size range $50-60 \mathrm{~cm}$, estimates of $6-8 \mathrm{~cm}$ growth per year have been derived from the data. (West in MS). These annual increments are considerably lower than those obtained elsewhere from tagqing and other data.

Otoliths collected from skipfack in the p. $\mathrm{m} . \mathrm{G}$. arm have been examined by two overseas workers in the field, with hoth obtaining comparable estimates for this size range of sicinjack (Worker A - 20 cm p.a., Worker B - 30cm p.a. - Figure 9). Although the "ages" ascribet were regarded as nreliminary ty both workers, growth rates beyond the adolescent or juvenile stage are felt to be less prone to error because the rinas close to the focus, which are often difficult to read, need not be considered.

It could thus be implied that the effects of tagaing process and/or ransport of the tar may inhibit normal growth. Thia is difficult to confirm but there are indications that this may not be the case. Firstly, growth observed in double and single taqqed skipjack does not appear to be significantly different although available data is limited. secondiy in
otoliths from recaptured skipjack sent to one worker, the growth checks noted by him and presumed to be caused by tagging bore ilttle relation to the time of release (see below). "Ages" given for the tagged fish differed ilttle from untagged fish (Figure 8).

LCF Estimated days at liberty (i.e. since qrowth check)

Actual days at liberty
60.291348
58.9
59.8

336-339
20,76 or 96 340 394
120-180 58

Footnote: The days at liberty data was supplied with the otolith for the secont fish only.

As the estimates from otolith readings are in closer agreement with previous studies in other areas of the Pacific. the reasons for the discrepancy between taq lata and this data needs to be clarified before inter-areal comparisons of growth rates can be made.

CONCLUSIONS

The value of the p.N.G. Tata lies in its anfirmation of the complexity of the internal sub-mopulation structure, particularly in equatorial areas; it underlines the need for a multidisciolinary approach if sionificant advances in unravelling this complexity are to be made - in the iueal situation. from each tag release set, biociemical, otnlith, monomemeric and renroductive material should te collecte concurrently a a minimum in future studies. Practical considerations sill orobahly necessitate some compromise. Attention needs te directed algo st refining aqeing techniques, ans imuroving intormatioral accesa to all available length fromency and ntrh offort "ata which should additionally be upgrale? if deemed to be inalequate at present. It seems doubtful if any one cointry has the resources or finance at its disposal to tackle thes formidable oroblems alone.

Table 1
SKIPJACK BLOOD SERIES COLLECTED IN THE PAPUA NEW GUINEA AREA

Date	$\begin{gathered} \text { Series } \\ \text { Size } \\ \hline \end{gathered}$	Locality	Size Range (cm)	Other data collected
26/10/75	146	$3^{\circ} 55^{\prime} 8.151^{\circ} 21^{\prime} \mathrm{E}$	49-63	Otoliths
27/10/75	162	$3^{\circ} 55^{\prime} \mathrm{S}, 151^{\circ} 15^{\prime} \mathrm{E}$	49-63	Otoliths
13/11/75	154	$11^{\mathrm{C}} \rightarrow 2^{\prime} \mathrm{S}, 154^{\circ} 22^{\prime} \mathrm{E}$	43-51	Otoliths, 160 tagged
12/11/75	200	$11^{\circ} 18: 2^{\prime} \mathrm{S}, 150^{\circ}$	46-60	Otoliths, 105 skipjack tagqed
19/4/76	135	$2^{\circ} 00 \cdot 3.250^{\circ} 30^{\prime}=$	n.a.	Nil
18/6/76	179	$2^{\circ} 45^{\prime} \mathrm{S}, 150^{\circ} 1 \mathrm{n}^{\prime} \mathrm{E}$	44-51	Morphometrics

$\begin{gathered} \text { Jan. - March } \\ 1975 \end{gathered}$	21	$\begin{aligned} & \text { Pgrt Moresky } \\ & \left(9_{40, S, 147}^{101 F}\right) \end{aligned}$	51-62	-
11/11/75	17	$9^{\circ} 40 \cdot s, 1.47^{\circ} 051 \mathrm{r}$	55-58	Gonad weight, 21 skiofack tagaed
28/11/75	13	$9^{\circ} 11 \mathrm{~S}^{\prime}, 153^{\circ} 54 \mathrm{~m}$	29-34	$16 n$ skinjack tagged
1/12/75	30		27-36	84 skipiack tagged
2/12/75	20	$9^{\circ} 16^{\prime} \mathrm{S}, 153^{\circ} 59^{\prime} \mathrm{E}$	45-55	Gonad weights, 4 skipjack tagged
2/12/75	20	$9^{\circ} 14^{\prime} \mathrm{S}, 153^{\circ} 56^{\prime} \mathrm{E}$	29-69	Otoliths, gonad weights, 10 skipjack tagged

FIGURE 1
Tag Recoveries outside Papua New Guinea adjacent waters.

FIGURE 2

Selected Recoveries of Skipjack tagged north of Papua New Guinea

 by Japanese research organizations.

FIGURE 3
Length Frequency Data from the Cape Lambert Fishery during 1972.

FIGURE 4

Length Frequency Data from the Cape Lambert Fishery during 1973.

FIGURE 5
Length Frequency Data from the New Hanover Fishery during 1972.

FIGURE 6. Monthly CPUE (Company A) for the years 1971 to 1975. Months when the number of fishing days did not exceed 80 days have not been included.

FIGURE 7. Monthly CPUE (Company B) for the years 1971 to 1975.

Key to symbols used.

FIGURE 8

Results of Age \& Growth Studies on Otoliths from Papua New Guinea Skipjack by two Workers.

